
ON THE INVOLUTION FIXITY OF SIMPLE GROUPS

TIMOTHY C. BURNESS AND ELISA COVATO

Abstract. Let G be a finite permutation group of degree n and let ifix(G) be the involution
fixity of G, which is the maximum number of fixed points of an involution. In this paper we
study the involution fixity of almost simple primitive groups whose socle T is an alternating
or sporadic group; our main result classifies the groups of this form with ifix(T ) 6 n4/9.
This builds on earlier work of Burness and Thomas, who studied the case where T is an
exceptional group of Lie type, and it strengthens the bound ifix(T ) > n1/6 (with prescribed
exceptions), which was proved by Liebeck and Shalev in 2015. A similar result for classical
groups will be established in a sequel.

1. Introduction

Let G 6 Sym(Ω) be a permutation group on a finite set Ω. Let fix(g) be the number of
elements in Ω fixed by g ∈ G and set

fpr(g,Ω) =
fix(g)

|Ω|
,

which is called the fixed point ratio of g. This is a classical concept in permutation group
theory and bounds on fixed point ratios find a wide range of applications, especially in the
context of primitive groups. For instance, we refer the reader to the recent survey article [5]
for a discussion of some powerful applications concerning bases for permutation groups, the
random generation of simple groups and the structure of monodromy groups of coverings of
the Riemann sphere.

In this paper we study fix(g) in the setting where G is an almost simple primitive permu-
tation group and g ∈ G is an involution. We call

ifix(G) = max{fix(g) : g ∈ G is an involution}

the involution fixity of G and we are interested in comparing ifix(G) with the degree of G.
This is closely related to the more general concept of fixity, which is defined to be the maximal
number of points fixed by a non-identity element. The latter notion was originally introduced
by Ronse [21] in 1980 and there are more recent papers by Liebeck, Saxl and Shalev [17, 22]
on the fixity of primitive groups (also see [18], where the transitive groups with fixity at
most 2 are studied). Let us also highlight work of Bender [2] from the early 1970s, which
determines the finite transitive groups G with ifix(G) = 1.

Our main motivation stems from [17], where Liebeck and Shalev use the O’Nan-Scott
theorem to investigate the structure of the primitive groups of degree n with fixity at most
n1/6. Their main result for an almost simple group G with socle T shows that ifix(T ) > n1/6,
with specified exceptions (see [17, Theorem 4]). With a view towards applications, it is
desirable to strengthen this lower bound (at the expense of some additional exceptions). The
first step in this direction was taken by Burness and Thomas in [8], where the almost simple

groups with socle an exceptional group of Lie type T and ifix(T ) 6 n4/9 are determined. In
this paper, we extend the analysis in [8] to the almost simple groups with socle an alternating
or sporadic group. The remaining classical groups will be handled in a sequel, which will
complete our study of involution fixity for almost simple primitive groups.
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T H0 ifix(T ) n α Conditions
A5 S3 2 10 0.301

D10 2 6 0.386
A6 32:4 2 10 0.301

A5 2 6 0.386 G = A6 or S6

D10 4 36 0.386 G = M10, PGL2(9) or A6.2
2

S4 3 15 0.405 G = A6 or S6

D8 5 45 0.422 G = M10, PGL2(9) or A6.2
2

A7 L2(7) 3 15 0.405 G = A7

A9 32:SL2(3) 8 840 0.308
L2(8):3 8 120 0.434 G = A9

A10 M10 24 2520 0.405
A11 M11 24 2520 0.405 G = A11

J1 23:7:3 5 1045 0.231
11:10 12 1596 0.336
7:6 20 4180 0.359
19:6 20 1540 0.408
L2(11) 10 266 0.412

J2 A5 60 10080 0.444
J3 24:(3×A5) 50 17442 0.400

22+4:(3× S3) 85 43605 0.415
32.31+2:8 80 25840 0.431

McL 31+4:2S5 56 15400 0.417
He 72:2.L2(7) 64 244800 0.335
O′N 34:21+4D10 1064 17778376 0.417
Co1 52:2A5 3244032 1385925602181120 0.430
HN U3(8):3 800 16500000 0.402
Th 25.L5(2) 2169 283599225 0.394

72:(3× 2S4) 645120 12860819712000 0.443

Table 1. The cases with nα 6 ifix(T ) 6 n4/9 in Theorem 1(iv)

Our main result is the following. In the statement, S denotes the set of finite simple groups
that are either alternating or sporadic.

Theorem 1. Let G 6 Sym(Ω) be an almost simple primitive permutation group of degree n
with socle T ∈ S and point stabilizer H. Set H0 = H ∩ T . Then one of the following holds:

(i) ifix(T ) > n4/9.

(ii) H0 has odd order and ifix(T ) = 0.

(iii) (T, n) = (A5, 5) and ifix(T ) = 1.

(iv) nα 6 ifix(T ) 6 n4/9 and (T,H0, ifix(T ), n, α) is recorded in Table 1.

Remark 1. Let us make some comments on the statement of Theorem 1.

(a) The groups arising in part (ii) with |H0| odd are determined in [16, Theorem 2] (also
see [17, Lemma 2.1]). The possibilities are as follows:

T H0 Conditions
Ap AGL1(p) ∩ T p prime, p ≡ 3 (mod 4)

G = Sp if p = 7, 11, 23
J3, O′N 19:9, 31:15 (resp.) G = T.2
M23, Th, B 23:11, 31:15, 47:23 (resp.)

