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OF A SIMPLE GROUP
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Abstract. Let S be a nonabelian finite simple group and let n be an integer such
that the direct product Sn is 2-generated. Let Γ(Sn) be the generating graph of Sn

and let Γn(S) be the graph obtained from Γ(Sn) by removing all isolated vertices. A
recent result of Crestani and Lucchini states that Γn(S) is connected, and in this note we
investigate its diameter. A deep theorem of Breuer, Guralnick and Kantor implies that
diam(Γ1(S)) = 2, and we define ∆(S) to be the maximal n such that diam(Γn(S)) = 2.
We prove that ∆(S) ≥ 2 for all S, which is best possible since ∆(A5) = 2, and we show
that ∆(S) tends to infinity as |S| tends to infinity. Explicit upper and lower bounds are
established for direct powers of alternating groups.

1. Introduction

Let G be a finite group that can be generated by two elements and let Γ(G) be the
generating graph of G; the vertices are the nontrivial elements of G, and two vertices are
joined by an edge if and only if they generate G. This fascinating graph encodes many
familiar generating properties. For example, G is said to be 3

2 -generated if every nontrivial
element of G belongs to a generating pair; this is equivalent to the non-existence of isolated
vertices in Γ(G). More generally, G has spread at least k if for any k nontrivial elements
x1, . . . , xk ∈ G, there exists y ∈ G such that G = 〈xi, y〉 for all i (this notion was introduced
by Brenner and Wiegold [3] in the 1970s). Visibly, G has spread at least 2 if and only
if Γ(G) is connected with diameter 2. Moreover, the graph-theoretic viewpoint suggests
many new and natural questions. For instance, one can investigate the connectedness of
Γ(G) (and subsequently its diameter), its (co-)clique and chromatic numbers, the existence
of a Hamiltonian cycle in Γ(G), and so on.

Let S be a nonabelian finite simple group. It is well known that S can be generated
by two elements, and there is a vast literature in this area. Indeed, many stronger results
have been established in recent years. For example, a theorem of Guralnick and Kantor
[17] states that S is 3

2 -generated (confirming a conjecture of Steinberg [28]), and a more
recent result of the same authors (with Breuer) reveals that S has spread at least 2 (see
[5]). In particular, it follows that the generating graph Γ(S) has diameter 2. The clique
number ω(S) of Γ(S) (that is, the size of the largest complete subgraph) has also been
investigated by several authors. In [22], Liebeck and Shalev prove that there is an absolute
constant c > 0 such that ω(S) ≥ c · m(S) for any S, where m(S) is the minimal index
of a proper subgroup of S. In [1], Blackburn shows that if n is a sufficiently large even
integer which is indivisible by 4 then ω(An) = 2n−2 (and he also proves that this coincides
with the chromatic number of Γ(An)); see [7, 23] for related results. Another recent result
reveals that Γ(S) contains a Hamiltonian cycle if |S| is sufficiently large (see [6]).
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Let Sn denote the direct product of n copies of S, and let δ(S) be the largest positive
integer n such that Sn is 2-generated. A formula of Philip Hall [18] states that

δ(S) =
φ2(S)

|Aut(S)|
where φ2(S) denotes the number of ordered pairs (x, y) such that S = 〈x, y〉. In particular,
δ(S) = P(S)|S|/|Out(S)| where P(S) is the probability that two randomly chosen elements
generate S. For example, δ(A5) = 19. By a striking theorem of Liebeck and Shalev [21]
(see also [13, 19]), P(S) tends to 1 as |S| tends to infinity, whence δ(S) also tends to
infinity.

Let n ≤ δ(S) be a positive integer and consider the generating graph Γ(Sn). If n ≥ 2
then this graph contains isolated vertices, so following [11] we define Γn(S) to be the graph
obtained from Γ(Sn) by removing all the isolated vertices. By [11, Theorem 1.1], Γn(S) is
connected, so it is natural to consider its diameter diam(Γn(S)). Clearly, if n < δ(S) then
diam(Γn(S)) ≤ diam(Γn+1(S)), and [11, Theorem 1.2] states that diam(Γn(S)) ≤ 4n− 2.
In addition, we note that there are examples where the diameter of Γδ(S)(S) can be
arbitrarily large. Indeed, [11, Theorem 1.3] states that if S = SL2(2

p), where p is a
prime, then diam(Γδ(S)(S)) ≥ 2p−2 − 1 if p is sufficiently large.

