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Abstract. Let G be a finite simple group. By a theorem of Guralnick and Kantor,
G contains a conjugacy class C such that for each non-identity element x ∈ G, there
exists y ∈ C with G = 〈x, y〉. Building on this deep result, we introduce a new invariant
γu(G), which we call the uniform domination number of G. This is the minimal size
of a subset S of conjugate elements such that for each 1 6= x ∈ G, there exists s ∈ S
with G = 〈x, s〉. (This invariant is closely related to the total domination number of
the generating graph of G, which explains our choice of terminology.) By the result of
Guralnick and Kantor, we have γu(G) 6 |C| for some conjugacy class C of G, and the
aim of this paper is to determine close to best possible bounds on γu(G) for each family
of simple groups. For example, we will prove that there are infinitely many non-abelian
simple groups G with γu(G) = 2. To do this, we develop a probabilistic approach, based
on fixed point ratio estimates. We also establish a connection to the theory of bases for
permutation groups, which allows us to apply recent results on base sizes for primitive
actions of simple groups.
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1. Introduction

The study of generators for simple groups has a long and rich history, with numerous
applications. As a consequence of the Classification of Finite Simple Groups, it is known
that every finite simple group can be generated by two elements; this is a theorem of
Steinberg [45] for groups of Lie type, and the argument was completed by Aschbacher and
Guralnick in [2]. This result leads to many interesting problems that have been the focus
of intensive research in recent years. For instance, it is natural to consider the abundance
of generating pairs in a simple group, and also the existence of generators with prescribed
properties, such as restrictions on the orders of the generating elements.

Through the work of many authors, we now understand that finite simple groups have
some remarkable generation properties. For example, a theorem of Liebeck and Shalev [40],
extending earlier work of Dixon [22] and Kantor and Lubotzky [34], shows that a randomly
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chosen pair of elements in a finite simple group G forms a generating set with probability
tending to 1 as |G| tends to infinity. In [24] (also see [44]), Guralnick and Kantor use
probabilistic methods to prove that every non-identity element of a finite simple group G
belongs to a generating pair (a group with this strong 2-generation property is said to be
3
2 -generated). See [10, 16, 28, 31] for further results in this direction for simple and almost
simple groups. We refer the reader to [15] for a recent survey of related topics concerning
the generation of simple groups.

Let G be a finite group and let G# be the set of non-identity elements of G. The
generating graph of G, denoted by Γ(G), has vertex set G# and two vertices are adjacent
if and only if they generate G. This graph encodes many interesting generation proper-
ties of a 2-generated group. For example, G is 3

2 -generated if and only if Γ(G) has no
isolated vertices. In turn, many natural invariants of this graph have interesting group-
theoretic interpretations, and this provides an appealing interplay between group theory
and graph theory. For instance, it is natural to consider the connectedness, diameter and
Hamiltonicity of Γ(G), as well as its clique, co-clique and chromatic numbers. In recent
years, numerous authors have focussed on these problems in the context of a non-abelian
finite simple group G. Here one of the most striking results is [10, Theorem 1.2], which
implies that Γ(G) is connected with diameter 2. In [11], it is conjectured that Γ(G) always
contains a Hamiltonian cycle, but so far this has only been established for all sufficiently
large simple groups (see [11, Theorem 1.2]). The proof of this result uses a combination
of probabilistic and combinatorial techniques.

In this paper we initiate the study of another natural invariant of the generating graph
of a finite group. Let Γ be a finite graph with no isolated vertices. A subset S of Γ
is a total dominating set if every vertex of Γ is adjacent to a vertex in S, and the total
domination number of Γ is the minimal size of a total dominating set. This is a well-
studied invariant, which, in general, is rather difficult to compute precisely. Indeed, the
problem of determining whether the total domination number of a given graph is at most
a given number k is NP-complete (see the survey [32] for more details).

As noted above, if a finite group G is 3
2 -generated then its generating graph Γ(G) has

no isolated vertices. In this situation, we define the total domination number γt(G) of G
to be the total domination number of Γ(G).

In this paper, we will work with a slightly stronger notion. Let k be a positive integer.
Following [10], we say that G has uniform spread k if there exists a fixed conjugacy class
C of G with the property that for any k elements x1, . . . , xk ∈ G# there exists g ∈ C such
that G = 〈xi, g〉 for all i. Therefore, G has uniform spread 1 if and only if some conjugacy
class of G is a total dominating set for Γ(G). By the main theorem of [24], every finite
simple group G has uniform spread 1 (in fact, [10, Theorem 1.2] shows that all finite simple
groups have uniform spread 2). Therefore, for finite groups with uniform spread 1, such
as simple groups, it is natural to seek small total dominating sets of conjugate elements.
This leads us naturally to the following definition.

Definition. Let G be a finite group with uniform spread 1 and generating graph Γ(G). We
define the uniform domination number γu(G) of G to be the minimal number of conjugate
elements that form a total dominating set for Γ(G).

Observe that γt(G) 6 γu(G). Also note that γu(G) = 1 if and only if G is cyclic.
We are now in a position to state our main results on the uniform domination number

of simple groups. By the above observations, if G is a non-abelian finite simple group then

2 6 γu(G) 6 |C| (1.1)

for some conjugacy class C ofG. (Typically, C is large, such as a class of regular semisimple
elements if G is a group of Lie type.) Our first result shows that there are infinitely many
groups for which the trivial lower bound in (1.1) is sharp (see Theorems 3.8 and 5.2(i)).
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Theorem 1. There are infinitely many non-abelian finite simple groups G with γu(G) = 2.
For example, γu(An) = 2 for every prime number n > 13.

Next we present results for alternating, sporadic and groups of Lie type, in turn. Our
main result for alternating groups is the following (see Theorem 3.7 for a more detailed
statement).

Theorem 2. There exists an absolute constant c such that

γu(An) 6 c(log2 n)

for all n > 5. In particular, if n > 6 is even, then

dlog2 ne − 1 6 γu(An) 6 2dlog2 ne.

Remark 1. Notice that if n is even then Theorem 2 gives the exact value of γu(An), up
to a small constant. It is also worth noting that the uniform domination number of an
alternating group can be arbitrarily large. The analysis of odd degree alternating groups
is more difficult and our best estimate is γu(An) 6 77 log2 n (see Proposition 3.15).

We can compute precise results for sporadic simple groups; a simplified version of our
main result (Theorem 4.2) is as follows.

Theorem 3. Let G be a sporadic simple group. Then γu(G) 6 4, with equality if G = M11

or M12.

Finally, we present a version of our main result for simple groups of Lie type (see
Theorems 5.2 and 6.3 for more detailed results). In the statement, r is the untwisted Lie
rank of G (that is, r is the rank of the ambient simple algebraic group).

Theorem 4. Let G be a finite simple group of Lie type of rank r.

(i) If G = L2(q), then γu(G) 6 4, with equality if and only if q = 9.

(ii) If G is an exceptional group of Lie type, then γu(G) 6 6.

(iii) If G is a classical group, then γu(G) 6 7r + 56.

Remark 2. Let us make some comments on the statement of Theorem 4.

(a) The upper bound in part (ii) can be improved for some families of exceptional
groups. For instance, by Theorem 5.2, γu(G) = 2 if G ∈

{
2B2(q),

2G2(q), E8(q)
}

.

(b) We refer the reader to Theorem 6.3 for a more detailed version of part (iii), which
provides stronger bounds in some special cases. For example, if G is a symplectic
group in even characteristic, or an odd dimensional orthogonal group, then

r 6 γu(G) 6 7r

and thus the linear bound in (iii) is essentially best possible (up to constants). In
other cases, we can establish a constant bound. For instance, if G = Ur+1(q) and
r > 7 is odd, then γu(G) 6 15.

Let us briefly describe some of the main ideas in the proofs of Theorems 1–4. Following
Guralnick and Kantor [24] in their work on the uniform spread of simple groups, we
develop a probabilistic approach to study the uniform domination number. Let G be a
finite group and fix an element s ∈ G#. Write M(G, s) for the set of maximal subgroups
of G containing s. For an element x ∈ G and subgroup H < G, let fpr(x,G/H) be the
fixed point ratio of x for the action of G on the set of cosets G/H. For a positive integer c,
let Q(G, s, c) be the probability that a randomly chosen c-tuple of conjugates of s is not a
total dominating set for Γ(G). Clearly, if Q(G, s, c) < 1 for some s ∈ G# then γu(G) 6 c,
so we are interested in bounding Q(G, s, c) from above.
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Here the key tool is Lemma 2.5, which states that

Q(G, s, c) 6
k∑
i=1

|xGi |

 ∑
H∈M(G,s)

fpr(xi, G/H)

c

=: Q̂(G, s, c),

where {x1, . . . , xk} is a set of representatives of the conjugacy classes in G of prime order
elements. To apply this result, the first step is to identify an element s ∈ G# that is
contained in very few maximal subgroups of G. We then need to determine the specific
subgroups in M(G, s) and compute upper bounds for the relevant fixed point ratios.
Here we can appeal to the extensive literature on fixed point ratios for simple groups. For
example, if G is a simple group of Lie type over Fq and H is a maximal subgroup of G, then
a well known theorem of Liebeck and Saxl [38, Theorem 1] implies that fpr(x,G/H) 6 4/3q
for all x ∈ G#, with a short list of known exceptions. Stronger bounds are established in
[12] (for non-subspace actions of classical groups), [24, Section 3] (subspace actions) and
[36] (exceptional groups).

In the special case where there is an element s ∈ G# with M(G, s) = {H} and H
is core-free, it is easy to see that γu(G) 6 b, where b = b(G,G/H) is the base size
of G with respect to the action on G/H (that is, b is the minimal size of a subset of
G/H with trivial pointwise stabiliser). This observation provides an important connection
between the uniform domination number of G and the base sizes of primitive permutation
representations of G. Bases for primitive groups have been a topic of interest in group
theory since the nineteenth century, with a wide range of applications. In particular,
strong upper bounds on the base sizes of primitive almost simple groups have recently
been established (see [14, 17, 19, 20, 29] for example), and in many cases we can apply
these results to bound the uniform domination number. For example, Halasi’s results [29]
on the base size for the action of a symmetric group on k-sets are a key ingredient in the
proof of the bounds in Theorem 2 for even degree alternating groups.

Remark 3. In many cases, our probabilistic approach also yields strong asymptotic re-

sults. Indeed, if Q̂(G, s, c) → 0 as |G| → ∞, then almost every c-tuple of conjugates of s
is a total dominating set for Γ(G). For instance, suppose G is an exceptional group of Lie
type, in which case Theorem 4(ii) gives γu(G) 6 6. By combining the proof of Theorem 5.2
with [19, Theorem 2], we deduce that there is an element s ∈ G such that the probability
that 6 randomly chosen conjugates of s form a total dominating set for Γ(G) tends to 1
as |G| → ∞.

As noted above, in order to effectively apply the probabilistic approach, we need to find
an element s ∈ G# that is contained in a small number of maximal subgroups of G. In
this way, it is natural to consider the parameter

µ(G) = min
s∈G
|M(G, s)|.

We establish the following result for simple groups.

Theorem 5. If G is a finite simple group, then either µ(G) 6 3 or (G,µ(G)) is one of
the following:

G U6(2) U4(3) Ω+
8 (2) PΩ+

8 (3)

µ(G) 4 5 7 7

In particular, µ(G) 6 7 for every finite simple group G.

In fact, we can compute the exact value of µ(G) for any alternating or sporadic group G
(see Theorems 3.1 and 4.1), and it is worth noting that there are infinitely many alternating
groups G with µ(G) = 3. The result for alternating and classical groups is essentially a
corollary of the proof of the main theorem of Guralnick and Kantor [24], which identifies
an explicit element that is contained in very few maximal subgroups (typically, this is a
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regular semisimple element when G is a classical group). Finally, we appeal to earlier work
of Weigel [46], which shows that almost every finite simple exceptional group of Lie type
has an element that is contained in a unique maximal subgroup.

Our notation is standard. We adopt the notation from [35] for simple groups, so we
write Ln(q) = PSLn(q) and Un(q) = PSUn(q) for linear and unitary groups, and PΩε

n(q)
is a simple orthogonal group, etc. In addition, we will write (a1, . . . , ak) for the greatest
common divisor of a collection of positive integers a1, . . . , ak.

2. Methods

In this section we introduce some of the main tools that will be needed in the proofs
of Theorems 1–5. First, in Section 2.1, we establish an important connection between
the uniform domination number and base sizes. Our probabilistic approach to bounding
the uniform domination number, based on fixed point ratio estimates, is presented in
Section 2.2; here the main result is Lemma 2.5. Finally, in Section 2.3, we outline some
of the computational methods that we will employ.

2.1. Bases. Let G be a finite group with generating graph Γ(G). Recall that a subset
S ⊆ G# is a total dominating set (TDS for short) for Γ(G) if for all g ∈ G# there exists
s ∈ S such that G = 〈g, s〉. For any g ∈ G, writeM(G, g) for the set of maximal subgroups
of G containing g.

Lemma 2.1. A subset {s1, . . . , sc} ⊆ G# is a total dominating set for Γ(G) if and only if
c⋂
i=1

Hi = 1

for all (H1, . . . ,Hc) ∈
∏c
i=1M(G, si).

