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Abstract. Let G be a finite 2-generated non-cyclic group. The spread of G is the largest
integer k such that for any nontrivial elements x1, . . . , xk, there exists y ∈ G such that
G = 〈xi, y〉 for all i. The more restrictive notion of uniform spread, denoted u(G), requires
y to be chosen from a fixed conjugacy class of G, and a theorem of Breuer, Guralnick and
Kantor states that u(G) > 2 for every non-abelian finite simple group G. For any group
with u(G) > 1, we define the uniform domination number γu(G) of G to be the minimal
size of a subset S of conjugate elements such that for each nontrivial x ∈ G there exists
y ∈ S with G = 〈x, y〉 (in this situation, we say that S is a uniform dominating set for G).
We introduced the latter notion in a recent paper, where we used probabilistic methods to
determine close to best possible bounds on γu(G) for all simple groups G.

In this paper we establish several new results on the spread, uniform spread and uni-
form domination number of finite groups and finite simple groups. For example, we make
substantial progress towards a classification of the simple groups G with γu(G) = 2, and
we study the associated probability that two randomly chosen conjugate elements form a
uniform dominating set for G. We also establish new results concerning the 2-generation of
soluble and symmetric groups, and we present several open problems.
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1. Introduction

Let G be a finite non-cyclic group that can be generated by two elements. It is natural
to study the properties of generating pairs for G and such problems have attracted a great
deal of attention over several decades, especially in the context of finite simple groups. Here
we begin by introducing the generation invariants and associated probabilities that will be
the main focus of this paper.

In [10], Brenner and Wiegold define the spread of G, denoted s(G), to be the largest
integer k such that for any nontrivial elements x1, . . . , xk in G, there exists y ∈ G such that
G = 〈xi, y〉 for all i. This leads naturally to the more restrictive notion of uniform spread,
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denoted u(G), which was introduced more recently by Breuer, Guralnick and Kantor [13].
This is defined to be the largest integer k such that there is a conjugacy class C of G with
the property that for any nontrivial elements x1, . . . , xk in G, there exists y ∈ C such that
G = 〈xi, y〉 for all i. Clearly,

s(G) > u(G) > 0.

It is easy to see that if s(G) > 1, then every proper quotient of G is cyclic. In fact, it is
conjectured that this condition on quotients is equivalent to the positive spread property;
see [13, Conjecture 1.8], and recent progress towards a proof of this conjecture in [25, 48, 49].

In [27], we introduced some new generation invariants, which can be viewed as natural
extensions of spread and uniform spread. Following [27], we say that a subset S ⊆ G
of nontrivial elements is a total dominating set (TDS) for G if for all nontrivial x ∈ G,
there exists y ∈ S such that G = 〈x, y〉. To explain the terminology, note that if Γ(G) is
the generating graph of G, whose vertices are the nontrivial elements of G and x, y ∈ G are
adjacent if and only if G = 〈x, y〉, then S is a TDS for G if and only if it is a total dominating
set for Γ(G) in the usual graph-theoretic sense. Consequently, if s(G) > 1, then the total
domination number of G is defined by

γt(G) = min{|S| : S is a TDS for G}.
Similarly, if u(G) > 1, then G contains a uniform dominating set (UDS), which is defined to
be a TDS of conjugate elements, and the uniform domination number of G is

γu(G) = min{|S| : S is a UDS for G}.
Observe that if u(G) > 1, then

2 6 γt(G) 6 γu(G) 6 |C|
for some conjugacy class C of G (if u(G) = 0, then γu(G) is undefined).

Probabilistic methods play an important role in the study of uniform spread and the
uniform domination number. For an element s ∈ G and a positive integer c, we define

P (G, s, c) =
|{(x1, . . . , xc) ∈ (sG)c : {x1, . . . , xc} is a UDS for G}|

|sG|c
, (1)

the probability that c randomly chosen conjugates of s form a UDS for G. In addition, we
define

Pc(G) = max{P (G, s, c) : s ∈ G}, (2)

so γu(G) 6 c if and only if Pc(G) > 0.

There is a vast literature on the remarkable generation properties of finite simple groups.
The starting point is a theorem of Steinberg [68], which states that every finite simple group
of Lie type is 2-generated. It is easy to see that every alternating group is 2-generated and
the same is true for all sporadic simple groups by a theorem of Aschbacher and Guralnick
[1]. Therefore, by appealing to the Classification of Finite Simple Groups, we conclude that
every finite simple group is 2-generated (without the classification, there is no known bound
on the number of generators needed for a finite simple group). This observation leads to
many natural problems concerning the distribution of generating pairs across a simple group,
which have been intensively studied in recent years (see the recent survey article [22] for more
details).

The main result on the uniform spread of simple groups is the following theorem, which
combines results from [13] and [46].

Theorem (?).

(i) If G is a finite non-abelian simple group, then u(G) > 2, with equality if and only if

G ∈ {A5, A6,Ω
+
8 (2),Sp2r(2) (r > 3)}.
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(ii) Let (Gn) be a sequence of finite non-abelian simple groups with |Gn| → ∞. Then
either u(Gn)→∞, or there is an infinite subsequence consisting of either

(a) alternating groups of degree all divisible by a fixed prime; or

(b) odd-dimensional orthogonal groups over a field of fixed size; or

(c) symplectic groups over a field of even characteristic and fixed size.

Here part (i) is due to Breuer, Guralnick and Kantor [13, Theorem 1.2], extending earlier
work of Guralnick and Kantor [45], and independently Stein [67], who established the weaker
bound u(G) > 1. The asymptotic statement in part (ii) is a theorem of Guralnick and Shalev
[46, Corollary 2.3]. Note that the cases described in parts (a)–(c) of part (ii) are genuine
exceptions. For example, if n > 6 is composite, then [46, Proposition 2.4] gives

s(An) <

(
2p+ 1

3

)
, (3)

where p is the smallest prime divisor of n. Similarly, [46, Proposition 2.5] states that
s(Sp2m(q)′) 6 q if q is even and s(Ω2m+1(q)) 6 1

2q(q + 1) if q is odd, for all m, q > 2.

In view of Theorem (?)., it is natural to study the uniform domination number of simple
groups. In [27], we developed probabilistic and computational methods to study γu(G) and
we used these techniques to determine close to best possible bounds for simple groups. For
example, we showed that there are infinitely many simple groups G with γu(G) = 2, including
the alternating groups An when n > 13 is prime. In contrast, we proved that the uniform
domination number is in general unbounded for finite simple groups; for instance,

γu(An) > dlog2 ne − 1

for all even integers n > 6 (see [27, Theorems 1 and 2]).

A key observation in [27] is the connection between the uniform domination number and
the classical concept of bases in permutation group theory, which allows us to apply recent
work on bases for almost simple primitive groups. In order to explain this relationship, recall
that if G acts faithfully on a finite set Ω, then a subset of Ω is a base for G if its pointwise
stabiliser in G is trivial. We write b(G,Ω) for the base size of G, which is the minimal size
of a base. The connection in [27] arises from the easy observation that if there is an element
s ∈ G contained in a unique maximal subgroup H of G, then P (G, s, c) > 0 if and only if
b(G,G/H) 6 c, whence γu(G) 6 b(G,G/H) (see Section 2.2 for further details).

Our initial investigations in [27] lead to a number of natural problems, which we seek to
address in this paper. For example, one of our aims is to extend the study of the simple groups
G with the extremal property γu(G) = 2, with a view towards a complete classification.
For such a group G, we will also investigate the corresponding probability P2(G) (see (2))
and its asymptotic properties (with respect to a sequence of such groups). We will also
revisit earlier work of Binder [5, 6, 7] from the 1960s on the spread of symmetric groups,
together with results of Brenner and Wiegold [10] from the 1970s on soluble groups and the
simple linear groups L2(q). In particular, we take the opportunity to bring together several
important results on the 2-generation of finite groups that are somewhat scattered through
the literature.

We now present the main results of the paper. Our first theorem concerns soluble groups.

Theorem 1. Let G be a finite non-abelian soluble group such that every proper quotient is
cyclic. Then G = N :H, where N = (Cp)

f for some prime p and integer f > 1, and H is
cyclic and acts faithfully and irreducibly on N . Moreover, the following hold:

(i) s(G) = |N |−ε and u(G) = |N |−1, where ε = 0 if |H| is a prime and ε = 1 otherwise.

(ii) γu(G) = 2 and P2(G) = 1− |N |−1.

Remark 1. Let us make some comments on the statement of Theorem 1:
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(a) In (i), the result on s(G) is due to Brenner and Wiegold (see [10, Theorem 2.01]).

(b) Let G = N :H be a soluble group as in the theorem and let s ∈ G be a nontrivial
element. We will show that P (G, s, 2) > 0 if and only if s generates a complement
of N (see Proposition 3.5), in which case any two distinct conjugates of s form a
uniform dominating set and thus P (G, s, 2) = 1− |N |−1 since s is self-centralising.

(c) The corresponding result for a non-cyclic abelian group G is transparent. Indeed,
the condition on quotients implies that G = Cp ×Cp for some prime p and it is easy
to see that s(G) = p and u(G) = 0.

Next we turn to symmetric groups.

Theorem 2. Let G = Sn with n > 5.

(i) We have

s(G) =

{
2 if n is even
3 if n is odd

and u(G) =

{
0 if n = 6
2 otherwise.

(ii) For all n,
γu(G) > γt(G) > dlog2 ne > 3.

(iii) Suppose n is odd and Ω is the set of bn2 c-element subsets of {1, . . . , n}. Then

γu(G) = b(G,Ω) 6 2 log2 n.

(iv) If n is even, then γu(G) 6 3n log2 n.

Remark 2. Let us record some comments on the statement of Theorem 2:

(a) The equality u(Sn) = 2 for n 6= 6 is the main feature of part (i). Indeed, the
calculation of s(Sn) is due to Binder [5, 6]. In addition, Binder [7] showed that
u(Sn) > 1 if n 6= 6 (as noted in [25, Theorem 2], we have u(S6) = 0).

(b) For (iii), the upper bound (and its proof) is analogous to the upper bound on γu(A2m)
obtained in [27] (see Theorem 3(i) below). It is also worth noting that the base size
b(G,Ω) is not known exactly (see [47]).

(c) It is easy to handle the small degree symmetric groups excluded in the theorem. By
Theorem 1 we have s(S3) = 3, u(S3) = 2, γu(S3) = 2 and P2(S3) = 2

3 . Since S4 has
a proper non-cyclic quotient, we see that s(S4) = u(S4) = 0.

For alternating groups, our main result is the following.

Theorem 3. Let G = An with n > 5.

(i) If n is even, then

s(G) = u(G) =

{
2 if n = 6
4 otherwise

and
log2 n 6 γt(G) 6 γu(G) 6 2 log2 n.

(ii) If n > 9 is odd, then u(G) > 4 and

logp n 6 γt(G) 6 γu(G) 6 77 log2 n,

where p is the smallest prime divisor of n.

(iii) We have γu(G) = 2 if and only if n > 13 is a prime.

(iv) If n > 13 is a prime, then P2(G) > 1− n−1.

Remark 3. Some remarks on the statement of Theorem 3:

(a) In part (i), the result on s(G) and u(G) is due to Brenner and Wiegold [10, (3.01)–
(3.05)] and the upper bound on γu(G) is taken from [27, Theorem 2]. The lower
bound is established in Proposition 4.12.
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(b) Part (ii) extends the bound u(G) > 3 established in [13] (with essentially the same
proof). The excluded cases n ∈ {5, 7} are genuine exceptions: it is straightforward
to show that s(A5) = u(A5) = 2 and s(A7) = u(A7) = 3. The upper bound on γu(G)
is [27, Proposition 3.15] and the lower bound follows from Proposition 4.12.

(c) In stark contrast to the even degree case, the uniform spread of an odd-degree al-
ternating group can be arbitrarily large. Indeed, this is a consequence of part (ii) of
Theorem (?).. More precisely, [46, Proposition 3.1] states that if n is composite and
p is the smallest prime divisor of n, then

s(An) > cp log p

for some (undetermined) absolute constant c. We refer the reader to [46, Propositions
3.2 and 3.3] for explicit bounds on u(An) and s(An) when n is a prime (also see [10,
Section 4]).

(d) Part (iii) extends [27, Theorem 3.7(i)], which states that γu(An) = 2 if n > 13 is a
prime. This can be viewed as a first step towards a classification of the finite simple
groups G with γu(G) = 2 (see Corollary 7 below). In addition, if n > 13 is a prime,
then P (An, s, 2) > 0 if and only if s is an n-cycle (see Proposition 5.5).

(e) In part (iv), the case n = 13 is an anomaly. Indeed, with the aid of Magma [9], one
can show that

P2(A13) =
4979

46200
(see Remark 5.10 for further details).

Next we consider the finite simple groups of Lie type. Our main result for exceptional
groups is the following.

Theorem 4. Let G be a finite simple exceptional group of Lie type over Fq.

(i) We have γu(G) 6 5, with γu(G) = 2 if and only if

G ∈ {2B2(q), 2G2(q) (q > 27), 2F4(q) (q > 8), 3D4(q), Eε6(q), E7(q), E8(q)}. (4)

(ii) If γu(G) = 2, then P2(G) > 1− q−1.

Remark 4. Let us make some remarks on the statement of Theorem 4:

(a) The bound on γu(G) in part (i) strengthens the result γu(G) 6 6 stated in [27,
Theorem 5.2]. The same result states that γu(G) = 2 if G is 2B2(q), 2G2(q) (with
q > 27), or E8(q), and the complete classification of the exceptional groups G with
γu(G) = 2 is the main feature of Theorem 4.

(b) The lower bound on P2(G) in part (ii) is essentially best possible. For example, if
G = 2B2(q), then

P2(G) = 1− (q2 − 4)(q −
√

2q + 1) + 4

q2(q − 1)(q +
√

2q + 1)

(see Lemma 6.7 and Remark 6.8). Stronger bounds are obtained in many cases. For
instance, if G = E8(q) then P2(G) > 1− q−30 by Lemma 6.11.

Finally, let us turn to the classical groups. The two-dimensional linear groups merit special
attention and they are handled in the following result.

Theorem 5. Let G = L2(q) with q > 4.

(i) If q > 11 and q 6≡ 3 (mod 4), then

s(G) = u(G) =

{
q − 1 if q ≡ 1 (mod 4)
q − 2 if q is even.

(ii) If q ≡ 3 (mod 4) and q > 11, then u(G) > q − 4 and s(G) > q − 3.
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(iii) If q ≡ 3 (mod 4) and q > 11 is a prime, then

s(G) >
1

2
(3q − 7) and s(G)− u(G) =

1

2
(q + 1).

(iv) We have

γu(G) =

 4 if q = 9
3 if q ∈ {5, 7} or q is even
2 if q > 11 is odd.

(v) If q > 11 is odd, then

P2(G) =


1
2

(
1 + 1

q

)
if q ≡ 1 (mod 4)

1
2

(
1− q+3

q(q−1)

)
if q ≡ 3 (mod 4).

In particular, P2(G) > 24
55 , with equality if and only if q = 11.

Remark 5. Let us make some comments on the statement of Theorem 5:

(a) The spread of G = L2(q) was first studied by Brenner and Wiegold in [10]. According
to [10, Theorem 4.02], if q > 11 or q is even, then s(G) = f(q) where

f(q) =

 q − 1 if q ≡ 1 (mod 4)
q − 4 if q ≡ 3 (mod 4)
q − 2 if q is even.

However, the proof in [10] is incomplete and only the lower bound s(G) > f(q)
is established. With some additional work, we can show that s(G) = f(q) when
q 6≡ 3 (mod 4) and q > 13 (see Theorem 7.3), which establishes part (i) of Theorem
5. However, the case q ≡ 3 (mod 4) is rather more complicated and we have been
unable to compute s(G) and u(G) precisely. Note that part (ii) shows that the
statement of [10, Theorem 4.02] is incorrect in this case.

(b) Part (iii) demonstrates that the difference s(G) − u(G) can be arbitrarily large. As
far as we are aware, this provides the first example of an infinite family of non-abelian
finite groups with this property.

(c) It is straightforward to handle the small values of q excluded in parts (i), (ii) and
(iii). Since L2(4) ∼= L2(5) ∼= A5 and L2(9) ∼= A6, we see that s(G) = u(G) = 2 if
q ∈ {4, 5, 9}. If q = 8, then s(G) = u(G) = 6 as in part (i). Finally, for q = 7 one
can check that s(G) = 5 and u(G) = 3.

(d) Part (iv) extends [27, Proposition 6.4], which states that γu(L2(q)) 6 4, with equality
if and only if q = 9. We also note that G = L2(11) is the smallest simple group with
γu(G) = 2.

(e) It is worth highlighting the expression for P2(G) in part (v), which shows that
P2(G)→ 1

2 as q tends to infinity (cf. Corollary 8).

In order to state a result for all classical groups, it will be useful to write

A = {Ur+1(q) : r > 7 odd} ∪ {PSp2r(q) : r > 3 odd, q odd} ∪ {PΩ+
2r(q) : r > 5 odd}

B = {Sp2r(q) : r > 2, q even, (r, q) 6= (2, 2)} ∪ {Ω2r+1(q) : r > 3, q odd}
C = {PSp2r(q) : r > 5 odd, q odd} ∪ {PΩ±2r(q) : r > 4 even}

In the statement of the following result, r denotes the (untwisted) Lie rank of G, which is
the rank of the ambient simple algebraic group.

Theorem 6. Let G be a finite simple classical group over Fq of rank r.

(i) We have γu(G) 6 7r + 56.

(ii) We have γu(G) = 2 only if one of the following holds:
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(a) G = L2(q) and q > 11 is odd.

(b) G = Lεn(q), where n is odd and (n, q, ε) 6∈ {(3, 2,+), (3, 4,+), (3, 3,−), (3, 5,−)}.
(c) G ∈ C.

Moreover, γu(G) = 2 for the groups in (a) and (b).

(iii) If γu(G) = 2 and G 6∈ C∪{L2(q) : q > 11 odd}, then either P2(G) > 1
2 , or G = U5(2)

and P2(G) = 605
1728 . Moreover, P2(G)→ 1 as |G| → ∞.

Remark 6. Let us make some remarks on the statement of Theorem 6:

(a) The bound on γu(G) in part (i) is from [27, Theorem 6.3], where we also showed that
γu(G) 6 15 if G ∈ A and r 6 γu(G) 6 7r if G ∈ B.

(b) In part (ii), we have been unable to determine if γu(G) = 2 for the groups G in the
collection C. We refer the reader to Remarks 8.15 and 8.16 for further comments on
the difficulties that arise in these special cases.

We now present some general results concerning all finite simple groups. Let us write D
for the classical groups arising in parts (ii)(a) and (ii)(b) of Theorem 6, and let E be the
exceptional groups in (4). In addition, write

S = {M23, J1, J4,Ru,Ly,O′N,Fi23,Fi′24,Th,B,M}
T = {J3,He,Co1,HN}

The following result is an immediate corollary of Theorems 3(iii), 4(i) and 6(ii), together
with [27, Theorem 4.2] on sporadic groups. Note that γu(G) ∈ {2, 3} for each of the groups
in T , but we have been unable to determine the exact value in these cases (see Remark 9.2).

Corollary 7. Let G be a finite simple group. Then γu(G) = 2 only if

(i) G ∈ {An : n > 13 prime} ∪ D ∪ E ∪ S; or

(ii) G ∈ C ∪ T .

Moreover, γu(G) = 2 for the groups in (i).

The next result follows from Theorems 3(iv), 4(ii) and 6(iii).

Corollary 8. Let (Gn) be a sequence of finite simple groups such that γu(Gn) = 2,

Gn 6∈ C ∪ {L2(q) : q > 11 odd}

and |Gn| → ∞. Then P2(Gn)→ 1 as n tends to infinity.

We will also establish the following non-asymptotic result on the probability P2(G) (this
will be proved in Section 9).

Theorem 9. Let G be a finite simple group such that γu(G) = 2 and G 6∈ C ∪ T . Then
P2(G) 6 1

2 if and only if one of the following holds:

(i) G = L2(q), q > 11, q ≡ 3 (mod 4) and

24

55
6 P2(G) =

1

2

(
1− q + 3

q(q − 1)

)
.

(ii) G ∈ {A13,U5(2),Fi23} and

P2(G) =


4979
46200 if G = A13

605
1728 if G = U5(2)
7700

137241 if G = Fi23.
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Remark 7. In terms of the asymptotics of P2(G), it is natural to ask whether or not this
probability is bounded away from zero. That is, is there an absolute constant ε > 0 such
that P2(G) > ε for every simple group G with γu(G) = 2? By Theorem 9, this is true for the
relevant groups G 6∈ C. Therefore, in order to answer this question, it remains to consider
the specific symplectic and orthogonal groups comprising the collection C.

There is a natural generalisation of the uniform domination number for groups with uni-
form spread greater than one. Indeed, if G is a finite group with u(G) > ` for some positive

integer `, then let γ
(`)
u (G) be the smallest size of a set S of conjugate elements such that for

any nontrivial elements x1, . . . , x` ∈ G, there exists y ∈ S such that G = 〈xi, y〉 for all i.

Evidently, γ
(1)
u (G) = γu(G). Since u(G) > 2 for all finite non-abelian simple groups G, it is

natural to consider γ
(2)
u (G) for these groups. With this in mind, we can state the following

result (see Section 9).

Theorem 10. Let G be a finite simple group such that γu(G) = 2 and G 6∈ C ∪ T . Then

γ
(2)
u (G) = 3. Moreover, the following hold:

(i) If G = An with n > 13 prime, then γ
(`)
u (G) = `+ 1 for all 1 6 ` 6 n.

(ii) If G is an exceptional group of Lie type over Fq, then γ
(`)
u (G) = `+1 for all 1 6 ` 6 q.

Remark 8. Let us comment on Theorem 10.

(a) Lemma 2.7 states that if G is a finite non-cyclic group, then γ
(`)
u (G) > ` + 1, with

equality if P2(G) > 1 − `−1 (this is clear for ` = 1). Therefore, the probabilistic
results in Corollary 8 and Theorem 9 are crucial to the proof of Theorem 10.

(b) In certain cases, we can establish even stronger results on γ
(`)
u (G). For example, if

G = E8(q), then γ
(`)
u (G) = `+ 1 for all ` 6 q30 (see Remark 4(b)).

Remark 9. Suppose G is a finite group with an element s ∈ G that is contained in a unique
maximal subgroup H of G. In this situation, the class sG witnesses γu(G) = 2 if and only
if b(G,G/H) = 2, and one needs further information on the bases of size two in order to

determine if the same class witnesses γ
(`)
u (G) = `+ 1 for some ` > 2. It turns out that this is

encoded in the so-called Saxl graph Σ(G,G/H), which has vertex set G/H and two vertices
are adjacent if and only if they form a base for G (see [24]). According to Lemma 2.8,

γ
(`)
u (G) = `+ 1 is witnessed by sG if and only if Σ(G,G/H) has an (`+ 1)-clique (that is, a

complete subgraph with `+ 1 vertices). In particular, the probabilistic condition in Remark
8(a) is just a special case of Turán’s Theorem applied to the graph Σ(G,G/H). In [24], it is
conjectured that if G 6 Sym(Ω) is a finite primitive group with b(G,Ω) = 2, then any pair
of vertices of Σ(G,Ω) have a common neighbour and thus Σ(G,Ω) contains a triangle. In

the above setting, this would imply that γ
(2)
u (G) = 3.

Finally, let us return to the total domination number γt(G) and recall that γt(G) 6 γu(G).
It is natural to consider the relationship between these two numbers. For example, is there
an absolute constant C such that

γu(G) 6 Cγt(G)

for all non-abelian finite simple groups G? By the results stated above, this is true for all
even-degree alternating groups and all exceptional groups of Lie type. It also holds for the
classical groups in the collections denoted A, B and D above (indeed, one can modify the
proof of [27, Theorem 6.3(iii)] to get γt(G) > r for all G ∈ B). It would be interesting
to investigate if this relationship extends to the remaining classical groups, and also the
alternating groups of odd degree.

Notation. Our group-theoretic notation is fairly standard. In particular, we adopt the
notation from [53] for simple groups, so we write Ln(q) = PSLn(q) and Un(q) = PSUn(q) for
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linear and unitary groups, and PΩε
n(q) is a simple orthogonal group, etc. In addition, if G

is a finite group, then we write G# for the set of nontrivial elements in G and ir(X) for the
number of elements of order r in a subset X of G. For matrices, it will be convenient to write
[An1

1 , . . . , Ank
k ] for a block-diagonal matrix with a block Ai occurring with multiplicity ni.

In addition, Ji will denote a standard unipotent Jordan block of size i. Finally, for positive
integers a and b, we write (a, b) for their greatest common divisor and we set [a] = {1, . . . , a}.

Acknowledgements. The second author thanks the Engineering and Physical Sciences
Research Council and the Heilbronn Institute for Mathematical Research for their finan-
cial support. Both authors thank Alexander Hulpke for his computational assistance and
they thank an anonymous referee for their careful reading of the paper and several helpful
comments and suggestions.

2. Methods

In this section, we record some preliminary results which will be needed in the proofs of
our main theorems. Throughout, let G be a finite 2-generated non-cyclic group and let G#

be the set of nontrivial elements of G.