(b) The number α recorded in the fifth column of Table 1 is equal to log ifix(T )/ log n,
expressed to 3 significant figures.
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(c) The theorem reveals that there are only finitely many groups of the given form

with 1 6 ifix(T ) 6 n4/9. However, it is straightforward to show that there are

infinitely many with 1 6 ifix(T ) 6 n1/2. For example, we can take T = Ap and
H = AGL1(p) ∩G, where p is any prime with p ≡ 1 (mod 4) (see Remark 2.10).

(d) Theorem 1 already has an application in finite geometry. Indeed, we refer the reader to
[1, Section 6], where the result is used to study point-primitive generalized quadrangles.

By combining Theorem 1 with [8, Theorem 1], we get the following corollary.

Corollary 2. Let G 6 Sym(Ω) be an almost simple primitive permutation group of degree n
with socle T and point stabilizer H. Set H0 = H ∩ T and assume |H0| is even and T is not
isomorphic to a classical group. Then one of the following holds:

(i) ifix(T ) > n1/3.

(ii) (T, n) = (2B2(q), q
2 + 1) and ifix(T ) = 1.

(iii) (T,H0, ifix(T ), n) = (A9, 3
2:SL2(3), 8, 840) or (J1, 2

3:73:3, 5, 1045).

The proof of Theorem 1 is presented in Sections 2 and 3, where we handle the groups with
an alternating and sporadic socle, respectively. We freely employ computational methods,
using GAP [10] and Magma [3], when it is feasible to do so. In particular, the argument for
sporadic groups in Section 3 makes extensive use of the character tables (and associated fusion
maps) that are available in the GAP Character Table Library [4]. As one might expect, the
O’Nan-Scott theorem provides a framework for our proof when the socle T is an alternating
group. Indeed, this key result divides the possibilities for the point stabilizer H into several
families and we proceed by considering each family in turn.

The notation we use in this paper is fairly standard. We will write Cn, or just n, for a cyclic
group of order n and Gn denotes the direct product of n copies of G. An unspecified extension
of G by a group H will be denoted by G.H; if the extension splits then we write G:H. We
adopt the standard notation for simple groups of Lie type from [13], which differs slightly
from the notation in [9]. All logarithms are in the natural base, unless stated otherwise.

2. Symmetric and alternating groups

Let G 6 Sym(Ω) be an almost simple primitive permutation group of degree n with socle
T and point stabilizer H. Set H0 = H ∩ T and note that H is a maximal subgroup of G such
that G = HT . Then n = |T : H0| and

fix(t) =
|tT ∩H0|
|tT |

· n (1)

for all t ∈ T , where tT denotes the conjugacy class of t in T . We will adopt this notation for
the remainder of the paper.

In this section, we prove Theorem 1 for the groups with socle T = Am. Recall that if t ∈ T
is an involution with cycle-shape (2k, 1m−2k), then

|tT | = m!

k!(m− 2k)!2k
.

We begin by handling the groups with m 6 25.

Proposition 2.1. The conclusion to Theorem 1 holds if m 6 25.

Proof. This is a straightforward Magma [3] computation. First assume G = Am or Sm.
Working in the natural permutation representation of degree m, we use the function
MaximalSubgroups to construct a set of representatives of the conjugacy classes of maximal
subgroups H of G. Given an involution t ∈ T , we can then compute |tT ∩ H0| and |tT |,
which gives fix(t) via (1). We then obtain ifix(T ) by taking the maximum over a set of



4 TIMOTHY C. BURNESS AND ELISA COVATO

representatives of the conjugacy classes of involutions in T and the desired result quickly
follows. Finally, if T = A6 and G is one of PGL2(9), M10 or A6.2

2 then we can proceed in an
entirely similar manner, working with a permutation representation of G of degree 10. �

For the remainder of this section, we may assume G = Am or Sm with m > 25. Our aim is
to establish the bound ifix(T ) > n4/9.

The possibilities for H are described by the O’Nan-Scott theorem (see [14], for example),
which divides the maximal subgroups of G into the following families (in parts (e) and (f), S
denotes a non-abelian finite simple group):

(a) Intransitive: H = (Sk × Sm−k) ∩G, 1 6 k < m/2.

(b) Imprimitive: H = (Sk o Sr) ∩G, m = kr, 1 < k < m.

(c) Affine: H = AGLd(p) ∩G, m = pd, p prime, d > 1.

(d) Product-type: H = (Sk o Sr) ∩G, m = kr, k > 5, r > 2.

(e) Diagonal-type: H = (Sk.(Out(S)× Sk)) ∩G, m = |S|k−1, k > 2.

(f) Almost simple: S 6 H 6 Aut(S), m = |H : K| for some maximal subgroup K of H.

We will consider each family of subgroups in turn. Before we begin the analysis of case (a),
let us record some useful preliminary lemmas.

Lemma 2.2. Suppose |H0| is even, |H0| 6 |T |α and |tT | 6 |T |β for every involution t ∈ H0.

Then ifix(T ) > n4/9 if 5− 5α− 9β > 0.

Proof. Let t ∈ H0 be an involution. Then |tT ∩H0| > 1 and |tT | 6 |T |β , so fix(t) > n|T |−β and

thus ifix(T ) > n4/9 if n > |T |9β/5. The result now follows since n = |T : H0| > |T |1−α. �

Lemma 2.3. If T = Am and m > 20, then |tT | < |T |11/20 for every involution t ∈ T .