Proof. Let S = {s1, . . . , sc}. By definition, S is not a total dominating set if and only if
there exists g ∈ G# such that G 6= 〈g, si〉 for all i; that is, for each i, g is contained a
maximal subgroup of G containing si. So S is not a total dominating set if and only if
there exists (H1, . . . ,Hc) ∈

∏
iM(G, si) such that

⋂
iHi 6= 1. The result follows. �

Let G be a group acting faithfully on a finite set Ω. Recall that a subset B ⊆ Ω is a
base if the pointwise stabiliser of B in G is trivial. Write b(G,Ω) for the minimal size of a
base for the action of G on Ω. Note that if G is transitive on Ω and H is a point stabiliser,
then b(G,Ω) 6 c if and only if there exist g1, . . . , gc ∈ G such that

c⋂
i=1

Hgi = 1.

Let us also observe that

b(G,Ω) >
log |G|
log |Ω|

. (2.1)

Corollary 2.2. Suppose there is an element s ∈ G such that M(G, s) = {H} and H
is core-free. Then b(G,G/H) is the minimal size of a total dominating set for Γ(G)
containing only conjugates of s.

Proof. Let c be a positive integer. As noted above, b(G,G/H) 6 c if and only if there
exist g1, . . . , gc ∈ G such that

⋂
iH

gi = 1. Since M(G, sgi) = {Hgi} for each i, the result
follows from Lemma 2.1. �

This corollary connects the study of base sizes for primitive permutation groups to the
existence of total dominating sets comprising conjugate elements. In particular, it leads
us naturally to the notion of the uniform domination number γu(G) of G introduced in
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Section 1, which is our main focus in this paper. Recall that this is defined to be the
minimal number of conjugate elements that form a total dominating set for Γ(G).

The main goal of this paper is to study γu(G) for finite simple groups G. (By the main
theorem of [24], simple groups have uniform spread 1 and thus γu(G) is well-defined.) Of
course, in this situation every proper subgroup of G is core-free and so we are in a position
to apply Corollary 2.2. Indeed, if we can identify an element s ∈ G with M(G, s) = {H}
then γu(G) 6 b(G,G/H) and we can appeal to the extensive literature on bases for
simple groups, which is a topic that has seen a great deal of activity in recent years (see
[14, 17, 19, 20, 29], for example). In the next section, we will develop a probabilistic
approach which can be used to obtain upper bounds on γu(G) in the general case where
we have an element s ∈ G that is contained in several maximal subgroups.

We conclude this section by recording a result which allows us to exploit information
on base sizes to determine lower bounds on γu(G).

Corollary 2.3. Let s ∈ G# and let H ∈ M(G, s) with b(G,G/H) = b. Then any total
dominating set for Γ(G) containing only conjugates of s has size at least b.

Proof. Let {sg1 , . . . , sgc} be a total dominating set for Γ(G). Then Hgi ∈ M(G, sgi) for
all i. Therefore, Lemma 2.1 implies that

⋂
iH

gi = 1 and thus b 6 c. �

Remark 2.4. We can use Corollary 2.3 to derive lower bounds on γu(G). Indeed, if
there is a positive integer c such that for each s ∈ G# there exists H ∈ M(G, s) with
b(G,G/H) > c, then γu(G) > c. Of course, one only needs to check this condition on
s for a set of conjugacy class representatives. In fact, it suffices only to check for a set
{g1, . . . , gm} of class representatives with the property that for all x ∈ G# there exists
y ∈ gG1 ∪ · · · ∪ gGm such that x = y` for some integer `.

2.2. Probabilistic methods. In [41], Liebeck and Shalev introduced a probabilistic ap-
proach for studying the base size of a finite transitive permutation group G 6 Sym(Ω).
The basic idea is to consider the probability that a randomly chosen c-tuple of points
in Ω is not a base for G and then show that this probability is strictly less than 1 for
some appropriate positive integer c; this immediately implies that b(G,Ω) 6 c. This has
proven to be an effective way of establishing accurate (upper) bounds on the base size of
almost simple primitive permutation groups; indeed, this is the main tool in the proof of
an influential conjecture of Cameron on the base size of so-called non-standard primitive
groups (see [19] and the references therein). Here our goal is to develop a similar approach
to study the uniform domination number of simple groups.

Let G be a finite group, let c be a positive integer and fix an element s ∈ G#. Write
Q(G, s, c) for the probability that a random c-tuple (z1, . . . , zc) of conjugates of s is such
that {z1, . . . , zc} is not a total dominating set for Γ(G). Consequently, γu(G) 6 c if
Q(G, s, c) < 1 for some s. In order to present an upper bound for Q(G, s, c), we need some
additional notation. For an element x ∈ G and a subgroup H < G, let

fpr(x,G/H) =
|xG ∩H|
|xG|

(2.2)

be the fixed point ratio of x in the action of G on the set of cosets G/H; that is, fpr(x,G/H)
is the proportion of points in G/H fixed by x (equivalently, it is the probability that a
randomly chosen coset of H is fixed by x). Let {x1, . . . , xk} be a set of representatives of
the conjugacy classes in G of prime order elements.

We can now present our key lemma for studying uniform domination numbers.

Lemma 2.5. Let G be a finite group, s ∈ G# and c ∈ N. Then

Q(G, s, c) 6
k∑
i=1

|xGi |

 ∑
H∈M(G,s)

fpr(xi, G/H)

c

=: Q̂(G, s, c). (2.3)
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Proof. Let P be the set of elements in G of prime order. For each x ∈ G, let

P (x, s) =
|{z ∈ sG : G 6= 〈x, z〉}|

|sG|
=
|{g ∈ G : G 6= 〈x, sg〉}|

|G|
be the probability that a randomly chosen conjugate of s does not generate G with x.

Since G 6= 〈x, sg〉 if and only if xg
−1 ∈ H for some H ∈M(G, s), it follows that

P (x, s) 6
∑

H∈M(G,s)

|xG ∩H| |CG(x)|
|G|

=
∑

H∈M(G,s)

fpr(x,G/H).

Now {sg1 , . . . , sgc} is not a total dominating set for Γ(G) if and only if there exists x ∈ P
such that G 6= 〈x, sgi〉 for all i. Therefore,

Q(G, s, c) 6
∑
x∈P

P (x, s)c =
k∑
i=1

|xGi |P (xi, s)
c (2.4)

and the result follows. �

Remark 2.6. Note that ifM(G, s) = {H}, then the probabilistic approach via Lemma 2.5
coincides with the method introduced by Liebeck and Shalev in [41] to study the base size
b(G,G/H). Accordingly, Lemma 2.5 gives no more information than Corollary 2.2 in this
case. However, the utility of Lemma 2.5 is that it allows us to handle groups for which
every element belongs to at least two maximal subgroups.

The following elementary observation is a natural extension of [19, Proposition 2.3].

Lemma 2.7. Let G be a finite group and let {H1, . . . ,H`} be proper subgroups of G.
Suppose that x1, . . . , xm represent distinct G-classes such that

∑
i |xGi ∩ Hj | 6 Aj and

|xGi | > B for all i, j. Then

m∑
i=1

|xGi |

∑̀
j=1

fpr(xi, G/Hj)

c

6 B1−c

∑
j

Aj

c

for all c ∈ N.

Proof. Write aij = |xGi ∩ Hj | and bi = |xGi |, so
∑

i aij 6 Aj and bi > B. Then the left
hand side of the required inequality is∑

i

bi

∑
j

aij/bi

c

=
∑
i

b1−ci

∑
j

aij

c

6 B1−c
∑
i

∑
j

aij

c

6 B1−c

∑
i,j

aij

c

and the result follows. �

It is natural to expect that the upper bound in (2.3) will be easier to compute if we can
find an element s ∈ G such that |M(G, s)| is small. With this in mind, it is interesting to
study the following parameter

µ(G) = min
s∈G
|M(G, s)|, (2.5)

which we introduced in Section 1. Our main result is Theorem 5, which reveals that every
finite simple group has an element that is contained in very few maximal subgroups (at
most 3 in fact, apart from 4 specific exceptions).

2.3. Computational methods. For some small simple groups G, we can use computa-
tional methods, implemented in GAP [23] and Magma [6], to study µ(G) and γu(G). For
example, all of our results for sporadic groups (see Section 4) are obtained by computation.
Here we outline the main techniques.

A detailed description of these computations can be found at [18], including the relevant
GAP and Magma code we used to obtain the results.
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2.3.1. Probabilistic methods. Let us first describe an implementation of the probabilistic
method introduced in Section 2.2. Let G be a finite group and fix an element s ∈ G#.

Our aim is to determine the minimal value of c such that Q̂(G, s, c) < 1 (see Lemma 2.5).

In order to calculate Q̂(G, s, c) we first need to determine M(G, s), and then calculate
the fixed point ratios fpr(x,G/H) for each prime order element x ∈ G and subgroup
H ∈M(G, s). If such a subgroup H is self-normalising, then s is contained in exactly

fpr(s,G/H) · |G : H|

distinct conjugates of H. Therefore, if G is simple then in order to determine M(G, s) it
suffices to compute fpr(s,G/H) for a representative H of each conjugacy class of maximal
subgroups of G. Hence, we focus on determining the fixed point ratios fpr(x,G/H) for
elements x ∈ G and maximal subgroups H < G. Of course, this approach via GAP and
Magma is only feasible if G is amenable to computational methods, which typically means
that the order of G, or the minimal degree of a faithful permutation representation, is not
too large.

If the Character Table Library [8] in GAP contains the ordinary character tables of G
and each of its maximal subgroups, then we can adopt the techniques of Breuer, which
are detailed in [9, Section 3.2]. Indeed, in this situation we can compute fpr(x,G/H) by
observing that the number of fixed points of x onG/H is equal to χ(x), where χ = 1GH is the
corresponding permutation character. If this character-theoretic approach is not available,
then we turn to Magma. If the functions MaximalSubgroups and Classes return the
maximal subgroups and conjugacy classes of G, then we can calculate fpr(x,G/H) via
(2.2), using IsConjugate to compute |xG ∩H|.

2.3.2. Maximal subgroups. We can often use the above methods to determine the maximal
overgroups of a specific element of G, which allows us to determine µ(G) in this way. In
addition, by determining M(G, s) for a complete set of conjugacy class representatives s,
we can apply the observations in Remark 2.4 to derive a lower bound on γu(G).

2.3.3. Random and exhaustive searches. Let c > 2 be an integer and fix s ∈ G#. If we
have a faithful permutation representation of G, which permits calculation in Magma,
then we can randomly choose c-tuples of conjugates of s and check whether they form
a TDS for Γ(G). Of course, if we find such a c-tuple, then γu(G) 6 c. In contrast, to
establish the bound γu(G) > c we must show that for each conjugacy class sG, there are
no c-tuples of conjugates of s which form a TDS. Here it is helpful to observe that if there
is such a c-tuple, then there is one containing s. Therefore, when trying to verify upper
(or lower) bounds on γu(G) we may randomly (or exhaustively) choose (c − 1)-tuples of
elements in sG and check whether they, together with s, form a TDS for Γ(G).

Remark 2.8. Let us say a few words on the computational resources needed for the main
calculations. For the computations in this paper, we use a combination of GAP Version
4.5.6 and Magma 2.19-2, on a 2.7GHz machine with 128 GB RAM. The character-theoretic
computations run quickly in GAP and we adopt this approach whenever possible. The com-
putations in Magma for determining maximal overgroups of specific elements and imple-
menting the probabilistic approach (via fixed point ratios) are more resource-intensive, but
still feasible for the groups we are interested in. For example, an implementation of the
probabilistic method applied to L9(2) with an element of order 465 (see Proposition 6.14)
can be done in 616 seconds, using 771 MB of memory. Similar resources are needed for
most of the exhaustive searches in Magma, which we use to rule out the existence of
total domination sets with prescribed properties. However, the verification of the bound
γu(M12) > 4 is a notable exception. Here, in view of Corollary 2.3 and the base size results
in [20], we quickly reduce the problem to showing that no triple of elements in the class
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6A form a TDS for Γ(M12). We timed this computation at 17613 seconds, using 13 MB of
memory.

For the remainder of the paper we will focus on the proofs of Theorems 1–5, by consid-
ering each family of (non-abelian) simple groups G in turn. In each case, we first study the
parameter µ(G) defined in (2.5), with the aim of establishing a strong form of Theorem 5.
We then establish our main results on the uniform domination number of G.

3. Alternating groups

3.1. Maximal overgroups. In this section we verify Theorem 5 for alternating groups.
More precisely, we compute the exact value of µ(G) for each simple alternating group G.
In order to state our main result, let

H =
{
n ∈ N : n = qd−1

q−1 for some prime power q and integer d > 2
}
. (3.1)

We refer the reader to [4, Table II] for a convenient list of the first 240 primes in H.

Theorem 3.1. Let G = An with n > 5. Then µ(G) 6 3. Moreover,

(i) µ(G) = 1 if and only if one of the following hold:
(a) n = 5;

(b) n > 8 is even;

(c) n ∈ {r, r2}, where r is a prime, n 6∈ {11, 23} and n 6∈ H.

(ii) µ(G) = 2 if and only if one of the following hold:
(a) n ∈ {6, 7, 11, 17, 23};
(b) n ∈ {rs, r3}, where r, s are distinct odd primes and n 6∈ H.

In particular, Theorem 5 holds for alternating groups.

The proof of Theorem 3.1 closely follows the proof of [24, Proposition 7.1], which iden-
tifies an element g ∈ G that is contained in very few maximal subgroups. Indeed, the
bound µ(G) 6 3 is an immediate corollary of the proof of [24, Proposition 7.1] (with a
small correction when n is an odd integer of the form 3m) but more work is needed to
compute the exact value in every case.