2.1. Spread. Define the spread s(G) and uniform spread u(G) as in the introduction. We
begin by outlining a probabilistic approach which was first used by Guralnick and Kantor
in [45] to prove that u(G) > 1 for every non-abelian finite simple group G and has since
been instrumental in establishing several related results on the uniform spread of simple and
almost simple groups in [13, 25, 46, 48].

For x, s ∈ G, let

P (x, s) = 1− |{z ∈ s
G : G = 〈x, z〉}|
|sG|

(5)

be the probability that x and a randomly chosen conjugate of s do not generate G. The
following result is [25, Lemma 2.1].

Lemma 2.1. Let k be a positive integer and assume there is an element s ∈ G such that

k∑
i=1

P (xi, s) < 1

for all k-tuples (x1, . . . , xk) of prime order elements in G. Then u(G) > k (with respect to
the conjugacy class sG).

We can use fixed point ratios to estimate the sum in Lemma 2.1. Recall that if G acts
transitively on a finite set Ω, then

fpr(x,Ω) =
|CΩ(x)|
|Ω|

=
|xG ∩H|
|xG|

is the fixed point ratio of x ∈ G, where CΩ(x) is the set of fixed points of x and H is a point
stabiliser. By [25, Lemma 2.2], we have

P (x, s) 6
∑

H∈M(G,s)

fpr(x,G/H), (6)

where M(G, s) is the set of maximal subgroups of G which contain s. This yields the
following corollary.

Corollary 2.2. Let k be a positive integer and assume there is an element s ∈ G such that∑
H∈M(G,s)

fpr(x,G/H) <
1

k

for all x ∈ G of prime order. Then u(G) > k.
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Therefore, upper bounds on fixed point ratios can be used to bound the probability P (x, s).
In order to effectively apply this approach, one needs to identify an element s ∈ G for which
we can control the maximal overgroups in M(G, s) (ideally, s should be contained in very
few maximal subgroups).

When it is feasible to do so, this probabilistic approach will be complemented by computa-
tional methods implemented in Magma [9]. These methods are outlined in [48, Section 2.3]
and we refer the reader to Breuer’s manuscript [12] for a more detailed discussion.

2.2. Uniform domination number. Let G be a finite group with u(G) > 1. Recall that
a subset S of G# is a total dominating set (TDS) for G if for all x ∈ G#, there exists y ∈ S
such that G = 〈x, y〉, and the uniform domination number of γu(G) is the minimal size of a
TDS for G consisting of conjugate elements. This notion was first introduced in [27], where
close to best possible bounds on γu(G) for simple groups G were determined. Let us briefly
recall the main methods developed in [27] to bound the uniform domination number.

Recall that if G acts faithfully on a finite set Ω, then a subset of Ω is a base for G if its
pointwise stabiliser in G is trivial; the base size of G, written b(G,Ω), is the minimal size
of a base. The following result reveals an important connection between bases and total
dominating sets consisting of conjugate elements.

Lemma 2.3. Let s ∈ G#, let H ∈M(G, s) and assume that H is core-free. Then

min{|S| : S ⊆ sG is a TDS for G} > b(G,G/H),

with equality if M(G, s) = {H}. In particular, if for each s ∈ G# there exists H ∈M(G, s)
with b(G,G/H) > c, then γu(G) > c.

Proof. This follows from [27, Corollaries 2.2 and 2.3]. �

Probabilistic methods also play a key role in [27]. As in the introduction, for an element
s ∈ G and integer c > 1, we define P (G, s, c) to be the probability that c randomly chosen
conjugates of s form a TDS for G (see (1)). Note that γu(G) 6 c if and only if P (G, s, c) > 0
for some s. The next lemma provides a means of computing P (G, s, 2) in an important
special case.

Lemma 2.4. Suppose s ∈ G# and M(G, s) = {H} with H core-free. Then

P (G, s, 2) =
r|H|2

|G|
,

where r is the number of regular orbits of H on G/H.

Proof. First observe that if {x, y} is a TDS for G, then so is {xg, yg} for all g ∈ G, hence

P (G, s, 2) =
|{sg ∈ sG : {s, sg} is a TDS for G}|

|sG|
.

Now {s, sg} is a TDS for G if and only if H ∩Hg = 1, so

P (G, s, 2) =
|{g ∈ G : H ∩Hg = 1}|

|CG(s)||sG|
=
r|H|2

|G|
as required. �

The next result, which is [27, Lemma 2.5], shows that fixed point ratios can be used to
bound the complementary probability Q(G, s, c) = 1− P (G, s, c).

Lemma 2.5. Let s ∈ G# and c ∈ N. Then

Q(G, s, c) 6
k∑
i=1

|xGi |

 ∑
H∈M(G,s)

fpr(xi, G/H)

c

=: Q̂(G, s, c),
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where the xi represent the conjugacy classes in G of elements of prime order.

We can use the following result to estimate the bound that arises in Lemma 2.5 (see [27,
Lemma 2.7]).

Lemma 2.6. Let {H1, . . . ,H`} be proper subgroups of G. Suppose that x1, . . . , xm represent
distinct G-classes such that

∑
i |xGi ∩Hj | 6 Aj and |xGi | > B for all i, j. Then

m∑
i=1

|xGi |

∑̀
j=1

fpr(xi, G/Hj)

c

6 B1−c

∑̀
j=1

Aj

c

for all positive integers c.

Recall the definition of γ
(`)
u (G) from the introduction, where ` is a positive integer. In

particular, notice that γ
(1)
u (G) = γu(G).

Lemma 2.7. Let ` be a positive integer. Then γ
(`)
u (G) > `+ 1, with equality if Q(G, s, 2) <

1/` for some s ∈ G.

Proof. Fix s ∈ G and consider a subset S = {z1, z2, . . . , z`} of sG of size `. Since G is not

cyclic, there is no j such that G = 〈zi, zj〉 for all i ∈ [`], whence γ
(`)
u (G) > `+ 1.

Now assume that Q(G, s, 2) < 1/`. We will use induction on ` to prove that there exists
a subset S of sG of size `+ 1 such that {z, z′} is a TDS for G for all distinct z, z′ ∈ S. The
base case ` = 1 is clear, so let us assume ` > 2. Since Q(G, s, 2) < 1/` < 1/(` − 1), by
induction, there exist z1, . . . , z` ∈ sG such that {zi, zj} is a TDS for all distinct i, j ∈ [`].
For i ∈ [`], let Ni ⊆ sG be the set of conjugates z of s such that {zi, z} is not a TDS for G.
The bound Q(G, s, 2) < 1/` implies that |Ni| < |sG|/`, so there exists z`+1 ∈ sG such that

z`+1 6∈
⋃`
i=1Ni and hence {zi, zj} is a TDS for all distinct i, j ∈ [`+ 1].

Now fix S ⊆ sG such that |S| = `+ 1 and {z, z′} is a TDS for G for all distinct z, z′ ∈ S.
Let x1, . . . , x` ∈ G# be arbitrary elements. We claim that there exists z ∈ S such that
G = 〈xi, z〉 for all i ∈ [`]. Seeking a contradiction, suppose that for all z ∈ S, there exists
i ∈ [`] such that G 6= 〈xi, z〉. Since |S| > `, there exists i ∈ [`] and distinct z, z′ ∈ S such
that G 6= 〈xi, z〉 and G 6= 〈xi, z′〉, but this contradicts the fact that {z, z′} is a TDS. This
completes the proof of the lemma. �

Recall that if G is a group acting faithfully on a set Ω, then the Saxl graph Σ(G,Ω) has
vertex set Ω and α, β ∈ Ω are adjacent if and only if {α, β} is a base for the action of G on
Ω (see [24]).

Lemma 2.8. Fix s ∈ G and assume that M(G, s) = {H} for a core-free subgroup H with

b(G,G/H) = 2. Then γ
(`)
u (G) = ` + 1 is witnessed by sG if and only if Σ(G,G/H) has an

(`+ 1)-clique.

Proof. First assume that Σ(G,G/H) has an (` + 1)-clique. Then there exist ` + 1 distinct
conjugates Hg1 , . . . ,Hg`+1 such that Hgi ∩ Hgj = 1 for all i 6= j, which is equivalent to
{sgi , sgj} being a TDS. Therefore, by the proof of Lemma 2.7, {sg1 , . . . , sg`+1} witnesses

γ
(`)
u (G) = `+ 1.

Conversely, assume that γ
(`)
u (G) = ` + 1 is witnessed by a set S = {sg1 , . . . , sg`+1}. To

prove that Σ(G,G/H) has an (` + 1)-clique, it suffices to prove that Hgi ∩Hgj = 1 for all
i 6= j. Suppose otherwise, say 1 6= x ∈ Hg1 ∩ Hg2 . Then there is no element z ∈ S such

that G = 〈y, z〉 for all y ∈ {x, sg3 , . . . , sg`+1}, which contradicts S witnessing γ
(`)
u (G) = `+ 1.

This completes the proof. �
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In addition to the techniques described above, we will also use computational methods in
GAP [41] and Magma [9] to study γu(G). We refer the reader to [27, Section 2.3] and [28]
for a detailed discussion of these methods.

3. Soluble groups

In this section we will prove Theorem 1. With this goal in mind, we begin by recording
an elementary lemma on the structure of the finite soluble groups we are interested in.
Throughout this section, it will be convenient to let S be the set of finite non-abelian soluble
groups with the property that every proper quotient is cyclic.

Lemma 3.1. Each G ∈ S is a primitive Frobenius group of the form G = N :H, where
N , the socle of G, is an elementary abelian p-group for some prime p, and H = 〈h〉 acts
faithfully and irreducibly on N . In particular, H = CG(h) has |N | distinct N -conjugates and
these subgroups intersect pairwise trivially.

Proof. This is straightforward; see the proof of [14, Proposition 1.1], for example. �

Since the spread of soluble groups has been studied by Brenner and Wiegold in [10,
Theorem 2.01], we may focus on the uniform spread and the uniform domination number.

Proposition 3.2. Let G = N :H ∈ S as above. Let 1 6 k 6 |N | − 1 and let S be a subset
of hG of size k + 1. Then for any k nontrivial elements x1, . . . , xk in G, there exists s ∈ S
such that G = 〈xi, s〉 for all i.

Proof. Write S = {hn : n ∈ M} where M is a subset of N of size k + 1. Let x1, . . . , xk be
arbitrary nontrivial elements of G. Since the distinct conjugates of H have pairwise trivial
intersection, each xi is contained in at most one conjugate of H. Therefore, there exists
n ∈ M such that xi 6∈ Hn for all i. Fix 1 6 i 6 k and write xi = nihi with ni ∈ N and
hi ∈ Hn. Note that ni 6= 1 since xi 6∈ Hn. We claim that G = 〈xi, hn〉. To see this, first
observe that Hn 6 〈xi, hn〉 since Hn = 〈hn〉. In addition, ni ∈ 〈xi, hn〉 and N = 〈nHn

i 〉 since
Hn acts irreducibly on N . Therefore G = 〈xi, hn〉 and the result follows. �

Corollary 3.3. If G = N :H ∈ S as above, then u(G) = |N | − 1.

Proof. Since u(G) > |N | − 1 by Proposition 3.2, it suffices to show that u(G) 6 |N | − 1.
Seeking a contradiction, suppose that G has uniform spread |N | with respect to an element
s ∈ G. Consider the set {hn : n ∈ N} of |N | nontrivial elements. Since G has uniform
spread |N | with respect to s, it follows that there exists g ∈ G such that G = 〈sg, hn〉 for all
n ∈ N . Therefore,

sg ∈ G \
⋃
n∈N

Hn = N

and thus s ∈ N . However, 〈n, sx〉 6 N < G for all n ∈ N and x ∈ G, which is a contradiction.
Therefore, u(G) 6 |N | − 1 and the proof is complete. �

Corollary 3.4. If G = N :H ∈ S as above, then γu(G) = 2 and P (G, h, 2) = 1− |N |−1.

Proof. Both claims follow from the special case of Proposition 3.2 with k = 1, noting that
any two distinct G-conjugates of h form a uniform dominating set. �

Finally, we determine the conjugacy classes that witness the properties established above.
This completes the proof of Theorem 1.

Proposition 3.5. If G = N :H ∈ S as above, then the following are equivalent:

(i) sG witnesses u(G) > 1.

(ii) sG witnesses γu(G) = 2.
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(iii) s generates a complement of N .

In particular, P2(G) = 1− |N |−1.

Proof. Proposition 3.2 proves that (iii) implies (ii), and evidently (ii) implies (i). We will
prove that (i) implies (iii). Suppose that u(G) > 1 with respect to sG. Then for 1 6= n ∈ N ,
there exists g ∈ G such that G = 〈n, sg〉. In particular, G/N = 〈Nn,Nsg〉 = 〈Nsg〉. Since
Nsg generates G/N , the element sg generates a complement of N . �

Remark 3.6. It follows from the proofs of Proposition 3.2 and 3.5 that two elements of G
form a total dominating set if and only if they generate distinct complements of N .

4. Symmetric groups

In this section, we will focus on symmetric groups and our main aim is to prove Theorem 2;
alternating groups will be handled in Section 5.

The spread of symmetric groups has been the subject of many papers, spanning several
decades. In 1939, Piccard [63] proved that if n > 3, then Sn has positive spread if and only if
n 6= 4. In addition, she showed that the alternating group An has positive spread for n > 4.
Building on these results, the spread and uniform spread of symmetric and alternating groups
were studied by Binder in a series of papers [5, 6, 7, 8] in the late 1960s. In particular, he
shows that

s(Sn) =

 0 if n = 4
2 if n 6= 4 is even
3 if n is odd

(7)

for n > 3 (see [5, 6]). Here Binder uses the term k-fold coherent to describe a group G with
s(G) > k, and he refers to a total dominating set as a complete set of complements (the term
spread was first introduced by Brenner and Wiegold in [10]). Binder studies the uniform
spread of symmetric groups in [7], proving that u(Sn) > 1 for n 6∈ {4, 6}. Note that the two
excluded cases are genuine exceptions. Indeed, s(S4) = u(S4) = 0 since S4 has a non-cyclic
proper quotient, and one can check that u(S6) = 0 (see [25, Theorem 2], for example).

As a consequence of Binder’s work, it follows that u(Sn) ∈ {1, 2} if n > 8 is even, and
u(Sn) ∈ {1, 2, 3} if n is odd. Our first aim is to determine the exact uniform spread of Sn
for all n; the main results are Theorems 4.3 and 4.11. Along the way, we will also prove (7).
With this goal in mind, the following preliminary result will be useful.

Lemma 4.1. Let G = Sn with n > 9, let s = (1, 2, . . . , n) ∈ G and let i, j, k, l ∈ [n] be
distinct numbers.

(i) G = 〈(i, j), s〉 if and only if j − i and n are coprime.

(ii) 〈(i, j, k), s〉 > An if and only if j − i and k − j are coprime.

(iii) 〈(i, j)(k, l), s〉 > An if j − i and n are coprime and i, j, k, l 6 n/2.

Proof. Let x be (i, j), (i, j, k) and (i, j)(k, l) in parts (i), (ii) and (iii), respectively. In
all three cases, it suffices to show that 〈x, s〉 acts primitively on [n] since any primitive
permutation group of degree n > 9 and minimal degree at most 4 must contain An (see [35,
Example 3.3.1]). Cases (i) and (ii) are straightforward, so let us consider (iii). Let Π be a
nontrivial partition of [n] stabilised by s. Then each part of Π is a congruence class modulo
a, where 1 < a < n and a divides n. If x also stabilises Π, then either each cycle of x is
contained in a part of Π, or a = n/2 and either {i, k} and {j, l} are parts of Π, or {i, l} and
{j, k} are parts of Π. The first of these possibilities is excluded by the condition that j − i
and n are coprime, and the second is ruled out by the condition i, j, k, l 6 n/2 since each
part of Π contains a number greater than n/2. The result follows. �

Remark 4.2. By Lemma 4.1(i), if z ∈ Sn is an n-cycle then Sn = 〈z, (i, iz)〉 for each i ∈ [n].



14 TIMOTHY C. BURNESS AND SCOTT HARPER

Finally, we will refer to the shape of a permutation x ∈ Sn to mean the list of lengths of
the disjoint cycles comprising x. For example, (1, 2)(3, 4) ∈ S7 has shape [22, 13].

4.1. Uniform spread for odd degrees. We will first determine the uniform spread of
odd-degree symmetric groups, which is significantly easier than the even-degree case. We
will also compute the spread of these groups.

Theorem 4.3. Let G = Sn with n > 5 odd. Then u(G) = 2 and s(G) = 3.

Proof. The case n = 5 can be handled using Magma, so let us assume n > 7. We begin by
establishing lower bounds. Write n = 2m + 1 and let C be the class of elements of shape
[m,m+ 1]. Let x1, x2 and x3 be nontrivial elements of G and assume that

{x1, x2, x3} 6= {(1, 2), (2, 3), (1, 3)}g

for all g ∈ G. Therefore, we may fix two disjoint subsets {a1, a2, a3}, {b1, b2, b3} of {1, 2, . . . , n}
such that aixi = bi for each i. Choose z ∈ C so that a1, a2, a3 are contained in the m-cycle
of z, and b1, b2, b3 are contained in the (m + 1)-cycle. Clearly, z is contained in a unique
maximal intransitive subgroup H. Since (m,m + 1) = 1, z is not contained in a transitive
imprimitive subgroup. In addition, since z is odd and zm+1 is an m-cycle, a theorem of
Marggraf (see [73, Theorem 13.5]) implies that z is not contained in a primitive maximal
subgroup. Therefore, M(G, z) = {H} with H = Sm × Sm+1. However, by construction
〈xi, z〉 is transitive for each i, so G = 〈x1, z〉 = 〈x2, z〉 = 〈x3, z〉.

In particular, by setting x3 = x2 in the above paragraph, we have shown that u(G) > 2
with respect to the class C. Moreover, to show that s(G) > 3, it suffices to prove that
there exists an element w ∈ G such that G = 〈(1, 2), w〉 = 〈(2, 3), w〉 = 〈(1, 3), w〉. By
Lemma 4.1(i), we can take w = (1, 2, . . . , n), hence s(G) > 3.

Let us now turn to upper bounds. Let s ∈ G be such that

G = 〈(1, 2), s〉 = 〈(1, 3), s〉 = 〈(2, 3), s〉.
Suppose s stabilises a k-element subset A of [n] with k < n, and let B be the complement of
A. Since G = 〈(1, 2), s〉, we may assume, without loss of generality, 1 ∈ A and 2 ∈ B. Since
G = 〈(1, 3), s〉 and 1 ∈ A we must have 3 ∈ B. However, this gives 〈(2, 3), s〉 6 G{B} < G,
which is a contradiction. Therefore, s is an n-cycle.

Let us draw two conclusions from this observation. First, suppose that u(G) > 3 is
witnessed by a class sG. We have just demonstrated that s is an n-cycle. However, n is
odd, so s ∈ An and thus 〈(1, 2, 3), sg〉 6 An < G for all g ∈ G, which is a contradiction.
Therefore, u(G) 6 2 and thus u(G) = 2. Second, suppose that s(G) > 4. Then there exists
t ∈ G such that G = 〈(1, 2), t〉 = 〈(2, 3), t〉 = 〈(1, 3), t〉 = 〈(1, 2, 3), t〉. As before, t must be
an n-cycle and once again we reach a contradiction since 〈(1, 2, 3), t〉 6 An < G. Therefore,
s(G) 6 3 and the proof is complete. �

4.2. Uniform spread for even degrees. Now let us turn to the uniform spread of sym-
metric groups of even degree. Our main aim is to prove the following result.

Theorem 4.4. Let G = Sn with n > 8 even. Then u(G) > 2.

Our proof of Theorem 4.4 relies on the probabilistic method described in Section 2.1 and
it is based on the arguments in [45, Section 7] and [13, Section 6]. In addition, we use some
of the ideas in Binder’s proof of the weaker bound u(G) > 1 in [7].

Our first priority is to establish some fixed point ratio estimates for the action of G = Sn
on partitions. For a divisor l of n with 1 < l < n, let Πl be the set of partitions of [n]
into l parts of equal size. Then G has a natural action on Πl and for each x ∈ G we write
Fixl(x) for the set of partitions in Πl stabilised by x. Whenever we refer to partitions we
mean partitions whose parts have equal size.
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We will establish the following bounds, which may be of independent interest (note that
in both lemmas, there are no conditions on the parity of n).

Lemma 4.5. Let G = Sn with n > 8 and assume that x ∈ G has shape [pk, 1n−pk] where p
is an odd prime and k > 1. Then

fpr(x,Πl) <

{
1/l2 if (p, k) = (3, 1) or l > n/6
1/l3 otherwise

Lemma 4.6. Let G = Sn with n > 14 and assume that x ∈ G has shape [2k, 1n−2k] where
k > 1. Then

fpr(x,Πl) <



1/l if k = 1
6/n2 if k = 2 and l = n/2
1/l2 if k = 2 and 2 < l < n/2
33/128 if k = 2 and l = 2
1/l2 if k > 3 and l > n/6
1/l3 if k > 3 and l 6 n/6

Remark 4.7. Let us comment on Lemmas 4.5 and 4.6.

(a) In [13, Proposition 6.7], similar upper bounds on fpr(x,Πl) are obtained when n is
odd and x ∈ An has prime order. Therefore, we can view Lemmas 4.5 and 4.6 as an
extension of this result to all n and all x ∈ Sn of prime order.

(b) When n is small, it is straightforward to verify the bounds in Lemmas 4.5 and 4.6
with the aid of Magma. Indeed, we will prove these results in this way for n < 30.

We begin by recording some preliminary results (once again, note that there are no con-
ditions on the parity of n in Lemmas 4.8 and 4.9).

Lemma 4.8. Let G = Sn and assume that x ∈ G has shape [pk, 1n−pk], where p is an odd
prime and k > 1.

(i) If l 6 n
3 , then

fpr(x,Πl) 6 fpr((1, 2, 3),Πl).

(ii) If p > 5 and l 6 n
5 , then

fpr(x,Πl) 6 fpr((1, 2, 3, 4, 5),Πl).

(iii) If p = 3, k > 2 and l 6 n
6 , then

fpr(x,Πl) 6 fpr((1, 2, 3)(4, 5, 6),Πl).

Proof. The bound in part (i) is obtained by constructing an injection

f : Fixl(x)→ Fixl((1, 2, 3)),

as in the proof of [13, Proposition 6.7(c1)]. Similarly, we refer the reader to [45, Proposi-
tion 7.4(ii)] for parts (ii) and (iii), which are established in a similar fashion. �

Lemma 4.9. Let G = Sn with n > 30 and let x = (1, 2)(3, 4) · · · (2k−1, 2k) ∈ G with k > 2.

(i) If 3 6 l 6 n
3 , then

fpr(x,Πl) 6 fpr((1, 2)(3, 4),Πl).

(ii) If k > 3 and 3 6 l 6 n
6 , then

fpr(x,Πl) 6 fpr((1, 2)(3, 4)(5, 6),Πl).

In the proof of Lemma 4.9 we will make use of the convenient notation for partitions
introduced by Guralnick and Kantor in [45, Section 7].



16 TIMOTHY C. BURNESS AND SCOTT HARPER

(I)
(1, a, b, ∗ / 2, a′, b′, ∗ / 3, ∗ / 4, ∗ / . . . )
7→ (1, 2, a, ∗ / 3, 4, b, ∗ / a′, ∗ / b′, ∗ / . . . )

(II)
(1, 2, a, ∗ / 3, b, ∗ / 4, b′, ∗ / . . . )
7→ (1, 2, b, ∗ / 3, 4, ∗ / a, b′, ∗ / . . . )

(III)


(3, 4, a, ∗ / 1, b, ∗ / 2, b′, ∗ / . . . )
7→ (3, 4, b, ∗ / 1, 2, ∗ / a, b′, ∗ / . . . )

if n
l > 4

(3, 4, a / 1, b, c / 2, b′, c′ / d, ∗ / . . . )
7→ (3, 4, c′ / 1, 2, d / a, b, c / b′, ∗ / . . . )

if n
l = 3

(IV)
(1, 3, ∗ / 2, 4, ∗ / . . . )
7→ (1, 2, ∗ / 3, 4, ∗ / . . . )

(V)
(1, 4, a, ∗ / 2, 3, a′, ∗ / b, c, d, ∗ / . . . ) where b′ 6∈ {c, d}
7→ (1, 2, a, ∗ / 3, 4, b, ∗ / a′, c, d, ∗ / . . . )

Table 1. The map f in the proof of Lemma 4.9(i)

Notation. When defining a map f between subsets of Πl, for a partition Π we will specify
the image f(Π) by giving some of the elements of {1, 2, . . . , n}, separating parts by / and
assuming that the unspecified points, denoted by ∗, are in the same parts of f(Π) as they
are in Π. For x = (1, 2)(3, 4) · · · (2k − 1, 2k) ∈ Sn and i ∈ [n] in the support of x, we will
write i′ = i− 1 if i is even and i′ = i+ 1 if i is odd (so (i, i′) is the cycle of x containing i).

Proof of Lemma 4.9. To establish part (i), we proceed as in the proof of [13, Proposi-
tion 6.7(c2)] (note that in [13], it is assumed that k is even and n is odd). The claim is
clear if k = 2, so let us assume k > 3. Define a map

f : Fixl(x)→ Fixl((1, 2)(3, 4))

as follows. Let Π ∈ Fixl(x). If Π ∈ Fixl((1, 2)(3, 4)), then set f(Π) = Π. Otherwise, by
considering the possible types of partitions in Fixl(x) \ Fixl((1, 2)(3, 4)), we define f(Π) as
in Table 1. Note that f(Π) ∈ Fixl((1, 2)(3, 4)) \ Fixl(x) in each case.