Proof. The groups with m 6 54 can be checked using Magma, so let us assume m > 55. Recall
that if G is a finite group and I(G) is the set of involutions in G, then |I(G)|2 < k(G) · |G|,
where k(G) is the number of conjugacy classes of G (see [12, Chapter 4], for example). As a
special case, we deduce that

|I(Sm)|2 < m!p(m),

where p(m) is the partition function, and thus it suffices to show that

211p(m)10 < m!. (2)

Indeed, if this inequality holds then |I(Sm)| < |T |11/20 and the desired bound follows.

By the main theorem of [19] we have p(m) < m−3/4ec
√
m, where c = π

√
2/3, so (2) holds

if f(m) > 1, where

f(m) :=
m15/2m!

211e10c
√
m
.

For m > 55 we have

f(m+ 1)

f(m)
=

(
1 + 1

m

)15/2
(m+ 1)

e10c(
√
m+1−

√
m)

>
m

6
> 1,

so f is an increasing function and the result follows since f(55) > 1. �

Lemma 2.4. Let T = Am with m > 20. If |H0| is even and |H0|100 < |T |, then ifix(T ) > n4/9.

Proof. This follows by combining Lemmas 2.2 and 2.3. �
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2.1. Intransitive subgroups. In this section we will assume H = (Sk × Sm−k) ∩ G is a
maximal intransitive subgroup of G, where 1 6 k < m/2. We may identify Ω with the set of
k-element subsets of {1, . . . ,m}. In particular, n =

(
m
k

)
.

Proposition 2.5. If m > 7, then ifix(T ) > n1/2.

Proof. We claim that fix(t) > n1/2, where t = (1, 2)(3, 4) ∈ T . If k = 1 then n = m,
fix(t) = m− 4 and the result follows. Now assume k > 2. Clearly, t fixes a k-set Γ if and only
if Γ ∩ {1, 2, 3, 4} is either empty, or one of {1, 2}, {3, 4} or {1, 2, 3, 4}. Therefore,

fix(t) =

(
m− 4

k

)
+ 2

(
m− 4

k − 2

)
+

(
m− 4

k − 4

)
where the final term is 0 if k = 2 or 3. The cases with m < 10 can be checked directly, so let
us assume m > 10. We claim that(

m− 4

k

)
+ 2

(
m− 4

k − 2

)
>

(
m

k

) 1
2

, (3)

which implies that fix(t) > n1/2.

To see this, we first express the binomial coefficients
(
m−4
k

)
and

(
m−4
k−2
)

in terms of
(
m
k

)
and

we deduce that it suffices to show that(
m

k

) 1
2
(

f(k)g(k)

m(m− 1)(m− 2)(m− 3)

)
> 1,

where f(k) = (m − k)(m − k − 1) and g(k) = 2k(k − 1) + (m − k − 2)(m − k − 3). Since
k 6 1

2(m− 1), we calculate that f(k) > 1
4(m2 − 1) and g(k) > 2

3m
2 − 4m+ 21

4 . In addition,

we have
(
m
k

)
>
(
m
2

)
and thus (3) holds if h(m) > 1, where

h(m) :=

(
m
2

) 1
2 (m+ 1)

(
2
3m

2 − 4m+ 21
4

)
4m(m− 2)(m− 3)

.

Now
h(m+ 1)

h(m)
=

(
m+ 1

m− 1

)1/2

· h1(m)

h2(m)

with

h1(m) = m(m+ 2)(m− 3)

(
2

3
m2 − 8

3
m+

23

12

)
= h2(m) +

11

2
m2 − 41

4
m+

21

4
> h2(m),

so h(m) is an increasing function and the result follows since h(10) > 1. �

2.2. Imprimitive subgroups. Next we turn to the imprimitive subgroups of the form
H = (Sk o Sr) ∩G, where m = kr and 1 < k < m. We identify Ω with the set of partitions of
{1, . . . ,m} into r subsets of size k. Note that

n = |Ω| = (kr)!

k!rr!
=: f(k, r).

Proposition 2.6. If m > 9, then ifix(T ) > n1/2.

Proof. We claim that fix(t) > n1/2 for t = (1, 2)(3, 4) ∈ T .

First assume k = 2, so r > 5. Clearly, t stabilizes a partition in Ω if and only if the
partition contains {1, 2} and {3, 4}, or {1, 3} and {2, 4}, or {1, 4} and {2, 3}. Therefore,
fix(t) = 3f(2, r − 2) and it suffices to show that g(r) > 1, where

g(r) :=
9f(2, r − 2)2

f(2, r)
.
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Now
g(r + 1)

g(r)
=

(2r − 3)2

2r + 1
> 1,

so g(r) is an increasing function and the result follows since g(5) > 1.

Now assume k > 3. A partition in Ω is fixed by t if and only if it has a part containing {1, 2}
and another containing {3, 4}, or k > 4 and it has a part containing {1, 2, 3, 4}. Therefore,

fix(t) =

(
m− 4

k − 2

)(
m− k − 2

k − 2

)
f(k, r − 2) +

(
m− 4

k − 4

)
f(k, r − 1)

and it suffices to show that

g(k, r) :=

(
kr − 4

k − 2

)2(kr − k − 2

k − 2

)2 f(k, r − 2)2

f(k, r)
> 1.