We define
∆(S) = max{n : diam(Γn(S)) = 2}. (1)

Note that diam(Γ1(S)) = diam(Γ(S)) = 2 by the aforementioned theorem of Breuer,
Guralnick and Kantor [5, Theorem 1.1], so ∆(S) ≥ 1. Our main result is the following:

Theorem 1. Let S be a nonabelian finite simple group. Then diam(Γ2(S)) = 2, so
∆(S) ≥ 2. Moreover, ∆(S) tends to infinity as |S| tends to infinity.

In Proposition 3.8 we show that ∆(A5) = 2, so the lower bound ∆(S) ≥ 2 in Theorem
1 is best possible. The next theorem provides explicit bounds on ∆(S) when S is an
alternating group.

Theorem 2. Let S = An be the alternating group of degree n ≥ 5.

(i) If n is odd then

1

18
(n2 − 3n+ 2) ≤ ∆(S) ≤ 1

2
(n2 − 5n+ 8).

(ii) If n is even then

n(n− 1)(n− 2)

18(n2/4− 1)
≤ ∆(S) ≤ 1

2
(n2 − 5n+ 6).

Remark 1. Note that the lower bound in part (ii) of Theorem 2 is linear in n. We refer
the reader to Proposition 3.11 for a quadratic lower bound in the special case where n = 2p
with p an odd prime. It would be interesting to know whether or not a quadratic lower
bound exists for all even n.

As one might expect, it appears to be much more difficult to obtain explicit bounds
when S is a simple group of Lie type. However, the proof of Theorem 1 does provide the
following lower bound on ∆(S). (Here r denotes the untwisted Lie rank of S, which is the
rank of the ambient simple algebraic group.)

Theorem 3. There exists an absolute constant c such that if S is a finite simple group of
Lie type of rank r over Fq, where q = pf with p a prime, then either S = Sp2r(2), or

∆(S) ≥ cf−1qr.

Remark 2. Let us make some remarks on the statement of Theorem 3:
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(i) The proof of Theorem 1 shows that we can take c = 1/100 for the constant.

(ii) The family of symplectic groups over the field of two elements is an anomaly.
Indeed, it is well known that this family of groups has some unique generation
properties. For example, this is the only infinite family of simple groups with exact
spread two (the only other examples are A5, A6 and Ω+

8 (2)) – see [5, Corollary
1.3]. The proof of Proposition 5.5 shows that

∆(Sp2r(2)) ≥ 1

2r
φ(2r + 1),

where φ is the Euler totient function.

(iii) It is difficult to determine the accuracy of the lower bound in Theorem 3, but it
is clear that better bounds hold in certain cases. For example, if S = E8(q) our
proof yields ∆(S) ≥ cf−1q50 for some constant c (see Remark 5.3 for comments
on the case where S is a classical group). Deriving good upper bounds on ∆(S)
when S is a group of Lie type appears to be a difficult problem.

2. Preliminaries

2.1. Uniform spread. Let G be a finite group and let X be a subset of G. We say that
X has the uniform spread two (UST) property if for any two nontrivial elements a, b ∈ G
there exists an x ∈ X such that G = 〈a, x〉 = 〈b, x〉. The main theorem of [5] states that if
S is a nonabelian finite simple group then there is at least one conjugacy class in S with
the UST property. The basic idea is to choose an element z ∈ S so that the set M(z) of
maximal subgroups of S containing z is small and can be determined. As explained in [5,
Section 2], the class C = zS has the UST property if∑

H∈M(z)

fpr(x, S/H) <
1

2

for all elements x ∈ S of prime order, where

fpr(x, S/H) =
|xS ∩H|
|xS |

(2)

denotes the fixed point ratio of x in its natural action on the set of right cosets S/H.
In this way, upper bounds on fixed point ratios play an essential role in the proof of [5,
Theorem 1.1].