In order to establish the desired bound in part (i), it suffices to show that f is injective.
To do this, let Σ be a partition in the image of f and write f(Π) = Σ for some Π ∈ Fixl(x).
We need to show that there is a unique choice for Π. Clearly, if Σ ∈ Fixl(x) then Π = Σ, so
let us assume Σ 6∈ Fixl(x). Note that in every case, {1, 2} is a subset of a part A of Σ, and
{3, 4} is a subset of some other part B.

From the definition of f , we see that there are three separate cases to consider, according
to the number m ∈ {2, 3, 4} of parts of Σ that are not mapped to parts of Σ by x. We will
refer to the type of Π by the label recorded in the first column of Table 1.

First assume m = 4, so Π has type (I) or (III) (with n/l = 3 in the latter case). If no point
in any of these four parts is fixed by x, then Π has type (I). To prove that Π is uniquely
determined in this case, it suffices to show that a and b are uniquely determined (indeed,
these numbers determine a′ and b′ and, together with Σ, these four values determine Π).
Now a is the unique point in A \ {1, 2} which is not mapped by x into B, and similarly b
is the unique point in B \ {3, 4} not mapped into A. Therefore, Π is uniquely determined
by Σ. Now assume Π has type (III) and n/l = 3. Here, d is the unique point in A \ {1, 2}
and c′ is the unique point in B \ {3, 4}, so we have determined c and d. Now a is the unique
point fixed by x in the part of Σ containing c, and b is the remaining point in this part. The
values of a, b, c and d, together with the partition Σ, uniquely determine Π.
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Now assume m = 3, so Π is of type (II), (III) (with n/l > 4) or (V). Necessarily, A and B
are two of the three parts of Σ that are not mapped to parts of Σ by x. Let C be the third
such part. We begin by demonstrating that the type of Π is determined by Σ. First assume
that n/l = 3. If a point of B is mapped by x into C, then Π has type (II), otherwise, Π has
type (V). Now assume that n/l > 4. If a point of A is mapped by x into B, then Π has type
(V). Otherwise, if at least two points of A are mapped into C by x, then Π has type (III);
else Π has type (II).

We now show that Π is determined by Σ when m = 3. First assume that Π has type (II).
The unique point of A not mapped into A by x is b, and the unique point in C \ {b′} not
mapped into B is a; this determines Π. Next assume that n/l > 4 and Π has type (III). The
unique point in B not mapped into B is b, and the unique point in C \ {b′} not mapped into
A is a; this determines Π. Finally, suppose Π has type (V). Now a is the unique point in A
not mapped by x into B, and b is the unique point in B not mapped into A; this determines
Π (since c and d are not moved by f).

Finally, suppose m = 2. Here Π has type (IV) and thus Π is the partition obtained by
interchanging 2 and 3 in Σ. Therefore, Π is uniquely determined in this case.

We have now shown that the map f is injective, which completes the proof of part (i).

Now consider (ii) and note that we may assume k > 4. We define a map

f : Fixl(x)→ Fixl((1, 2)(3, 4)(5, 6))

as follows. Let Π ∈ Fixl(x). If Π ∈ Fixl((1, 2)(3, 4)(5, 6)), then we define f(Π) = Π. Now
assume that Π 6∈ Fixl((1, 2)(3, 4)(5, 6)). For brevity, we will handle multiple possibilities at
once by letting

σ ∈ {1, (1, 3, 5)(2, 4, 6), (1, 5, 3)(2, 6, 4)} (8)

and writing i = iσ for 1 6 i 6 6. With this notation, we define f as in Table 2. Note that
f(Π) ∈ Fixl((1, 2)(3, 4)(5, 6)).

We claim that f is injective. To see this, let Σ = f(Π) be a partition in the image of
f . As before, we need to show that Π is uniquely determined by Σ. We may assume that
Σ 6∈ Fixl(x).

First assume that {1, 2}, {3, 4} and {5, 6} are not subsets of distinct parts of Σ, so Π has
type (IV). Here b is the unique point in the part of Σ containing 1, 2, 3 and 4 which is not
mapped by x into that part. In addition, there is a unique part all of whose points other
than exactly two are mapped into the part containing 5 and 6; a is the unique point other
than b′ in this part not mapped into the part containing 5 and 6. This determines Π.

For the remainder, we may assume that {1, 2}, {3, 4} and {5, 6} are subsets of distinct
parts A, B and C of Σ. Where appropriate, we will write A = Aσ, B = Bσ and C = Cσ
for σ as in (8). There are four cases to consider, according to the number m ∈ {2, 3, 4, 6} of
parts of Σ that are not mapped to parts of Σ by x.

First assume m = 6, so Π has type (I). The unique point in A \ {1, 2} not mapped into B
by x is a, and the unique point in B \ {3, 4} not mapped into A is b. There is a unique part
of Σ all of whose points other than exactly two are mapped into C, and c is the unique such
point other than a′. This determines Π.

Next assume m = 4, so Π has type (II), (VII) or (VIII). If one of A, B or C is fixed by x,
then Π has type (II). In this case, the unique point in B\{3,4} not mapped into C is a, and
the unique point in C \ {5,6} not mapped into B is b; this determines Π. Now assume that
none of the parts A, B and C are fixed by x. Let P be the unique part of Σ other than A,
B or C which is not mapped to a part by x. There are two cases to consider. First suppose
P contains a cycle Z of x, in which case Π has type (VIII) and Z = {b, b′}. If A \ {1,2} and
B\{3,4} are interchanged by x, then b is even; otherwise, b is odd and c is the unique point
in B not mapped into A. In both cases, this uniquely determines Π (since c is not moved by
f when b is even). Now suppose that P does not contain a cycle of x, so Π has type (VII).
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(I)
(1, a, b, ∗ / 2, a′, b′, ∗ / 3, c, ∗ / 4, c′, ∗ /5, ∗ /6, ∗ / . . . )
7→ (1, 2, a, ∗ / 3, 4, b, ∗ / 5, 6, ∗ / c, a′, ∗ / b′, ∗ / c′, ∗ / . . . )

(II)
(1,2, ∗ / 3, a, b, ∗ / 4, a′, b′, ∗ /5, ∗ / 6, ∗ / . . . )
7→ (1,2, ∗ / 3,4, a, ∗ /5,6, b, ∗ / a′, ∗ / b′, ∗ / . . . )

(III)
(1,2, ∗ / 3,4, a, ∗ / 5, b, ∗ / 6, b′, ∗ / . . . )
7→ (1,2, ∗ / 3,4, b, ∗ / 5,6, ∗ / a, b′, ∗ / . . . )

(IV)
(1,2,3,4, a, ∗ / 5, b, ∗ / 6, b′, ∗ / . . . )
7→ (1,2,3,4, b, ∗ / 5,6, ∗ / a, b′, ∗ / . . . )

(V)
(1,2, ∗ / 3,5, ∗ / 4,6, ∗ / . . . )
7→ (1,2, ∗ / 3,4, ∗ / 5,6, ∗ / . . . )

(VI)
(1,2, a, ∗ / 3,6, b, ∗ / 4,5, ∗ / . . . )
7→ (1,2, b, ∗ / 3,4, a, ∗ / 5,6, ∗ / . . . )

(VII)
(1,3, a, ∗ / 2,4, a′, ∗ / 5, b, ∗ / 6, b′, ∗ / . . . )
7→ (1,2, a, ∗ / 3,4, b, ∗ / 5,6, ∗ / a′, b′, ∗ / . . . )

(VIII)

(1,4, a, ∗ / 2,3, a′, ∗ / 5, b, c, ∗ / 6, b′, c′, ∗ / . . . )

7→

{
(1,2, a, ∗ / 3,4, a′, ∗ / 5,6, c, ∗ / b, b′, c′, ∗ / . . . ) if b is even

(1,2, a, ∗ / 3,4, c, ∗ / 5,6, a′, ∗ / b, b′, c′, ∗ / . . . ) if b is odd

(IX)
(1, 3, 5, ∗ / 2, 4, 6, c, ∗ / a, b, d, ∗ / . . . )
7→ (1, 2, a, ∗ / 3, 4, b, d, ∗ / 5, 6, c, ∗ / . . . )

(X)
(1, 3, 6, ∗ / 2, 4, 5, c, ∗ / a, b, d, ∗ / . . . )
7→ (3, 4, a, ∗ / 5, 6, b, d, ∗ / 1, 2, c, ∗ / . . . )

(XI)
(1, 4, 5, ∗ / 2, 3, 6, c, ∗ / a, b, d, ∗ / . . . )
7→ (5, 6, a, ∗ / 1, 2, b, d, ∗ / 3, 4, c, ∗ / . . . )

(XII)
(1, 4, 6, a, b, ∗ / 2, 3, 5, a′, b′, ∗ / c, d, e, g, ∗ / . . . )
7→ (1, 2, a, c, d, ∗ / 3, 4, b, e, g, ∗ / 5, 6, a′, b′, ∗ / . . . )

Table 2. The map f in the proof of Lemma 4.9(ii). (In cases (IX)–(XI),
{a, b, d} ∩ {a′, b′, d′} = ∅. In case (XII), if c′ or d′ is in {c, d, e, g, ∗} then
c′ = d, and if e′ or g′ is in {c, d, e, g, ∗} then e′ = g.)

Here, the unique point in A \ {1,2} not mapped into B by x is a, and the unique point in
B \ {3,4} not mapped into A by x is b; this determines Π.

Now suppose m = 3, so Π has type (III), (VI) or (IX)–(XII). First assume one of A, B or
C is fixed by x, so Π has type (III). The unique point in B not mapped back into B is b.
There is a unique part of Σ all of whose points other than exactly two are mapped into C,
and a is the unique such point other than b′. This determines Π.

Now assume none of A,B and C are fixed by x. If all but one point of one of A, B or C is
mapped back into that part, then Π has type (VI). Here the unique point in A not mapped
back into A is b, and the unique point in B \ {3,4} not mapped into C is a; this determines
Π.

To complete the analysis of the case m = 3, we may assume that Π is of type (IX)–(XII).
If all but one point of A \ {1, 2} are mapped into B, then Π has type (IX). The unique point
in A \ {1, 2} not mapped into B is a, the point in C that is mapped into A is c and the
points in B \ {3, 4} not mapped into A are b and d; this determines Π. If all but one point
of B \ {3, 4} are mapped into C, then Π has type (X), and if all but one point of C \ {5, 6}
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are mapped into A, then Π has type (XI); in both cases Π is determined as before. Finally,
suppose Π has type (XII). The point in A mapped into C is a, and the point in B mapped
into C is b. In addition, the two points in A \ {1, 2, a} not mapped into B are c and d, and
the two points in B \ {3, 4, b} not mapped into A are e and g. This determines Π.

Finally, if m = 2 then Π has type (V) and we can determine Π by interchanging 4 and 5
in Σ.

This proves that f is injective and completes the proof of (ii). �

Lemma 4.10. Let G = Sn with n > 30 even and suppose x ∈ G has shape [pk, 1n−pk], where
p is a prime, k > 1 and (p, k) 6∈ {(2, 1), (2, 2), (2, 3), (3, 2)}. If l = n

2 , then

fpr(x,Πl) <
1

l2
.

Proof. First assume that p is odd. Let Π ∈ Fixl(x). Since n/l = 2 < p, no cycle of x is
contained in a part of Π. Consequently, if k is odd, then Fixl(x) is empty, so we will assume
that k > 2 is even. Then x moves t = pk/2 parts in k/2 orbits of size p and thus l − t parts
of Π are fixed by x. With this in mind, let us compute fpr(x,Πl).

First observe that |Πl| = (2l)!/(l! 2l). To construct an x-stable partition in Πl, we must
first partition the 2l − 2t fixed points of x into l − t parts of size 2. The number of ways
this can be done is (2l − 2t)!/((l − t)! 2l−t). We must then partition the remaining 2t = pk
points into pk/2 parts of size 2, which are permuted by x in k/2 orbits of size p. This
amounts to partitioning the pk/2 parts into k/2 sets of the form {{i1, j1}, . . . , {ip, jp}} where
(i1, . . . , ip) and (j1, . . . , jp) are cycles of x. Therefore, an x-stable partition of these pk
points corresponds to a partition of the cycles of x into pairs, together with a choice of
partition {{i1, jiσ}, . . . , {ip, jpσ}} for each pair {(i1, . . . , ip), (j1, . . . , jp)}, where σ is a power

of (1, 2, . . . , p). There are k!/((k/2)! 2k/2) ways of partitioning the k cycles of x into pairs,

and for each pair there are p choices for σ. Therefore, there are pk/2 ·k!/((k/2)! 2k/2) different
ways to partition the pk points moved by x. In this way, we conclude that

fpr(x,Πl) = pk/2 · k!(
k
2

)
! 2k/2

· (2l − 2t)!

(l − t)! 2l−t
· l! 2l

(2l)!
.

By applying Stirling’s approximation, we calculate

fpr(x,Πl) = pk/2 · k!(
k
2

)
! 2k/2

· (2l − 2t)!

(l − t)! 2l−t
· l! 2l

(2l)!
(9)

6
e3

23/2π3/2
· p

k/2kk+1/2e−k22l−2t+1/2(l − t)2l−2t+1/2e−(2l−2t)ll+1/2e−l2l2k/2+1/2

kk/2+1/2e−k/22k/2(l − t)l−t+1/2e−(l−t)2l−tl2l+1/2e−2l22l+1/2

=
e3

2π3/2
·
( e

2t

)(p−1)k/2
· t
t(l − t)l−t

ll
(10)

which in turn is at most

tt(l − t)l−t

ll
6

55(l − 5)l−5

ll
<

55

153
· 1

l2
<

1

l2

since l = n/2 > 15 and t = pk/2 > 5 (because p > 3 and we are assuming (p, k) 6= (3, 2)).

Now assume that p = 2 and k > 4. In this case, a partition Π ∈ Fixl(x) has i pairs of
parts interchanged by x, and l−2i parts stabilised by x. Moreover, l−k of these l−2i parts
are fixed pointwise. Therefore, by counting as we did above,

fpr(x,Πl) =

bk/2c∑
i=0

k!

(k − 2i)! i! 2i
· 2i
 · (2l − 2k)!

(l − k)! 2l−k
· l! 2l

(2l)!
.
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Observe that
bk/2c∑
i=0

bk/2c!
(k − 2i)!i!

=

bk/2c∑
i=0

(
bk/2c
i

)
(bk/2c − i)!

(k − 2i)!
6
bk/2c∑
i=0

(
bk/2c
i

)
1

(bk/2c − i+ 1)bk/2c−i

which is at most
bk/2c∑
i=0

(
bk/2c
i

)
1

2i
=

(
3

2

)bk/2c
.

Therefore,

fpr(x,Πl) 6

(
3

2

)bk/2c
· k!

bk/2c!
· (2l − 2k)!

(l − k)! 2l−k
· l! 2l

(2l)!

6

(
3

2

)bk/2c
· dk/2e · 2k/2 · k!

dk/2e! 2k/2
· (2l − 2k)!

(l − k)! 2l−k
· l! 2l

(2l)!
.

By repeating the manipulations between (9) and (10) (with p = 2 and t = pk/2 = k) we get

fpr(x,Πl) 6

(
3

2

)bk/2c ⌈k
2

⌉
e3

2π3/2

( e
2k

)k/2 kk(l − k)l−k

ll
6

3e4

8π3/2

(
3e

4k

)k/2−1 kk(l − k)l−k

ll
.

If k > 5, then

fpr(x,Πl) 6
kk(l − k)l−k

ll
6

55(l − 5)l−5

ll
<

55

153

1

l2
<

1

l2
,

and for k = 4 we get

fpr(x,Πl) 6
3e4

8π3/2

3e

16

441111

1513

1

l2
<

1

l2
.

This completes the proof. �

We can now establish the main fixed point ratio bounds.

Proof of Lemma 4.5. Let x ∈ G have shape [pk, 1n−pk], where p is an odd prime and k > 1.
For n < 30 we can verify the desired bound using Magma, so assume that n > 30.

First assume (p, k) = (3, 1). Up to conjugacy, we may assume x = (1, 2, 3). A partition
in Πl is stabilised by x if and only if it has a part containing {1, 2, 3}. By counting the
partitions with this property, we deduce that

fpr(x,Πl) 6
(n− 3)!(

n
l − 3

)
!
((

n
l

)
!
)l−1

(l − 1)!
·
((

n
l

)
!
)l
l!

n!
=

(
n
l

) (
n
l − 1

) (
n
l − 2

)
l

n(n− 1)(n− 2)
<

1

l2
.

A similar calculation shows that fpr(x,Πl) <
1
l4

when (p, k) = (5, 1).

Next assume (p, k) = (3, 2), say x = (1, 2, 3)(4, 5, 6). If l < n/2, then a partition stabilised
by x either has a part containing {1, 2, 3, 4, 5, 6}, or a part containing {1, 2, 3} and another
containing {4, 5, 6}. Therefore,

fpr(x,Πl) 6

(
(n− 6)!(

n
l − 6

)
!
((

n
l

)
!
)l−1

(l − 1)!
+

(n− 6)!((
n
l − 3

)
!
)2 ((n

l

)
!
)l−2

(l − 2)!

)
·
((

n
l

)
!
)l
l!

n!

<
1

l5
+
l − 1

l5
· n(n− 1)(n− 2)

(n− 3)(n− 4)(n− 5)
<

1

l5
+

1.4

l4

and thus fpr(x,Πl) <
1
l3

. Now assume l = n/2, so l > 15. Here we must also consider
the partitions containing three parts for which {1, 2, 3} and {4, 5, 6} are transversals. The
proportion in Πl of such partitions is

3 · (n− 6)!

2l−3 (l − 3)!
· 2l l!

n!
6

3

(2l − 3)(2l − 4)(2l − 5)
6

0.6

l3

and this gives fpr(x,Πl) <
1
l5

+ 1.4
l4

+ 0.6
l3
< 1

l3
.
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Now assume (p, k) 6∈ {(3, 1), (3, 2)}. If l = n/2, then the desired result follows from Lemma
4.10. Similarly, if n/6 < l 6 n/3, then we combine Lemma 4.8(i) with the above calculation
in the case (p, k) = (3, 1). Finally, let us assume l 6 n/6. If p = 3 and k > 3, then we appeal
to Lemma 4.8(iii) and the above calculation for (p, k) = (3, 2). Similarly, if p > 5 then the
desired bound follows via Lemma 4.8(ii) and the case (p, k) = (5, 1) handled above. �

Proof of Lemma 4.6. Set x = (1, 2)(3, 4) · · · (2k − 1, 2k). As in the proof of Lemma 4.5, we
may assume that n > 30. The desired bound is straightforward to verify when k = 1 or 2
(we proceed as in the proof of Lemma 4.5 with (1, 2, 3) and (1, 2, 3)(4, 5, 6), respectively).

Next assume k = 3 and l 6 n/6. The partitions stabilised by x are exactly those which
have a part containing {1, 2, 3, 4, 5, 6}, or a part containing the union of two of {1, 2}, {3, 4},
{5, 6} and another part containing the third, or a part containing {1, 2}, another containing
{3, 4} and a third which contains {5, 6}. Therefore,

fpr(x,Πl) 6

(
(n− 6)!(

n
l − 6

)
!
((

n
l

)
!
)l−1

(l − 1)!
+

3(n− 6)!(
n
l − 2

)
!
(
n
l − 4

)
!
((

n
l

)
!
)l−2

(l − 2)!

+
(n− 6)!((

n
l − 2

)
!
)3 ((n

l

)
!
)l−3

(l − 3)!

)
·
((

n
l

)
!
)l
l!

n!

<
1

l5
+

3(l − 1)

l5
+

(l − 1)(l − 2)

l5
6

1

l3
.

Now assume k = 3 and l = n/2. Here there are three additional types of partition to
consider. In one case, we consider those partitions which contain two parts for which {1, 2}
and {3, 4} are transversals and a third part which is {5, 6}. We calculate that the proportion
of l-part partitions satisfying this condition is equal to

(n− 6)!

2l−3 (l − 3)!
· 2l l!

n!
6

1

(n− 3)(n− 4)(n− 5)
6

1.6

n3
.

The two other cases arise from interchanging the roles of {1, 2}, {3, 4} and {5, 6}, so we
obtain the same proportion and fpr(x,Πl) <

8
n3 + 4.8

n3 <
1
l2

.

To complete the argument, we may assume that either k = 3 and n/6 < l < n/2, or k > 4.
If k > 4 and l = n/2 then Lemma 4.10 gives fpr(x,Πl) <

1
l2

as required, so we may assume
l < n/2. Here Lemma 4.9 and the above bounds imply that

fpr(x,Πl) 6

{
fpr((1, 2)(3, 4)(5, 6),Πl) < 1/l3 if 3 6 l 6 n/6
fpr((1, 2)(3, 4),Πl) < 1/l2 if n/6 < l < n/2.

Therefore, to complete the proof of the lemma, we may assume that l = 2.

First assume k < n/2. If Π ∈ Fixl(x), then each cycle of x must be contained in one of
the two parts of Π, so Fixl(x) ⊆ Fixl((1, 2)(3, 4)(5, 6)) and

fpr(x,Πl) 6 fpr((1, 2)(3, 4)(5, 6),Πl) <
1

l3
.

Finally, suppose k = n/2. If Π ∈ Fixl(x), then either each cycle of x is contained in a part

of Π, or each cycle of x contains a point from each part of Π. Since there are at most 2n/2−1

partitions of each of these types, it follows that

fpr(x,Πl) 6 2 · 2n/2−1 ·
2
((

n
2

)
!
)2

n!
6 2n/2 ·

2 (n2 )n+1 e−ne2

nn+1/2e−n(2π)1/2
<

1

8
=

1

l3
,

noting that n > 30. This completes the proof. �

We are now in a position to prove Theorem 4.4.
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Proof of Theorem 4.4. If n < 30, then the result can be verified computationally with
Magma (see the end of Section 2.1). Now assume n > 30.

Let G = Sn and let s be an n-cycle. Then M(G, s) = I ∪ P, where I consists of exactly
one imprimitive subgroup Sn/l o Sl for each divisor 1 < l < n of n, and P contains primitive

subgroups of the form PΓLd(q) for pairs (q, d) satisfying n = (qd − 1)/(q − 1) (see [52,
Theorem 3]). Moreover, by the proof of [13, Proposition 6.7] we see that P contains at most
(n− 1)/d subgroups of the form PΓLd(q) for each pair (q, d).

Suppose x ∈ G has prime order and let H ∈ M(G, s). First assume H ∈ P, say H =
PΓLd(q) with n = (qd − 1)/(q − 1). Then |H| 6 nlog2 n+1 and

|xG| >
23n/4

(
n
e

)n/4
8
√
πn

,

by [13, Lemma 6.6]. Since |P| 6 1
2(n− 1) log2 n (see [27, Lemma 3.9]), it follows that∑

H∈P
fpr(x,G/H) 6

∑
H∈P

|H|
|xG|

6
1

2
(n− 1) log2 n ·

8nlog2 n+1√πn
23n/4

(
n
e

)n/4 6 nlog2 n+34
√
π

nn/4
(

8
e

)n/4 < 0.01.

Now assume H ∈ I, say H = Sn/l oSl. Note that the action of G on G/H is equivalent to

the action of G on Πl. Therefore, if x 6∈ (1, 2)G ∪ (1, 2)(3, 4)G ∪ (1, 2, 3)G, then Lemmas 4.5
and 4.6 imply that∑

H∈I
fpr(x,G/H) <

∑
l|n

1<l6n
6

1

l3
+

52 + 42 + 32 + 22

n2
<

∞∑
l=2

1

l3
+

54

n2
< 0.21 +

54

302
< 0.27.

Similarly, if x ∈ (1, 2)(3, 4)G ∪ (1, 2, 3)G, then∑
H∈I

fpr(x,G/H) <
33

128
+
∑
l|n

2<l<n
2

1

l2
+

6

n2
<

33

128
+
π2

6
− 5

4
+

6

302
< 0.66.

In order to establish the desired bound u(G) > 2, it suffices to show that if x, y ∈ G have
prime order, then there exists an n-cycle z such that G = 〈x, z〉 = 〈y, z〉. Let P (x, s) be the
probability that x and a randomly chosen conjugate of s do not generate G (see (5)). Then
by Lemma 2.1, it is sufficient to show that

P (x, s) + P (y, s) < 1.

There are three cases to consider, according to the possibilities for x and y.

Case 1. x, y 6∈ (1, 2)G and either x or y is not in (1, 2)(3, 4)G ∪ (1, 2, 3)G.

By applying the bound in (6), together with the above fixed point ratio estimates, we
obtain

P (x, s) +P (y, s) 6
∑

H∈M(G,s)

fpr(x,G/H) +
∑

H∈M(G,s)

fpr(y,G/H) < 0.02 + 0.27 + 0.66 = 0.95

and the result follows.

Case 2. x ∈ (1, 2)G.