Remark 3.2. There are infinitely many primes r with µ(Ar) = 1. To see this, we
need to show that there are infinitely many prime numbers that are not contained in H.
For a real number x, let π(x) be the number of primes less than or equal to x, and let
H(x) be the number of primes at most x in H. By the prime number theorem, we have

π(x) = (1 + o(1))x(log x)−1, whereas [4, Theorem 4] gives H(x) 6 50x1/2(log x)−2 for
x� 0. In other words, if x is large enough then almost all primes at most x are not in H.

In order to prove Theorem 3.1, we need to record some preliminary lemmas. The first
follows from the main theorem in [37].

Lemma 3.3. Let G = An with n > 5 and let H be an intransitive subgroup of the form
(Sk×Sn−k)∩G with k < n/2, or an imprimitive subgroup (Sk oSn/k)∩G with 1 < k 6 n/2.
Then H is a maximal subgroup of G unless G = A8 and H = (S2 o S4) ∩G.

We denote the shape of a permutation g ∈ Sn by writing [l1, . . . , lt] with
∑

i li = n, where
the li are the lengths of the disjoint cycles comprising g (in addition, if g has bi cycles of

length ai, where a1 > a2 > · · · > ak, then it will be convenient to write [ab11 , . . . , a
bk
k ] for the

shape of g). The next result concerns the containment of certain elements in imprimitive
subgroups; the proof is a straightforward application of [1, Theorem 2.5].

Lemma 3.4. Let G = Sn, with n > 5, and let g ∈ G.
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(i) If g is an n-cycle, then g is not contained in an imprimitive subgroup of G if and
only if n is a prime. Moreover, if n = mk with m, k > 1, then g is contained in a
unique subgroup Sm o Sk.

(ii) If g has shape [l1, l2], then g is not contained in an imprimitive subgroup of G if
and only if (l1, l2) = 1.

(iii) If g has shape [l1, l2, l3], then g is not contained in an imprimitive subgroup of G

if and only if (l1, l2, l3) = 1, and if d divides (li, lj) then
li+lj
d does not divide lk,

where {i, j, k} = {1, 2, 3}.

The following lemma is a classical result of Marggraf (see [47, Theorem 13.5]).

Lemma 3.5. If a primitive subgroup H 6 Sn contains a cycle of length ` < n/2, then
H = An or Sn.

We will also need the following technical result.

Lemma 3.6. Let G = An, where n > 7 is odd. Suppose n = (qd− 1)/(q− 1), where d > 2
and q = pf for a prime p. Let g ∈ G be an n-cycle and let N be the number of subgroups
of G of the form PΓLd(q) ∩G containing g. Then

ϕ(n)

2df
6 N 6

ϕ(n)

d
,

where ϕ is Euler’s totient function.

Proof. For n ∈ {7, 9}, it is easy to check that N = ϕ(n)/d, so we may assume n > 9. Fix
a subgroup H = PΓLd(q)∩G containing g and let k be the number of G-conjugates of H
containing g, so

k = fpr(g,G/H) · |G : H| = |g
G ∩H|
|gG|

· |G : H|.

Since CG(g) = CH(g) = 〈g〉, it follows that k is the number of H-classes in gG ∩H.
By [33, Theorem 1], every n-cycle in H generates a Singer subgroup of PGLd(q) and

thus H contains ϕ(n)/d distinct PGLd(q)-classes of n-cycles. Since only half of these
classes are contained in gG, we get k 6 ϕ(n)/2d. By considering the fusing action of field
automorphisms in PΓLd(q) on PGLd(q)-classes, we also deduce that k > ϕ(n)/2df . Finally,
we note that Sn has a unique class of subgroups of the form PΓLd(q) (the corresponding
actions of PΓLd(q) on lines and hyperplanes in Fdq are permutation isomorphic), so G
contains at most two conjugacy classes of subgroups of the form PΓLd(q)∩G. We conclude
that N 6 2k 6 ϕ(n)/d. �

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. First assume n is even. If n = 6, then it is easy to check that
µ(G) = 2; in particular, if g ∈ G is a 5-cycle then M(G, g) = {H,K} with H ∼= K ∼= A5.
Now assume n > 8. We claim that µ(G) = 1. To see this, write n = 2m, k = m −
(m − 1, 2) and choose an element g ∈ G with shape [k, n − k]. The unique intransitive
subgroup in M(G, g) has the form (Sk × Sn−k) ∩ G, and imprimitive groups are ruled
out by Lemma 3.4(ii) since (k, n− k) = 1. Furthermore, Lemma 3.5 eliminates primitive
subgroups since gn−k is a k-cycle and k < n/2. Therefore, M(G, g) = {H} with H =
(Sk × Sn−k) ∩G.

For the remainder, we may assume n is odd. If n 6 23 then we verify the result
computationally in Magma (see Section 2.3.1). In particular, the value of µ(G) and the
shape of an element g for which |M(G, g)| = µ(G) are as follows:

n 5 7 9 11 13 15 17 19 21 23
µ(G) 1 2 3 2 3 3 2 1 3 2
g [5] [7] [5, 22] [11] [9, 22] [11, 22] [17] [19] [17, 22] [23]
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Now assume n > 25 is odd. Our goal is to establish the following five statements:

(1) µ(G) 6 3.

(2) If n ∈ {r, r2}, where r is a prime and n 6∈ H, then µ(G) = 1.

(3) If n ∈ {rs, r3}, where r, s are distinct primes and n 6∈ H, then µ(G) 6 2.

(4) If µ(G) 6 2 then n 6∈ H and n ∈ {r, r2, r3, rs} for distinct primes r, s.

(5) If n ∈ {rs, r3}, where r, s are distinct primes, then µ(G) > 2.

Indeed, observe that (1)–(5) complete the proof of Theorem 3.1. More precisely, (1) gives
the main statement of the theorem, (2) completes the reverse implication in part (i), (3)
gives the reverse implication of (ii), and by combining (2), (4) and (5) we obtain the
forward implications in parts (i) and (ii).

First consider (1). Let g ∈ G be an element with the following shape: [m+ 2,m,m− 2] if n = 3m
[m+ 1,m+ 1,m− 1] if n = 3m+ 1
[m+ 2,m,m] if n = 3m+ 2.

(3.2)

By applying Lemma 3.4(iii), we deduce that g does not have any imprimitive maximal
overgroups. For example, if n = 3m+ 1 then m is even so (m+ 1,m− 1) = 1. Moreover,
(m+ 1 +m− 1)/1 = 2m does not divide m+ 1, and (m+ 1 +m+ 1)/(m+ 1) = 2 does not
divide m − 1. The other two cases are similar. As before, primitive maximal overgroups
can be ruled out via Lemma 3.5 and we conclude that µ(G) 6 3 as claimed.

Now consider (2), so n ∈ {r, r2} and n 6∈ H for a prime r. Let g ∈ G be an n-cycle and
note that g is not contained in an intransitive subgroup. Suppose n = r. By Lemma 3.4(i),
g is not contained in an imprimitive subgroup. Moreover, [33, Theorem 3] implies that
AGL1(r) ∩ G is the only primitive maximal overgroup of g, so µ(G) = 1 as required.
Similarly, if n = r2 then by applying [33, Theorem 3] to rule out primitive groups we
deduce that g is contained in a unique imprimitive subgroup (Sr o Sr) ∩ G, so µ(G) = 1
once again.

Next consider (3) and let g be an n-cycle. As before, by applying [33, Theorem 3], we
deduce that the maximal overgroups of g are imprimitive. More precisely,

M(G, g) =

{
{(Sr o Ss) ∩G, (Ss o Sr) ∩G} if n = rs
{(Sr o Sr2) ∩G, (Sr2 o Sr) ∩G} if n = r3

and thus µ(G) 6 2.
Let us now turn to (4). Suppose that µ(G) 6 2 and fix g ∈ G with |M(G, g)| = µ(G).

Since g is even and n is odd, g is not the product of exactly two cycles. If g has at least
three cycles, thenM(G, g) contains at least three intransitive subgroups, so g must be an
n-cycle. If n has at least three distinct prime divisors, or if n = r2s for distinct primes r, s,
then Lemma 3.4(i) implies that M(G, g) contains at least three imprimitive subgroups.
Therefore, n ∈ {r, r2, r3, rs}, where r, s are distinct primes, and it remains to prove that
n 6∈ H. If n ∈ {r3, rs}, then g is already contained in two imprimitive subgroups, so the
condition µ(G) 6 2 implies that g is not contained in a proper primitive subgroup, whence
n 6∈ H by [33, Theorem 3]. The cases n ∈ {r, r2} require special attention.

First assume n = r. Seeking a contradiction, suppose that n ∈ H. By [33, Theorem 3],
M(G, g) contains a unique subgroup of the form AGL1(r)∩G (namely, NG(〈g〉)), together
with a collection of subgroups PΓLd(q) for each prime power q and integer d > 2 such that
n = (qd−1)/(q−1). More precisely, for each (q, d) with q = pf and p a prime, Lemma 3.6
implies that g is contained in at least (n − 1)/2df such subgroups. Since n > 25, one
can check that this gives |M(G, g)| > 2 and we have reached a contradiction. A similar
argument applies if n = r2 ∈ H. Indeed,M(G, g) contains a unique subgroup of the form
(Sr o Sr) ∩ G and at least two primitive subgroups PΓLd(q) ∩ G. Once again, this is a
contradiction and the proof of (4) is complete.
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Finally, let us consider (5), so n ∈ {rs, r3} for distinct primes r and s. Fix an element
1 6= g ∈ G. If g is not an n-cycle then the argument in (4) shows that g is contained in at
least three intransitive maximal subgroups. On the other hand, if g is an n-cycle then the
proof of (3) implies that g is contained in at least two imprimitive subgroups. Therefore,
|M(G, g)| > 2 and thus µ(G) > 2. �

3.2. Uniform domination number. We now apply Theorem 3.1 to study the uniform
domination number of alternating groups. Our main result is the following.

Theorem 3.7. We have γu(An) 6 77 log2 n for all n > 5. More precisely, the following
hold:

(i) If n > 13 is a prime, then γu(An) = 2.

(ii) If n > 6 is even, then dlog2 ne − 1 6 γu(An) 6 2dlog2 ne.

We partition the proof of Theorem 3.7 into three propositions which are proved in the
following three sections.

3.2.1. Prime degree. We start by considering alternating groups of prime degree.

Proposition 3.8. Let r > 13 be a prime number. Then γu(Ar) = 2.

We need some preliminary lemmas. Recall the definition of the set of integers H in
(3.1). Fix a prime number r > 5 and set

Hr =
{

(q, d) : r = qd−1
q−1 , q a prime power, d > 2

}
.

Lemma 3.9. |Hr| < log2 r.

Proof. Suppose (q, d) ∈ Hr. Then d is a prime number and it is easy to see that (s, d) ∈ Hr
if and only if s = q. Indeed, if q < s then

qd − 1

q − 1
=
sd − 1

s− 1
>

(q + 1)d − 1

q
,

which is absurd. Therefore, we just need to count the possibilities for d. Since r > qd−1

we have

d 6

⌊
log r

log q

⌋
+ 1 =: D

and the result follows since there are fewer than log2 r primes at most D. �

As an immediate corollary, it follows that if r > 5 is a prime in H then

` := 1 +
∑

(q,d)∈Hr

r − 1

d
< r log2 r. (3.3)

Set G = Ar, where r > 73 is a prime in H. Fix an r-cycle s ∈ G. As observed in the
proof of Theorem 3.1, M(G, s) comprises a single copy of AGL1(r) ∩G, together with at
most (r − 1)/d copies of PΓLd(q) ∩ G for each (q, d) ∈ Hr. In particular, |M(G, s)| 6 `,
where ` is given in (3.3).

Lemma 3.10. If r > 73 is a prime in H, then |H| > r(r − 1)/2 for all H ∈M(G, s).

Proof. First observe that |AGL1(r) ∩ G| > r(r − 1)/2. Fix (q, d) ∈ Hr and note that
r < 2qd−1. Then

|PΓLd(q) ∩G| >
1

4
qd

2−1 >
1

4

(r
2

)d+1
>

1

32
r3

and the result follows. �

Define
C = max{|H| : H ∈M(G, s)}. (3.4)
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Lemma 3.11. Suppose r > 73 is a prime in H, H ∈ M(G, s) and x ∈ H has prime
order. Then |xG| > C4.

Proof. We use some of the ideas in the proof of [17, Theorem 1.1]. Fix H ∈ M(G, s)
containing x and observe that H is primitive, so a theorem of Maróti [42] gives

|H| < r1+log2 r.

By the main theorem of [25], the minimal degree of H is at least r/2, which means that

|xG| > r!

2r/4dr/4e!dr/2e!
=: f(r).

Using the bounds √
2π · n1/2

(n
e

)n
< n! < e · n1/2

(n
e

)n
,

which are valid for all positive integers n, we get

f(r) >

√
2π · rr+1/2e−r

2r/4 · e
(
r+3
4

)(r+3)/4+1/2
e−(r+3)/4 · e

(
r+1
2

)(r+1)/2+1/2
e−(r+1)/2

> 2r/4

(
rr+1/2

(r + 3)r/4+5/4(r + 1)r/2+1

)
> rr/4

and thus it suffices to show that r > 16(1 + log2 r). One checks that this inequality holds
if r > 127, so it just remains to handle the primes r ∈ {73, 127} (recall that r ∈ H). If
r = 73 then C = |PΓL3(8)| and similarly C = |PΓL7(2)| if r = 127; in both cases, the
desired bound is easily checked using Magma. �

We are now in a position to prove Proposition 3.8.