We claim that if k is fixed then g(k, r) is increasing as a function of r. To see this, first
observe that

g(k, r + 1)

g(k, r)
=

r

(r − 1)2

(
kr + k − 4

k

)
(m− 1)(m− 2)(m− 3)

(m+ k − 1)(m+ k − 2)(m+ k − 3)

and we have the bounds(
kr + k − 4

k

)
>

(
r + 1− 4

k

)k
>

(
r − 1

3

)k
and

(m− 1)(m− 2)(m− 3)

(m+ k − 1)(m+ k − 2)(m+ k − 3)
>

(
m− 3

m+ k − 3

)3

>

(
k

6
+ 1

)−3
since k > 3 and m > 9. It is routine to check that(

r − 1

3

)k
> (r − 1)

(
k

6
+ 1

)3

and this justifies the claim.

Therefore, for k > 4 we have

g(k, r) > g(k, 2) =

(
2k − 4

k − 2

)2 1

f(k, 2)

and
g(k + 1, 2)

g(k, 2)
=

2(2k − 3)2(k + 1)

(k − 1)2(2k + 1)
> 1,

so g(k, r) > g(4, 2) > 1. Similarly, if k = 3 then r > 3 and g(3, r) > g(3, 3) > 1. The result
follows. �

2.3. Affine subgroups. In this section we assume H = AGLd(p) ∩G and m = pd, where p
is a prime and d > 1. Note that

n = |Ω| > |T |
|AGLd(p)|

=
(pd − 1)!

2|GLd(p)|
.

Write AGLd(p) = V :L, where V = (Fp)d and L = GL(V ). Now AGLd(p) acts faithfully on
V by affine transformations (v, x) : u 7→ v + ux and this embeds AGLd(p) in Sm. Note that if
t = (v, x) ∈ AGLd(p) then t2 = 1 if and only if vx = −v and x2 = 1.

Definition 2.7. Fix a basis {e1, . . . , ed} for V . With respect to this basis, let us define
xk = [−Ik, Id−k] if p 6= 2 and xk = [Ak, Id−2k] if p = 2, where A = ( 0 1

1 0 ). In particular, if
p = 2 then 1 6 k 6 d/2 and xk is a block-diagonal matrix with k blocks equal to A. For
k > 1 set tk = (v, xk) ∈ AGLd(p), where v = e1 if p 6= 2, otherwise v = 0. Note that t is an
involution.
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Lemma 2.8. Let t = tk ∈ AGLd(p). Then t has cycle-shape (2p
d−k(pk−1)/2, 1p

d−k
) as an

element of Sm and we have |CAGLd(p)(t)| = pd−k|CGLd(p)(xk)|.

Proof. First consider the cycle-shape of t. Since t is an involution, it suffices to show that it
fixes exactly pd−k vectors in V . Suppose w =

∑
i aiei ∈ V is fixed by t.

First assume p 6= 2. Here w = wt = wxk + e1 and thus

d∑
i=1

aiei = (−a1 + 1)e1 +

k∑
i=2

(−ai)ei +

d∑
i=k+1

aiei,

so a1 = 1
2 and ai = 0 for 2 6 i 6 k. There are no conditions on the coefficients ai for i > k,

so t fixes precisely pd−k vectors and the result follows. Similarly, if p = 2 then w = wt = wxk

and
d∑
i=1

aiei =
k∑
i=1

(a2ie2i−1 + a2i−1e2i) +
d∑

i=2k+1

aiei,

which implies that a2i−1 = a2i for 1 6 i 6 k. Therefore t fixes 2k2d−2k = 2d−k vectors as
claimed.

Now let us consider the centralizer of t. Suppose p 6= 2 and (u, y) ∈ AGLd(p). Then (u, y)
centralizes t if and only if y ∈ CGLd(p)(xk) = GLk(p)×GLd−k(p) and u+ey1 = e1 +uxk . Given

y ∈ CGLd(p)(xk), a straightforward calculation shows that there are pd−k vectors u ∈ V such

that u+ ey1 = e1 + uxk and thus

|CAGLd(p)(t)| = pd−k|CGLd(p)(xk)| = pd−k|GLk(p)||GLd−k(p)|.

Similarly, if p = 2 then (u, y) ∈ AGLd(2) centralizes t if and only if y ∈ CGLd(2)(xk) and
uxk = u. Since the 1-eigenspace of xk on V is (d− k)-dimensional, we get

|CAGLd(2)(t)| = 2d−k|CGLd(2)(xk)| = 2d−k+2dk−3k2 |GLk(2)||GLd−2k(2)|

and the result follows. �

Proposition 2.9. If d = 1 then one of the following holds:

(i) p ≡ 3 (mod 4) and ifix(T ) = 0.

(ii) p = 5, n = 6 and ifix(T ) = 2.

(iii) p ≡ 1 (mod 4), p > 13 and ifix(T ) > n4/9.

Proof. First observe that H0 = p:12(p− 1) and n = (p− 2)!. In particular, if p ≡ 3 (mod 4)
then |H0| is odd and thus ifix(T ) = 0 as claimed. Now assume p ≡ 1 (mod 4). If p = 5 then
H0 = D10 and ifix(T ) = 2, so let us assume p > 13. Let t ∈ H0 be an involution. By applying
Lemma 2.8, noting that H0 has a unique conjugacy class of involutions, we deduce that

|tT ∩H0| = p, |tT | = p!

2(p−1)/2
(
1
2(p− 1)

)
!

and thus (1) gives

ifix(T ) = fix(t) =
2(p−1)/2

(
1
2(p− 1)

)
!

p− 1
. (4)

It follows that ifix(T ) > n4/9 if and only if f(p) > 1, where

f(p) :=
2(p−1)/2

(
1
2(p− 1)

)
!