Without loss of generality, we may assume that x = (i, j) and

y = (1, 2, . . . , p)(p+ 1, p+ 2, . . . , 2p) · · · ((k − 1)p+ 1, (k − 1)p+ 2, . . . , kp)

for some prime p and integer k > 1. In the proof of [7, Theorem 2], Binder constructs an
n-cycle z such that G = 〈y, z〉. Typically, we will show that there exists g ∈ NG(〈y〉) such
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that G = 〈xg, z〉, whence G = 〈x, zg−1〉 = 〈y, zg−1〉 (in one particular case below, we work
with a different n-cycle to the one given by Binder). Let S ⊆ [n] be the set of points moved
by both x and y. We will consider five cases.

Case 2(a). k = 1.

Set z = (1, 2, . . . , n) and note that G = 〈y, z〉. By conjugating by an element of NG(〈y〉)
if necessary, we may assume that x is (p + 1, p + 2), (p, p + 1) or (1, 2) if |S| = 0, 1 or 2,
respectively. In each case, G = 〈x, z〉 by Lemma 4.1(i) and the result follows.

Case 2(b). k > 2, p > 3 and kp < n.

Let u = 1 if 3 divides n− kp and u = 0 otherwise. Then consider the n-cycle

z = (1, α1, p+ 1, 2p+ 1, . . . , (k − 1)p+ 1, kp, kp− 1, . . . , 3, β1, β2, . . . , βt, 2, γ1, . . . , γu),

where the first ellipsis represents an arithmetic sequence with difference p and the second
ellipsis represents the entire decreasing sequence from kp − 2 to 4, omitting any numbers
that occur earlier in the cycle. By [7, Theorem 2], we have G = 〈y, z〉.

By arguing as in Case 2(a), we may assume that x = (1, α1) if |S| = 1 and x = (kp−1, kp)
or x = (p, p+ 2) if |S| = 2. In both cases, G = 〈x, z〉 (see Remark 4.2). Now assume |S| = 0,
so n− kp > 2. If n− kp > 2 then we may assume that x = (β1, β2) and again G = 〈x, z〉.

Therefore, to complete the analysis of Case 2(b), we may assume that n − kp = 2 and
x = (kp+ 1, kp+ 2). Here we must deviate from the proof of [7, Theorem 2] and we choose
a different n-cycle z. (Indeed, if 3 divides n, then x = (α1, β1) and β1z

3 = α1, so it is
straightforward to see that G 6= 〈x, z〉.) In particular, let

z = (p+ 1, 2p+ 1, . . . , (k − 1)p+ 1, kp, . . . , 2, 1, kp+ 1, kp+ 2)

(adopting the same conventions as above for the ellipses) and observe that

yz = (p+ 1, p, kp+ 1, kp+ 2)(2p, 2p+ 1) · · · ((k − 1)p, (k − 1)p+ 1)

(yz)2 = (p+ 1, kp+ 1)(p, kp+ 2).

First we claim that G = 〈y, z〉. To see this, suppose that 〈y, z〉 stabilises a nontrivial
partition Π of [n] (into parts of equal size). Then (yz)2 stabilises Π. If (yz)2 acts nontrivially
on the set of parts of Π, then each part has size two and two parts of Π are either {p, p+ 1}
and {kp + 1, kp + 2}, or {p, kp + 1} and {p + 1, kp + 2}. However, since z stabilises Π,

the parts of Π must be of the form {a, azn/2} with a ∈ [n]. Since kp + 2 = (kp + 1)z and
p+ 1 = (kp+ 2)z, both of these options are impossible and we have reached a contradiction.
Therefore, each cycle of (yz)2 is contained in a part of Π. Let A be the part of Π containing
p and kp+ 2. Since y fixes kp+ 2, we conclude that y fixes A. In particular, 1, 2, . . . , p ∈ A.
Since z stabilises Π, we know that A = {1zli | 1 6 i 6 n/l} for some divisor 1 < l < n.
But this is a contradiction since 2z = 1 ∈ A and we conclude that 〈y, z〉 does not stabilise
a nontrivial partition of [n]. In particular, 〈y, z〉 is a primitive subgroup of G containing a
double transposition, so G = 〈y, z〉 (see [35, Example 3.3.1], noting that z is odd).

Finally, we observe that G = 〈x, z〉 since x = (kp+ 1, kp+ 2) and (kp+ 1)z = kp+ 2 (see
Remark 4.2).

Case 2(c). k > 2, p > 3 and kp = n.

Here we set
z = (1, 2, p+ 1, . . . , (k − 1)p+ 1, pk, pk + 1, . . . , 3)

and we note that G = 〈y, z〉 by the proof of [7, Theorem 2]. By replacing x by a suitable
NG(〈y〉)-conjugate, we may assume that x = (1, 2) or x = (pk, pk + 1). In both cases, it is
easy to see that G = 〈x, z〉.
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Case 2(d). k > 2, p = 2 and 2k < n.

Here we define

z = (1, α1, . . . , αs, 2, β1, . . . , βt, 3, 5, . . . , 2k − 1, 2k, 2k − 2, . . . , 6, 4),

where t = 0 if n − 2k is even, otherwise s = 0 (there are no additional conditions imposed
on the αi and βj). Again, we have G = 〈y, z〉 by the proof of [7, Theorem 2], and without
loss of generality we may assume that x is one of (2k − 1, 2k), (2k − 2, 2k) or

x =

{
(α1, α2) if n− 2k is even
(β1, β2) if n− 2k is odd

or x =

{
(1, α1) if n− 2k is even
(2, β1) if n− 2k is odd.

In every case, one checks that G = 〈x, z〉.

Case 2(e). k > 2, p = 2 and 2k = n.

Set

z = (1, 3, 2, 4, 5, 7, . . . , 2k − 1, 2k, 2k − 2, . . . , 6)

and note that G = 〈y, z〉 by the proof of [7, Theorem 2]. Without loss of generality, we may
assume that x = (1, 3) or x = (2k − 1, 2k) and in both cases we have G = 〈x, z〉.

Case 3. x, y ∈ (1, 2)(3, 4)G ∪ (1, 2, 3)G.

If x, y ∈ (1, 2, 3)G, then we may assume that x = (1, 2, 3) and depending on the size of
S we may assume that the support of y is one of {2, 3, 4}, {3, 4, 5} and {4, 5, 6}. Moreover,
since we are at liberty to replace y by y−1, we may assume that

y ∈ {(2, 3, 4), (3, 4, 5), (4, 5, 6)}.

Similarly, if x ∈ (1, 2)(3, 4)G and y ∈ (1, 2, 3)G, then we may assume that x = (1, 2)(3, 4) and

y ∈ {(1, 2, 3), (1, 2, 5), (2, 3, 5), (4, 5, 6), (5, 6, 7)}.

Finally, if x, y ∈ (1, 2)(3, 4)G, then we may assume that x = (1, 2)(3, 4) and

y ∈ {(1, 3)(2, 4), (1, 2)(3, 5), (1, 2)(5, 6), (2, 3)(5, 6),

(3, 6)(4, 5), (1, 6)(4, 5), (1, 5)(6, 7), (5, 6)(7, 8)}.

In all three cases, Lemma 4.1 implies that G = 〈x, z〉 = 〈y, z〉 for z = (1, 2, . . . , n), unless

x = (1, 2)(3, 4) and y = (1, 3)(2, 4). In this exceptional case, z = (1, 2, . . . , n)(2,3) has the
desired property.

This completes the proof of Theorem 4.4. �

We can now determine the spread and uniform spread of even-degree symmetric groups.

Theorem 4.11. Let G = Sn with n > 8 even. Then s(G) = u(G) = 2.

Proof. By Theorem 4.4, we have 2 6 u(G) 6 s(G), so it suffices to prove that s(G) 6 2. As
noted in the proof of Proposition 4.3, if

G = 〈(1, 2), s〉 = 〈(2, 3), s〉 = 〈(1, 3), s〉,

then s is an n-cycle. By Lemma 4.1(i), if

G = 〈(1, 2), (1, 2, . . . , n)g〉 = 〈(2, 3), (1, 2, . . . , n)g〉,

then 1g 6≡ 2g (mod 2) and 2g 6≡ 3g (mod 2). This implies that 1g ≡ 3g (mod 2) and thus
G 6= 〈(1, 3), (1, 2, . . . , n)g〉. This shows that s(G) 6 2, as required. �
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4.3. Uniform domination. In order to complete the proof of Theorem 2, it remains to
establish the bounds on the total and uniform domination numbers. We begin by establishing
lower bounds on the total domination numbers (for use in Section 5, it is convenient to include
alternating groups in the following proposition).

Proposition 4.12. Let n > 5 and let p be the smallest prime divisor of n.

(i) γt(Sn) > log2 n.

(ii) γt(An) > logp n.

(iii) γt(An) > 3 if n is composite.

Proof. Let G be Sn or An and let S = {s1, . . . , sc} be a total dominating set for G. Without
loss of generality, assume that s1, . . . , sj are n-cycles and sj+1, . . . , sc are not n-cycles (we
allow j = 0). To begin with, we will prove that γt(G) > logp n. This is clear if n is prime,
so we may assume n is composite.

If 1 6 i 6 j then si stabilises a partition Ci of [n] with parts Ci1, . . . , Cip of size n/p.
Similarly, if j < i 6 c then si stabilises a proper subset Ai of [n]. For j < i 6 c, it will
be convenient to write Ci = (Ci1, Ci2) = (Ai, [n] \ Ai). Set R = [p]j × [2]c−j and define
f : [n] → R as f(x) = (l1, . . . , lc) where x ∈ Cili . For 1 6 i 6 j, let GCi be the stabiliser in
G of the partition Ci (so GCi is isomorphic to (Sn/p o Sp) ∩ G). Similarly, if j < i 6 c then
let G{Ai} be the setwise stabiliser of Ai.

We claim that |R| > n − 1. To see this, suppose that f(x) = f(y) = f(z) for three
distinct points x, y, z ∈ [n]. Then (x, y, z) is contained in GCi for i 6 j and G{Ai} for i > j.
Therefore, G 6= 〈si, (x, y, z)〉 for all 1 6 i 6 c, which is a contradiction since S is a total
dominating set for G. It follows that the preimage under f of any point has size at most
two. In fact, if f(x) = f(y) and f(z) = f(w) for four distinct points x, y, z, w ∈ [n], then
(x, y)(z, w) ∈ G is contained in GCi for i 6 j and in G{Ai} for i > j. As before, this is a
contradiction and we deduce that at most one point in R has a preimage of size two. This
justifies the claim.

Now |R| = pj2c−j 6 pc, so pc > n− 1. Since p divides n, it follows that pc > n and thus
γt(G) > logp n. This establishes part (ii) of the proposition, and also part (i) when n is even.
Therefore, it remains to prove part (iii), together with part (i) when n is odd.

In view of part (ii), in order to prove (iii) we may assume that G = An and n = p2, so
p is odd. Suppose γt(G) = 2, say {s1, s2} is a total dominating set. If s1 and s2 are both
n-cycles, then s1 ∈ H1 and s2 ∈ H2 for stabilisers H1 and H2 of p-part partitions of [n].
But Lemma 2.3 implies that G has a base of size two in its action on the set Πp of p-part
partitions, which is a contradiction (see [50, Remark 5.3]). Therefore, we may assume that
s2 is not an n-cycle, so 2p > |R| > n − 1 = p2 − 1, which is absurd. We conclude that
γt(G) > 3.

Finally, let us assume G = Sn and n is odd. Here we allow n to be prime. As above, if
i > j, then si stabilises a proper subset Ai of [n] and we write (Ci1, Ci2) = (Ai, [n]\Ai). Also
observe that s1, . . . , sj ∈ An, so for each g ∈ An there exists j < i 6 c such that Sn = 〈g, si〉.
In particular, note that j < c.

Define a map f ′ : [n] → [2]c−j as f ′(x) = (lj+1, . . . , lc) where x ∈ Cili . First assume that
j = 0. Suppose that there exist two distinct points x, y ∈ [n] such that f ′(x) = f ′(y).
Then (x, y) ∈ G is contained in G{Ai} for all i, so G 6= 〈si, (x, y)〉 and we have reached a
contradiction. Therefore, f ′ is injective, which implies that 2c > n and γt(G) > log2 n. Now
assume j > 1. The above argument for f implies that the map f ′ has the property that the
preimage of any point has size at most two, and at most one point has a preimage of size
two. Therefore, 2c−j > n− 1 and γt(G) > log2(n− 1) + j > log2 n. �

Corollary 4.13. Let G = Sn with n > 5. Then γu(G) > 3.
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Proof. Since n > 5, Proposition 4.12 implies that γu(G) > γt(G) > dlog2 ne > 3. �

We will now complete the proof of Theorem 2 when n is odd.

Proposition 4.14. Let G = Sn with n = 2m+ 1 and m > 2. Then

log2 n 6 γt(G) 6 γu(G) = b(G,Ω) 6 2 log2 n,

where Ω is the set of m-element subsets of [n].

Proof. By Proposition 4.12, we have

log2 n 6 γt(G) 6 γu(G).

Let s ∈ G be a witness to the bound u(G) > 1. Since s must be an odd permutation,
it follows that s ∈ H = Sk × Sn−k for some 1 6 k 6 m. Now [47, Corollary 2.2] gives
b(G,G/H) > b(G,Ω) and thus γu(G) > b(G,Ω) by Lemma 2.3. Now fix an element s ∈ G
of shape [m,m + 1]. As explained in the proof of Theorem 4.3, we have M(G, s) = {H}
with H = Sm × Sm+1. Therefore, γu(G) 6 b(G,G/H) = b(G,Ω). This proves that γu(G) =
b(G,Ω). Finally, by applying [47, Theorem 4.2], we conclude that

b(G,Ω) 6 logd n
me n ·

⌈
m+ 1

m

⌉
6 2 log2 n,

and the result follows. �

It remains to prove Theorem 2 when n is even.

Proposition 4.15. Let G = Sn with n > 6 even. Then γu(G) 6 3n log2 n.

Proof. Let s = (1, 2, . . . , n) and x ∈ P, where P is the set of elements of prime order in G.
If x 6∈ (1, 2)G, then P (x, s) < 0.67 by the proof of Theorem 4.4 (see p.22). Therefore,∑

x∈P\(1,2)G

P (x, s)2n log2 n < n! · 0.67−n log0.67 n = n!/nn < 1.

Consequently, there exists a subset A ⊆ sG such that |A| 6 2n log2 n and for all x ∈ P\(1, 2)G

there exists z ∈ A with G = 〈x, z〉.
Let 1 6 k < n. If (k, n) = 1, then let

Bk = {(1, 1 + k, 1 + 2k, . . . , 1 + (n− 1)k)},
where addition is carried out modulo n. If (k, n) = d > 1, then write l = n/d− 1 and let

Bk = {bk, ck}
where

bk = (1, 1 + k, 1 + 2k, . . . , 1 + lk, 2, 2 + k, 2 + 2k, . . . , 2 + lk, . . . , d, d+ k, d+ 2k, . . . , d+ lk)

ck = (1 + k, 1 + 2k, . . . , 1 + lk, 1, 2 + k, 2 + 2k, . . . , 2 + lk, 2, . . . , d+ k, d+ 2k, . . . , d+ lk, d).

Set B =
⋃n−1
k=1 Bk and note that |B| 6 2(n− 1). Let x = (i, j) ∈ (1, 2)G with k = j − i > 0.

Then there exists z ∈ Bk such that iz = j, which implies that G = 〈x, z〉.
We conclude that for all x ∈ P, there exists z ∈ A ∪B such that G = 〈x, z〉. Moreover,

|A ∪B| 6 2n log2 n+ 2(n− 1) 6 3n log2 n

and the proof of the proposition is complete. �

Remark 4.16. By combining Propositions 4.12 and 4.15, we deduce that

log2 n 6 γu(Sn) 6 3n log2 n

when n is even. It would be interesting to see if it is possible to close the gap between the
lower and upper bounds on γu(Sn) in this case.
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5. Alternating groups

In this section we prove Theorem 3. We start by recording the spread and uniform spread
of even-degree alternating groups, which were determined by Brenner and Wiegold in [10,
(3.01)–(3.05)]. If n > 4 is even, then

s(An) = u(An) =

{
2 if n = 6
4 otherwise

The situation for odd-degree alternating groups is more complicated. With the aid of
Magma, one can check that

s(A5) = u(A5) = 2, s(A7) = u(A7) = 3.

Now assume G = An with n > 9 odd. By [13, Proposition 6.7], we have u(G) > 3 and
by making a minor modification to the proof of this result, we can establish the following
slightly stronger bound.

Proposition 5.1. Let G = An with n > 9 odd. Then u(G) > 4.

Proof. If n 6 29, then the result can be verified computationally (see [13, Table 6]). Now
assume n > 31 and let s ∈ G be an n-cycle. As in the proof of [13, Proposition 6.7], we have

M(G, s) = I ∪ P1 ∪ P2,

where I consists of exactly one imprimitive subgroup (Sn/l o Sl) ∩ G for each divisor l of n
with 1 < l < n, P1 contains at most (n − 1)/d subgroups isomorphic to PΓLd(q) ∩ G for
each pair (q, d) with n = (qd − 1)/(q − 1), and P2 = {NG(〈s〉)} if n is prime (otherwise P2

is empty).

Suppose x ∈ G has prime order. As in the proof of [13, Proposition 6.7], we have∑
H∈P1

fpr(x,G/H) 6
nlog2 n+34

√
π

nn/4
(

8
e

)n/4 < 10−6

∑
H∈P2

fpr(x,G/H) 6 2

(
4

n+ 1

)(n−3)/2

< 10−8.

The action of G on the set of cosets of H = (Sn/l o Sl) ∩G is equivalent to the action on Πl,
so by applying Lemmas 4.5 and 4.6, noting that x is even and 2 < l < n

2 since n is odd, we

see that fpr(x,Πl) <
1
l2

. Therefore,

∑
H∈I

fpr(x,G/H) 6
∑
l|n

1<l<n

1

l2
<

∞∑
m=1

1

(2m+ 1)2
=
π2

8
− 1

and thus ∑
H∈M(G,s)

fpr(x,G/H) <
π2

8
− 1 + 10−6 + 10−8 <

1

4
.

By applying Corollary 2.2, we conclude that u(G) > 4. �

Remark 5.2. As noted in Remark 3(c), the uniform spread of odd-degree alternating groups
can be arbitrarily large. Indeed, [46, Theorem 1.1] states that if (ni) is a sequence of natural
numbers tending to infinity, then u(Ani) tends to infinity if and only if the least prime divisor
of ni tends to infinity (see Theorem (?).(ii) and (3)).

We now turn to uniform domination.
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Proposition 5.3. Let G = An with n > 5 and let p be the smallest prime divisor of n. Then

logp n 6 γt(G) 6 γu(G) 6 c log2 n

where c = 2 if n is even and c = 77 if n is odd.

Proof. This is a combination of Proposition 4.12(ii) and [27, Theorem 2]. �

Remark 5.4. Let us consider the upper bound in Proposition 5.3. Let G = An, where
n = 2m > 8 is even, and let k be the greatest odd integer strictly less than m. For
1 < ` < n, let Σ` be the set of `-element subsets of [n]. To establish the upper bound on
γu(G) in the proposition, we show that if s ∈ G has shape [k, n − k] then M(G, s) = {H}
with H = (Sk×Sn−k)∩G and thus γu(G) 6 b(G,Σk). This is very similar to Proposition 4.14
for odd-degree symmetric groups, where we showed that γu(S2m+1) = b(S2m+1,Ω) for the
set Ω of m-element subsets of [2m+ 1]. Therefore, it is natural to ask if equality holds, that
is, do we have γu(G) = b(G,Σk)?

Let S ⊆ sG be a TDS for G and note that s acts intransitively on [n] since n is even. By
[47, Corollary 2.2(2)], b(G,Σi) > b(G,Σj) if i 6 j 6 m. Therefore, we can conclude that
|S| > b(G,Σk) unless s has shape [m,m], or m is odd and s has shape [m + 1,m − 1]. In
particular, if γu(G) < b(G,Σk), then this has to be witnessed by a conjugacy class sG of
elements of shape [m,m], or of shape [m+1,m−1] if m is odd. In these two cases, s could be
contained in several imprimitive maximal overgroups and since the base size b(G,Σk) is not
known exactly, it is difficult to use our probabilistic method to determine if sG does indeed
witness γu(G) < b(G,Σk).

Proposition 5.5. Let G = An with n > 5.

(i) γu(G) = 2 if and only if n > 13 is a prime number.

(ii) If γu(G) = 2, then P (G, s, 2) > 0 if and only if s is an n-cycle.

Proof. If γu(G) = 2, then Proposition 4.12(iii) implies that n is prime and thus part (i)
follows via [27, Proposition 3.8 and Remark 3.12]. For (ii), if s ∈ G is not an n-cycle,
then s is contained in a maximal intransitive subgroup H and thus Lemma 2.3 implies that
P (G, s, 2) = 0 since b(G,G/H) > 3. �

Remark 5.6. The proof of Proposition 5.5 shows that if G = An with n > 13, then
γt(G) = 2 if and only if n is prime. Moreover, the only possible witnesses are two (not
necessarily conjugate) n-cycles.

In order to complete the proof of Theorem 3, it remains to consider the probability P2(An)
when n > 13 is a prime. Set

H =
{
n ∈ N : n = qd−1

q−1 for some prime power q and integer d > 2
}

and observe that 3, 5, 7, 13, 17, 31, 73, 127, 257, 307 are the ten smallest primes in H.

Proposition 5.7. Let G = An, where n > 13 is a prime with n 6∈ H. Then

P2(G) > 1− n−2.

Proof. By Proposition 5.5, we have P2(G) = P (G, s, 2) where s ∈ G is an n-cycle. To begin
with, let us assume n 6= 23. Then M(G, s) = {H}, where H = NG(〈s〉) = Cn:C(n−1)/2, and
we have P2(G) = 1−Q(G, s, 2). Moreover, Lemma 2.5 gives

Q(G, s, 2) 6
k∑
i=1

|xGi | · fpr(xi, G/H)2 = Q̂(G, s, 2),

where the xi represent the conjugacy classes in G of elements of prime order.
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Let x ∈ H be an element of prime order t. If t = n then |xG ∩H| = (n − 1)/2 = a and
|xG| = 1

2(n − 1)! = b. Now assume t divides (n − 1)/2. Here x has a unique fixed point on
[n], so

|xG ∩H| = it(H) = n(t− 1) = at, |xG| = n!

((n− 1)/t)!t(n−1)/t
= bt

and thus

Q̂(G, s, 2) = a2/b+
∑
t∈π

a2
t /bt,

where π is the set of prime divisors of (n− 1)/2. Now |π| 6 log2((n− 1)/2) and one checks
that a2

t /bt 6 a
2
2/b2 for all t ∈ π, so

P2(G) > 1− n− 1

2(n− 2)!
− log2((n− 1)/2) · n

2((n− 1)/2)!2(n−1)/2

n!

and the desired bound follows.

Finally, let us assume that n = 23. HereM(G, s) = {H,K} with H ∼= K ∼= M23 and with
the aid of Magma we calculate that

Q̂(G, s, 2) = 4
k∑
i=1

|xGi | · fpr(xi, G/H)2 =
27704

178562475
.

The result follows. �

Remark 5.8. In the previous proposition, it is easy to compute P2(G) precisely when
m = (n − 1)/2 is a prime and n 6= 23. As before, let s ∈ G be an n-cycle and write
M(G, s) = {H}. Let r be the number of regular orbits of H on G/H. By arguing as in the
proof of [24, Proposition 3.2] we calculate that

r =
|G : H| − n(m2 −m− 1)− 1

|H|
and thus

P2(G) = 1− n3 − 4n2 − n+ 4

4(n− 2)!

by Lemma 2.4.

Proposition 5.9. Let G = An, where n > 13 is a prime. Then

P2(G) > 1− n−1.

Proof. In view of the previous proposition, we may assume n ∈ H. Let s ∈ G be an n-cycle,
so P2(G) = P (G, s, 2). If n > 73, then by arguing as in the proof of [27, Proposition 3.8], we
obtain

P2(G) > 1−
(

2 log2 n

n− 1

)2

and the result follows if n > 257. For n ∈ {73, 127, 257}, the desired bound is easily obtained
by inspecting the proof of [27, Proposition 3.8]. For example, the proof gives

P2(G) > 1−
(
`

C

)2

,

where ` = 1 + (n − 1)
∑

(q,d)
1
d and C = n(n − 1)/2 (the sum in the expression for ` is over

all prime powers q and integers d > 2 with n = (qd − 1)/(q − 1)). For n = 73 we have
n = (83 − 1)/(8− 1) only, so ` = 25, C = 2628 and the desired bound quickly follows. The
cases when n is 127 or 257 are just as straightforward.
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Finally, if n = 17 then M(G, s) = {H,K}, where H and K are non-conjugate maximal
subgroups isomorphic to PΓL2(16). Here we calculate

Q̂(G, s, 2) =
335848

42567525
<

1

17

and the result follows. Similarly, if n = 31 then Q̂(G, s, 2) < 1
31 . �

Remark 5.10. The case G = A13 requires special attention. As above, we have P2(G) =
P (G, s, 2) with s ∈ G a 13-cycle and we observe that

M(G, s) = {H,K1,K2, L1, L2},
where H = NG(〈s〉) = C13:C6 and each of the remaining subgroups are isomorphic to
PΓL3(3), with K1,K2 conjugate, and L1, L2 conjugate. One checks that

Q̂(G, s, 2) =
4230997

1108800
> 1,

so the probabilistic approach does not yield P2(G) > 0. However, as noted in the proof of
[27, Proposition 3.8], by randomly choosing conjugates of a fixed 13-cycle, we can identify a
TDS for G. For example,

{(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13), (1, 2, 3, 4, 5, 6, 8, 9, 12, 7, 11, 10, 13)}
has the desired property (see [28, Section 1.2.4] for further details). This shows that P2(G) >
0, but further work is needed to compute this probability precisely. To do this, we use the
fact that {s, sg} is a TDS for G if and only if A ∩ B = 1 for all A ∈ M(G, s) and all
B ∈M(G, sg) (see [27, Lemma 2.1]). In this way, we can use Magma to show that

P2(G) =
|{sg ∈ sG : {s, sg} is a TDS for G}|

|sG|
=

4979

46200

and we conclude that A13 is a genuine exception to the bound in Proposition 5.9.