For the remainder of this preliminary section, let S be a nonabelian finite simple group
with automorphism group A = Aut(S). Define the integer ∆(S) as in (1).

Proposition 2.1. Let C1, . . . , Ct be distinct A-classes in S with the UST property. Then
∆(S) ≥ t.

Proof. This is entirely straightforward. Let x = (x1, . . . , xt) and y = (y1, . . . , yt) be
distinct vertices in the graph Γt(S). Then each xi, yi is nontrivial, so there exists zi ∈ Ci
such that S = 〈xi, zi〉 = 〈yi, zi〉. Set z = (z1, . . . , zt) ∈ St and consider L = 〈x, z〉. By
construction, πi(L) = S for all i, where πi denotes the i-th projection map. Moreover, L
is not contained in a diagonal subgroup of St since zi and zj are not A-conjugate, for all
i 6= j. Therefore L = St. Similarly, 〈y, z〉 = St and the result follows. �

Let X be a subset of S and let S# be the set of nontrivial elements in S. For a, b ∈ S#

we define

η(X, a, b) =
|x ∈ X : S = 〈a, x〉 = 〈b, x〉}|

|X|
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and
η(X) = min{η(X, a, b) : a, b ∈ S#}. (3)

Then X has the UST property if and only if η(X) > 0. By [5, Theorem 1.1], with the
exception of a short list of known cases, there exists an S-class C = zS with η(C) ≥ 1/3.
Note that if C ′ = zA then C ′ has the UST property and η(C ′) = η(C).

The next result plays a key role in the proof of our main theorems.

Proposition 2.2. Let Ci = zAi , 1 ≤ i ≤ t, be distinct A-classes in S with the UST
property. For each i, set fi = η(Ci) and let ki be a positive integer such that

fi|Ci| − 2(ki − 1)α(S) > 0 (4)

where α(S) = max{|CA(x)| : x ∈ S#}. Then ∆(S) ≥
∑

i ki.

Proof. We may assume t = 1. Set C = C1, z = z1, f = f1 and k = k1. It suffices to prove
the following claim:

Claim. If k satisfies (4) then any two vertices in Γk(S) are connected to a vertex of the
form (u1, . . . , uk) ∈ Γk(S), with ui ∈ C for all i.

We proceed by induction on k. Since C has the UST property and Γ1(S) = Γ(S), the
claim holds when k = 1. Now assume k > 1, and let (x1, . . . , xk) and (y1, . . . , yk) be
vertices in Γk(S). By induction, the vertices (x1, . . . , xk−1) and (y1, . . . , yk−1) in Γk−1(S)
are connected to a vertex (u1, . . . , uk−1), where ui ∈ C for all i. In particular, the following
conditions hold:

(i) S = 〈xi, ui〉 = 〈yi, ui〉 for all 1 ≤ i ≤ k − 1;

(ii) For all distinct i, j ∈ {1, . . . , k − 1}, the pairs (xi, ui) and (xj , uj) in S2 are not
A-conjugate, and nor are the pairs (yi, ui) and (yj , uj).

By definition, there are at least f |C| elements u ∈ C such that S = 〈xk, u〉 = 〈yk, u〉.
Fix i < k and suppose (xi, ui) is A-conjugate to (xk, u) for some u ∈ C. Then xk = xai
for some a ∈ A and we deduce that there are precisely |CA(xi)| elements u ∈ C with this
property. Similarly, if yi and yk are A-conjugate then there are exactly |CA(yi)| elements
u ∈ C such that (yi, ui) is A-conjugate to (yk, u). It follows that there are at least

f |C| −
k−1∑
i=1

(|CA(xi)|+ |CA(yi)|) ≥ f |C| − 2(k − 1)α(S)

choices for u ∈ C such that (u1, . . . , uk−1, u) is connected to (x1, . . . , xk) and (y1, . . . , yk).
The result now follows since our choice of k ensures that f |C| − 2(k − 1)α(S) > 0. �

2.2. Computational methods. Let S be a nonabelian finite simple group. In some
specific cases (see Proposition 2.3, for example) we can use Magma [2] to find S-classes
with the UST property. Here we briefly outline our methodology.