Proof of Proposition 3.8. Set G = Ar, where r > 13 is a prime number, and let s ∈ G
be an r-cycle. First assume r 6∈ H. If r = 23 then a straightforward computation (see
Section 2.3.1) shows that γu(G) = 2. Now assume r 6= 23, in which case the proof of
Theorem 3.1 implies that M(G, s) = {H} with H = AGL1(r) ∩ G. Now b(G,G/H) = 2
by [17, Corollary 1.5], so Corollary 2.2 implies that γu(G) = 2.

To complete the proof, we may assume r ∈ H. To handle the case r = 13, we use random
search in Magma to show that γu(G) = 2 (we refer the reader to [18, Section 1.2.4] for
further details of the computation). For example, one can check that

{(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13), (1, 2, 3, 4, 5, 6, 8, 9, 12, 7, 11, 10, 13)}
is a TDS for Γ(G). For r ∈ {17, 31} we can use Lemma 2.5 to show that γu(G) = 2.

Now assume r > 31, which means that r > 73 (see [4, Table II]). Set M(G, s) =
{H1, . . . ,Hk} and let x1, . . . , xm be representatives of the G-classes of elements of prime
order which meet at least one of the subgroups in M(G, s). Note that k 6 `, where ` is
defined in (3.3). By Lemma 2.5, we need to show that

m∑
i=1

|xGi |

 k∑
j=1

fpr(xi, G/Hj)

2

< 1.

To do this, we apply Lemma 2.7 with Aj = C and B = C4 for all j, where C is defined in
(3.4), noting that the value of B is justified by Lemma 3.11. This yields

m∑
i=1

|xGi |

 k∑
j=1

fpr(xi, G/Hj)

2

<

(
`

C

)2

.



14 TIMOTHY C. BURNESS AND SCOTT HARPER

Finally, we recall that ` < r log2 r and |C| > r(r − 1)/2 (see (3.3) and Lemma 3.10),
whence ` < C and the proof is complete. �

Remark 3.12. We can use computational methods (see Section 2.3) to compute γu(G)
when G = Ar and r ∈ {5, 7, 11} is one of the primes excluded in Proposition 3.8. We get
the following results:

γu(Ar) =

{
3 if r = 5, 11,
4 if r = 7.

For example, suppose r = 11. By applying Lemma 2.5, with s ∈ G an 11-cycle, it is
easy to see that γu(G) 6 3. To show that γu(G) > 3 we employ the method described
in Remark 2.4. Fix an element g ∈ G. If g is not an 11-cycle then g is contained in
an intransitive subgroup H with b(G,G/H) > 3 (see Lemma 3.13 below). On the other
hand, if g is an 11-cycle then g is contained in a subgroup H = M11 (see the proof of
Theorem 3.1) and by [17, Theorem 1] we have b(G,G/H) = 3. Therefore, Corollary 2.3
implies that γu(G) > 3 and thus γu(G) = 3. The other cases are handled in a similar
fashion.

3.2.2. Even degree. Next we consider the alternating groups of even degree; the analysis
of the groups of odd composite degree is more complicated and we postpone the study of
these groups to the end of the section.

Our main result is Proposition 3.14 below, which gives the exact value of γu(An), up
to a small constant. The key tool is the following result of Halasi (see [29, Theorems 3.1
and 4.2]) on the base size of Sn on k-sets.

Lemma 3.13. Let n > 5 be an integer and let Ω be the set of k-element subsets of
{1, . . . , n} for some 1 6 k 6 n/2. Then

dlog2 ne 6 b(Sn,Ω) 6
⌈
logdn/ke n

⌉
· (dn/ke − 1) .

Note that if Sn acts faithfully on a finite set Ω, then

b(An,Ω) 6 b(Sn,Ω) 6 b(An,Ω) + 1.

Proposition 3.14. Let n > 6 be an even integer. Then dlog2 ne−1 6 γu(An) 6 2dlog2 ne.

Proof. Write G = An and n = 2m. If n = 6 then by a direct computation in Magma
(see Section 2.3.3) we can prove that γu(G) = 4; indeed, Γ(G) has a total dominating set
comprising four conjugate 5-cycles.

Now assume that n > 8. First we establish the upper bound. Set l = (m− 1, 2) and fix
s ∈ G with shape [k, n−k], where k = m−l. By the proof of Theorem 3.1,M(G, s) = {H}
with H = (Sk × Sn−k) ∩G. By combining Corollary 2.2 and Lemma 3.13, we get

γu(G) 6 b(G,G/H) 6
⌈
logd 2n

n−2le n
⌉
·
⌈
n+ 2l

n− 2l

⌉
6 2dlog2 ne

as required.
To prove the lower bound, fix an element 1 6= s ∈ G. Since n is even, s is not an n-cycle.

Therefore, s is contained in the stabiliser H of a proper subset of {1, . . . , n}, and we have
b(G,G/H) > dlog2 ne − 1 by Lemma 3.13. By applying Corollary 2.3, we conclude that
γu(G) > dlog2 ne − 1. �

3.2.3. Odd degree. To complete the proof of Theorem 3.7, we may assume G = An, where
n > 9 is a composite odd integer.

Proposition 3.15. Let n > 5 be an odd integer. Then γu(An) 6 77 log2 n.

In order to prove Proposition 3.15, we need some preliminary results. We start with
the following technical lemma. Note that for the remainder of this section, we adopt the
standard convention that

(
a
b

)
= 0 if b > a.
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Lemma 3.16. Let l and m be integers such that l > 2 and 0 6 m 6 4l. Then

f(l,m) :=

min{l,bm/2c}∑
j=0

(
l

j

)(
4l

2m− 4j

)
>

(
4l

m

)
.

Proof. First assume 0 6 m 6 2l − 2, so bm/4c 6 min{l, bm/2c} and we can consider the
term (

l

bm/4c

)(
4l

2m− 4bm/4c

)
in f(l,m). If m 6 2l− 3, then m− 3 6 4bm/4c 6 m, so m 6 2m− 4bm/4c 6 m+ 3 6 2l.
Similarly, if m = 2l − 2 then 2l − 4 6 4b(2l − 2)/4c 6 2l − 2 and m 6 2m− 4bm/4c 6 2l
in this case also. Therefore,

f(l,m) >

(
l

bm/4c

)(
4l

2m− 4bm/4c

)
>

(
4l

2m− 4bm/4c

)
>

(
4l

m

)
.

A very similar argument applies if 2l+ 2 6 m 6 4l, working with the term corresponding
to j = dm/4e. We omit the details.

Finally, let us assume m ∈ {2l−1, 2l, 2l+1}. We will provide the details for m = 2l−1;
the other cases are very similar. The result is easily verified if l = 2, so assume that l > 3.
Observe that 2l − 2 6 2m− 4bm/4c 6 2l, so(

4l

2m− 4bm/4c

)
>

(
4l

2l − 2

)
=

2l − 1

2l + 2

(
4l

2l − 1

)
>

1

2

(
4l

m

)
.

Additionally, since m = 2l − 1 > 5, we have(
l

bm/4c

)
> l > 3

and thus

f(l,m) >

(
l

bm/4c

)(
4l

2m− 4bm/4c

)
> 3 · 1

2

(
4l

m

)
>

(
4l

m

)
.

This completes the proof. �

The next result on fixed point ratios is a key ingredient in the proof of Proposition 3.15.
For g ∈ G, we write supp(g) to denote the support of g.

Lemma 3.17. Suppose G = Sn, where n is odd and let s ∈ G be an element with shape
as in (3.2). Fix an element x ∈ G with shape [dr, 1n−dr] for some d > 2 and r > 1. Set
t = |supp(g)| = dr. If t > 100, then

fpr(x,G/H) < 0.98t

for all H ∈M(G, s).

Proof. As noted in the proof of Theorem 3.1, M(G, s) comprises three intransitive sub-
groups. Write H = Sk × Sn−k ∈M(G, s), where k < n

2 , and identify G/H with the set Ω
of k-element subsets of {1, . . . , n}. Since a set A ∈ Ω is fixed (setwise) by x if and only if
each cycle of x is contained in or disjoint from A, it follows that

fpr(x,G/H) =

r∑
i=0

(
r

i

)
f(i)

where

f(i) =

(
n−t
k−di

)(
n
k

) =
k · · · (k − di+ 1)(n− k) · · · (n− t− k + di+ 1)

n · · · (n− t+ 1)
.

Note that

f(i) 6 min

{(
k

n

)di
,

(
1− k

n

)t−di}
.
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Since n > t > 100, from the shape of s in (3.2) it follows that 31/99 6 k/n 6 35/99.
Therefore, if di > 0.265t then

f(i) 6

(
k

n

)0.265t

6

((
35

99

)0.265
)t

< 0.76t,

otherwise

f(i) 6

(
n− k
n

)0.735t

6

((
68

99

)0.735
)t

< 0.76t.

It follows that

fpr(x,G/H) <

r∑
i=0

(
r

i

)
0.76t = 2r · 0.76t = (21/d · 0.76)t

and thus

fpr(x,G/H) < (21/3 · 0.76)t < 0.9576t (3.5)

if d > 3.
The case d = 2 requires special attention. Here x has cycle shape [2r, 1n−2r] with r > 50.

Set l = br/4c and fix elements y and z in G of shape [24l, 1n−8l] and [4l, 1n−4l], respectively.
Without loss of generality, we may assume that

x = (1, 2)(3, 4) · · · (2r − 1, 2r)

y = (1, 2)(3, 4) · · · (8l − 1, 8l)

z = (1, 2, 3, 4) · · · (4l − 3, 4l − 2, 4l − 1, 4l).

We claim that

fpr(x,Ω) 6 fpr(y,Ω) 6 fpr(z,Ω).

Let Fix(g,Ω) be the set of fixed points of g on Ω. Since a set A ∈ Ω is fixed by g if and
only if each cycle of g is contained in or disjoint fromA, it follows that Fix(x,Ω) ⊆ Fix(y,Ω)
and thus fpr(x,Ω) 6 fpr(y,Ω).

For 0 6 m 6 k/2 define

Ym = {A ∩ supp(y) : A ∈ Fix(y,Ω), |A ∩ supp(y)| = 2m}
Zm = {A ∩ supp(y) : A ∈ Fix(z,Ω), |A ∩ supp(y)| = 2m}.

By counting the sets A ∈ Fix(y,Ω) according to the size of A ∩ supp(y), we see that

|Fix(y,Ω)| =
min{4l,bk/2c}∑

m=0

(
n− 8l

k − 2m

)
|Ym|,

and similarly

|Fix(z,Ω)| =
min{4l,bk/2c}∑

m=0

(
n− 8l

k − 2m

)
|Zm|.

In particular, fpr(y,Ω) 6 fpr(z,Ω) if |Ym| 6 |Zm| for all 0 6 m 6 k/2.
Since a subset of supp(y) is fixed by y if and only if it is a union of cycles of y, we have

|Ym| =
(

4l

m

)
.

Similarly, a subset A of supp(y) is fixed by z if and only if it is a union of cycles of z, that
is, A = A1 ∪A2 where A1 is the support of a collection of 4-cycles of z, and A2 is a subset
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of supp(y) \ supp(z) = {4l+ 1, . . . , 8l} of the appropriate size. By considering the possible
4-cycles corresponding to A1, we deduce that

|Zm| =
min{l,bm/2c}∑

j=0

(
l

j

)(
4l

2m− 4j

)
.

By Lemma 3.16, we have |Ym| 6 |Zm| for all 0 6 m 6 k/2, hence fpr(y,Ω) 6 fpr(z,Ω) as
claimed.

In view of the above bound for d = 4 (see (3.5)), it follows that

fpr(x,G/H) 6 fpr(z,G/H) < 0.95764l

where 4l = 4br/4c > r − 3 > 47t/100, and thus

fpr(x,G/H) < 0.957647t/100 6 0.98t

as required. �

Finally, we are now in a position to prove Proposition 3.15, which completes the proof
of Theorem 3.7.

Proof of Proposition 3.15. First assume n 6 19. If n is a prime then γu(G) 6 4 by
Proposition 3.8 and Remark 3.12. For n ∈ {9, 15}, a straightforward computation in
Magma shows that G has a total dominating set consisting of 6 conjugate n-cycles (see
Section 2.3.1). For the remainder, we may assume n > 21.

We apply the probabilistic method in Lemma 2.5. Let s ∈ G be an element with shape
as in (3.2) and suppose x ∈ G has prime order. As in the proof of Lemma 2.5, write

P (x, s) =
|{z ∈ sG : G 6= 〈x, z〉}|

|sG|

and recall that

P (x, s) 6
∑

H∈M(G,s)

fpr(x,G/H).

For t ∈ {3, . . . , n}, let Nt be the number of elements in G with support of size t. By (2.4),

Q(G, s, c) 6
n∑
t=3

Nt · ξ(t, s)c,

where

ξ(t, s) = max{P (x, s) : x ∈ G has prime order and |supp(x)| = t}.
Note that Nt 6 nt.