6. Exceptional groups of Lie type

In this section, we assume G is a finite simple exceptional group of Lie type over Fq.
Our aim is to prove Theorem 4. Note that Theorem (?). (see the introduction) implies that
u(G) > 3, and u(G)→∞ as q →∞.

Remark 6.1. By applying Corollary 2.2, it is possible to determine explicit lower bounds on
u(G) in terms of q. For example, suppose G = 2B2(q) with q = 22m+1 and m > 1. Let s ∈ G
be an element of order q−

√
2q+ 1. By inspecting [69, Theorem 9], which lists the maximal

subgroups of G, one can show that M(G, s) = {H} with H = NG(〈s〉) = Cq−
√

2q+1:C4 (see

the proof of Lemma 6.7). Let x ∈ G be an element of prime order r. Since G contains a
unique conjugacy class of involutions, it follows that

fpr(x,G/H) =
i2(H)

i2(G)
=

q −
√

2q + 1

(q2 + 1)(q − 1)
=

1

(q +
√

2q + 1)(q − 1)

if r = 2. Similarly, if r is odd then we may assume r divides q −
√

2q + 1 (otherwise
fpr(x,G/H) = 0), so |CG(x)| = q −

√
2q + 1 and we deduce that

fpr(x,G/H) 6
r − 1

|xG|
6

(q −
√

2q + 1)(q −
√

2q)

q2(q − 1)(q2 + 1)
<

1

(q +
√

2q + 1)(q − 1)
.

Therefore, Corollary 2.2 implies that

u(G) > (q +
√

2q + 1)(q − 1)− 1.

Let us now turn to the uniform domination number. In [27, Theorem 5.2], we established
the bound γu(G) 6 6 for every finite simple exceptional group G. By applying recent work
of the first author in [23], we can prove a stronger result.
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Theorem 6.2. If G is a finite simple exceptional group of Lie type, then γu(G) 6 5.

Proof. First assume there exists an element s ∈ G with M(G, s) = {H} for some maximal
subgroup H of G. Then Lemma 2.3 implies that γu(G) = b(G,H) and by applying the main
theorem of [23], noting that H is non-parabolic, it follows that γu(G) 6 5.

By arguing as in the proof of [27, Theorem 5.2], it remains to consider the cases

(a) G = F4(q), q = 2a, a > 2; and

(b) G = G2(q), q = 3a, a > 2.

First consider (a). As noted in the proof of [27, Theorem 5.2], there exists an element
s ∈ G with M(G, s) = {H,K} and H ∼= K ∼= 3D4(q).3. It suffices to show that

Q̂(G, s, 5) := 32

k∑
i=1

|xGi | · fpr(xi, G/H)5 < 1, (11)

where x1, . . . , xk are representatives of the conjugacy classes in G of elements of prime order.
Let Ḡ = F4 and H̄ = D4 be the corresponding algebraic groups defined over the algebraic
closure of Fq. Let V26 be one of the 26-dimensional irreducible modules for Ḡ and note that

V26 ↓ H̄ = V (λ1)⊕ V (λ3)⊕ V (λ4)⊕ 02, (12)

where V (λ1) is the natural module for H̄, V (λ3) and V (λ4) are the two spin modules and 0
is the trivial module (see [70, Chapter 12], for example). Let x ∈ H be an element of prime
order r.

First assume r = 2, so x ∈ 3D4(q). There are two classes of involutions in 3D4(q), labelled
A1 and A3

1 in the notation of [66]. As elements of H̄, the involutions in the first class are of
type a2 and those in the second are of type c4 (in the notation of [2]). By considering the
decomposition in (12), we deduce that if x is in the A1 class of 3D4(q), then it has Jordan
form [J6

2 , J
14
1 ] on V26, and similarly [J12

2 , J2
1 ] if it is in the class labelled A3

1. By inspecting
[54, Table 3], we conclude that the involutions in the A1 class of 3D4(q) are in the G-class

labelled A1, and the others are in G-class A1Ã1. The relevant class sizes in G are given

in [59, Table 22.2.4] and we deduce that the contribution to Q̂(G, s, 5) from involutions is
precisely 32(a1b

5
1 + a2b

5
2), where

a1 = (q4 + 1)(q12 − 1), b1 =
1

q6 + q4 + q2 + 1

and

a2 = q4(q4 + q2 + 1)(q8 − 1)(q12 − 1), b2 =
1

q2(q2 + 1)(q8 − 1)
.

Now assume r > 2, so x is semisimple. By arguing as in the proof of [23, Lemma 3.17], we

deduce that the combined contribution to Q̂(G, s, 5) from the elements with CḠ(x)0 = B3T1

or C3T1 is at most

32 · 2q15(q4 + 1)(q12 − 1) ·
(

48(q + 1)

q9(q − 1)4

)5

< q−7.

Similarly, the contribution from regular semisimple elements is less than 32q−33. For all
other semisimple elements, the bound in [23, (17)] gives fpr(x,G/H) < q−11 and it follows
that the remaining contribution is less than 32q50(q−11)5 = 32q−5. In conclusion,

Q̂(G, s, 5) < 32(a1b
5
1 + a2b

5
2) + q−7 + 32q−33 + 32q−5 < 1

and thus γu(G) 6 5.

Finally, let us consider case (b). Here there is an element s ∈ G such that M(G, s) =
{H,K} with H ∼= K ∼= SU3(q).2 and so it suffices to show that (11) holds. Let x ∈ H be an
element of prime order r. Let Ḡ = G2 and H̄ = A2 be the corresponding algebraic groups
over the algebraic closure of Fq.
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First assume r = 3, so x ∈ SU3(q). Let V7 be one of the 7-dimensional irreducible modules
for Ḡ and note that

V7 ↓ H̄ = V3 ⊕ V ∗3 ⊕ 0,

where V3 is the natural module for H̄ (and V ∗3 is its dual). If x ∈ H has Jordan form [J2, J1]
on V3, then the above decomposition implies that [J2

2 , J
3
1 ] is the Jordan form of x on V7.

Similarly, the regular unipotent elements in H have Jordan form [J2
3 , J1]. By inspecting

[54, Table 1], we deduce that x belongs to the G-classes labelled A1 and G2(a1) in the two

respective cases, whence the contribution to Q̂(G, s, 5) from elements of order 3 is precisely
32(a1b

5
1 + a2b

5
2), where

a1 = q6 − 1, b1 =
1

q2 + q + 1
, a2 =

1

2
q2(q2 − 1)(q6 − 1), b2 =

2

q(q3 − 1)
.

Next assume r = 2. Now G contains a3 = q4(q4 + q2 + 1) involutions, which form a single
conjugacy class, and thus

|xG ∩H| = i2(H) =
|GU3(q)|

|GU2(q)||GU1(q)|
+
|SU3(q)|
|SO3(q)|

= q2(q2 − q + 1)(q + 2).

Therefore,

fpr(x,G/H) =
q2(q2 − q + 1)(q + 2)

q4(q4 + q2 + 1)
=

(q2 − q + 1)(q + 2)

q2(q4 + q2 + 1)
= b3

and 32a3b
5
3 is the contribution from involutions. Finally, if r > 5 then the proof of [29,

Lemma 4.31] gives

fpr(x,G/H) <
4(q + 1)2

(q − 1)2
· q−4 6

25

4
q−4

and thus the total contribution to Q̂(G, s, 5) from elements of order at least 5 is less than

32q14 ·
(

25

4
q−4

)5

< 6q−1.

We conclude that

Q̂(G, s, 5) < 32
3∑
i=1

aib
5
i + 6q−1 < 1.

The result follows. �

By [27, Theorem 5.2], we have γu(G) = 2 if G is one of 2B2(q), 2G2(q) (with q > 27) or
E8(q). The following theorem, which is the main result of this section, completely determines
the simple exceptional groups G with γu(G) = 2.

Theorem 6.3. Let G be a finite simple exceptional group of Lie type over Fq. Then γu(G) =
2 if and only if

G ∈ {2B2(q), 2G2(q) (q > 27), 2F4(q) (q > 8), 3D4(q), Eε6(q), E7(q), E8(q)}.

Moreover, if γu(G) = 2 then P2(G) > 1− q−1.

In order to prove Theorem 6.3, we need to record some preliminary results.

Lemma 6.4. Let G be a finite simple group of Lie type and let P be the union of the parabolic
subgroups of G. Then G \ P is the set of regular semisimple elements that are not contained
in a maximal torus of a Levi factor of a parabolic subgroup of G.

Proof. If u ∈ G is a nontrivial unipotent element, then CG(u) is contained in a parabolic
subgroup of G. Therefore, each x ∈ G \ P is a regular semisimple element and the result
follows. �
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Recall that if G is a finite simple exceptional group and H is a maximal subgroup of G,
then b(G,G/H) 6 6 by the main theorem of [29]. The next two lemmas, which may be of
independent interest, show that b(G,G/H) = 2 in two special cases. These results will play
an essential role in the proof of Theorem 6.3 when G = E7(q) or Eε6(q).

Notation. In Lemmas 6.5 and 6.6, we use the notation P (G,H, 2) to denote the probability
that H ∩Hg = 1 for a randomly chosen conjugate Hg. Equivalently, this is the probability
that two randomly chosen points in G/H form a base for G, with respect to the natural
action of G on G/H. In particular, b(G,G/H) = 2 if and only if P (G,H, 2) > 0. Moreover,
if Q(G,H, 2) = 1− P (G,H, 2) denotes the complementary probability, then

Q(G,H, 2) 6
k∑
i=1

|xGi | · fpr(xi, G/H)2 =: Q̂(G,H, 2), (13)

where x1, . . . , xk represent the conjugacy classes of elements of prime order in G (see the
proof of [61, Theorem 1.3], for example).

Lemma 6.5. If G = E7(q) and H = (L2(q3)× 3D4(q)).3 then P (G,H, 2) > 1− q−2.

Proof. It suffices to show that Q̂(G,H, 2) < q−2. Let Ḡ = E7 and H̄ = A3
1D4.S3 be the

corresponding ambient algebraic groups over the algebraic closure of Fq. Let L(Ḡ) be the
Lie algebra of Ḡ and let V56 be the 56-dimensional irreducible module for Ḡ. Fix a set of
fundamental dominant weights {λ1, λ2, λ3, λ4} for the D4 factor of H̄. It will be useful to
record the restrictions

L(Ḡ) ↓ A3
1D4 = L(A3

1D4)⊕ (V2 ⊗ V2 ⊗ 0⊗ V (λ4))⊕ (V2 ⊗ 0⊗ V2 ⊗ V (λ3))

⊕ (0⊗ V2 ⊗ V2 ⊗ V (λ1))
(14)

V56 ↓ A3
1D4 = (V2 ⊗ V2 ⊗ V2 ⊗ 0)⊕ (V2 ⊗ 0⊗ 0⊗ V (λ1))⊕ (0⊗ V2 ⊗ 0⊗ V (λ3))

⊕ (0⊗ 0⊗ V2 ⊗ V (λ4)).
(15)

(see [70, Chapter 12], for example). Here V2 and 0 denote the natural and trivial modules
for A1, respectively, and we write V (λi), with i = 1, 3, 4, for the 8-dimensional irreducible
module for D4 with highest weight λi (so V (λ1) is the natural module, and V (λ3), V (λ4)
are the two spin modules).

Set H = H0.〈τ〉 = H0.3, where H0 = L2(q3)× 3D4(q) and τ induces a field automorphism
ϕ on L2(q3) and a graph automorphism on 3D4(q). If we view H0 as a subgroup of the
connected component H̄0, then we may assume that

H0 = {(x, xϕ, xϕ2
, y) : x ∈ L2(q3), y ∈ 3D4(q)} < H̄0.

In particular, note that τ cyclically permutes the three A1 factors of H̄0. Write

Q̂(G,H, 2) = α+ β, (16)

where α and β denote the contributions from unipotent and semisimple elements, respec-
tively. We refer the reader to [59, Table 22.2.2] and [40, Section 3] for detailed information
on the unipotent and semisimple conjugacy classes in G (including centralizer orders). In
particular, we will adopt the notation from [59] for labelling the unipotent classes in Ḡ, which
is consistent with the standard Bala-Carter notation.

Let x ∈ H be an element of prime order r and write q = pf with p a prime. First assume
r = p = 2. If x is a long root element, then [56, Proposition 1.13(iii)] implies that xG ∩H is
the set of long root elements in the 3D4(q) factor of H0, so |xG ∩H| < q10, |xG| > 1

2q
34 and

the contribution to α is less than 2q−14. In the remaining cases, we have |xG| > 1
2q

52 and
we note that

i2(H) = (i2(L2(q3)) + 1)(i2(3D4(q)) + 1)− 1 < q21,

so the contribution to α from these elements is less than 1
2q

52(2q−31)2 = 2q−10. Therefore,

α < 2q−14 + 2q−10 when p = 2.
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Next assume r = p > 3. If x ∈ H \H0 then r = 3 and x belongs to one of the G-classes
labelled A2

2 or A2
2A1 (see the proof of [26, Proposition 5.12]). Therefore, |xG| > 1

2q
84 and

thus the contribution to α is less than 1
2q

84(2q−45)2 = 2q−6 since |H| < q39. Now assume

xG ∩H ⊆ H0. If dimxḠ > 64 then |xG| > 1
2q

64 and thus the contribution to α from these

elements is less than 1
2q

64(2q−34)2 = 2q−4 since H0 contains fewer than q6 ·q24 = q30 elements

of order p. Now assume dimxḠ < 64, in which case x belongs to one of the Ḡ-classes labelled
A1, A2

1 or (A3
1)(1). As above, the contribution from long root elements is less than 2q−14.

More generally, we can use (15) to calculate the Jordan form of each unipotent element
x ∈ H0 on V56, which in turn allows us to determine the Ḡ-class of x by inspecting [54, Table
7].

For example, suppose x = yz ∈ H0, where y ∈ L2(q3) is a long root element and z ∈ 3D4(q)
is in the class labelled A′2 in [66]. In terms of (15), y has Jordan form [J2] on V2 and z has
Jordan form [J2

3 , J
2
1 ] on each V (λi). Therefore, x has Jordan form

(J2 ⊗ J2 ⊗ J2)⊕ (J2 ⊗ [J2
3 , J

2
1 ])3 =

{
[J7

4 , J
14
2 ] if p > 5

[J14
3 , J7

2 ] if p = 3

on V56 and by inspecting [54, Table 7] we conclude that x is in the Ḡ-class A2A
3
1.

In this way, we see that there are no unipotent elements in H0 that belong to the Ḡ-class
A2

1. Similarly, the elements in the class (A3
1)(1) correspond to long root elements in the L2(q3)

factor. Therefore, if x is in (A3
1)(1) then |xG| > 1

2q
54, |xG ∩H| < q6 and so the contribution

from these elements is less than 1
2q

54(2q−48)2 = 2q−42. To summarise, we have

α < 2q−6 + 2q−4 + 2q−14 + 2q−42

for all q > 2.

Now let us turn to β. If r = 2 then |xG| > 1
2(q + 1)−1q55 and we calculate that

i2(H) = (i2(L2(q3)) + 1)(i2(3D4(q)) + 1)− 1 < (q6 + 1)(q8(q8 + q4 + 1) + 1) < q23,

which means that the contribution to β from involutions is less than 4q−8. Now assume

r > 3. If dimxḠ > 84 then |xG| > 1
2(q + 1)−1q85 and since |H| < q39 we see that the

contribution to β from these elements is less than 4q−6.

Finally, let us assume r > 3 and dimxḠ < 84, so CḠ(x)0 = D6T1 or E6T1. Set V = L(Ḡ)
and note that dimCV (x) = dimCḠ(x) (see [32, Section 1.14]). If x ∈ H \H0 then r = 3 and
by considering (14) we calculate that dimCV (x) = 35 + a, where a = dimCL(D4)(x). Since

a 6 28 we have dimCV (x) 6 63 and thus CḠ(x)0 6∈ {D6T1, E6T1}. For the remainder, we
may assume that xG ∩H ⊆ H0. Write x = yz ∈ H0, where y ∈ L2(q3) and z ∈ 3D4(q).

We claim that dimCV (x) < 67 if y 6= 1 and z 6= 1. To see this, let d denote the codimension
of the largest eigenspace of z on the natural D4-module V (λ1). Since z ∈ 3D4(q), it follows
that d is also the codimension of the largest eigenspace of z on both V (λ3) and V (λ4). In
addition, d > 4 and dimCD4(z) 6 10 (see the proof of [20, Lemma 2.12], for example). Set

W1 = L(A3
1D4), W2 = V2 ⊗ V2 ⊗ 0⊗ V (λ4).

Then dimCW1(x) 6 1 + 1 + 1 + 10 = 13 and by applying [60, Lemma 3.7] we deduce
that dimCW2(x) 6 32 − 4d 6 16. Similarly, the 1-eigenspace of x on each of the other two
summands in the decomposition (14) has dimension at most 16, so dimCV (x) 6 13+48 = 61
and the claim follows. In a similar fashion, one checks that dimCV (x) < 79 if y = 1 and z 6= 1.
It follows that H contains fewer than q9 semisimple elements x with CḠ(x) = E6T1, and since
|xG| > 1

2(q + 1)−1q55 we deduce that their contribution to β is less than q−34. Similarly,

if CḠ(x) = D6T1 then |xG| > 1
2(q + 1)−1q67 = b and there are fewer than a = q9 + q28

semisimple elements x ∈ H0 of the form x = yz with y = 1 or z = 1, so the contribution
here is less than q−8.
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We conclude that
β < 4q−8 + 4q−6 + q−34 + q−8.

By combining this estimate with the above bound on α, we see that

Q̂(G,H, 2) < 2q−6 + 2q−4 + 2q−14 + 2q−42 + 4q−8 + 4q−6 + q−34 + q−8 < q−2

and the result follows. �

Lemma 6.6. If G = Eε6(q) and H = Lε3(q3).3 then P (G,H, 2) > 1− q−4.

Proof. It suffices to show that Q̂(G,H, 2) < q−4. Let Ḡ = E6 and H̄ = A3
2.S3 be the

corresponding algebraic groups over the algebraic closure of Fq and let V = L(Ḡ) be the Lie
algebra of Ḡ. We have

V ↓ A3
2 = L(A3

2)⊕ (V3 ⊗ V3 ⊗ V3)⊕ (V ∗3 ⊗ V ∗3 ⊗ V ∗3 ), (17)

where V3 denotes the natural module for A2. It will be convenient to set

W1 = L(A3
2), W2 = V3 ⊗ V3 ⊗ V3.

Also set F = Fq3u , where u = 1 if ε = + and u = 2 if ε = −.

Write H = H0.〈ϕ〉 = H0.3, where H0 = Lε3(q3) and ϕ is a field automorphism of order 3.
Without any loss of generality, we may assume that

H0 = {(x, xϕ, xϕ2
) : x ∈ Lε3(q3)} < H̄0,

so ϕ cyclically permutes the three A2 factors of H̄0. In order to estimate α and β, as defined
in (16), we will refer repeatedly to the information on unipotent and semisimple conjugacy
classes in [59, Table 22.2.3] and [40, Section 2], respectively. As in the proof of the previous
lemma, we will use the notation from [59] for labelling unipotent classes.

Write q = pf , with p a prime, and let x ∈ H be an element of prime order r. We begin
by considering α. First assume r = p = 2. Here H0 has a unique class of involutions (with
Jordan form [J2, J1] on V3) and by considering the decomposition in (17) we calculate that x
has Jordan form [J38

2 , J2
1 ] on V . By inspecting [54, Table 6], it follows that x is in the Ḡ-class

A3
1, so |xG| > 1

2q
40, |xG ∩H| = i2(H) = (q3 + ε)(q9− ε) and we deduce that α < 2q−15 when

p = 2.

Now assume r = p > 3. If x ∈ H \H0 then r = 3 and the proof of [26, Proposition 5.13]
implies that x is in one of the Ḡ-classes labelled A2

2 or A2
2A1. Therefore, |xG| > 1

2q
48 = a

and we note that there are fewer than i3(H) < 2q15(q3 + 1) = b such elements in H (see
[57, Proposition 1.3]). It follows that the contribution to α from these elements is less than
a(b/a)2 < q−10. Now assume xG ∩H ⊆ H0, so x ∈ H0. As above, we calculate that the long
root elements x ∈ H0 are contained in the Ḡ-class labelled A3

1. In this case, |xG| > 1
2q

40,

|xG ∩H| < 2q12 and thus the contribution is less than q−14. Similarly, if x ∈ H0 is a regular
unipotent element then it has Jordan form{

[J5, J3]3

[J2
3 , J

2
1 ]3

⊕ (J3 ⊗ J3 ⊗ J3)2 =

{
[J11

5 , J7
3 , J

2
1 ] if p > 5

[J24
3 , J3

2 ] if p = 3

on V . By inspecting [54, Table 6], it follows that x is in the Ḡ-class A2
2A1 if p = 3 and

D4(a1) if p > 5. Therefore |xG| > 1
6q

54 and there are fewer than 2q18 such elements in H, so

the contribution to α is less than q−15. We conclude that

α < q−10 + q−14 + q−15.

To complete the proof, it remains to estimate β. Set D̄ = CḠ(x) and let us first assume

dimxḠ = 54, in which case D̄0 = A3
2, r = 3 and |xG| > 1

6q
54. Since i3(H) < 2q15(q3 + 1)

by [57, Proposition 1.3], it follows that the contribution to β from these elements is less

than 2q−14. Similarly, if dimxḠ > 56 then |xG| > 1
2(q + 1)−1q57 = a, r > 5 and the bound

|H0| < q24 implies that the contribution to β is less than 2q−7.
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For the remainder, we may assume that dimxḠ 6 52 and thus

D̄0 ∈ {D5T1, A5A1, A5T1, D4T2, A4A1T1, A4T2}.
Suppose r = 2. Now H has a unique conjugacy class of involutions and by considering
(17) we calculate that dimCV (x) = 38 and thus D̄0 = A5A1. Therefore, |xG| > 1

2q
40 and

|xG ∩H| = i2(H) = q6(q6 + εq3 + 1), so the contribution to β from involutions is less than
q−15.

Now assume r > 3. If x ∈ H \H0 then r = 3 and x acts as a field automorphism on H0,
inducing a cyclic permutation on the three factors of H̄0. It follows that dimCW1(x) = 8
and dimCW2(x) = dimCW ∗

2
(x) = 11, so dimCV (x) = 30 and thus D̄0 = D4T2. Therefore,

|xG| > 1
6(q + 1)−2q50 and there are fewer than i3(H) < 2q15(q3 + 1) such elements in H,

so the contribution to β is less than q−5. For the remainder, we may assume r > 3 and
xG ∩H ⊆ H0. In particular, x ∈ H0.

If x is a regular semisimple element of H0 then dimCW1(x) = 6 and by applying [60,
Lemma 3.7] we deduce that

dimCW2(x) = dimCW ∗
2
(x) 6 9. (18)

Therefore, dimCV (x) 6 24 and thus dimxḠ > 54, which means that the contribution from
these elements has already been accounted for. Now assume x is non-regular, so r divides
q3 − ε and we may assume x lifts to an element of GLε3(q3) with eigenvalues 1, 1, λ for
some nontrivial r-th root of unity λ ∈ F. In particular, note that r 6 q2 + q + 1. Now

dimCW1(x) = 12 and one checks that (18) holds, which gives dimxḠ > 48. Therefore,
|xG| > 1

6(q + 1)−2q50 = a and we calculate that there are fewer than∑
r∈π

(r − 1) · |GLε3(q3)|
(q3 − ε)|GLε2(q3)|

< log(q3 + 1) · q(q + 1) · 2q12 = b

such elements in H, where π is the set of odd prime divisors of q3 − ε. It follows that the
combined contribution to β from these elements is less than a(b/a)2 < q−10. Therefore,

β < 2q−14 + 2q−7 + q−15 + q−5 + q−10

and by combining this with the above estimate for α, we deduce that

Q̂(G,H, 2) < q−10 + q−14 + q−15 + 2q−14 + 2q−7 + q−15 + q−5 + q−10 < q−4

as required. �

We are now ready to prove Theorem 6.3. We partition the proof into a sequence of
lemmas. We begin by handling the rank 1 groups G ∈ {2B2(q), 2G2(q)} where we can
compute P (G, s, 2) precisely for an appropriate element s ∈ G.

Lemma 6.7. Let G = 2B2(q), where q = 22m+1 and m > 1, and let s ∈ G be an element of
order q −

√
2q + 1. Then

P (G, s, 2) = 1− (q2 − 4)(q −
√

2q + 1) + 4

q2(q − 1)(q +
√

2q + 1)
> 1− q−1

and thus γu(G) = 2.