(p− 1)(p− 2)!4/9
.

The result now follows since f(p+ 2) = (p− 1)5/9p−4/9f(p) > f(p) and f(13) > 1. �
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Remark 2.10. The proof of Proposition 2.9 reveals that there are infinitely many groups G
as in Theorem 1 with 1 6 ifix(T ) 6 n1/2. Indeed, if we take T = Ap and H = AGL1(p) ∩G,
where p is a prime such that p ≡ 1 (mod 4), then ifix(T ) is given in (4) and we deduce that

ifix(T ) > n1/2 if and only if g(p) > 1, where

g(p) :=
2(p−1)/2

(
1
2(p− 1)

)
!

(p− 1)(p− 2)!1/2
.

Since g(p + 2) <
(

p
p−1

)1/2
g(p + 2) = g(p) and g(5) < 1, it follows that ifix(T ) 6 n1/2 for

every prime p with p ≡ 1 (mod 4).

Proposition 2.11. If d > 2 then either ifix(T ) > n4/9 or (d, p, ifix(T ), n) = (2, 3, 8, 840).

Proof. First assume d = 2, so m = p2 and p is odd. If p = 3 or 5 then the result follows from
Proposition 2.1, so let us assume p > 7. As in Definition 2.7, set t = t2 = (e1, x2) ∈ H0. By
applying Lemma 2.8 we deduce that

|tT ∩H0| > |tH0 | = p2, |tT | = (p2)!

2(p2−1)/2(12(p2 − 1))!

and thus ifix(T ) > n4/9 if f(p) > 1, where

f(p) :=
2(p

2−1)/2p1/3
(
1
2(p2 − 1)

)
!

(p− 1)5/9(p2 − 1)5/9(p2)!4/9
.

We claim that f(p+ 2) > f(p). To see this, set k = (p2 + 4p+ 3)/2 and observe that

f(p+ 2)

f(p)
= α · 22p+1 k!

(k − 2p− 2)!

(
(2k − 4p− 3)!

(2k + 1)!

)4/9

where

α = 2

(
p− 1

p+ 1

)5/9(p+ 2

p

)1/3(p2 − 1

2k

)5/9

> 1.

By taking logarithms and using the bound − x
1−x < log(1− x) < −x for all 0 < x < 1, it is

straightforward to show that

abe
− b(b−1)

2(a−b) 6
a!

(a− b)!
6 abe−

b(b−1)
2a (5)

for all integers 1 6 b < a. This implies that

f(p+ 2)

f(p)
>

1

2
eβ
(

2k

(2k + 1)8/9

)2p+2

,

where

β =
4

9
· (4p+ 4)(4p+ 3)

4k + 2
− (2p+ 2)(2p+ 1)

2(k − 2p− 2)
.

One checks that this lower bound is minimal when p = 7, which gives f(p + 2) > f(p) as

claimed. Moreover, since f(7) > 1, we conclude that ifix(T ) > n4/9.

Now assume d > 3. If p = 2 and d 6 6, then a Magma calculation gives ifix(T ) > n4/9.
Similarly, one can check that the same conclusion holds if p = 3 and d 6 4. In order to
establish the desired bound in the remaining cases, set t = t2 ∈ H0 and note that t has

cycle-shape (2p
d−2(p2−1)/2, 1p

d−2
) by Lemma 2.8. Now |tT ∩H0| > 1 and |GLd(p)| < pd

2
, so

n > (pd)!p−d(d+1) and it follows that ifix(t) > n4/9 if g(d, p) > 1, where

g(d, p) :=

(
1
2p
d−2(p2 − 1)

)
!
(
pd−2

)
!2p

d−2(p2−1)/2

p5d(d+1)/9 (pd)!4/9
.
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If d is fixed, then by arguing as above one can show that g(d, p) is an increasing function
in p. Similarly, one checks that if p is fixed, then g(d, p) is increasing as a function of d (here
we are assuming that d > 7 if p = 2 and d > 5 if p = 3, which is valid in view of the above
remarks). Therefore, for p > 5 we have g(d, p) > g(3, 5) > 1. Similarly, if p = 3 and d > 5
then g(d, p) > g(5, 3) > 1 and for p = 2 with d > 7 we get g(d, p) > g(7, 2) > 1. We conclude

that ifix(T ) > n4/9 if d > 3 and the proof of the proposition is complete. �

2.4. Product-type subgroups. Now assume H is a product-type subgroup of G, so H =
(Sk o Sr) ∩ G and m = kr, where k > 5 and r > 2. Set Γ = {1, . . . , k} and note that the
embedding of H in G arises from the product action of H on the Cartesian product Γr. That
is, for every (x1, . . . , xr)σ ∈ H and (γ1, . . . , γr) ∈ Γr we have

(γ1, . . . , γr)
(x1,...,xr)σ = (γx11 , . . . , γxrr )σ =

(
γ
x
1σ

−1

1σ−1 , . . . , γ
x
rσ

−1

rσ−1

)
.

In particular, let us observe that

n >
(kr)!

2(k!)rr!
.

Proposition 2.12. If H is a product-type subgroup of G, then ifix(T ) > n4/9.

Proof. Fix the involution t = (t1, 1, . . . , 1) ∈ (Ak)
r < H0, where t1 = (1, 2)(3, 4) ∈ Ak. By

considering the action of H on Γr, it is easy to see that t has exactly (k− 4)kr−1 fixed points

and so it has cycle-shape (22k
r−1
, 1(k−4)k

r−1
) as an element of T . Therefore,

|tT | = (kr)!