Set α = 0.991 and write |supp(x)| = t. By the proof of [24, Proposition 7.1], using
the fact that n > 21, we see that P (x, s) 6 0.9 if t ∈ {3, 4}, and P (x, s) 6 0.36 if t > 5.
Therefore, ξ(t, s) 6 αt+1 if t < 100. Similarly, if t > 100 then Lemma 3.17 implies that

ξ(t, s) 6 3 · 0.98t = 3 · 0.98t/2−1/2(0.981/2)t+1 6 αt+1.

Therefore, ξ(t, s) 6 αt+1 for all t. As a result, if c = log1/α n 6 77 log2 n, then

Q(G, s, c) 6
n∑
t=3

nt(αt+1)c =
n∑
t=3

nt
(

1

n

)t+1

=
n∑
t=3

1

n
=
n− 2

n
< 1

and we conclude that γu(G) 6 c 6 77 log2 n. �
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G µ(G) γu(G) s M(G, g) b c
M11 1 4 11A L2(11) 4
M12 3 4 10A A6.2

2, A6.2
2, 2× S5 6

M22 1 3 11A L2(11) 3
M23 1 2 23A 23:11 2
M24 2 3 or 4 21A L3(4):S3, 26:(L3(2)× S3) 4
J1 1 2 15A D6 ×D10 2
J2 3 3 or 4 10C 21+4:A5, A5 ×D10, 52:D12 4
J3 2 2 or 3 19A L2(19), L2(19) 3
J4 1 2 43A 43:14 2
HS 2 3 or 4 15A S8, 5:4×A5 4
Suz 3 3 14A J2:2, J2:2, (A4 × L3(4)):2 3
McL 3 3 15A 31+4:2.S5, 2.A8, 51+2:3:8 3
Ru 1 2 29A L2(29) 2
He 1 2 or 3 17A Sp4(4):2 4

21A 3.S7, 71+2:(3× S3), 3
7:3× L3(2), 7:3× L3(2)

Ly 1 2 28A 2.A11 2
O′N 2 2 31A L2(31), L2(31) 2
Co1 1 2 or 3 26A (A4 ×G2(4)):2 3
Co2 1 3 23A M23 3
Co3 1 3 23A M23 3
Fi22 1 3 or 4 22A 2.U6(2) 5

16A 25+8:(S3 ×A6), 2.21+8:(U4(2):2) 4
210:M22,

2F4(2)′ (4 times)
Fi23 1 2 35A S12 2
Fi′24 1 2 29A 29:14 2
HN 1 2 or 3 22A 2.HS.2 3
Th 2 2 19A U3(8):6, L2(19):2 2
B 1 2 47A 47:23 2
M 1 2 59A L2(59) 2

Table 1. Sporadic simple groups

4. Sporadic simple groups

4.1. Maximal overgroups. In this section we determine the exact value of µ(G) for all
sporadic simple groups G.

Theorem 4.1. For each sporadic simple group G, the value of µ(G) is recorded in Table 1.
In particular, µ(G) 6 3, with equality if and only if G ∈ {M12, J2,McL, Suz}.

Proof. If G = B or M, then µ(G) = 1 (see [24, Table IV]); in the final two rows of Table 1
we present an element s ∈ G (using Atlas [21] notation to identify the conjugacy class of
s) such that |M(G, s)| = 1. In each of the remaining cases, we can use GAP to determine
|M(G, s)| for each conjugacy class representative s ∈ G (see Section 2.3.2). In this way, we
compute µ(G) and we identify an element s ∈ G with |M(G, s)| = µ(G). This information
is presented in Table 1. (For G 6∈ {Co1,Fi22,Fi23}, the value of µ(G) given in Table 1 was
known to be an upper bound; see [24, Table IV] and [10, Table 7].) �

4.2. Uniform domination number. Our main result on the uniform domination num-
ber of sporadic groups is the following. Note that this immediately implies Theorem 3.
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Theorem 4.2. Let G be a sporadic simple group. Then

d− ε 6 γu(G) 6 d,

where d is defined as follows:

G M11 M12 M22 M23 M24 J1 J2 J3 J4 HS Suz McL Ru

d 4 4 3 2 4∗ 2 4∗ 3∗ 2 4∗ 3 3 2

He Ly O′N Co1 Co2 Co3 Fi22 Fi23 Fi′24 HN Th B M
3∗ 2 2 3∗ 3 3 4∗ 2 2 3∗ 2 2 2

Here an asterisk indicates that ε = 1; otherwise ε = 0 and γu(G) = d. In particular,
γu(G) 6 4, with equality if G = M11 or M12.

Proof. If µ(G) = 1 then we choose an element s ∈ G such that M(G, s) = {H} and
b(G,G/H) is minimal (note that the base size of every almost simple primitive group with
sporadic socle has been computed; see [20, 43]). The element s, subgroup H and base size
b = b(G,G/H) are recorded in Table 1, and we note that γu(G) 6 b by Corollary 2.2. In
particular, we conclude that γu(G) = 2 if G = B or M.

For each sporadic group G 6∈ {B,M} and each class representative s ∈ G we use GAP

to determine the minimal c such that Q̂(G, s, c) < 1 (see (2.3)), following the method
described in Section 2.3.1. By Lemma 2.5, we have γu(G) 6 c. For the groups with
µ(G) = 1, we almost always find that b 6 c; the exceptions are the cases G ∈ {He,Fi22},
where it is better to apply Lemma 2.5 with an element s ∈ G for which |M(G, s)| > 1.
For these two groups, and also for those with µ(G) > 1, we record the minimal value of

c in Table 1, together with an element s ∈ G such that Q̂(G, s, c) < 1. For example, if
G = He and s ∈ 17A then Table 1 indicates that M(G, s) = {H} with H = Sp4(4).2 and

b(G,G/H) = 4. However, if we choose s ∈ 21A then |M(G, s)| = 4 and Q̂(G, s, 3) < 1, so
γu(G) ∈ {2, 3}.

To derive a lower bound on γu(G), we proceed as in Remark 2.4 (see Section 2.3.2). For
example, if G = M11 then every element of G is contained in a subgroup H isomorphic
to L2(11) or M10; in both cases b(G,G/H) = 4, so Corollary 2.3 implies that γu(G) > 4.
With the exception of G = M12, this explains how we obtain the results on γu(G) presented
in Table 1.

The case G = M12 requires special attention. Here the above approach only gives
3 6 γu(G) 6 6, but by carrying out a random search in Magma (see Section 2.3.3) one
can show that the class 10A contains a total dominating set for Γ(G) of size 4 and thus
γu(G) ∈ {3, 4}. To rule out the existence of a uniform dominating set of size 3, we first
combine the base size results in [20] with Corollary 2.3 to reduce the problem to the classes
labelled 3B and 6A. In fact, since the square of an element in 6A is in the class 3B, we only
need to consider 6A. The required exhaustive search can now be carried out in Magma
and we refer the reader to [18, Section 1.2.4] for further details of this computation. We
conclude that γu(G) = 4. �

5. Exceptional groups of Lie type

Let us now assume G is a simple group of Lie type over Fq, where q = pa and p is prime.
In this section we prove Theorems 4 and 5 for exceptional groups of Lie type; the classical
groups will be handled in Section 6.

5.1. Maximal overgroups.

Theorem 5.1. Let G be a finite simple exceptional group of Lie type over Fq, where q = pa

and p is prime. Then either µ(G) = 1 or one of the following holds:

(i) either G = F4(q) with p = 2, or G = G2(q) with q > p = 3, and µ(G) 6 2;
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(ii) (G,µ(G)) ∈ {(2F4(2)′, 2), (G2(3), 3)}.
In particular, µ(G) 6 3 with equality if and only if G = G2(3).

Proof. This is essentially an immediate corollary of the work of Weigel in [46]. Set

E = {E7(2), E7(3), 2E6(2), 2E6(3), F4(3), F4(2), 2F4(2)′, G2(3), G2(4)}.

For G 6∈ E , Weigel identifies an element s ∈ G with |M(G, s)| = 1, with the possible
exception of the groups F4(2

a) and G2(3
a) (with a > 2), where he finds an element s with

|M(G, s)| = 2. (In every case, s is a generator of a maximal torus of G.)
To complete the proof, we just need to handle the groups in E . If G is one of the first

five groups in E , then [24, Proposition 6.2] implies that µ(G) = 1. If G is one of the
remaining four groups, then we can use GAP to compute µ(G) and find an element s ∈ G
with |M(G, s)| = µ(G) (see Section 2.3.2):

G F4(2) 2F4(2)′ G2(3) G2(4)

µ(G) 2 2 3 1

s 17A 16A 13A 21A

This completes the proof. �

5.2. Uniform domination number. Our main result on the uniform domination num-
ber of exceptional groups is the following theorem, which proves Theorem 4(ii). Note that
this also gives infinitely many more examples with γu(G) = 2 (see Theorem 1).

Theorem 5.2. If G is a finite simple exceptional group of Lie type, then γu(G) 6 6.
Moreover, if G ∈ {2B2(q),

2G2(q), E8(q)} then γu(G) = 2.

Proof. First assume that µ(G) = 1, and let s ∈ G such thatM(G, s) = {H}. By combining
Corollary 2.2 and the main theorem of [19], we deduce that γu(G) 6 b(G,G/H) 6 6.

Next suppose that G ∈ {2B2(q),
2G2(q)}. By [46], there is an element s ∈ G such that

M(G, s) = {H} where H = NG(〈s〉). (More precisely, |s| = q +
√

2q + 1 if G = 2B2(q),
and |s| = q +

√
3q + 1 if 2G2(q).) In both cases, by applying [19, Lemmas 4.37 and 4.39],

we get b(G,G/H) = 2 and thus γu(G) = 2 as claimed.
Now assume G = E8(q). Here we apply the probabilistic method from Lemma 2.5 and

we adopt the notation therein. Fix an element s ∈ G of order q8 + q7− q5− q4− q3 + q+1.
By [46, Section 4(j)], M(G, s) = {H} where H = NG(〈s〉). Moreover,

|xG ∩H| < |H| = 30(q8 + q7 − q5 − q4 − q3 + q + 1) < q14

(see [39, Theorem 5.2], for example) and |xG| > q58 for every element x ∈ G of prime
order (indeed, |xG| is minimal when q is even and x is a long root element). Therefore,
by [19, Proposition 2.3],

Q(G, s, 2) 6
k∑
i=1

|xGi | · fpr(xi, G/H)2 < q58(q−44)2 = q−30 < 1

and we conclude that γu(G) = 2.
To complete the proof, it remains to handle the cases with µ(G) > 1. In two cases we

employ computational methods. Indeed, for

(G, s) ∈ {(2F4(2)′, 16A), (G2(3), 13A)}

we can use GAP to verify the bound Q̂(G, s, 5) < 1 (see Section 2.3.1). By Lemma 2.5,
this gives γu(G) 6 5.

Next assume G = F4(q) with q = 2a. There is an element s ∈ G with M(G, s) =
{H,K}, where H ∼= K ∼= 3D4(q).3 if a > 1 (see [46, Section 4(f)]) and H ∼= K ∼= Sp8(2) if
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a = 1 (see [24, Proposition 6.2]). Since H and K are Aut(G)-conjugate, it follows that

Q̂(G, s, c) 6 2c
k∑
i=1

|xGi | · fpr(xi, G/H)c (5.1)

in terms of the notation of Lemma 2.5.
Suppose a = 1. The GAP Character Table Library contains the character tables of G

and H, so as described in Section 2.3.1, we can compute fpr(x,G/H) for all prime order

elements x ∈ G. In this way, we deduce that Q̂(G, s, 5) < 1 and thus γu(G) 6 5.
Now assume a > 1. By inspecting the proof of [19, Lemma 4.26], we deduce that

Q̂(G, s, 6) < 64

5∑
i=1

aib
6
i ,

where ai, bi are defined as follows:

i 1 2 3 4 5

ai q52 2q31 2q16 3q22 q48

bi q−9 q−6 2q−5 2q−6 8q−12

It is easy to check that this yields Q̂(G, s, 6) < 1 for all q > 16. For q ∈ {4, 8}, one checks
that the value of q−9 for b1 can be replaced by q−11 and this minor modification yields

Q̂(G, s, 6) < 1. Therefore, γu(G) 6 6 as required.
A similar argument applies when G = G2(q) with q = 3a and a > 2. As explained in

[46, Section 4(d)], there is an element s ∈ G such that M(G, s) = {H,K} and H ∼= K ∼=
SU3(q).2. In particular, (5.1) holds and one can check that

Q̂(G, s, 6) < 64

4∑
i=1

aib
6
i < 1,

where the ai, bi are given in the proof of [19, Lemma 4.31], hence γu(G) 6 6. �

6. Classical groups

In this final section, we study the parameters µ(G) and γu(G) when G is a finite simple
classical group. In particular, we complete the proofs of Theorems 4 and 5.

Throughout this section, we will write r for the untwisted Lie rank of G (that is, r is
the rank of the ambient simple algebraic group). Due to the existence of isomorphisms
between certain low rank classical groups (see [35, Proposition 2.9.1], for example), we
may (and will) assume that G is one of the following:

Lr+1(q), r > 1; Ur+1(q), r > 2; PSp2r(q)
′, r > 2; PΩ±2r(q), r > 4; Ω2r+1(q), r > 3.

In addition, we assume q is odd if G = Ω2r+1(q).

6.1. Maximal overgroups. The main result of this section is the following theorem,
which completes the proof of Theorem 5.