Proof. First we claim that M(G, s) = {H}, where H = NG(〈s〉) = K:L and K,L are cyclic
groups of order q −

√
2q + 1 and 4, respectively. By considering the orders of the maximal

subgroups of G (see [69, Theorem 9]), we see that every subgroup inM(G, s) is a conjugate
of H. Now, if r is a prime divisor of |K|, then H has a unique subgroup J of order r,
which is contained in K. Therefore, if g ∈ G and J 6 H ∩ Hg, then J = Jg and thus
g ∈ NG(J) = H. Therefore, |H ∩Hg| ∈ {1, 2, 4} for all g ∈ G \H and thus M(G, s) = {H}
as claimed. Moreover, it follows that the nontrivial, nonregular H-orbits on Ω = G/H have
length q −

√
2q + 1 and 2(q −

√
2q + 1).
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Let t be the number of regular orbits of H on Ω. Then Lemma 2.4 gives

P (G, s, 2) =
t|H|2

|G|
(19)

and so it remains to determine t. By [69, Proposition 18], G has two (non-real) conjugacy
classes of elements of order 4, both of size |G|/2q (see [37, Lemma 3.2], for example). Simi-
larly, H also has two classes of such elements, both of size q −

√
2q + 1, which are not fused

in G. Also note that G and H both have unique conjugacy classes of involutions, of size
|G|/q2 and q −

√
2q + 1, respectively.

Write H = Gα for a point α ∈ Ω. Any element x ∈ H of order 4 has

|xG ∩H|
|xG|

· |G : H| = 1

2
q

fixed points on Ω = G/H, one of which is α. Clearly, x acts fixed-point-freely on the orbits
of length 2(q −

√
2q + 1) and 4(q −

√
2q + 1). If Γ = H/J with J = C4, then x has

|xH ∩ J |
|xH |

· |H : J | = 1

fixed point on Γ. This implies that H has precisely q/2 − 1 orbits of size q −
√

2q + 1.
Similarly, any element y ∈ H of order 2 has 1

4q
2 fixed points on Ω, which are distributed

so that y has 1 fixed point on each H-orbit of length q −
√

2q + 1 and 2 on those of length
2(q −

√
2q + 1). It follows that H has

1
4q

2 − 1−
(

1
2q − 1

)
2

=
1

8
q(q − 2)

orbits of length 2(q −
√

2q + 1) and we conclude that

t =
|G : H| − 1

2(q − 2) · (q −
√

2q + 1)− 1
8q(q − 2) · 2(q −

√
2q + 1)− 1

|H|
.

The result follows. �

Remark 6.8. Define G and s as in Lemma 6.7. We claim that P2(G) = P (G, s, 2), which
shows that the general bound P2(G) > 1 − q−1 in Theorem 6.3 is essentially best possible.
To see this, let x be any nontrivial element of G and observe that x is either contained in a
Borel subgroup B of G, or it normalises a cyclic maximal torus of order q + ε

√
2q + 1 with

ε = {+,−} (this follows from Lemma 6.4). If x ∈ B, then P (G, x, 2) = 0 since b(G,G/B) > 2.
Therefore, we may assume x is a regular semisimple element and Hε ∈ M(G, x), where
Hε = NG(〈y〉) = Cq+ε

√
2q+1:C4 for some element y ∈ G of order q + ε

√
2q + 1. Note that

|CG(x)| = |CG(y)| = q+ ε
√

2q+ 1 andM(G, y) = {Hε}, so P (G, x, 2) 6 P (G, y, 2). If ε = −
then P (G, y, 2) = P (G, s, 2). On the other hand, if ε = +, then

P (G, y, 2) =
r|H+|2

|G|
,

where r is the number of regular orbits of H+ on G/H+. By arguing as in the proof of
Lemma 6.7, we deduce that

r =
|G : H+| − 1

2(q − 2) · (q +
√

2q + 1)− 1
8q(q − 2) · 2(q +

√
2q + 1)− 1

|H+|
and one checks that P (G, y, 2) < P (G, s, 2). This justifies the claim.

Lemma 6.9. Let G = 2G2(q), where q = 32m+1 and m > 1, and let s ∈ G be an element of
order q −

√
3q + 1. Then

P (G, s, 2) = 1− (q3 + 2q2 − 3q − 6)(q −
√

3q + 1) + 6

q3(q2 − 1)(q +
√

3q + 1)
> 1− q−2
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and thus γu(G) = 2.

Proof. This is very similar to the proof of Lemma 6.7. Firstly, we observe that M(G, s) =
{H} and H = K:L, where K and L are cyclic groups of order q+

√
3q+1 and 6, respectively.

In view of (19), it suffices to compute t, the number of regular H-orbits on Ω = G/H. By
arguing as in the proof of Lemma 6.7, we see that |H ∩Hg| ∈ {1, 2, 3, 6} for all g ∈ G \H,
so the nontrivial, nonregular H-orbits on Ω have length c(q −

√
3q + 1) for c ∈ {1, 2, 3}.

In order to compute t, we need to consider the conjugacy classes of elements of order 2, 3
and 6 in both G and H (the conjugacy classes of G are determined in [71] and we refer the
reader to [51, Section 3] for a convenient summary of the main facts we need). Both G and H
have unique conjugacy classes of involutions, of size q−

√
3q+1 and |G|/q(q2−1), respectively.

Similarly, H has two (non-real) classes of elements of order 3, both of size q −
√

3q + 1, and
the same is true for elements of order 6. Now G has three classes of elements of order 3, two
of size |G|/2q2 and one of size |G|/q3; the first two classes are non-real and they both meet
H (see [38, Lemma 2.3(b)]). Similarly, G has two (non-real) classes of elements of order 6,
both of size |G|/2q.

Let x ∈ H be an element of order 6. In the usual manner, we calculate that x has q/3
fixed points on Ω. Moreover, if Γ = H/J is an H-orbit of length q −

√
3q + 1, then x has a

unique fixed point on Γ, whence H has q/3− 1 orbits of length q −
√

3q + 1. Next suppose
y ∈ H has order 3 and note that y has 1

3q
2 fixed points on Ω. Then y has a unique fixed

point on each H-orbit of length q −
√

3q + 1, and two fixed points on the orbits of length
2(q −

√
3q + 1). This implies that H has

1
3q

2 −
(

1
3q − 1

)
− 1

2
=

1

6
q(q − 1)

orbits of length 2(q−
√

3q+1). Finally, let z ∈ H be an involution. First we calculate that z
has q(q2− 1)/6 fixed points on Ω. Now z has a unique fixed point on each H-orbit of length
q −
√

3q + 1, and three fixed points on the H-orbits of length 3(q −
√

3q + 1). Therefore, H
has

1
6q(q

2 − 1)−
(

1
3q − 1

)
− 1

3
=

1

18
q(q2 − 3)

orbits of length 3(q −
√

3q + 1).

Putting this together, we conclude that

t =
|G : H| −

(
1
3q − 1

)
a− 1

3q(q − 1)a− 1
6q(q

2 − 3)a− 1

|H|
,

where a = q −
√

3q + 1. The result follows. �

Remark 6.10. Note that 2G2(3)′ ∼= L2(8), so γu(2G2(3)′) = 3 by Proposition 7.10.

To complete the proof of Theorem 6.3, it remains to handle the simple exceptional groups
of rank at least two.

Lemma 6.11. Let G = E8(q) and let s ∈ G be an element of order q8+q7−q5−q4−q3+q+1.
Then P (G, s, 2) > 1− q−30 and γu(G) = 2.

Proof. This follows from the proof of [27, Theorem 5.2]. �

Lemma 6.12. If G = 2F4(q)′, then γu(G) = 2 if and only if q > 8. Moreover, if q > 8 and

s ∈ G has order q2 +
√

2q3 + q +
√

2q + 1, then P (G, s, 2) > 1− q−3.

Proof. First assume q = 2. Here

G =
⋃
g∈G

Hg ∪
⋃
g∈G

Kg,
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where H = 2.[28].5.4 and K = L3(3).2 (see [62], for example), and it is easy to check that
b(G,G/H) = b(G,G/K) = 3. Therefore γu(G) > 3. In fact, by carrying out a random
search in Magma (see [28, Section 1.2.4]) we can demonstrate that γu(G) = 3 (witnessed by
the class 16A in the notation of the Atlas [33]).

Now assume q > 8 and let s ∈ G be an element of order ` = q2 +
√

2q3 + q +
√

2q + 1.
By [72, Section 4(c)], we have M(G, s) = {H} with H = C`:C12. Since |xG| > 1

2q
11 for all

1 6= x ∈ G (see [65]), by applying Lemma 2.6 we deduce that

Q̂(G, s, 2) <
1

2
q11(2q−11 · |H|)2 < q−3

and the result follows. �

Lemma 6.13. Let G = 3D4(q) and let s ∈ G be an element of order q4 − q2 + 1. Then
P (G, s, 2) > 1− q−4 and γu(G) = 2.

Proof. By [72, Section 4(e)], we have M(G, s) = {H} with H = Cq4−q2+1:C4. Let x ∈ H be

an element of prime order r. We claim that |xG| > q16. If x is semisimple, then |xG| can be
read off from [34, Proposition 2.2] and the desired bound follows. Now assume r = p = 2.
From the proof of [31, Lemma 4.6], we deduce that H contains a unique class of involutions
and they belong to the A3

1 class of G (in the notation of [66]). This gives |xG| > q16 as
required and by applying Lemma 2.6 we conclude that

Q̂(G, s, 2) < q16(q−16 · |H|)2 < q−4

for all q > 2. The result follows. �

Lemma 6.14. Let G = E7(q) and let s ∈ G be an element of order

(q3 − 1)(q4 − q2 + 1)

(2, q − 1)
.

Then P (G, s, 2) > 1− q−2 and γu(G) = 2.

Proof. In view of Lemma 6.5, it suffices to show that M(G, s) = {H} with H = (L2(q3) ×
3D4(q)).3. Set T = 〈s〉 and N = NG(T ). By the main theorem of [58], N is not maximal in
G, so N < H < G for some maximal rank subgroup H. By considering the order of s, it is
clear that H is not a maximal parabolic subgroup of G. Moreover, further inspection of [58,
Tables 5.1 and 5.2] shows that H = (L2(q3) × 3D4(q)).3 is the only option. Now G has a
unique conjugacy class of maximal subgroups of this form and we will write n for the number
of G-conjugates of H containing s. We need to show that n = 1. Note that CG(s) = CH(s),
so

n =
|sG ∩H|
|sG|

· |G|
|H|
>
|sH |
|sG|

· |G|
|H|

= 1

and thus n = 1 if and only if sG ∩H = sH .

Suppose t ∈ H is G-conjugate to s, say s = tg for some g ∈ G. We need to show that s and
t are H-conjugate. From the structure of H, it is easy to determine the H-classes of maximal
tori of H; we see that there is a unique class of maximal tori of order |s|, so T = 〈s〉 and 〈t〉
are H-conjugate. Therefore, by replacing t by an appropriate H-conjugate, if necessary, we
may assume that 〈s〉 = 〈t〉. But then g normalizes T and we have NG(T ) < H, so s and t
are indeed H-conjugate and we conclude that n = 1 as required. �

Lemma 6.15. Let G = Eε6(q) and let s ∈ G be an element of order (q6 + εq3 + 1)/(3, q− ε).
Then P (G, s, 2) > 1− q−4 and γu(G) = 2.

Proof. By [72, Section 4(g,h)] and [45, Proposition 6.2] we have M(G, s) = {H} with H =
Lε3(q3).3. Now apply Lemma 6.6. �

Finally, we prove that γu(G) > 3 for the remaining two families of exceptional groups.
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Lemma 6.16. If G = G2(q)′, then γu(G) > 3.

Proof. If q = 2 then G ∼= U3(3) and with the aid of Magma it is easy to check that γu(G) = 3.
For the remainder, we may assume q > 3.

As in Lemma 6.4, let P be the union of the parabolic subgroups of G. In addition, let Hε
be the union of the maximal rank subgroups of G of the form SLε3(q):2 for ε = ±. We claim
that

G = P ∪H+ ∪H−.
Notice that this implies that every element in G is contained in a maximal subgroup H with
b(G,G/H) > 3, so Lemma 2.3 gives γu(G) > 3 as required. (In fact, if q > 4 is even, then a
theorem of Bubboloni et al. [16] implies that G = H+ ∪H−.)

By Lemma 6.4, it suffices to show that every maximal torus of G is either contained in a
Levi factor of a maximal parabolic subgroup, or in a maximal subgroup of the form SLε3(q):2.
There are six conjugacy classes of maximal tori in G (corresponding to the six conjugacy
classes in the Weyl group of G, which is isomorphic to D12):

C2
q−ε, Cq2−εq+1, Cq2−1(two classes).

There are two classes of maximal parabolic subgroups, both with Levi factor GL2(q), so
the maximal tori C2

q−1 and Cq2−1 (both classes) are contained in Levi factors. In addition,

SU3(q) contains C2
q+1 and Cq2−q+1, and SL3(q) contains Cq2+q+1. The result follows. �

Lemma 6.17. If G = F4(q), then γu(G) > 3.

Proof. This is similar to the proof of the previous lemma. Define P as before and let H and
K be the union of the maximal rank subgroups of the form B4(q) and 3D4(q), respectively.
It suffices to show that

G = P ∪H ∪ K.
The Weyl group of G has 25 conjugacy classes, so there are 25 classes of maximal tori.
Similarly, B4(q) has 20 classes of maximal tori and by studying the embedding of these tori
in G, we find that all but 7 classes of maximal tori of G have representatives contained in a
B4(q) subgroup (see [55, pp.95–96]). The exceptions are

C(q3−ε)(q+ε), Cq3−ε × Cq−ε, C2
q2+εq+1, Cq4−q2+1.

However, these are precisely the maximal tori of 3D4(q), so H ∪ K contains every maximal
torus in G and the result follows. (Note that if q = 3f then G = H ∪K by [16].) �

This completes the proof of Theorem 6.3. In particular, the proof of Theorem 4 is complete.

7. Two-dimensional linear groups

In this section we prove Theorem 5. Set G = L2(q) with q > 4.

7.1. Spread. We start by studying the spread and uniform spread of G. Define

f(q) =

 q − 1 if q ≡ 1 (mod 4)
q − 4 if q ≡ 3 (mod 4)
q − 2 if q is even.

Lemma 7.1. Let G = L2(q) with q > 4. Assume q > 11 if q is odd. Then u(G) > f(q).

Proof. First assume q is odd and let s ∈ G be an element of order (q+1)/2, soM(G, s) = {H}
with H = Dq+1. Let x ∈ H be an element of prime order r. If r = 2 then fpr(x,G/H) =
i2(H)/i2(G) since G has a unique class of involutions and we get

fpr(x,G/H) =

{
1
q if q ≡ 1 (mod 4)
q+3
q(q−1) if q ≡ 3 (mod 4).
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Similarly, if r is odd then |xG ∩H| = 2, |xG| = q(q − 1) and thus

fpr(x,G/H) =
2

q(q − 1)
.

We conclude that if x ∈ G has prime order, then

fpr(x,G/H) <

{
1
q−1 if q ≡ 1 (mod 4)

1
q−4 if q ≡ 3 (mod 4)

and the result follows by Corollary 2.2. A very similar argument applies when q is even,
working with an element of order q + 1. �

Remark 7.2. As noted in Remark 5, the spread of G = L2(q) is studied by Brenner and
Wiegold in [10] and the bound s(G) > f(q) is established in [10, Theorem 4.02]. In fact, this
result states that s(G) = f(q) for all q > 11, but we will show below that this is false when
q ≡ 3 (mod 4).

Fix subgroups A and B of G, where A = De(q+1), B is a Borel subgroup and e = 2 if q is
even, otherwise e = 1. It will be useful to record that

G =
⋃
g∈G

Ag ∪
⋃
g∈G

Bg (20)

(see [15, Corollary 4.3], for example).

Theorem 7.3. Let G = L2(q) with q > 4 and q 6≡ 3 (mod 4). Assume that q > 13 if q is
odd. Then s(G) = u(G) = f(q).

Proof. In view of Lemma 7.1, it suffices to show that s(G) 6 f(q). First assume q ≡ 1
(mod 4). Fix a Borel subgroup B of G and let xB be the unique class of involutions in B.
Note that |xB| = q, say xB = {x1, . . . , xq}. Let A = CG(x1) = Dq+1, which is a maximal
subgroup of G. We claim that there is no element y ∈ G such that G = 〈xi, y〉 for all i. In
view of (20), it suffices to show that

⋃
iM(G, xi) contains every G-conjugate of A and B.

First note that G has q+1 Borel subgroups, say B,B1, . . . , Bq. By considering fixed points,
one checks that each involution in G is contained in exactly two Borel subgroups. Moreover,
we have B ∩ Bi = C(q−1)/2 for all i, so B ∩ Bi contains a unique involution. Therefore, we
may assume that xi ∈ B ∩Bi and thus

⋃
iM(G, xi) contains every conjugate of B.

Now let us consider the conjugates of A. First note that (|Ag|, |B|) = 2 and thus |Ag∩B| 6
2 for all g ∈ G (in fact, equality holds for all g ∈ G). Now each xi is contained in (q − 1)/2
conjugates of A; if xi and xj are both contained in Ag, then 〈xi, xj〉 6 Ag∩B and thus i = j.
This shows that

⋃
iM(G, xi) contains all q(q − 1)/2 conjugates of A and the result follows.

To complete the proof, let us assume q is even. Let B be a Borel subgroup of G and fix
maximal subgroups A = D2(q+1) and C = D2(q−1). Let xB = {x1, . . . , xq−1} be the set of
involutions in B. We claim that there is no y ∈ G such that G = 〈xi, y〉 for all i. To see this,
let us first observe that each xi is contained in a unique Borel subgroup (namely B itself),
and also q/2 conjugates of both A and C. Moreover, |Ag∩B| = 2 and |Cg∩B| ∈ {2, q−1} for
all g ∈ G, so

⋃
iM(G, xi) contains q(q − 1)/2 subgroups of the form D2(q±1). In particular,⋃

iM(G, xi) contains every conjugate of A and all but q conjugates of C. Let H1, . . . ,Hq be
the conjugates of C that are not contained in

⋃
iM(G, xi)

Seeking a contradiction, suppose there is an element y ∈ G with G = 〈xi, y〉 for all i.
By considering (20), it follows that y must be contained in a Borel subgroup and |y| > 1
is a divisor of q − 1. Without loss of generality, we may as well assume y has order q − 1.
In particular, y is contained in a unique conjugate of C, namely NG(〈y〉). Since we are
assuming y 6∈

⋃
iM(G, xi), it follows that y ∈ Hi for some i. As noted above, we have

|Hi ∩B| ∈ {2, q− 1}. If Hi ∩B = 〈z〉 for an involution z, then z = xj for some j and we get
Hi ∈M(G, xj), which is a contradiction. Therefore, |Hi ∩B| = q− 1 and thus Hi ∩B = 〈y〉
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since Hi has a unique subgroup of order q − 1. But this implies that y ∈ B, which is a
contradiction since B ∈M(G, x1). The result follows. �

Now assume q ≡ 3 (mod 4) and q > 11. By Lemma 7.1 we have u(G) > f(q) = q − 4. In
the proof of Theorem 7.3, we worked with the set of involutions in a fixed Borel subgroup
B of G. However, a different approach is needed when q ≡ 3 (mod 4) since |B| = q(q − 1)/2
is odd and it is more difficult to determine the exact spread of G. Indeed, this remains an
open problem.

The next result gives a lower bound on s(G) when q is a prime. In particular, we see that
the difference s(G)− u(G) for a non-abelian simple group G can be arbitrarily large.

Proposition 7.4. Let G = L2(q), where q ≡ 3 (mod 4) and q > 11 is a prime. Then
s(G) > (3q − 7)/2 and s(G)− u(G) = (q + 1)/2.

Proof. Fix a maximal subgroup A = Dq+1 and let B be a Borel subgroup of G. Consider a
subset {x1, . . . , xm} of nontrivial elements in G.

If s ∈ G has order (q + 1)/2, then s is contained in a unique maximal subgroup of G,
namely NG(〈s〉), which is a conjugate of A. Similarly, each element of order q is contained
in a unique maximal subgroup (here we are using the hypothesis that q is a prime), which
is a conjugate of B. In view of (20), it follows that there is no element y ∈ G such that
G = 〈xi, y〉 for all i if and only if

⋃
iM(G, xi) contains every conjugate of A and B. Since

(|A|, |B|) = 1, we deduce that

s(G) = |S|+ |T | − 1, (21)

where S and T are subsets of G# of minimal size such that
⋃
x∈SM(G, x) contains every

conjugate of A and
⋃
x∈TM(G, x) contains every conjugate of B. Note that there are

q(q − 1)/2 conjugates of A and q + 1 conjugates of B.

First consider |S|. Let x ∈ G be a nontrivial element. As observed in the proof of [10,
Theorem 4.02], if |x| = 2 then x is contained in precisely (q + 3)/2 conjugates of A. On
the other hand, if |x| > 2 divides q + 1, then x is contained in a unique conjugate of A.
Therefore,

|S| >
1
2q(q − 1)
1
2(q + 3)

> q − 4

and thus |S| > q − 3.

Now let us consider |T |. As noted above, each x ∈ G of order q is contained in a unique
conjugate of B. Similarly, any nontrivial element of order dividing (q − 1)/2 is contained in
exactly two conjugates of B. This implies that |T | > (q+1)/2. We claim that |T | = (q+1)/2.
To see this, let B1, . . . , Bq+1 be the Borel subgroups of G and note that Bi ∩Bj = C(q−1)/2

and Bi ∩ Bj ∩ Bk = 1 for distinct i, j, k. In particular, if we write Bi ∩ Bj = 〈xi,j〉, then
T = {x1,2, x3,4, . . . , xq,q+1} has the desired property. This justifies the claim and we conclude
that

s(G) = |S|+ |T | − 1 > (q − 3) +
1

2
(q + 1)− 1 =

1

2
(3q − 7)

as required.

Finally, let us consider u(G). Fix a conjugacy class xG with x 6= 1 and note that x is
contained in a conjugate of A or B (see (20)). If x is contained in a conjugate of A, then
there is no g ∈ G such that G = 〈s, xg〉 for all s ∈ S. Similarly, if x is in a conjugate of B,
then there is no g ∈ G such that G = 〈t, xg〉 for all t ∈ T . Therefore,

u(G) = max{|S|, |T |} − 1 = |S| − 1

and thus s(G)− u(G) = |T | = (q + 1)/2. �
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Remark 7.5. Let G = L2(q), where q > 11 is a prime with q ≡ 3 (mod 4). As noted in the
proof of the previous proposition, in order to compute s(G) we need to determine |S| in (21).
For q = 11, we can use Magma to show that |S| = 9, which gives s(G) = 9 + 6− 1 = 14 and
u(G) = 8.

Remark 7.6. The case G = L2(7) requires special attention. In [10, Section 4], it is observed
that s(G) > 3. Using Magma, we can identify 6 elements in G to show that s(G) < 6. For
instance, if we take

G = 〈(3, 6, 7)(4, 5, 8), (1, 8, 2)(4, 5, 6)〉 < S8

then

A =

{
(2, 3, 8)(4, 5, 7), (1, 8, 5)(2, 7, 6), (2, 3, 4)(6, 8, 7),
(2, 7, 8)(3, 5, 6), (1, 6, 4)(3, 5, 7), (1, 5, 2)(3, 8, 4)

}
has the desired property (that is, there is no y ∈ G such that G = 〈x, y〉 for all x ∈ A). In
addition, an exhaustive search shows that s(G) > 5, whence s(G) = 5. Finally, one checks
that u(G) = 3. For example, the class (1, 7, 2, 3, 8, 5, 6)G is a witness to the bound u(G) > 3.

The next result gives a lower bound on s(L2(q)) which is valid for all q > 11 with q ≡ 3
(mod 4). In particular, this shows that the claim s(L2(q)) = q − 4 in [10, Theorem 4.0.2] is
incorrect for all such q.

Proposition 7.7. Let G = L2(q), where q ≡ 3 (mod 4) and q > 11. Then s(G) > q − 3.

Proof. Define A and B as before (see (20)) and set C = Dq−1. Note that G contains 1
2q(q−1)

conjugates of A. Let {x1, . . . , xq−3} be a set of nontrivial elements of G.

First observe that each y ∈ G of order (q+1)/2 is contained in a unique maximal subgroup
of G, namely NG(〈y〉), which is a conjugate of A. In addition, each involution is contained in
1
2(q+3) conjugates of A, whereas every other nontrivial element of G is contained in at most
one conjugate of A. This implies that if at least one xi is not an involution, then

⋃
iM(G, xi)

does not contain every conjugate of A and it follows that there exists an element y ∈ G of
order (q + 1)/2 such that G = 〈xi, y〉 for all i. Therefore, we may assume each xi is an
involution. We claim that there is an element y ∈ G of order (q− 1)/2 such that G = 〈xi, y〉
for all i. In particular, this shows that s(G) > q − 3, as required.