22kr−1(2kr−1)!((k − 4)kr−1)!

and using the trivial bound |tT ∩H0| > 1 we deduce that fix(t) > n4/9 if f(k, r) > 1, where

f(k, r) :=
218k

r−1−5(2kr−1)!9((k − 4)kr−1)!9

(kr)!4(k!)5r(r!)5
.

A routine calculation shows that if k is fixed, then f(k, r) is an increasing function in r, so
we may assume r = 2. If k = 5 then m = 25 and so this case was handled in Proposition 2.1.
Similarly, if k = 6 then an easy Magma computation shows that ifix(T ) > n4/9. Finally, if
k > 7 then

f(k + 1, 2)

f(k, 2)
= 227

(2k + 1)9

k + 1

(
(k2)!

(k2 + 2k + 1)!

)4(
(k2 − 2k − 3)!

(k2 − 4k)!

)9

and by applying the bounds in (5) it is straightforward to show that this ratio is greater than 1.
In particular, f(k, 2) is an increasing function in k and the result follows since f(7, 2) > 1. �

2.5. Diagonal-type subgroups. Here H = (Sk.(Out(S)×Sk))∩G and m = |S|k−1, where
k > 2 and S is a non-abelian finite simple group. The embedding of H in G is afforded by a
natural (faithful) action of H on the set of cosets of the diagonal subgroup {(s, . . . , s) : s ∈ S}
of Sk.

Proposition 2.13. If H is a diagonal-type subgroup of G, then ifix(T ) > n4/9.

Proof. First assume m < 200, so k = 2 and S is isomorphic to A5 or L2(7). In both cases, we
can use the database of primitive groups in Magma to construct H as a subgroup of Sm
and then it is a routine computation to check that 5− 5α− 9β > 0 for constants α and β
such that |H0| 6 |T |α and |tT | 6 |T |β for every involution t ∈ H0. Therefore, ifix(T ) > n4/9

by Lemma 2.2.

For the remainder, we may assume m > 200. We claim that |H0|100 < |T | and thus

ifix(T ) > n4/9 by Lemma 2.4. To see this, let us first observe that |Out(S)| 6 |S|/30 by [20,
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Lemma 2.2], so |H0| 6 1
30`

k+1k! where ` = |S|. It follows that |H0|100 < |T | if f(k, `) > 1,
where

f(k, `) :=
1

2

(
30

`k+1k!

)100

(`k−1)!

If k = 2 then m = ` and the condition m > 200 implies that ` > 360 since A6 is the
smallest non-abelian simple group with order at least 200 (up to isomorphism). For ` > 360
we have

f(2, `+ 1)

f(2, `)
=

(
`

`+ 1

)300

(`+ 1) > 1,

so f(2, `) is increasing as a function of ` and we have f(2, 360) > 1. Similarly, if k > 3 then
` > 60 and f(k, `) is an increasing function in both k and `. The result now follows since
f(3, 60) > 1. �

2.6. Almost simple subgroups. To complete the proof of Theorem 1 for symmetric and
alternating groups, we may assume that T = Am with m > 25 and H is an almost simple
subgroup acting primitively on Γ = {1, . . . ,m}. We will write S to denote the socle of H
(note that S 6= T since H is a core-free subgroup of G).

First we handle the low degree groups with m 6 600.

Proposition 2.14. If 25 < m 6 600 then ifix(T ) > n4/9.

Proof. To construct H as a subgroup of G we use the database of primitive groups in Magma,
via the command

PrimitiveGroups([26..600] : Filter:="AlmostSimple").

Once we have removed the groups with S = T , we are left with 766 cases to consider. Define

α(J) = max

{
|tJ |
|tT |

: t ∈ J is an involution

}
for each subgroup J of H0. Given a specific subgroup J , we can compute α(J) by finding a set
of representatives for the conjugacy classes of involutions in J and then for each representative
t we compute the number of fixed points of t on {1, . . . ,m}, which allows us to calculate |tT |.
Note that ifix(T ) > α(J)n.

For m 6 60 it is easy to check that α(H0) > n−5/9 and thus ifix(T ) > n4/9. Similarly, if

60 < m 6 600 and P is a Sylow 2-subgroup of H0, then α(P ) > n−5/9 and the result follows
(this approach avoids the problem of computing a set of conjugacy class representatives in
H0, which can be expensive in terms of time and memory). �

For the remainder, we may assume m > 600. Our basic aim is to establish the bound

|H0|100 < |T | (6)

whenever possible, noting that this gives ifix(T ) > n4/9 via Lemma 2.4. To do this, it will be
convenient to make a distinction between the cases where H is standard or non-standard,
according to the following definition.

Definition 2.15. Let H 6 Sym(Γ) be an almost simple primitive group with socle S and
point stabilizer K. Then H is standard if one of the following holds:

(i) S = Ak is an alternating group and Γ is a set of subsets or partitions of {1, . . . , k}.
(ii) S is a classical group with natural module V and Γ is a set of subspaces (or pairs of

subspaces) of V .

(iii) S = Sp2d(q), q is even and K ∩ S = O±2d(q).

In all other cases, H is non-standard.
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This definition facilitates the statement of the following key result of Liebeck and Saxl
(see [15, Proposition 2]).

Proposition 2.16. Let H 6 Sym(Γ) be a non-standard almost simple primitive group of
degree m > 25. Then |H| < m5.