Theorem 6.1. If G is a finite simple classical group, then either µ(G) 6 3 or (G,µ(G))
is one of the following:

G U6(2) U4(3) Ω+
8 (2) PΩ+

8 (3)

µ(G) 4 5 7 7

In order to prove Theorem 6.1, we need to introduce some additional notation and
terminology, which will also be useful later in Section 6.2.

Let G be a finite simple classical group over Fq with natural module V of dimension
n. We will write k ⊕ (n − k) to denote a decomposition V = U ⊕W , where U and W
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are totally singular subspaces of dimensions k and n− k (if G = Ln(q) then all subspaces
are totally singular). In turn, g = k ⊕ (n − k) will denote a semisimple element g ∈ G
which preserves such a decomposition and acts irreducibly on both U and W . Similarly, if
G 6= Ln(q), then k ⊥ (n− k) denotes an orthogonal decomposition V = U ⊥ W where U
is a non-degenerate k-space, and we will write g = k ⊥ (n− k) for an element in G acting
irreducibly on U and W . For an orthogonal group, we extend this notation in the obvious
way by writing k± to denote a non-degenerate k-space of type ± (with k even). This is
consistent with the notation used in [10, 24]. Following [35], we will sometimes refer to
the type of a maximal subgroup H of G, which provides an approximate description of the
group-theoretic structure of H.

Write q = pa for a prime p and suppose t is a prime divisor of qe − 1 for some e > 2.
Recall that t is a primitive prime divisor (ppd for short) of qe − 1 if t is not a divisor of
qi − 1 for all 1 6 i < e. A classical theorem of Zsigmondy [48] states that if e > 3 then
qe − 1 has a ppd unless (q, e) = (2, 6). Primitive prime divisors also exist when e = 2,
provided q is not a Mersenne prime. Note that if t is a ppd of qe − 1 then t ≡ 1 (mod e).

The following lemma establishes a special case of Theorem 6.1.

Lemma 6.2. Suppose G = Sp2r(q), where r > 6 is even and q is even. Let

s = (r − 2k) ⊥ (r + 2k) ∈ G,
where k = (r/2− 1, 2). Then

M(G, s) = {Spr−2k(q)× Spr+2k(q), O
+
2r(q)}

and thus µ(G) 6 2.

Proof. Write V = U ⊥ W , where U and W are the proper non-degenerate subspaces
preserved by s. First observe that the order of s is divisible by a ppd t of qr+2k − 1, so we
are in a position to apply the main result of [27] to determine the subgroups in M(G, s).
Following the notation of [27], set d = 2r and e = r + 2k. By the main theorem of [27],
every maximal overgroup of s in G is one of those listed in [27, Examples 2.1–2.9]. We
will consider each of these cases in turn.

Write q = pa and consider the classical groups arising in [27, Example 2.1]. The element
s is not contained in any subfield subgroups since t does not divide

|Sp2r(q0)| = qr
2

0

r∏
i=1

(q2i0 − 1)

for q0 = pb and b < a. The orthogonal groups O±2r(q) are the only other maximal subgroups
that can arise in [27, Example 2.1] (moreover, it is well known that every element in G
is contained in such a subgroup). First observe that if s is contained in an orthogonal
subgroup H then the irreducibility of s on U and W implies that both U and W are
minus-type orthogonal spaces (with respect to the quadratic form corresponding to H),
so H = O+

2r(q) is the only possibility. Moreover, we claim that s is contained in exactly
one such subgroup. As noted in [35, Table 3.5C], G contains a unique conjugacy class of
subgroups O+

2r(q), so we just need to compute fpr(s,G/H) · |G : H|, which is the number
of G-conjugates of H containing s. Since conjugacy of semisimple elements of odd order in
both G and H is determined by eigenvalues (in a suitable field extension of Fq), it follows
that sG ∩H = sH . Moreover,

|CG(s)| = (qr/2+k + 1)(qr/2−k + 1) = |CH(s)|
and thus fpr(s,G/H) · |G : H| = 1, as claimed.

The subgroups in [27, Example 2.2] are reducible. Since s acts irreducibly on both U
and W , it follows that the subspace stabiliser GU = Spr−2k(q) × Spr+2k(q) is the only
reducible maximal subgroup of G containing s. No imprimitive subgroups arise from [27,
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Example 2.3]. Since q is even, the field extension subgroups in [27, Example 2.4] have
type Sp2r/l(q

l) for a prime divisor l of r. If s is contained in such a subgroup, then l must

divide r/2− k and r/2 + k, but this is not possible because these numbers are coprime.
To complete the proof of the lemma, we need to show that there are no additional

subgroups in M(G, s). To do this, we need to argue that none of the subgroups in [27,
Examples 2.5–2.9] can arise.

Let us first observe that the conditions r > 6 and e = r + 2k imply that if t = e + 1
then q = 2 and r ∈ {6, 8, 14, 16} (see [26, Lemma 2.1(ii)]). Now [27, Example 2.5] requires
t = e + 1 and p odd, so no examples occur, and we can also rule out the cases in [27,
Examples 2.6(b,c) and 2.8] since r > 6. In [27, Example 2.6(a)] we have t = e + 1, so
r ∈ {6, 8, 14, 16} and q = 2. Here (G,H) = (Sp2r(2), S2r+2) and the embedding of H in G
is afforded by the fully deleted permutation module for H over F2. Since

|s| = lcm{2r/2−k + 1, 2r/2+k + 1},
we can easily rule out r ∈ {8, 14, 16} by simply considering the orders of elements in H.
Now assume r = 6, so |s| = 33 and H has a unique class of elements of order 33. We
also note that G has a unique conjugacy class of maximal subgroups isomorphic to H
(see [7, Table 8.81]). Finally, since G has three classes of elements of order 33 and type
2 ⊥ 10, without any loss of generality we may assume that M(G, g) does not contain any
subgroups isomorphic to S14.

Finally, the handful of cases with r > 6 in [27, Examples 2.7 and 2.9] are not compatible
with our condition e = r + 2k, unless (r, q) = (6, 2). In this case, the candidate maximal
subgroup is almost simple with socle L2(11), and this can be excluded since it does not
contain an element of order |s| = 33. �

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. Let G be a finite simple classical group over Fq with natural module
V . First we appeal to the proof of the main theorem of [24], which identifies an element
s ∈ G such that M(G, s) is small.

If the rank r of G is large (for example, r > 11 suffices), then this element is given in [24,
Table II] and the remaining groups are covered in [24, Section 5], except for a short list of
small groups which are handled in [24, Proposition 6.3]. Moreover, additional information
regarding the action of s on V is provided in [24], which allows us to determine the precise
subgroups inM(G, s). For example, if G = PΩ−2r(q) where r > 7 and r ≡ 3 (mod 4), then
following [24, Table II] we choose

s = (r + 1)− ⊥
(
r − 1

2
⊕ r − 1

2

)
.

By the proof of [24, Proposition 4.1], it follows thatM(G, s) = {H,K1,K2} where H has
type O−r+1(q)×O

+
r−1(q) and both K1 and K2 are P(r−1)/2 parabolic subgroups (that is, K1

and K2 are the stabilisers of totally singular subspaces of dimension (r− 1)/2). Similarly,
[10, Proposition 5.14] implies that µ(G) 6 3 if G = PΩ+

2r(q) and r > 4 is even.
In this way, we deduce that µ(G) 6 3, unless G is one of the following:

(a) Sp2r(q) with r > 6 even and q even;

(b) PΩ+
8 (3), Ω+

8 (2), Ω7(3), U6(2), Sp6(2), U4(3).

Case (a) was handled in Lemma 6.2. For the groups G in (b), we can use GAP to de-
termine µ(G) and to identify an element s ∈ G with |M(G, s)| = µ(G) (see Section 2.3.2).
We obtain the following results, in terms of the Atlas [21] notation for conjugacy classes:

G PΩ+
8 (3) Ω+

8 (2) Ω7(3) U6(2) Sp6(2) U4(3)

µ(G) 7 7 3 4 2 5

s 14A 15A 14A 11A 15A 9A



24 TIMOTHY C. BURNESS AND SCOTT HARPER

This proves the result. �

This completes the proof of Theorem 5.

6.2. Uniform domination number. Our main result is Theorem 6.3, which completes
the proof of Theorem 4. In order to state this result, set

A = {Ur+1(q) : r > 7 odd} ∪ {PSp2r(q) : r > 3 odd, q odd} ∪ {PΩ+
2r(q) : r > 5 odd}

B = {Sp2r(q) : r > 2, q even, (r, q) 6= (2, 2)} ∪ {Ω2r+1(q) : r > 3, q odd}

Theorem 6.3. Let G be a finite simple classical group of rank r. Then

γu(G) 6 7r + 56.

More precisely, the following hold:

(i) If G = L2(q), then γu(G) 6 4, with equality if and only if q = 9.

(ii) If G ∈ A, then γu(G) 6 15.

(iii) If G ∈ B, then r 6 γu(G) 6 7r.

Note that the conclusion in part (iii) of Theorem 6.3 still holds for G = Sp4(2)′, but it
will be convenient to exclude this group from B. Indeed, Sp4(2)′ ∼= A6 and the proof of
Proposition 3.14 gives γu(A6) = 4.

We will prove Theorem 6.3 in a sequence of propositions.

6.2.1. Special cases. We start by handling the special cases referred to in parts (i), (ii) and
(iii). Note that part (iii) shows that the uniform domination number of the groups in B
can be arbitrarily large. It also shows that the linear bound in Theorem 6.3 is essentially
best possible (up to constants).

Proposition 6.4. If q > 4, then γu(L2(q)) 6 4 with equality if and only if q = 9.

Proof. For q < 11, the result can be verified computationally; see Section 2.3.1. Now
assume q > 11. Set d = (2, q − 1) and fix an element s ∈ G of order (q + 1)/d. Then
M(G, s) = {H}, where H = NG(〈g〉) ∼= D2(q+1)/d (see [24, Section 5]). By combining
Corollary 2.2 and [14, Lemma 4.5], we conclude that γu(G) 6 b(G,G/H) 6 3. �

In order to prove the bound in part (ii) of Theorem 6.3, we need the following recent
result of Halasi, Liebeck and Maróti [30, Theorem 3.3] on the base sizes of subspace actions
of classical groups.

Proposition 6.5. Let G be a finite simple classical group with natural module V of di-
mension n. Let H be the stabiliser of a k-dimensional subspace of V with k 6 n/2 and
assume H is a maximal subgroup of G. Then

b(G,G/H) 6
⌊n
k

⌋
+ 11.

Proposition 6.6. If G ∈ A, then γu(G) 6 15.

Proof. First assume that G = PΩ+
2r(q) where r > 5 is odd. For G = Ω+

10(2) we choose
s = 2− ⊥ 8− as in [24, Proposition 6.3] and a straightforward computation shows that
γu(G) 6 5 (see Section 2.3.1). Now assume G 6= Ω+

10(2). Following [24, Table II], fix an
element s = (r − 1)− ⊥ (r + 1)− in G. From the proof of [24, Proposition 4.1], it follows
that M(G, s) = {H}, where H is a reducible subgroup of type O−r−1(q) × O

−
r+1(q). By

Proposition 6.5, we have

b(G,G/H) 6

⌊
2r

r − 1

⌋
+ 11 6 13

and thus Corollary 2.2 implies that γu(G) 6 b(G,G/H) 6 13.
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The other groups G ∈ A are handled in a very similar fashion. In each case we choose
s ∈ G as in [24, Table II], noting that M(G, s) = {H} for some reducible subgroup H
(as before, this follows from the proof of [24, Proposition 4.1]). Once again, the desired
bound follows from Proposition 6.5, and it is worth noting that there are no special cases
that require direct computation. �

Next we turn to the bounds in part (iii) of Theorem 6.3. First we establish the lower
bound.

Proposition 6.7. If G ∈ B, then γu(G) > r.

Proof. Suppose G = Ω2r+1(q) and 1 6= g ∈ G. Then g fixes a non-zero vector v ∈ V , where
V is the natural module. Therefore, g is contained in the subspace stabiliser H = G〈v〉,
which is a maximal subgroup of G. There are two possibilities: either v is a singular
vector, in which case H is a P1 parabolic subgroup of G, or v is non-singular and H is a
subgroup of type O±2r(q). In view of (2.1), we get

b(G,G/H) >

⌈
log |G|

log |G/H|

⌉
> r

in both cases. It follows that every non-identity element of G is contained in a maximal
subgroup H with b(G,G/H) > r, so Corollary 2.3 implies that γu(G) > r.

A very similar argument applies when G = Sp2r(q) with q even, using the fact that every
element of G is contained in an orthogonal subgroup O±2r(q). We omit the details. �

Proposition 6.8. If G = Ω2r+1(q) ∈ B, then γu(G) 6 2r + 12 6 7r.

Proof. As in [24, Table II], fix a semisimple element s = 1 ⊥ (2r)− and note that
M(G, s) = {H}, where H is the stabiliser of a non-singular 1-space. By combining
Corollary 2.2 and Proposition 6.5, we deduce that

r 6 γu(G) 6 b(G,G/H) 6 2r + 12

as required. �

To complete the proof of the bounds in parts (i), (ii) and (iii) in Theorem 6.3, it remains
to handle the groups G = Sp2r(q) ∈ B.

6.2.2. Symplectic groups in even characteristic. In this section we complete the proof of
Theorem 6.3 by showing that γu(G) 6 7r for all G = Sp2r(q) ∈ B. To do this, we require
some preliminary lemmas and additional notation. Let Ḡ = Sp2r(K) be the ambient
simple algebraic group over the algebraic closure K of Fq and let V̄ be the natural module
for Ḡ. For an element x ∈ G, we define ν(x) to be the codimension of the largest eigenspace
of x on V̄ .