To justify the claim, first observe that G contains q(q + 1)/2 distinct conjugates of C. If
s ∈ G has order (q−1)/2, thenM(G, y) comprises a unique conjugate of C (namely, NG(〈s〉))
and two conjugates of B. Now each involution in G is contained in (q + 1)/2 conjugates of
C and no conjugates of B (since |B| is odd). In particular,

⋃
iM(G, xi) does not contain

every conjugate of C. Moreover, if NG(〈y〉) is such a conjugate of C, then G = 〈xi, y〉 for all
i and the result follows. �

To conclude this section, we briefly consider the spread and uniform spread of G =
PGL2(q), where q > 5 is odd.

If q = 5 then G ∼= S5 and thus s(G) = 3 and u(G) = 2 by Theorem 4.3. If q = 7, then a
computation in Magma yields s(G) > u(G) = 4. Now assume that q > 9. In her PhD thesis
[42], Garion states that s(G) = q − 4 (see [42, Proposition 6.2.4]), but her argument only
establishes the bound u(G) > q − 4. Indeed, the problem of determining the exact values of
s(G) and u(G) is still open.

Our main result is the following.

Proposition 7.8. Let G = PGL2(q) with q > 9 odd. Then

q − 4 6 u(G) 6 s(G) 6 q − 1.

Proof. First we show that u(G) > q − 4. Let s ∈ G be an element of order q + 1 and note
that M(G, s) = {H} with H = NG(〈s〉) = D2(q+1). Fix an element x ∈ H of prime order r.
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Suppose r = 2. Now H has three classes of involutions (a central involution, plus two
classes of size (q + 1)/2) and G contains two classes (represented by the elements t1 and t′1
in the notation of [44, Table 4.5.1]). We calculate that

fpr(x,G/H) =

{
1
q if x is conjugate to t1
q+3
q(q−1) if x is conjugate to t′1.

If r > 2 then r divides (q + 1)/2, |xG| = q(q − 1) and |xG ∩ H| 6 r − 1 6 (q − 1)/2, so
fpr(x,G/H) < 1/2q. Therefore,

fpr(x,G/H) <
1

q − 4

for all x ∈ G of prime order, whence u(G) > q − 4 by Corollary 2.2.

Finally, let us turn to the upper bound on s(G); here we essentially repeat the argument in
the proof of Theorem 7.3 with q ≡ 1 (mod 4). Fix a maximal subgroup A = D2(q+1) and let
B be a Borel subgroup of G. Note that G contains q+ 1 Borel subgroups, say B,B1, . . . , Bq.
Let {x1, . . . , xq} be the unique class of involutions in B and setM =

⋃
iM(G, xi). It suffices

to show that M contains every conjugate of A and B.

Since B ∩ Bi = Cq−1 contains a unique involution, we may assume that xi ∈ Bi for all i
and thusM contains every Borel subgroup. Now each xi is contained in (q−1)/2 conjugates
of A, and there are q(q − 1)/2 conjugates of A in total. We have |Ag ∩B| = 2 for all g ∈ G,
so no two of the xi are contained in the same conjugate of A. Therefore, M contains every
conjugate of A and the result follows. �

7.2. Uniform domination. By [27, Proposition 6.4], we have γu(L2(q)) 6 4, with equality
if and only if q = 9. Our first aim is to determine the exact value of γu(L2(q)) for all q. We
begin by recording a preliminary lemma.

Lemma 7.9. Let G = L2(q) where q > 11 is odd and consider the action of G on the set of
cosets of H = Dq+1. The nontrivial subdegrees are as follows:

(i) q ≡ 1 (mod 4): (q + 1)/2 and q + 1, with multiplicities (q − 3)/2 and (q − 1)/4,
respectively.

(ii) q ≡ 3 (mod 4): (q + 1)/4, (q + 1)/2 and q + 1, with multiplicities 2, (q − 3)/2 and
(q − 3)/4, respectively.

In particular, b(G,G/H) = 2.

Proof. First observe that H ∩ Hg 6 C2 × C2 for all g ∈ G \ H (see [64, Lemma 2(b)], for
example). Suppose q ≡ 1 (mod 4), so |H ∩ Hg| ∈ {1, 2} for all g ∈ G \ H. If y ∈ H has
order 2 then |yG ∩H| = (q + 1)/2 and |yG| = q(q + 1)/2, so y has (q − 1)/2 fixed points on
Ω = G/H. Moreover, each H-orbit of length (q+ 1)/2 contains a unique fixed point of y, so
H has (q − 3)/2 such orbits in total and we deduce that H has

1
2q(q − 1)− 1

4(q + 1)(q − 3)− 1

q + 1
=

1

4
(q − 1)

regular orbits.

Now assume q ≡ 3 (mod 4), so H = CG(x) for an involution x ∈ G. For g ∈ G \ H we
observe that H ∩Hg = 〈x, xg〉 = C2 ×C2 if and only if [x, xg] = 1. Similarly, H ∩Hg = 1 if
and only if there is no involution in G that commutes with both x and xg. Now x commutes
with (q + 1)/2 involutions (other than x itself) and thus H has

1
2(q + 1)
1
4(q + 1)

= 2
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orbits of length (q+1)/4. By [3, Theorem 1.1(ii)], there are precisely (q+1)(q−3)/4 elements
xg for which there is no involution commuting with both x and xg. This implies that H has

1
4(q + 1)(q − 3)

q + 1
=

1

4
(q − 3)

regular orbits. Finally, we deduce that H has

1
2q(q − 1)− 1

2(q + 1)− 1
4(q + 1)(q − 3)− 1

1
2(q + 1)

=
1

2
(q − 3)

orbits of length (q + 1)/2. The result follows. �

Proposition 7.10. Let G = L2(q) with q > 4. Then

γu(G) =

 4 if q = 9
3 if q ∈ {5, 7} or q is even
2 if q > 11 is odd.

Proof. The cases with q 6 9 can be checked directly, so let us assume q > 11. Note that
γu(G) ∈ {2, 3} by [27, Proposition 6.4].

First assume that q is odd and let s ∈ G be an element of order (q + 1)/2. As noted
in the proof of [27, Proposition 6.4], we have M(G, s) = {H} with H = Dq+1, and thus
γu(G) 6 b(G,G/H) = 2, by Lemma 7.9.

Now assume q > 16 is even. We claim that each g ∈ G is contained in a maximal subgroup
H of G with b(G,G/H) > 3, which implies that γu(G) > 3 (and hence equality holds by [27,
Proposition 6.4]). To see this, we consider the action of g on the natural module for G. If
g acts reducibly, then g is contained in the stabiliser of a 1-space (that is, a Borel subgroup
of G) and the claim follows. On the other hand, if g acts irreducibly then it is contained
in a maximal dihedral subgroup H = D2(q+1) and the subdegrees for the action of G on
G/H are presented in [39, Table 2]. We see that there are no regular suborbits and thus
b(G,G/H) > 3. This justifies the claim and the proof of the proposition is complete. �

The next result completes the proof of Theorem 5.

Proposition 7.11. Let G = L2(q) with q > 11 odd. Then P2(G) = g(q), where

g(q) =


1
2

(
1 + 1

q

)
if q ≡ 1 (mod 4)

1
2

(
1− q+3

q(q−1)

)
if q ≡ 3 (mod 4).

In particular, P2(G) > 24
55 , with equality if and only if q = 11.

Proof. Let s ∈ G be an element of order (q + 1)/2. Then, as noted above, M(G, s) = {H}
with H = NG(〈s〉) = Dq+1, whence

P (G, s, 2) =
r|H|2

|G|
,

where r is the number of regular orbits of H on G/H (see Lemma 2.4). By applying Lemma
7.9, we deduce that P (G, s, 2) = g(q) and thus P2(G) > g(q).

To complete the proof, we need to show that P (G, t, 2) 6 P (G, s, 2) for all t ∈ G#. If
t is contained in a Borel subgroup B, then P (G, t, 2) = 0 since b(G,G/B) > 3. Therefore,
by replacing t by a suitable conjugate, if necessary, we may assume that t = sm ∈ H for
some positive integer m. Clearly, P (G, t, 2) = 0 if |t| = 2, so assume |t| > 2. Then the map
sg 7→ tg is a bijection from sG to tG and we observe that if {tg1 , tg2} is a TDS then {sg1 , sg2}
is a TDS. Therefore P (G, t, 2) 6 P (G, s, 2) and the result follows. �
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8. Classical groups

In the previous section, we studied the two-dimensional linear groups L2(q) and we now
turn our attention to finite simple classical groups in general. We will focus on the uniform
domination number and our aim is to prove the results stated in parts (ii) and (iii) of Theorem
6 (recall that part (i) is established in [27]).

The main result of this section is the following, which makes substantial progress towards
a complete classification of the finite simple classical groups G with γu(G) = 2. As in the
introduction, write

C = {PSp2r(q) : r > 5 odd, q odd} ∪ {PΩ±2r(q) : r > 4 even}. (22)

Theorem 8.1. Let G be a finite simple classical group. Then γu(G) = 2 only if one of the
following holds:

(i) G = L2(q) with q > 11 odd;

(ii) G = Lεn(q) with n odd and (n, q, ε) 6∈ {(3, 2,+), (3, 4,+), (3, 3,−), (3, 5,−)};
(iii) G ∈ C.

Moreover, γu(G) = 2 in cases (i) and (ii). In addition, for the groups G in part (ii) we have

(a) P2(G) > 1
2 , unless G = U5(2) with P2(G) = 605

1728 ; and

(b) P2(G)→ 1 as |G| → ∞.

Remark 8.2. We have been unable to determine if γu(G) = 2 for the groups G ∈ C and we
refer the reader to Remarks 8.15 and 8.16 for a brief discussion of the difficulties that arise
in these special cases.

We present the proof of Theorem 8.1 in a sequence of lemmas. We begin by recording
some useful preliminary results.

Lemma 8.3. Let G be a finite simple classical group and let s ∈ G be an element that acts
reducibly on the natural module V . Then one of the following holds:

(i) s is contained in a proper subgroup H of G with b(G,G/H) > 3.

(ii) G = U2m(q), m is odd and s is a regular semisimple element that fixes an orthogonal
decomposition V = U ⊥ U⊥ into nondegenerate m-spaces and acts irreducibly on
both summands.

(iii) G = PΩ+
2m(q), m is even and s is a regular semisimple element that fixes an orthog-

onal decomposition V = U ⊥ U⊥ into nondegenerate minus-type m-spaces and acts
irreducibly on both summands.

Proof. Let U be a proper nonzero subspace of V fixed by s of minimal possible dimension.
In particular, note that s acts irreducibly on U . Since s also fixes the radical U ∩ U⊥, we
deduce that U is either totally singular or nondegenerate (recall that if G is linear, then every
subspace of V is totally singular). Let GU be the stabiliser of U in G and set H = NG(GU ).
Let n be the dimension of V .

If U is totally singular then H is a maximal parabolic subgroup and it is easy to check
that |H|2 > |G| (see [36], for example), whence

b(G,G/H) >
log |G|

log |G/H|
> 2

and (i) holds. Therefore, we may assume U is nondegenerate and s is not contained in a
proper parabolic subgroup of G, so Lemma 6.4 implies that s is a regular semisimple element.
If G = PSpn(q)′ then |H|2 > |G| and thus (i) holds. If G = Ωn(q) then dimU = 1 (since
every element of G fixes a 1-space) and once again we see that |H|2 > |G|.
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We have now reduced to the case where U is a nondegenerate `-space and G is a unitary
or even-dimensional orthogonal group. Note that s fixes the orthogonal decomposition V =
U ⊥ U⊥ and ` 6 n/2.

First assume G = Un(q). Since s acts irreducibly on U , we see that ` is odd. If n = 2`,
then (ii) holds, so we may assume that ` < n/2. Let W be any nondegenerate `-dimensional
subspace of V . We claim that there exists a nontrivial element of G that fixes both U
and W . In particular, b(G,G/H) > 3 and thus (i) holds. To see this, consider the sum
X = U + W . Begin by assuming that X is degenerate and fix a nonzero vector v in the
radical X∩X⊥. Then X ⊆ 〈v〉⊥ and we can define a transvection g ∈ G that acts trivially on
the hyperplane 〈v〉⊥. In particular, g fixes U and W . Now assume that X is nondegenerate
and note that V = X ⊥ X⊥. Suppose that dimX = n − 1. Then, since ` < n/2, we must
have n = 2`+ 1. The element s stabilises U⊥, a subspace of dimension `+ 1, which is even.
Therefore, s stabilises a nonzero subspace of U⊥ of dimension strictly less than `, which is a
contradiction. Therefore, dimX 6 n − 2, and there is clearly an element g ∈ G# that acts
trivially on X, so g fixes both U and W . This implies that b(G,G/H) > 3 as required.

Finally, suppose G = PΩε
n(q) with n = 2m > 8. Let ( , ) be the symmetric bilinear form on

V corresponding to the quadratic form defining G. Since s acts irreducibly on U , we deduce
that ` is even and U is minus-type. If m = `, then U and U⊥ must both be minus-type
spaces, so ε = + and case (iii) holds, so we may assume that ` < m.

Let W be any nondegenerate `-dimensional subspace of V of the same type as U . Again we
claim that there exists a nontrivial element of G that fixes both U and W . Write X = U+W .
If X is nondegenerate, then since dimX 6 2m − 2, there exists g ∈ G# that acts trivially
on X and consequently stabilises U and W .

Now assume X is degenerate. If there exist linearly independent vectors u, v in X ∩X⊥,
then X ⊆ 〈u, v〉⊥ and the long root element defined as x 7→ x + (x, u)v − (x, v)u (see
[74, Section 3.7.3]) acts trivially on 〈u, v〉⊥ and hence stabilises U and W . Now assume
X ∩ X⊥ = 〈u〉 is 1-dimensional and write X = Y ⊥ 〈u〉 where Y is nondegenerate. Then
V = Y ⊥ Y ⊥ and u ∈ Y ⊥. Since Y ⊥ is nondegenerate, there exists v ∈ Y ⊥ such that
(u, v) = 1, which implies that 〈u, v〉 ⊆ Y ⊥ is nondegenerate. Therefore, Z = Y ⊥ 〈u, v〉 is a
nondegenerate subspace of V containing X. Since ` < m, it follows that dimZ 6 2`+1 < 2m
and thus Z is a proper nondegenerate subspace of V containing X. If dimZ 6 2m− 2, then
there exists g ∈ G# that acts trivially on Z, so we may assume dimZ = 2m − 1 (in which
case, q must be odd). Now dimY ⊥ = 3 and we can define an element g ∈ G# so that it acts
trivially on Y and as a regular unipotent element on Y ⊥. Moreover, we may choose g so that
it fixes the singular vector u ∈ Y ⊥. Then g acts trivially on X = Y ⊥ 〈u〉 and thus g fixes
U and W . We conclude that b(G,G/H) > 3 and (i) holds. This completes the proof. �

Remark 8.4. In the proof of Lemma 8.11 we will show that if G and s are as in part (ii)
of Lemma 8.3, then the conclusion stated in part (i) still holds (with H the stabiliser of the
given orthogonal decomposition of V ).

Corollary 8.5. Let G be one of the following finite simple classical groups:

U2m(q) (m even), Ωn(q), PΩ+
2m(q) (m odd).

Then γu(G) > 3.

Proof. Notice that every element s ∈ G acts reducibly on the natural module for G and thus
Lemma 8.3 implies that s is contained in a proper subgroup H with b(G,G/H) > 3. Now
apply Lemma 2.3 to conclude. �

Next we recall the definition of a Singer cycle.

Definition 8.6. Let G be a finite simple classical group over Fq with natural module V . An
element s ∈ G is a Singer cycle if 〈s〉 is an irreducible subgroup (with respect to the action
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on V ) of maximal possible order. In particular, s is a regular semisimple element and

|s| =


qn−1

(q−1)(n,q−1) if G = Ln(q)
qn+1

(q+1)(n,q+1) if G = Un(q) and n is odd
qn/2+1
(2,q−1) if G = PSpn(q) or PΩ−n (q)

where n = dimV . Note that any element in G that acts irreducibly on V is equal to sk

for some Singer cycle s ∈ G and integer k. Let us also note that none of the groups Un(q)
(n > 4 even), Ωn(q) and PΩ+

n (q) contain elements that act irreducibly on V , so Singer cycles
do not exist in these cases.

In the statement of the next result, we say that H is a field extension subgroup if it is
contained in Aschbacher’s C3 collection of maximal subgroups of G (see [53, Section 4.3]).

Lemma 8.7. Let G be a finite simple classical group over Fq with natural module V and let
s ∈ G be a Singer cycle. Let H be a field extension subgroup of G containing s. Then s is
contained in a unique conjugate of H.

Proof. First observe that CG(s) = CH(s) = 〈s〉, so it suffices to show that sG ∩H = sH . By
considering the structure of H, we see that H contains a unique conjugacy class of maximal
tori of order |s| and we can complete the proof by repeating the argument in the proof of
Lemma 6.14. �

Lemma 8.8. Suppose G = PSp2m(q)′, where m > 2 and either m or q is even. Then
γu(G) > 3.

Proof. First assume m is even and fix an element s ∈ G#. If s acts reducibly on the
natural module for G, then Lemma 8.3 implies that P (G, s, 2) = 0. Now assume s acts
irreducibly, in which case s = xk for some Singer cycle x ∈ G and integer k. Now M(G, x)
(and thus M(G, s)) contains a field extension subgroup H of type Spm(q2) and it is easy to
check that |H|2 > |G| (note that |H| = 2|PSpm(q2)| by [53, Proposition 4.3.10]). Therefore
b(G,G/H) > 3 and we conclude that P (G, s, 2) = 0, so γu(G) > 3.

Finally, if m > 3 is odd and q is even, then [27, Theorem 6.3(iii)] implies that γu(G) > m
and the result follows. �

Lemma 8.9. If G = PSp6(q), then γu(G) > 3.

Proof. In view of the previous lemma, we may assume q is odd and it suffices to show that
P (G, s, 2) = 0 when s ∈ G is a Singer cycle. Since M(G, s) contains a field extension

subgroup H of type Sp2(q3), it is sufficient to show that b(G,G/H) > 3. Write G = Ĝ/Z,

where Ĝ = Sp6(q) and Z = Z(Ĝ). By applying [43, Lemmas 2.2 and 4.1], we see that there

is an element x ∈ GL6(q) such that Ĝ ∩ Ĝx = Sp2(q3). In particular, if y ∈ Ĝ then

Sp2(q3) ∩ Sp2(q3)y = Ĝ ∩ Ĝx ∩ Ĝxy

and thus [43, Lemma 5.7] implies that Z is a proper subgroup of Sp2(q3)∩Sp2(q3)y. Therefore,

by passing to the quotient group G = Ĝ/Z, we deduce that the intersection of any two
conjugates of H in G is nontrivial and thus b(G,G/H) > 3. �

Lemma 8.10. If G = Ln(q), where n > 4 is even, then γu(G) > 3.

Proof. Set n = 2m with m > 2. As in the proof of the previous lemma, it suffices to show
that P (G, s, 2) = 0 for a Singer cycle s ∈ G. To see this, first observe thatM(G, s) contains
a field extension subgroup H of the form GLm(q2). According to [53, Proposition 4.3.6], we
have

|H| = 2(q + 1)|PGLm(q2)|
(2m, q − 1)
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and one checks that |H|2 > |G| when q = 2, so b(G,G/H) > 3 and the desired result follows.

Now assume q > 2. Set Ḡ = SL2m(K), where K is the algebraic closure of Fq, and let σ
be a Steinberg endomorphism of Ḡ such that Ḡσ = SL2m(q). Then there exists a maximal
closed σ-stable subgroup H̄ of Ḡ such that H̄σ is of type GLm(q2). Here H̄ is of type
GLm(K) o S2 and without loss of generality we may assume that G = Ḡσ/Z and H = H̄σ/Z
with Z = Z(Ḡσ). By [26, Corollary 3.15], we have dim(H̄ ∩ H̄g) > m− 1 for all g ∈ Ḡ and
thus [43, Proposition 8.1] implies that the intersection of any two conjugates of H̄σ in Ḡσ
is nontrivial. In fact, the proof of [43, Proposition 8.1] implies that any such intersection
either contains a nontrivial unipotent element, or it has order at least (q − 1)m−1. Now
|Z| = (2m, q − 1) and by excluding the cases (m, q) = (2, 3), (2, 5) we deduce that Z is a
proper subgroup of every such intersection and it follows that the intersection of any two
conjugates of H in G is nontrivial. It is straightforward to check directly that the same
conclusion holds when (m, q) = (2, 3) or (2, 5). We conclude that b(G,G/H) > 3 and the
proof of the lemma is complete. �

Lemma 8.11. If G = Un(q), where n > 4 is even, then γu(G) > 3.

Proof. First recall that every element of G acts reducibly on the natural module. Therefore,
by Lemma 8.3, we may assume that n = 2m with m > 3 odd, and it suffices to show that
b(G,G/H) > 3 for a maximal subgroup H of type GUm(q) oS2. If q = 2 then |H|2 > |G| and
the result follows, so we may assume q > 2. We can now repeat the argument in the proof
of the previous lemma, working with the algebraic group Ḡ = SL2m(K) and an appropriate
Steinberg endomorphism. We omit the details. �

To complete the proof of Theorem 6, we may assume that G = Lεn(q) with n odd. We
start by studying the special case n = 3.

Lemma 8.12. If G = Lε3(q), then

γu(G) =

 4 if (ε, q) = (+, 4)
3 if (ε, q) ∈ {(+, 2), (−, 3), (−, 5)}
2 otherwise.

Moreover, if γu(G) = 2 then

P2(G) =


(q2+εq+1)(q2−εq−3)

q2(q2−1)
if q ≡ 0 (mod 3)

3q5−5q3+3q+ε8
3q3(q2−1)

if q ≡ ε (mod 3)
(q3−ε3q2+q+ε2)(q2+εq+1)

q3(q−ε)2 otherwise

and thus P2(G) > 13
24 , with equality if and only if G = L3(3). In particular, P2(G) → 1 as

q →∞.

Proof. The special cases with (ε, q) ∈ {(+, 2), (+, 4), (−, 3), (−, 5)} can be checked directly
with the aid of Magma. For the remainder, we may assume G does not correspond to one
of these cases.

Let s ∈ G#. If s is reducible then P (G, s, 2) = 0 by Lemma 8.3, so let us assume s
is irreducible, in which case s = xk for some Singer cycle x ∈ G and integer k. Since
CG(s) = CG(x) = 〈x〉, it follows that P (G, s, 2) 6 P (G, x, 2). Therefore, we may as well
assume s ∈ G is a Singer cycle, so P2(G) = P (G, s, 2). Set a = (q2 + εq + 1)/(3, q − ε). By
applying the main theorem of [4] and Lemma 8.7, we deduce that M(G, s) = {H}, where
H = NG(〈s〉) = Ca:C3 is a field extension subgroup of type GLε1(q3). By Lemma 2.4 we have
P2(G) = r|H|2/|G| and so it remains to determine the number r of regular orbits of H on
G/H.
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By arguing as in the proof of [24, Proposition 3.2], we see that

r =
|G : H| − a(b− 1)− 1

|H|
and b =

2a|G : H|
|yG|

(23)

for any element y ∈ H of order 3. Since such an element y is regular, it follows that

|yG| =


q(q2 − 1)(q3 − ε) if q ≡ 0 (mod 3)
1
3q

3(q + ε)(q2 + εq + 1) if q ≡ ε (mod 3)
q3(q3 − ε) otherwise

and one can check that this gives the stated expression for P2(G). �

Next we handle the case where n > 5 is a prime.

Lemma 8.13. If G = Lεn(q) with n > 5 prime, then γu(G) = 2 and either P2(G) > 1
2 , or

G = U5(2) and P2(G) = 605
1728 . Moreover, P2(G)→ 1 as |G| tends to infinity.

Proof. First assume G = U5(2) and let s ∈ G be a Singer cycle, so s has order 11 and
P (G, s, 2) = P2(G). ThenM(G, s) = {H} with H = L2(11) and using Magma we calculate
that H has 11 regular orbits on G/H. By applying Lemma 2.4, we deduce that P2(G) = 605

1728 .

For the remainder, let us assume G 6= U5(2). Fix a Singer cycle s ∈ G and observe that
M(G, s) = {H}, where H = NG(〈s〉) = Ca:Cn and

a = |s| = qn − ε
(q − ε)(n, q − ε)

.

Let y ∈ H be any element of order n and set b = 2a|G : H|/|yG|. Then (23) holds, where
r denotes the number of regular orbits of H on G/H. Since y is a regular element of G, it
follows that |CG(y)| 6 (q + 1)n−1 and thus b 6 (1− n−1)(q + 1)n−1. Now,

P (G, s, 2) =
r|H|2

|G|
> 1− b|H|2

n|G|
and we observe that

|H| 6
(
qn − 1

q − 1

)
n, |G| > (2n)−1qn

2−1.

Therefore

P (G, s, 2) > 1− 2n2

(
qn − 1

q − 1

)2

(1− n−1)(q + 1)n−1 · q1−n2
> 1− 2n2q4n−2−n2

and the result follows. �

Finally, to complete the proof of Theorem 8.1 we address the general case with n composite.

Lemma 8.14. If G = Lεn(q) with n > 3 composite and odd, then γu(G) = 2 and P2(G) > 1
2 .

Moreover, P2(G)→ 1 as |G| tends to infinity.