With this proposition in hand, we can very quickly reduce the problem to the groups where
H is standard.

Proposition 2.17. If m > 600 and H is non-standard, then ifix(T ) > n4/9.

Proof. Here |H| < m5 by Proposition 2.16 and one can check that 2m500 < m! (since
m > 600). Therefore (6) holds and the result follows. �

Proposition 2.18. If m > 600, H is standard and S is alternating, then ifix(T ) > n4/9.

Proof. Write S = Ak and first assume that the embedding of H in G is afforded by the action
of H on the set of `-element subsets of {1, . . . , k}, so m =

(
k
`

)
and 2 6 ` < k/2. Note that

k > 12 since m > 600. Now m >
(
k
2

)
= 1

2k(k − 1) and it is straightforward to check that

|H0|100 6 (k!)100 <
1

2

(
1

2
k(k − 1)

)
! 6 |T |

for all k > 98. Similarly, if k 6 97 and ` > 3 then m >
(
k
3

)
and one checks that (6) holds, so

we may assume that ` = 2, 36 6 k 6 97 and m = 1
2k(k − 1). Here we compute

α =
log k!

log |T |
, β =

log γ

log |T |
, (7)

where

γ = max

{
m!

22j(2j)!(m− 4j)!
: 1 6 j 6 m/4

}
is the size of the largest conjugacy class of involutions in T . One checks that 5− 5α− 9β > 0
in each case, whence ifix(T ) > n4/9 by Lemma 2.2.

Now assume that the embedding of H corresponds to the action on the set of partitions
of {1, . . . , k} into r subsets of size `, where 1 < ` < k. Here m = k!

(`!)rr! and the condition

m > 600 implies that k > 10. It is easy to check that m >
(
k
4

)
and by arguing as in the

previous paragraph we deduce that (6) holds if k > 12. The same bound also holds when
k = 10 since r = 5, ` = 2 and m = 945. �

In order to complete the proof of Theorem 1 for T = Am we may assume that m > 600
and H is an almost simple classical group over Fq with socle S. Let V be the natural module
for S and set ` = dimV . In view of Proposition 2.17, we may also assume that H 6 Sym(Γ)
is a standard group, which means that Γ is either a set of subspaces (or pairs of subspaces) of
V , or S = Sp`(q), q is even and Γ is the set of cosets of a subgroup O±` (q) of S (see Definition
2.15). Let K be a point stabilizer for the action of H on Γ, so m = |H : K|.

Remark 2.19. Due to the existence of a number of exceptional isomorphisms among the
low dimensional classical groups, we may assume that S is one of the following:

L`(q), ` > 2; U`(q), ` > 3; PSp`(q), ` > 4; PΩε
`(q), ` > 7.

In addition, in view of the isomorphisms

L2(4) ∼= L2(5) ∼= A5, L2(9) ∼= PSp4(2)′ ∼= A6, L3(2) ∼= L2(7), L4(2) ∼= A8, PSp4(3) ∼= U4(2)

(see [13, Proposition 2.9.1]), we may assume that

S 6= L2(4), L2(5), L2(9), L3(2), L4(2), PSp4(2)′, PSp4(3).

Proposition 2.20. If m > 600, H is standard and S is classical, then ifix(T ) > n4/9.
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Proof. We adopt the set-up introduced above, including the conditions on S presented
in Remark 2.19. Write q = pf , where p is a prime. We will prove that (6) holds unless
(H,m) = (L10(2), 210 − 1).

Since m = |S : S ∩K| it follows that m > P (S), where P (S) is the minimal degree of a
nontrivial permutation representation of S. The minimal degrees are presented in [11, Table
4] (which corrects a couple of slight errors in [13, Table 5.2.A]) and by inspection we deduce
that m > q`−2. Similarly, the order of Aut(S) is recorded in [13, Table 5.1.A] and it is easy

to see that |H| 6 |Aut(S)| < 2q`
2
.

If S = L2(q) then m > max{600, q}, |H| 6 q(q2 − 1) logp q and it is routine to verify the

bound in (6). Similarly, if ` = 3 then S = Lε3(q), m > max{600, q2 + q},
|H| 6 |Aut(U3(q))| = 2q3(q2 − 1)(q3 + 1) logp q

and we quickly deduce that (6) holds.

Now assume ` > 4. If q > 31 then one checks that

2101q100`
2
< (q`−2)! (8)

and this establishes the bound in (6). More precisely, if ` > 5 then the inequality in (8) is
satisfied unless (`, q) is one of the following:

` = 5, q 6 9; ` = 6, q 6 5; ` = 7, q 6 4; ` = 8, q 6 3; ` = 9, 10, 11, 12, q = 2. (9)

Suppose ` = 4 and q 6 29. If S = PSp4(q) then q > 4 (see Remark 2.19), m > max{600, q2}
and

|H| 6 |Aut(PSp4(q))| 6 2q4(q2 − 1)(q4 − 1) logp q,

which implies that (6) holds. Now assume S = Lε4(q), so

|H| 6 |Aut(U4(q))| 6 2q6(q2 − 1)(q3 + 1)(q4 − 1) logp q.

If m > max{600, q4} then (6) holds, so let us assume 600 < m 6 q4. By inspecting [6, Table
4.1.2], which records the degree of every standard classical group, we deduce that S = L4(q)
and m = (q4 − 1)/(q − 1) is the only possibility, so q > 9 and we get |Aut(S)|100 < |T |.