To establish the desired bound γu(G) 6 7r, we will work with an element g ∈ G of order
qr + 1. This allows us to appeal to earlier work of Bereczky [5] to determine the maximal
overgroups of g (see Lemma 6.11(i) for r > 5) and we then establish upper bounds on the
relevant fixed point ratios (see Lemmas 6.10 and 6.11(ii)). Finally, we use Lemma 2.5 to
establish the required bound on γu(G); the groups with r > 5 are handled in Proposition
6.12, with the remaining cases treated in Proposition 6.13.

Lemma 6.9. Suppose G = Sp2r(q) ∈ B. For s ∈ {1, . . . , 2r − 1}, let Ns be the number of
elements x ∈ G of prime order with ν(x) = s. Then

Ns < q
1
2
(4rs−s2+3s+5).
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Proof. Fix a prime t and let Ns,t be the number of elements x ∈ G of order t with ν(x) = s.
By combining [13, Corollary 3.38 and Proposition 3.40], we deduce that

Ns,t < q
1
2
(s+1) · 2

(
q

q − 1

) s
2

q
1
2
(4rs−s2+1) 6 q

1
2
(4rs−s2+2s+4).

To complete the argument, we need to show that there are at most q(s+1)/2 possibilities
for t. Suppose t is odd and fix an element x ∈ G of order t with ν(x) = s. Let i > 1
be minimal such that t divides qi − 1. Set c = i if i is even, otherwise c = 2i. Note that
t 6 qc/2 + 1, so it suffices to show that c 6 s+ 1.

If s < r then s is even and the 1-eigenspace of x has dimension 2r−s. Therefore, Sps(q)
contains an element of order t, so c 6 s and the result follows. Now assume s > r. Once
again, if G contains an element of order t whose 1-eigenspace is (2r− s)-dimensional, then
c 6 s and we are done. If not, then x must have a non-trivial eigenvalue (in Fqi) with
multiplicity 2r − s. Therefore, (2r − s)c 6 2r and thus c 6 s+ 1 as required. �

Lemma 6.10. Suppose G = Sp2r(q) ∈ B. Let x ∈ G be an element of prime order with
ν(x) = s and let H < G be a maximal subgroup of type Oε2r(q). Then

fpr(x,G/H) 6
1

qs
+

1

qr − 1
.

Proof. Let x ∈ H be an element of prime order t with ν(x) = s. For now, let us assume t
is odd, so s > 2. Since two semisimple elements in H are H-conjugate if and only if they
have the same eigenvalues on V̄ , it follows that xG ∩H = xH and thus

fpr(x,G/H) =
|xG ∩H|
|xG|

=
|H|
|G|
|CG(x)|
|CH(x)|

.

The centraliser orders |CG(x)| and |CH(x)| can be read off from [13, Table 3.6] and we
deduce that

fpr(x,G/H) =
|H|
|G|
|Spe(q)|
|Oε′e (q)|

,

where e > 0 is the dimension of the 1-eigenspace of x on V̄ (if e = 0 then we define

Spe(q) = Oε
′
e (q) = 1) and ε′ is a suitable choice of sign. Since e 6 2r − s we deduce that

fpr(x,G/H) 6
|H|
|G|
· 1

2
qr−s/2(qr−s/2 + 1) 6

qr−s/2(qr−s/2 + 1)

qr(qr − 1)

and the desired bound quickly follows.
Now assume t = 2. Here we use the Aschbacher–Seitz [3] notation for involution class

representatives, so x = as, bs or cs. It is easy to see that the G-class and H-class of x have
the same label and thus xG∩H = xH . The conjugacy class sizes |xH | and |xG| can be read
off from the proof of [13, Proposition 3.22] and the desired bound is easily established.
For example, suppose x = bs, in which case s is odd. Here

|xH | = |Oε2r(q)|
2|Sps−1(q)||Sp2r−2s(q)|q2r(s−1)−3s

2/2+3s/2

|xG| = |Sp2r(q)|
|Sps−1(q)||Sp2r−2s(q)|q2rs−3s

2/2+s/2

and thus

fpr(x,G/H) =
1

qs

(
1 +

ε

qr − ε

)
6

1

qs

(
1 +

1

qr − 1

)
.

The result follows. �

Lemma 6.11. Suppose G = Sp2r(q) ∈ B with r > 5, and let g ∈ G be an element of order
qr + 1.
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(i) M(G, g) = {H,H1, . . . ,H`}, where H = O−2r(q) and Hi = Sp2r/k(q
k).k for some

prime divisor k of r (one subgroup for each prime).

(ii) If x ∈ G has prime order and ν(x) = s > 3, then∑̀
i=1

fpr(x,G/Hi) <
1

qs
+

1

qr − 1
. (6.1)

Proof. The description of the maximal overgroups in part (i) follows from the proof of [10,
Proposition 5.8] (also see [5]). Now consider (ii). By [13, Corollary 3.38] we have |xG| > α,
where

α =
1

2

(
q

q + 1

)
qβ, β =

{
s(2r − s) s < r
rs s > r

(6.2)

(since q is even, we can replace the coefficient 1
4 in [13, Corollary 3.38] by 1

2). Moreover,
by the main theorem of [12] we have

fpr(x,G/Hi) < |xG|−
1
2
+ 1

2r
+ 1

2r+2

for all i. Since ` 6 log2 r, we deduce that∑̀
i=1

fpr(x,G/Hi) < log2 r · α
− 1

2
+ 1

2r
+ 1

2r+2 .

In view of the conditions r > 5 and s > 3, one checks that this upper bound is less than
q−s + (qr − 1)−1 and the result follows. �

Proposition 6.12. If G = Sp2r(q) ∈ B and r > 5, then γu(G) 6 7r.

Proof. As in Lemma 6.11, let g ∈ G be an element of order qr + 1 and define Q̂(G, g, 7r)

as in (2.3). In view of Lemma 2.5, it suffices to show that Q̂(G, g, 7r) < 1. To do this, it
will be convenient to write

Q̂(G, g, 7r) = Q̂1 + Q̂2 + Q̂3,

where Q̂1 and Q̂2 are the contributions to Q̂(G, g, 7r) from the elements x ∈ G of prime

order with ν(x) = 1 and 2, respectively, and Q̂3 is the contribution from the remaining

elements of prime order in G. We will estimate each Q̂i in turn. By Lemma 6.11(i),
M(G, g) = {H,H1, . . . ,H`}, where H = O−2r(q) and Hi = Sp2r/k(q

k).k for some prime

divisor k of r (one subgroup for each prime). As before, we use the notation of [3] for
involution class representatives.

First consider Q̂1. There is a unique class of elements x ∈ G of prime order with
ν(x) = 1, namely the involutions of type b1 (that is, the transvections in G). Here
|xG| = q2r − 1 and it is very easy to check that

fpr(x,G/H) =
1

q
+

1

q(qr − 1)

and fpr(x,G/Hi) = 0 for all i, whence

Q̂1 = (q2r − 1) ·
(

1

q
+

1

q(qr − 1)

)7r

. (6.3)

Now let us turn to Q̂2. If x is an a2-involution, then

|xG| = (q2r−2 − 1)(q2r − 1)

(q2 − 1)
= u1, fpr(x,G/H) =

qr−2 − 1

qr − 1
= v1

and fpr(x,G/Hi) = 0 for all i. Similarly, if x = c2 then

|xG| = (q2r−2 − 1)(q2r − 1) = u2, fpr(x,G/H) =
1

q2
+

1

q2(qr − 1)
= v2
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and fpr(x,G/Hi) = 0, unless r is even and Hi = Spr(q
2).2, in which case

fpr(x,G/Hi) =
q2r − 1

|xG|
=

1

q2r−2 − 1
= w2.

Now assume x ∈ G has odd prime order t and ν(x) = 2, so t divides q2 − 1 and G has
exactly (t − 1)/2 distinct conjugacy classes of such elements. In particular, if t divides
q − ε, then G contains at most

1

2
(q − ε) · |Sp2r(q)|

|Sp2r−2(q)||GLε1(q)|
=

1

2
q2r−1(q2r − 1)

elements of order t. Since q − ε has fewer than log2(q − ε) odd prime divisors, it follows
that G contains at most

log2(q
2 − 1) · 1

2
q2r−1(q2r − 1)

such elements. Now fpr(x,G/Hi) = 0 for all i and

fpr(x,G/H) 6
|O−2r(q)|

|O+
2r−2(q)||GU1(q)|

·
|Sp2r−2(q)||GU1(q)|

|Sp2r(q)|
=
qr−1 + 1

q(qr − 1)
.

Putting all this together, we conclude that

Q̂2 < u1v
7r
1 + u2(v2 + w2)

7r + log2(q
2 − 1) · 1

2
q2r−1(q2r − 1) ·

(
qr−1 + 1

q(qr − 1)

)7r

. (6.4)

Finally, let us consider Q̂3. We will use the inequality

(a+ b)n 6 2n−1(an + bn),

which is valid for all positive real numbers a, b, n with n > 1. By combining Lemmas 6.9,
6.10 and 6.11, we get

Q̂3 <
2r−1∑
s=3

q
1
2
(4rs−s2+3s+5) ·

(
2

qs
+

2

qr − 1

)7r

<
2r−1∑
s=3

q
1
2
(4rs−s2+3s+5) · q14r−1

(
q−7rs + q−7r(r−1)

)
= q14r+

3
2

(
2r−1∑
s=3

q
1
2
(3s−s2−10rs)

)
+ q21r−7r

2+ 3
2

(
2r−1∑
s=3

q
1
2
(4rs−s2+3s)

)
< q14r+

3
2 · q−15r+1 + q21r−7r

2+ 3
2 · q2r2+3r−1

and thus

Q̂3 < q−r+
5
2 + q24r−5r

2+ 1
2 . (6.5)

By combining the expression for Q̂1 in (6.3) with the bounds on Q̂2 and Q̂3 in (6.4)

and (6.5), it is easy to check that Q̂(G, g, 7r) < 1 for all r > 5. This completes the proof
of the proposition. �

Finally, we show that the desired bound also holds when r ∈ {2, 3, 4}.

Proposition 6.13. If G = Sp2r(q) ∈ B and r ∈ {2, 3, 4}, then γu(G) 6 7r.

Proof. As before, fix an element g ∈ G of order qr + 1 and note that the description

of M(G, g) in Lemma 6.11(i) still holds. In addition, if we define Q̂i as above then the

expression for Q̂1 in (6.3) is still valid. Similarly, if r ∈ {3, 4} then we get the upper bound

on Q̂2 in (6.4) (and we can set w2 = 0 when r = 3).
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First assume r = 4 and q > 4, so M(G, g) = {O−8 (q), Sp4(q
2).2} and ` = 1 in the

notation of Lemma 6.11. Moreover, one can check that the upper bound in (6.1) holds
(the same proof goes through unchanged) and thus

Q̂3 < |G| ·
(

2

q3
+

2

q4 − 1

)28

< q36
(

2

q3
+

2

q4 − 1

)28

.

It is now easy to check that Q̂(G, g, 28) < 1. The case (r, q) = (4, 2) can be handled using
GAP (see Section 2.3.1) and we get γu(G) 6 10.

The case r = 3 is very similar. Here M(G, g) = {O−6 (q),Sp2(q
3).3} and the bound in

(6.1) still holds. Indeed, the main theorem of [12] implies that∑̀
i=1

fpr(x,G/Hi) = fpr(x,G/H1) < α−
1
2
+ 1

6 = α−
1
3 ,

where H1 = Sp2(q
3).3 and α is defined as in (6.2), and one checks that this is less than

q−s + (q3 − 1)−1. Therefore,

Q̂3 < |G| ·
(

2

q3
+

2

q3 − 1

)21

< q21
(

2

q3
+

2

q3 − 1

)21

and the result follows.
Finally, suppose r = 2 and q > 4. Write M(G, g) = {H,H1}, where H = O−4 (q)

and H1 = Sp2(q
2).2. As noted above, the expression for Q̂1 in (6.3) is still valid. Now

consider Q̂2. If x = a2 then fpr(x,G/H) = 0 and fpr(x,G/H1) = q/(q2−1) (the involutory
field automorphisms of Sp2(q

2) are a2-involutions). Similarly, if x = c2 then |xG| = u2,
fpr(x,G/H) = v2 and fpr(x,G/H1) = w2 as before, so the upper bound in (6.4) holds,
with v1 = q/(q2 − 1).

To complete the proof of the proposition, we may assume x ∈ G has prime order t and
ν(x) = 3. Here t is odd and x is regular. Let i ∈ {1, 2, 4} be minimal such that t divides
qi − 1. We consider each possibility for i in turn.

Suppose i = 4, so t divides q2 + 1 and we see that there are at most log2(q
2 + 1)

possibilities for t. In addition, for a fixed prime t, there are at most 1
4(t−1) 6 1

4q
2 distinct

G-classes of elements of order t, each of which has size

|Sp4(q)|
|GU1(q2)|

= q4(q2 − 1)2.

It is straightforward to check that

fpr(x,G/H) = fpr(x,G/H1) =
2

q2(q2 − 1)
.