Proof. Let s ∈ G be a Singer cycle and note that n > 9. By [4] and Lemma 8.7, we have

M(G, s) = {Hk : k ∈ π(n)}

where Hk is a field extension subgroup of type GLεn/k(q
k) and π(n) is the set of prime divisors

of n. More precisely, [53, Proposition 4.3.10] gives

Hk = Bk.k 6

((
qk − ε
q − ε

)
.PGLεn/k(q

k)

)
.〈ϕ〉, (24)

where Bk is the image of GLεn/k(q
k) in Lεn(q) and ϕ is a field automorphism of order k.
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Let {x1, . . . , xa} be a set of representatives of the conjugacy classes in G of elements of
prime order and set

Q̂(G, s, 2) :=

a∑
i=1

|xGi |

 ∑
k∈π(n)

fpr(xi, G/Hk)

2

.

In order to prove the lemma, it suffices to show that Q̂(G, s, 2) < 1
2 and Q̂(G, s, 2) → 0 as

|G| → ∞. To do this, it will be convenient to observe that |π(n)| < log n, so

Q̂(G, s, 2) < α log n

where

α =
∑

k∈π(n)

(
a∑
i=1

|xGi | · fpr(xi, G/Hk)
2

)
.

Let V be the natural module for G and let p be the characteristic of Fq. Let Ḡ = PSLn(K),
where K is the algebraic closure of Fq, and let σ be a Steinberg endomorphism of Ḡ such that
(Ḡσ)′ = G. For any element x ∈ G, write x = x̂Z with x̂ ∈ GLεn(q) and Z = Z(GLεn(q)), and
let ν(x) be the codimension of the largest eigenspace of x̂ as an element of GLn(K) (note
that this is independent of the choice of x̂). Write

{x1, . . . , xa} = {y1, . . . , yb} ∪ {z1, . . . , zc},

where ν(yi) < n/2 and ν(zi) > n/2 for all i.

It will be useful to write α = α1 + α2 + α3, where the αi are defined as follows. Firstly, if
3 ∈ π(n) then

α1 =

a∑
i=1

|xGi | · fpr(xi, G/H3)2,

otherwise α1 = 0. Similarly,

α2 =
∑

k∈π(n), k>5

(
b∑
i=1

|yGi | · fpr(yi, G/Hk)
2

)

and

α3 =
∑

k∈π(n), k>5

(
c∑
i=1

|zGi | · fpr(zi, G/Hk)
2

)
if π(n) 6= {3}, otherwise α2 = α3 = 0.

First consider α3. Fix k ∈ π(n) with k > 5 and set H = Hk. Let x ∈ H be an element of
prime order with ν(x) > n/2. Then

|H| < 2kq
1
k
n2−1 6 10q

1
5
n2−1, |xG| > 1

2

(
q

q + 1

)2

q
1
2
n2−1

(see [18, Corollary 3.38]) and thus

c∑
i=1

|zGi | · fpr(zi, G/H)2 < 2

(
q + 1

q

)2

q1− 1
2
n2
(

10qn
2/5−1

)2
= 200

(
q + 1

q

)2

q−
1
10
n2−1.

It follows that α3 6 δ1, where δ1 = 0 if π(n) = {3}, otherwise

δ1 =

(
200

(
q + 1

q

)2

q−
1
10
n2−1

)
log n.
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Now let us turn to α1 and α2. Fix k ∈ π(n) and set H = Hk and B = Bk as in (24). In
addition, let us define m = n

k and set β = α1 if k = 3, otherwise

β =
b∑
i=1

|yGi | · fpr(yi, G/H)2.

Our aim is to determine a bound β < γ which is valid for all k > 3, in which case α1 +α2 <
γ log n.

Let x ∈ H be an element of prime order r and assume ν(x) < n/2 if k > 5. There are
several cases to consider and we will closely follow the proof of [19, Proposition 3.1].

First assume xG ∩ (H \ B) is non-empty. Here r = k and ν(x) = n(1 − k−1) > n/2 (see
[19, (66)]), so we may assume k = 3. Now

|xG| > 1

6

(
q

q + 1

)2

q
2
3
n2

and we calculate that H \B contains fewer than

2

(
q3 − ε
q − ε

)
·
|PGLεn/3(q3)|
|PGLεn/3(q)|

< 8q
2
9
n2

such elements. In addition, there are at most 4q
2
9
n2

in B (there are none if n is indivisible
by 9). By applying Lemma 2.6, it follows that the contribution to β from the elements with
xG ∩ (H \B) 6= ∅ is less than

6

(
q + 1

q

)2

q−
2
3
n2
(

12q
2
9
n2
)2

= 864

(
q + 1

q

)2

q−
2
9
n2

= δ2.

For the remainder, we may assume xG ∩H ⊆ B.

Next suppose r = p > 2 and let λ be the partition of n corresponding to the Jordan form
of x on V (this uniquely determines the Ḡ-class of x). By considering the embedding of
GLεn/k(q

k) in GLεn(q), it follows that λ = (mkam , . . . , 1ka1) for some non-negative integers ai
(recall that this notation indicates that x has kai Jordan blocks of size i). Let t > 1 be the
number of non-zero ai in λ. Then as explained in the proof of [19, Proposition 3.1], we have

|xG| > 1

2

(
q

q + 1

)t
qdimxḠ−1

and there are fewer than 2tq
1
k

dimxḠ elements in B that are Ḡ-conjugate to x. Therefore, the
contribution to β from unipotent elements when p is odd is less than∑

22t+1

(
q + 1

q

)t
q1+( 2

k
−1) dimxḠ <

∑
q2t+2+( 2

k
−1) dimxḠ ,

where the sum is over a set of Ḡ-class representatives x of order p with the appropriate
Jordan form on V . We claim that

2t+ 2 +

(
2

k
− 1

)
dimxḠ 6 12− 2n.

If t = 1 then dimxḠ > 1
2n

2 and the desired bound holds. For t > 2 we have n > 1
2kt(t+ 1),

dimxḠ > k2

(
m(t2 − t)− 1

4
t4 +

1

6
t3 +

1

4
t2 − 1

6
t

)
(see [18, Lemma 3.25]) and the claim quickly follows. Since there are fewer than 2n/k

partitions of n/k, we conclude that the entire contribution to β from unipotent elements
when p is odd is less than

2n/3 · q12−2n < q5−n = δ3.
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Next we focus on the contribution from semisimple elements of odd order, so let us assume
r 6= p is odd. Let i > 1 be minimal such that r divides qi−1. Similarly, let i0 > 1 be minimal
such that r divides qki0 − 1 and note that

i0 =

{
i/k if k divides i
i otherwise.

We define the integer c = c(i, ε) as in [18, Lemma 3.33], so

c =

 2i if ε = − and i is odd
i/2 if ε = − and i ≡ 2 (mod 4)
i otherwise.

First assume CḠ(x) is disconnected and c = 1. By [18, Lemma 3.34], it follows that r
divides n and ν(x) = n(1 − r−1), so we may assume k = 3. In addition, the condition
xG ∩H ⊆ B implies that r > 5, hence n > 15 and q > 4 (since c = 1). Now

|xG| > 1

2r

(
q

q + 1

)r−1

qn
2(1− 1

r ) >
1

10

(
q

q + 1

)4

q
4
5
n2

and |B| < 2qn
2/3−1, so the contribution to β from these elements is less than

40

(
q + 1

q

)4

q−
2
15
n2−2.

For the remainder of our analysis of semisimple elements of odd order, we may assume
that either CḠ(x) is connected or c > 1.

First assume that k does not divide i, so i0 = i. As explained in [18, Section 3.4], the G-
class of x is determined by a tuple (a1, . . . , at) of non-negative integers (where t = (r− 1)/c)
and we have

dimxḠ = n2 − (n− v)2 − c
t∑

j=1

a2
j (25)

where v = n − c
∑

j aj . In addition, if c = 1 we may assume that v > aj for all j. Since
i0 = i, it follows that each aj is divisible by k, so n > kdc where d > 1 is the number of
non-zero aj . As in the proof of [19, Proposition 3.1], we have

|xG ∩H| < 2dq
1
k

dimxḠ , |xG| > 1

2

(
q

q + 1

)d
qdimxḠ

and it follows that the combined contribution to β from these semisimple elements is less
than ∑

2

(
q + 1

q

)d
q− dimxḠ

(
2dq

1
k

dimxḠ
)2

<
∑

q3d+1−(1− 2
k ) dimxḠ ,

where the sum is over a set of representatives of the relevant G-classes. Now one can check
that

dimxḠ >

{
4nkd− 4k2d2 − 2dk2 − 2k2 if c > 2
2nkd− k2d2 − dk2 if c = 1

and by setting k = 3 and d = 1 we deduce that

3d+ 1−
(

1− 2

k

)
dimxḠ 6 12− 2n.

Now assume k divides i, so i0 = i/k. As before, the G-class of x is determined by a tuple
(a1, . . . , at) and we write d for the number of non-zero aj , so n > dc and

|xG| > 1

2

(
q

q + 1

)d
qdimxḠ .
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Note that in this case, the aj need not be divisible by k, in general. Now, if k = 3 then the
proof of [19, Proposition 3.1] gives

|xG ∩H| < 23d

(
q3

q3 − 1

)d
q

1
3

dimxḠ (26)

and we claim that the same bound holds for k > 5.

To see this, let y ∈ xG ∩H and write ν(y) = t and ν0(y) = t0 with respect to the natural
modules V and V0 for G and PGLεn/k(q

k), respectively. Recall that we may assume t < n/2

since k > 5. Then t0 6 t/k (see the proof of [61, Lemma 4.2]) and by appealing to the proof
of [18, Proposition 3.36] we deduce that

|yB| < 2

(
qk

qk − 1

)kd
qkt0(

2n
k
−t0−1) 6 2

(
q5

q5 − 1

)5d

qt(
2n
k
− t

k
−1)

< 4

(
q3

q3 − 1

)d
qt(

2n
k
− t

k
−1).

From [18, Proposition 3.40] we see that there are fewer than

bt/kc∑
t0=1

qkt0 < 2qt

distinct B-classes in xG ∩H, whence

|xG ∩H| < 8

(
q3

q3 − 1

)d
q

1
k
t(2n−t)

Now dimxḠ > 2t(n − t) by [17, Proposition 2.9] and it is easy to check that 1
5 t(2n − t) <

2
3 t(n− t). This shows that (26) holds for all k.

It follows that the contribution to β from these semisimple elements is less than∑
26d+1

(
q + 1

q

)d( q3

q3 − 1

)2d

q−
1
3

dimxḠ <
∑

q7d+1− 1
3

dimxḠ ,

where we sum over a set of G-class representatives. In view of (25), we calculate that

dimxḠ > 2ndc− d2c2 − dc

and thus

7d+ 1− 1

3
dimxḠ 6 12− 2n.

By combining the above estimates, noting that G has at most qn−1 semisimple conjugacy
classes, we conclude that the entire contribution to β from semisimple elements x ∈ G of
odd order with xG ∩H ⊆ B is less than

qn−1 · q12−2n + 40

(
q + 1

q

)4

q−
2
15
n2−2.

Notice that this is larger than 1 when n = 9, so this case requires special attention. Here
k = 3, i ∈ {1, 2, 3, 6, 9

2(3− ε)} and we can estimate the contribution to β by considering each
possibility for i in turn. For example, suppose ε = + and i = 6, so i0 = 2 and r divides
q2 − q + 1. Then

|xG ∩H| 6 3

(
|GL3(q3)|

|GL1(q3)||GL1(q6)|

)
< 3q18, |xG| = |GL9(q)|

|GL3(q)||GL1(q6)|
>

1

2
q66
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and there are fewer than 1
6q(q− 1) such G-classes for a fixed value of r. Since q2− q+ 1 has

less than log(q2− q+ 1) odd prime divisors, we deduce that the total contribution to β from
semisimple elements with i = 6 is less than

1

6
q(q − 1) log(q2 − q + 1) · 2q−66(3q18)2 < q−26.

In a similar fashion, we can estimate the contribution for the other values of i. Indeed, one
can check that if n = 9 then the total contribution to β from semisimple elements of odd
order is less than q−8 (this estimate is valid for ε = ±). Set

δ4 =

 q11−n + 40

(
q + 1

q

)4

q−
2
15
n2−2 if n > 15

q−8 if n = 9.

To complete the proof of the lemma, it remains to estimate the contribution to β from
involutions. Let x ∈ H be an involution and first assume p = 2. Here x has Jordan form
[Jk`2 , Jn−2k`

1 ] on V , for some 1 6 ` 6 bn/2kc, and we get

|xG ∩H| < 2q2`(n−k`), |xG| > 1

2

(
q

q + 1

)
q2k`(n−k`). (27)

Therefore, the contribution to β is less than

bn/2kc∑
`=1

8

(
q + 1

q

)
q−2`(n−k`) <

n

6
· 8
(
q + 1

q

)
q6−2n < q2−n.

Now assume p 6= 2. Here x has Jordan form [−I`, In−`] on V for some 1 6 ` 6 bn/2kc and we
get the same bounds as in (27). In particular, the contribution to β is less than q2−n = δ5.

By bringing together the above estimates, we deduce that

β < δ2 + δ3 + δ4 + δ5 = γ

and thus

Q̂(G, s, 2) < (α1 + α2 + α3) log n < (γ log n+ δ1) log n.

This implies that Q̂(G, s, 2) < 1
2 for all possible values of n and q. Moreover, we deduce that

Q̂(G, s, 2)→ 0 as n or q tends to infinity. This completes the proof of the lemma. �

This completes the proof of Theorem 6. We close this section by commenting on the
classical groups arising in part (iii) of Theorem 8.1; these are the groups that comprise the
collection C (see (22)).

Remark 8.15. Suppose G = PSp2m(q), where mq is odd and m > 5. Let V be the natural
module for G and fix an element s ∈ G#. If s acts reducibly on V , then Lemma 8.3 implies
that s is contained in a proper subgroup H with b(G,G/H) > 3, so P (G, s, 2) = 0. Now
assume s is irreducible, so s is a power of a Singer cycle x ∈ G. Clearly, if g ∈ G then {s, sg}
is a TDS only if {x, xg} is a TDS, so γu(G) = 2 if and only if P (G, x, 2) > 0. Therefore, we
may as well assume that s is a Singer cycle.

By combining Lemma 8.7 with a theorem of Bereczky [4], we deduce that

M(G, s) = {Ht,K : t ∈ π(m)},
where Ht is a field extension subgroup of type Sp2m/t(q

t), K is a subgroup of type GUm(q)

and π(m) is the set of prime divisors of m. The main theorem of [21] gives

b(G,G/Ht), b(G,G/K) ∈ {2, 3, 4},
but the precise base sizes in these cases have not been determined. One can check that

|K|2 < |G| and Q̂(G,K, 2) > 1 (as defined in (13)), so our probabilistic methods do not yield

b(G,G/K) = 2. In particular, we have Q̂(G, s, 2) > 1 and so a different approach is needed
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to determine whether or not γu(G) = 2. For G = PSp10(3), which is the smallest group
satisfying the conditions in part (iii) of the theorem, we can use Magma [9] to show that
b(G,G/K) = 2. Moreover, we can find an element g ∈ G by random search such that

H5 ∩Hg
5 = H5 ∩Kg = K ∩Kg = K ∩Hg

5 = 1,

which implies that {s, sg} is a total dominating set and thus γu(PSp10(3)) = 2 in this case.
We have not been able to estimate P2(PSp10(3)) and the general problem remains open.

Remark 8.16. Similar difficulties arise when G = PΩε
2m(q) and m > 4 is even. First assume

ε = −. As before, we may as well assume that s ∈ G is a Singer cycle, in which case

M(G, s) = {Ht : t ∈ π(m)}
by [4], where Ht is a field extension subgroup of type O−2m/t(q

t) and π(m) is the set of prime

divisors t of m with 2m/t > 4. The main theorem of [21] gives b(G,G/Ht) 6 4, but the

exact base size is not known. In particular, we have |H2|2 < |G| and Q̂(G,H2, 2) > 1,
so our probabilistic methods will not determine b(G,G/H2) precisely. For m = 4 we have
γu(G) = b(G,G/H2) and we can use Magma when q is small. Indeed, if m = 4 then
γu(G) = 3 if q = 2 and γu(G) = 2 if q ∈ {3, 5}. Moreover, if q = 3 we calculate that H2 has
exactly 10 regular orbits on G/H2, whence

P2(PΩ−8 (3)) =
2050

7371

by Lemma 2.4. A similar computation is out of reach when q = 5 since the index |G : H2| is
too large.

Now assume ε = +. Here every element of G acts reducibly on the natural module V , so
Lemma 8.3 implies that P (G, s, 2) = 0, with the possible exception of the case where s ∈ G
is a regular semisimple element fixing an orthogonal decomposition V = U ⊥ U⊥ into minus-
type m-spaces, acting irreducibly on both summands. Clearly, in this caseM(G, s) contains
a maximal subgroupH of typeO−m(q)oS2. Form = 4, a computation with Magma shows that
b(G,G/H) = 3 if q = 2 and b(G,G/H) = 2 if q ∈ {3, 5}, but the exact base size is not known
in general (as before, [21] gives the bound b(G,G/H) 6 4). In addition, if (m, q) 6= (4, 2)

then |H|2 < |G| and Q̂(G,H, 2) > 1, so the probabilistic approach is inconclusive in this
case. Finally, let us also observe that further work is needed to determine the complete set
of maximal overgroups of s (since s is not a Singer cycle, we cannot appeal to [4]).

9. Proofs of Theorems 9 and 10

In this final section we prove Theorems 9 and 10.

Proof of Theorem 9. Let G be a finite simple group such that γu(G) = 2 and G 6∈ C ∪T . By
applying Theorems 3, 4, 5 and 6, we immediately reduce to the case where G is a sporadic
group (see Remark 5.10 for the precise value of P2(A13)).

Let G be a sporadic group and recall that G 6∈ T . First assume that G 6∈ {Fi23,B,M}. As

explained in [28], we can use the GAP Character Table Library [11] to compute Q̂(G, s, 2)
precisely for any element s ∈ G. We obtain the following results, where we adopt the Atlas
[33] notation for conjugacy classes (we round up real numbers to 3 decimal places):

G M23 J1 J4 Ru Ly O′N Fi′24 Th
s 23A 15A 29A 29A 37A 31A 29A 27A

Q̂(G, s, 2) 0.030 0.364 0.001 0.168 0.001 0.337 0.001 0.060

In particular, we deduce that P2(G) > 1
2 .

We will now consider the three remaining groups. First let G = Fi23 and s ∈ G. If s is not
in the class 35A, then one can verify that there exists H ∈M(G, s) such that b(G,G/H) > 3
and consequently P (G, s, 2) = 0 (the base size for every primitive action of a sporadic group
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is given in [30]). Now assume that s does belong to 35A. In this case M(G, s) = {H} with
H = S12. Therefore, P2(G) = P (G, s, 2), which Lemma 2.4 implies is equal to r|H|2/|G|,
where r is the number of regular orbits of H on G/H. A computation in GAP by Alexander
Hulpke establishes r = 1, so

P2(G) = P (G, s, 2) =
|H|2

|G|
=

7700

137241
.

Now let G = B and let s be in 47A. Then M(G, s) = {H} where H = 47:23 (see [45,
Table IV]). Since |xG| > 1010 for all prime order elements x ∈ G, we deduce that

P2(G) > P (G, s, 2) > 1− 11042

1010
> 1− 10−3.

Finally, let G = M and let s be in 59A. Then M(G, s) = {H} where H = L2(59) (see [45,
Table IV]) and we proceed as in the previous case. Since |H| = 102660 and |xG| > 1019 for
all prime order elements x ∈ G, we conclude that

P2(G) > P (G, s, 2) > 1− 1026602

1019
> 1− 10−9.

This completes the proof. �

Remark 9.1. Let G be a sporadic simple group with γu(G) = 2 and G 6∈ T . If there is an
element s ∈ G such that M(G, s) = {H} and b(G,G/H) = 2, then in some cases we can
determine the probability P2(G) precisely.

For example, let G = M23 and s ∈ G. If |s| 6= 23, then s is contained in a maximal
subgroup H with b(G,G/H) > 3. Now assume |s| = 23, in which case M(G, s) = {H} with
H = NG(〈s〉) = 23:11 and P2(G) = P (G, s, 2). Using Magma, we calculate that H has 159
regular orbits on G/H, so Lemma 2.4 yields

P2(G) =
159|H|2

|G|
=

13409

13440
> 0.997.

Remark 9.2. In Remarks 8.15 and 8.16, we briefly discussed some of the special difficulties
that arise when we try to determine if γu(G) = 2 for the classical groups in C. Here we
discuss the groups in T = {J3,He,Co1,HN}. For each G ∈ T , there exists at least one class
sG such that b(G,G/H) = 2 for all H ∈M(G, s). Indeed, the relevant classes are as follows:

J3 3B, 8A, 9A, 9B, 9C, 12A, 19A, 19B
He 7C, 7D, 7E, 21A, 21B
Co1 35A

HN 5C, 5D, 10D, 10E, 15B, 15C, 20D, 20E, 25A, 25B, 30B, 30C

However, Q̂(G, s, 2) > 1 in all cases, and we never haveM(G, s) = {H} with b(G,G/H) = 2.
Therefore, our methods are inconclusive and we have not been able to determine if γu(G) = 2
in these cases (in particular, we have been unable to apply computational methods to answer

this question). However, we can verify the bound Q̂(G, s, 3) < 1 for a suitable element s,
which implies that γu(G) ∈ {2, 3} (see [27, Theorem 4.2]).

Finally, let us remark that if G = Co1 and s is in 35A, then M(G, s) = {H,K,L1, L2}
where H = (A5 × J2):2, K = (A7 × L2(7)):2 and L1

∼= L2 = (A6 ×U3(3)):2.

We now turn to the proof of Theorem 10.

Proof of Theorem 10. Let G be a finite simple group such that γu(G) = 2 and G 6∈ C∪T . By
Lemma 2.7, the claims in parts (i) and (ii) are immediate consequences of Theorems 3(iv)

and 4(ii). Moreover, Theorem 9 implies that γ
(2)
u (G) = 3 unless G ∈ {A13,U5(2),Fi23} or

G = L2(q) with q > 11 and q ≡ 3 (mod 4). In the first three cases, we can verify the claim
in Magma by carrying out a random search.
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Now assume that G = L2(q) for q > 11 and q ≡ 3 (mod 4). Let s ∈ G be an element
of order (q + 1)/2. As noted in the proof of Proposition 7.4, we have M(G, s) = {H}
with H = Dq+1. By Lemma 2.8, it suffices to show that there exist α, β, γ ∈ G/H such
that {α, β}, {α, γ} and {β, γ} are bases for the action of G on G/H. To prove this, we
will identify G with PSU2(q) and G/H with the set Ω of orthogonal pairs of nondegenerate
1-dimensional subspaces of the natural module V for PSU2(q).

Fix an orthonormal basis {u, v} for V and write α = {〈u〉, 〈v〉}. Then

Ω = {α} ∪ {ωλ : λ ∈ F×
q2 and λq+1 6= −1},

where ωλ = {〈u + λv〉, 〈u − λ−qv〉}. Note that ωλ = ω−λ−q and the condition λq+1 6= −1
ensures that 〈u+ λv〉 6= 〈u− λ−qv〉. We claim that if λ ∈ F×

q2 and λq+1 6= −1, then {α, ωλ}
is a base if and only if λ is a nonsquare in Fq2 .

By Proposition 7.9(ii), H has exactly (q − 3)/4 regular orbits on Ω. Therefore, there are
exactly (q + 1)(q − 3)/4 points ω ∈ Ω such that {α, ω} is a base. Now, there are exactly
(q2− 1)/2− (q+ 1) = (q+ 1)(q− 3)/2 nonsquare λ ∈ F×

q2 such that λq+1 6= −1. Therefore, it

suffices to prove that {α, ωλ} is not a base if λ is a square. To this end, suppose that λ = κ2

for some κ ∈ F×
q2 and fix g = ĝZ(SU2(q)), where

ĝ =

(
0 κ1−q

−κq−1 0

)
,

with respect to the ordered basis (u, v). It is straightforward to check that g fixes α and ωλ,
which proves that {α, ωλ} is not a base, as claimed.

Now write F×
q2 = 〈µ〉, β = ωµ and γ = ω−µ. Since µ has multiplicative order q2−1, we see

that {α, β} and {α, γ} are bases. It now remains to prove that {β, γ} is a base. The norm
of u+µv is 1 +µq+1, which is in F×q , so there exists ν ∈ F×

q2 such that νq+1 = 1 +µq+1. Now

(νµ−1)q+1 = (1 + µq+1)µ−(q+1) = 1 + µ−(q+1), which is the norm of u− µ−qv, so {a, b} is an
orthonormal basis for V , where a = ν−1(u + µv) and b = ν−1µ(u − µ−qv). Moreover, it is
straightforward to check that

〈u− µv〉 = 〈a+ δb〉, 〈u− µ−qv〉 = 〈a− δ−qb〉
where δ = 2(µ−q − µ)−1. Therefore,

β = {〈a〉, 〈b〉}, γ = {〈a+ δb〉, 〈a− δ−qb〉}
and thus the argument in the previous paragraph implies that {β, γ} is a base if and only if

δ is a nonsquare. Since 2 is square and µ is nonsquare it remains to prove that µ−(q+1)−1 is
square. However, this follows immediately from the fact that µ−(q+1) − 1 ∈ F×q . Therefore,

{β, γ} is a base for G on Ω, which completes the proof that γ
(2)
u (G) = 3. �
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