Very similar reasoning establishes the bound in (6) for all the remaining cases in (9) with
` 6 9, so to complete the proof we may assume that ` ∈ {10, 11, 12} and q = 2. If ` ∈ {11, 12}
and S = Lε`(2) then m > 2` − 1 and we deduce that (6) holds. Similarly, if ` = 12 and
S 6= Lε12(2) then the bound m > 210 is sufficient. Finally, let us assume ` = 10. If S 6= Lε10(2)
then |H| 6 |Sp10(2)| and one checks that the condition m > 600 implies that m > 210 − 1,
which allows us to verify the bound in (6). Now assume S = Lε10(2), so |H| 6 2|U10(2)|.
If m > 211 then |H|100 < |T |, so let us assume m 6 211, in which case H = L10(2) and
m = 210 − 1 (so Γ is the set 1-dimensional subspaces of V ). Here |H|100 > |T |, but if we
define α = log |H|/ log |T | and β as in (7), then it is easy to check that 5− 5α− 9β > 0 and

thus ifix(T ) > n4/9 by Lemma 2.2. �

3. Sporadic groups

In this final section we complete the proof of Theorem 1 by handling the groups with socle
a sporadic simple group. Our first result quickly reduces the problem to the Baby Monster
and Monster (denoted by B and M, respectively).

Proposition 3.1. The conclusion to Theorem 1 holds if T 6= B,M is a sporadic group.

Proof. This is an easy computation using the GAP Character Table Library [4]. In each
case, the character table of G is available in [4] and we use the Maxes function to access
the character table of the maximal subgroup H. In addition, [4] stores the fusion map from
H-classes to G-classes, which allows us to compute fix(t) via (1) for all t ∈ G. In particular,
we can compute ifix(T ) precisely and the result follows. �
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To complete the proof of Theorem 1, we may assume that T = B or M. In both cases, we
claim that ifix(T ) > n4/9.

Proposition 3.2. The conclusion to Theorem 1 holds if T = B.

Proof. Here G = T is the Baby Monster and we proceed as in the proof of the previous
proposition, noting that the character tables of G and H are available in [4] (as before, we
use the Maxes function to access the character table of H). In addition, in all but one case,
the fusion map from H-classes to G-classes is also stored and this reduces the analysis to the
case H = (22 × F4(2)).2. Here we use the function PossibleClassFusions to determine a
set of candidate fusion maps (there are 64 such maps in total) and for each possibility one

checks that ifix(T ) = 1609085288448 > n4/9. �

Proposition 3.3. The conclusion to Theorem 1 holds if T = M.

Proof. Let G = T = M be the Monster. By inspecting the Atlas [9], we see that G has two
conjugacy classes of involutions, labelled 2A and 2B, where

|2A| = 97239461142009186000, |2B| = 5791748068511982636944259375.

As discussed in [23], G has 44 known conjugacy classes of maximal subgroups and any
additional maximal subgroup is almost simple with socle one of L2(8), L2(13), L2(16) or
U3(4). Let us define the following three collections of known maximal subgroups of G:

A = {210+16.Ω+
10(2), 22+11+22.(M24 × S3), 25+10+20.(S3 × L5(2)), 23+6+12+18.(L3(2)× 3S6)}

B = {38.PΩ−8 (3).2, (32:2× PΩ+
8 (3)).S4, 3

2+5+10.(M11 × 2S4), 3
3+2+6+6.(L3(3)× SD16)}

C = {(L2(11)× L2(11)):4, 112:(5× 2A5), 7
2:SL2(7),L2(29):2,L2(19):2}

First assume H belongs to one of the 44 known classes of maximal subgroups. If H is
not contained in A, B or C, then we use the function NamesOfFusionSources to access the
character table of H in GAP and in each case we can work with the stored fusion map from
H-classes to G-classes. This allows us to compute ifix(T ) as in the proof of Proposition 3.1
and it is straightforward to verify the desired bound.

Now assume H is one of the subgroups in C. Here the character table of H is available
in GAP, but the fusion map is not stored. So in these cases we proceed as in the proof of
Proposition 3.2, using the function PossibleClassFusions. In each case, we find that ifix(T )

is independent of the choice of fusion map and we calculate that ifix(T ) > n4/9.

Next suppose H ∈ A ∪ B. If H ∈ A then [7, Proposition 3.9] gives |tG ∩H|, where t is
contained in the 2A class of involutions in G. This allows us to compute fix(t) precisely and we

deduce that ifix(T ) > n4/9. Now assume H ∈ B and let α be the size of the largest conjugacy
class of involutions in H. We use Magma to compute α, working with a representation of H
given in [24]. For H = 38.PΩ−8 (3).2, this is a matrix representation of dimension 204 over F3

and we use LMGClasses to compute a set of conjugacy class representatives; in the remaining
cases, we work with a permutation representation of degree less than 105. Now, if β is the
size of the 2B class of involutions in G (see above), then ifix(T ) > nαβ−1 and in each case it

is easy to check that this lower bound is greater than n4/9. For example, if H = 38.PΩ−8 (3).2

then α = 1982806371 and the above bound yields ifix(T ) > n4/9.

To complete the proof of the proposition, we may assume H is an almost simple maximal
subgroup with socle S = L2(8), L2(13), L2(16) or U3(4). Let α be the size of the largest class
of involutions in S and define β = |2B| as above. Then one checks that(

|T |
|Aut(S)|

)5/9

>
β

α

and since H 6 Aut(S), we immediately deduce that ifix(T ) > n4/9 as required. �
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This completes the proof of Theorem 1.
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