Finally, suppose i ∈ {1, 2}. Here neither H nor H1 contains any regular semisimple
elements of order t, so fpr(x,G/H) = fpr(x,G/H1) = 0. Putting this together, we conclude
that

Q̂3 < log2(q
2 + 1) · 1

4
q2 · q4(q2 − 1)2 ·

(
2

q2(q2 − 1)

)14

and the result follows. �

6.2.3. General case. To complete the proof of Theorem 6.3, we need to verify the bound

γu(G) 6 7r + 56.

In view of our earlier work, we may assume that r > 1 and G 6∈ A∪B. It will be convenient
to handle some small groups separately, and with this in mind we define

C = {L9(2),L8(2),PΩ+
8 (3),Ω+

8 (2),L7(2),PSp6(3),U6(2),L4(2),U4(3),U4(2),U3(5)}.
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Proposition 6.14. If G ∈ C, then γu(G) 6 c, where c is as follows:

G L9(2) L8(2) PΩ+
8 (3) Ω+

8 (2) L7(2) PSp6(3) U6(2) L4(2) U4(3) U4(2) U3(5)

c 7 9 19 26 6 3 6 4 16 8 13

s 4⊕ 5 3⊕ 5 14A 15A 105A 14A 11A 15A 9A 9A 13A

In particular, γu(G) 6 7r + 56.

Proof. We implement the probabilistic method computationally (see Section 2.3.1), work-
ing with an element s ∈ G in the conjugacy class specified in the table. We use Magma
to handle the groups L9(2) and L8(2), and GAP for the remaining cases. In this way, for

G 6= Ω+
8 (2), one can check that Q̂(G, s, c) < 1 for the stated value of c, whence γu(G) 6 c

as required.
The case G = Ω+

8 (2) requires more attention. If s is in 15A, then

F (x, s) :=
∑

H∈M(G,s)

fpr(x,G/H) > 1 (6.6)

for some elements x ∈ G of prime order and thus Q̂(G, s, d) > 1 for all d > 1. However,
the proof of [24, Proposition 6.2] gives

P (x, s) =
|{z ∈ sG : G 6= 〈x, z〉}|

|sG|
<

7

10

for all elements x ∈ G of prime order. Therefore, P (x, s) 6 min{F (x, s), 7/10} =: Q(x, s)
and thus

Q(G, s, 26) 6
k∑
i=1

|xGi | · P (xi, s)
26 6

k∑
i=1

|xGi | ·Q(xi, s)
26 < 1

(see (2.4)). This gives γu(G) 6 26 as claimed. �

For the remainder, we can assume r > 1 and G 6∈ A ∪B ∪ C. Define an integer R(G) as
follows:

G Lr+1(q) Ur+1(q) PSp2r(q) PΩ+
2r(q) PΩ−2r(q)

R(G) 6 7 4 4 6

Remark 6.15. Suppose G 6∈ A ∪ B ∪ C, r < R(G) and G 6= Sp4(2)′ ∼= A6. Then
|M(G, s)| = 1 for the element s ∈ G identified in the proof of Theorem 6.1.

The following lemma on fixed point ratios is our key tool in the proof of Theorem 6.3.
The proof uses several results on fixed point ratios for primitive actions of finite simple
classical groups. For example, if H acts reducibly on the natural module V then we appeal
to the bounds on fpr(x,G/H) obtained by Guralnick and Kantor in [24, Section 3]. For
an irreducible subgroup H, we apply the main theorem of [12]. For instance, if H is
irreducible and the rank r of G is large enough, then [12, Corollary 2] states that

fpr(x,G/H) < 2q−
r(r−1)
r+1 (6.7)

for all x ∈ G of prime order (in particular, this holds if dimV > 7). In the statement of
the lemma, we define F (x, s) as in (6.6).

Lemma 6.16. Let G 6∈ A ∪ B ∪ C be a finite simple classical group of rank r > R(G).
Then there exists s ∈ G such that for all elements x ∈ G of prime order

F (x, s) < min

{
c

q2
,

c

qr/2−3/2

}
where c = 3 unless G = Lr+1(q), in which case c = 4.
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Proof. Throughout, let x ∈ G be an element of prime order. We partition the proof into
four cases:

(a) G ∈ {Lr+1(q) : r > 6} ∪ {Ur+1(q) : r > 8 even}.
(b) G ∈ {PΩ−2r(q) : r > 6} ∪ {PSp2r(q) : r > 6 even, q odd}.
(c) G = PΩ+

2r(q), where r > 6 is even.

(d) G = PSp8(q) with q odd, or G = PΩ+
8 (q) and q > 4.

First consider (a). The case G = L11(2) requires special attention. If s ∈ G has
order 211 − 1 then the proof of [24, Proposition 6.3] gives M(G, s) = {H} with H a field
extension subgroup of type GL1(2

11). By applying the bound in (6.7), we deduce that

F (x, s) = fpr(x,G/H) < 2−79/11 and the result follows.
For the other groups in (a), let s ∈ G be the element defined in [24, Table II]. As

explained in the proof of [24, Proposition 4.1], the maximal overgroups of s are the obvious
reducible subgroups, and [24, Propositions 3.15 and 3.16] supply upper bounds on the
associated fixed point ratios. It is now straightforward to verify the desired bound. For
example, suppose G = Lr+1(q) with r > 6. As in [24, Table II], we take

s =


r+2
2 ⊕

r
2 if r is even

r+5
2 ⊕

r−3
2 if r ≡ 1 (mod 4)

r+3
2 ⊕

r−1
2 if r ≡ 3 (mod 4),

noting that M(G, s) = {H,K} where H and K are the stabilisers of appropriate k- and
(r + 1 − k)-spaces with k 6 r/2. By [24, Proposition 3.1(i)], if L 6 G is the stabiliser of
an `-space with ` 6 (r + 1)/2, then fpr(y,G/H) < 2q−` for all 1 6= y ∈ G. Therefore,

F (x, s) = fpr(x,G/H) + fpr(xτ , G/H) < min

{
4

q2
,

4

qr/2−3/2

}
,

where τ ∈ Aut(G) is an involutory graph automorphism. A similar argument applies when
G = Ur+1(q) with r > 8 even and we omit the details.

Next consider the groups in (b). Let s ∈ G be a Singer cycle (that is, s generates an
irreducible cyclic subgroup of maximal possible order). By the main theorem of Bereczky
[5], the maximal overgroups of s are field extension subgroups and [12] provides upper
bounds on the associated fixed point ratios. We will assume G = PΩ−2r(q) with r > 6; the
other case is very similar.

By [5], the members ofM(G, s) are subgroups of type GUr(q) and O−2r/k(q
k), where k is

a prime divisor of r. In addition, if qr is odd, then there are also field extension subgroups
of type Or(q

2). A straightforward calculation shows thatM(G, s) contains exactly one of
each such subgroup. From [13, Corollary 3.38] we get

|xG| > 1

4

(
q

q + 1

)
q4r−6

and thus [12, Theorem 1] implies that

fpr(x,G/H) < |xG|−
1
2
+ 1

2r
+ 1

2r−2 <

(
1

4

(
q

q + 1

)
q4r−6

)− 1
2
+ 1

2r
+ 1

2r−2

<
2

qr−1
(6.8)

for each H ∈M(G, s). Therefore,

F (x, s) <
2(2 + log2 r)

qr−1
< min

{
3

q2
,

3

qr/2−3/2

}
.

Next let us turn to case (c), so G = PΩ+
2r(q) and r > 6 is even. Fix an element s =

(r−2)− ⊥ (r+ 2)− ∈ G. Then [10, Proposition 5.14] implies thatM(G, s) = {L,H1, H2},
where L is a reducible subgroup of type O−r−2(q)×O

−
r+2(q) and H1, H2 are field extension
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subgroups of type O+
r (q2). By applying [24, Proposition 3.16] and the bound in (6.7), we

get

F (x, s) <

(
3

qr−2
+

1

qr−1
+

1

qr/2

)
+ 4q−

r(r−1)
r+1 < min

{
3

q2
,

3

qr/2−3/2

}
. (6.9)

Finally, we handle the two cases in (d). First assume G = PSp8(q) and q is odd. Take
s = 2 ⊥ 6 ∈ G and note that the proof of [24, Proposition 4.1] implies thatM(G, s) = {H},
where H is of type Sp2(q) × Sp6(q). By applying [31, Proposition 3.5] we deduce that
F (x, s) < 2q−2 and the result follows. Finally, suppose G = PΩ+

8 (q) with q > 4. Let
s ∈ G be an element of order (q2 + 1)/(q − 1, 2). By [10, Proposition 5.15], M(G, s)
contains three subgroups of type O−4 (q) o S2, plus an additional subfield subgroup of type

O−8 (q1/2) if q is a square. Now |xG| > (q2 + 1)2(q6 − 1) (minimal if q is even and x is an
a2 involution), so the main theorem of [12] implies that

F (x, s) < 4
(
(q2 + 1)2(q6 − 1)

)− 1
2
+ 1

8 <
3

q2

and the result follows. This completes the proof of the lemma. �

We are now ready to complete the proof of Theorem 6.3.

Proposition 6.17. Let G be a finite simple classical group of rank r. Then

γu(G) 6 7r + 56.

Proof. We have already verified the bounds in parts (i), (ii) and (iii) of Theorem 6.3, so
we may assume that r > 1 and G 6∈ A ∪ B. In addition, we can assume that G 6∈ C
(see Proposition 6.14) and G 6= Sp4(2)′ ∼= A6 (see the remark following the statement

of Theorem 6.3). Note that if G is linear or unitary, then |G| < qr
2+2r. In general,

|G| < q2r
2+εr, where ε = 1 if q is odd, otherwise ε = −1 (since the symplectic groups in

even characteristic are contained in B). We will use the notation from Lemma 2.5.
First assume r > 7 and (r, q) 6= (7, 2), (8, 2). Choose s ∈ G as in Lemma 6.16. If G is

linear or unitary, then we deduce that

Q̂(G, s, 7r + 56) < qr
2+2r ·

(
4

qr/2−3/2

)7r+56

< 1,

so Lemma 2.5 implies that γu(G) 6 7r + 56. Similarly, if G is symplectic or orthogonal,
then

Q̂(G, s, 7r + 56) < q2r
2+εr ·

(
3

qr/2−3/2

)7r+56

< 1,

and once again we conclude that γu(G) 6 7r + 56.
Now assume (r, q) = (7, 2), so Ω−14(2) (recall that G 6∈ A ∪ B ∪ C). As in the proof

of Lemma 6.16, let s ∈ G be a Singer cycle (so |s| = 27 + 1) and note that M(G, s) =
{H1, H2}, where H1 is of type GU7(2) and H2 is of type O−2 (27). In view of the up-
per bound in (6.8), we deduce that F (x, s) < 2−4 and this immediately implies that

Q̂(G, s, 7r + 56) < 1.
Similar arguments apply when (r, q) = (8, 2). If G = U9(2), then |G| < 280 and the

upper bound on F (x, s) in Lemma 6.16 is sufficient. If G = Ω−16(2) then we choose s as
in the proof of Lemma 6.16, so the subgroups in M(G, s) are of type GU8(2) and O−8 (4)
(one subgroup of each type). From the bound in (6.8) we get F (x, s) < 2−5 and the
desired result quickly follows. Similarly, if G = Ω+

16(2) then the upper bound in (6.9) gives

F (x, s) < 2−2 and this implies that Q̂(G, s, 7r + 56) < 1 as required.
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Finally, let us assume r < 7. First suppose r > R(G), in which case we choose s ∈ G
as in Lemma 6.16. If G = L7(q), then r = 6 and

Q̂(G, s, 7r + 56) < qr
2+2r ·

(
4

q2

)7r+56

,

which is less than 1 if q > 3 (note that L7(2) is in the collection C). Similarly, if G 6= L7(q)
then

Q̂(G, s, 7r + 56) < q2r
2+εr ·

(
3

q2

)7r+56

and it just remains to handle the groups Ω±12(2) (for example, if (r, q) = (5, 2) and r > R(G)
then G = Sp10(2) or Ω+

10(2), both of which belong to A ∪ B). For G = Ω−12(2) we
take a Singer cycle s ∈ G, in which case (6.8) implies that F (x, s) < 3/16 and we get

Q̂(G, s, 7r + 56) < 1. Similarly, if G = Ω+
12(2) and s = 4− ⊥ 8− then the upper bound on

F (x, s) in (6.9) is good enough to give Q̂(G, s, 7r + 56) < 1.
To complete the proof, we may assume r < R(G). As noted in Remark 6.15, there

exists s ∈ G such that M(G, s) = {H} for some subgroup H, so γu(G) 6 b(G,G/H) by
Corollary 2.2. If H is reducible, then b(G,G/H) 6 dimV + 11 by Proposition 6.5, where
V is the natural module for G. Otherwise, b(G,G/H) 6 5 by the main theorem of [14].
In all cases, the result follows. �

This completes the proof of Theorem 6.3, and hence Theorem 4.

Remark 6.18. It is easy to improve the bound in Proposition 6.17 in special cases. For
example, we have already shown that better bounds hold when G is one of the groups
covered by parts (i), (ii) or (iii) of Theorem 6.3. In other cases, the proof of Proposition
6.17 also yields better bounds. For instance, suppose G = Ur+1(q), with r > 7 and q > 4.

Then |G| < qr
2+2r and one checks that

Q̂(G, s, 2r + 40) < qr
2+2r ·

(
3

qr/2−3/2

)2r+40

< 1

for the element s ∈ G given in Lemma 6.16. Therefore, γu(G) 6 2r + 40.
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