First some notation. Let z be a nontrivial element of S and set C = zS . Our aim is to
determine whether or not C has the UST property. As above, let M(z) denote the set of
maximal subgroups of S containing z. For H ∈ M(z) and x ∈ S let fpr(x, S/H) be the
fixed point ratio of x (see (2)), and let P(x, z) be the probability that x and a randomly
chosen element of C do not generate S. Note that

P(x, z) ≤
∑

H∈M(z)

fpr(x, S/H) =: σ(x, z). (5)

We start with the standard permutation representation of S used by Magma (so for
example, if S = PSLn(q) then this representation has degree (qn − 1)/(q − 1)). Using
the commands MaximalSubgroups and ConjugacyClasses, we can determine the maximal
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subgroups of S which contain a conjugate of z; if H is such a subgroup then we can
compute the fixed point ratio fpr(z, S/H) = |zS ∩H|/|zS |, and we note that z belongs to
exactly |S : H| · fpr(z, S/H) distinct S-conjugates of H. In this way we can determine the
subgroups in M(z), and we can subsequently compute σ(x, z) for any x ∈ S.

Now, if x1, x2 ∈ S and σ(xi, z) < 1/2 for i = 1, 2 then (5) implies that P(xi, z) < 1/2,
so there is some element z ∈ C such that S = 〈x1, z〉 = 〈x2, z〉. As previously remarked, if
σ(x, z) < 1/2 for all nontrivial x ∈ S (equivalently, for all x ∈ S of prime order), then C
has the UST property and we are done. So let us assume that there are some nontrivial S-
classes Ci = xSi , 1 ≤ i ≤ k, with σ(xi, z) ≥ 1/2. For each xi we compute P(xi, z) as follows
(see Breuer’s notes [4, p.14]). First, we construct a set of (CS(z), CS(xi))-double coset
representatives. If r ∈ S is a representative then 〈xi, zsrt〉 = 〈xi, zr〉t for all s ∈ CS(z),
t ∈ CS(xi), so we only need to test (non)generation for representatives. More precisely, if
r1, . . . , r` are the representatives with S 6= 〈xi, zrj 〉 then

P(xi, z) = |S|−1
∑̀
j=1

|CS(z)rjCS(xi)|.

Subsequently, we define m = max{P(xi, z) : 1 ≤ i ≤ k}.
As before, if m < 1/2 then C has the UST property, so let us assume m ≥ 1/2. Note

that P(x, z) ≤ m for all x ∈ S#. Of course, if m = 1 then there exists x ∈ S# such
that S 6= 〈x, z〉 for all z ∈ C, so in this situation C does not have the UST property.
Suppose m < 1 and let y1, y2 ∈ S be nontrivial elements such that σ(y1, z) < 1−m. Then
P(y1, z) < 1−m and P(y2, z) ≤ m, so there exists an element z ∈ C such that S = 〈yi, z〉
for i = 1, 2. Therefore, it remains to consider the conjugacy classes Ci = xSi , 1 ≤ i ≤ v,
such that σ(xi, z) ≥ 1 − m. Fix i, j such that 1 ≤ i ≤ j ≤ v, and let {y1, . . . , yt} be a
set of representatives of the CS(xi)-orbits on Cj . For each ys we have to decide if there
exists an element g ∈ S such that S = 〈xi, zg〉 = 〈ys, zg〉. In practice, the existence of
g can usually be established by testing a few randomly chosen elements, but exhaustive
searches are required to prove non-existence. If we can always find such elements g ∈ S,
for all possible i, j, then C = zS has the UST property.

By implementing the above procedure in Magma, we obtain the following result (note
that the final statement follows immediately from Proposition 2.1).

Proposition 2.3. Let S be one of the following simple groups:

PSL2(q) (q < 29, q 6= 9), PSLε3(q) (q < 11), PSLε4(q) (q < 5), PSLε5(2), PSLε6(2),

Sp4(4), Sp6(2), Ω7(3), Ω±8 (2), 2B2(8), A7

Then there are at least two distinct A-classes in S with the UST property. In particular,
in each case ∆(S) ≥ 2.

Remark 2.4. Let S be one of the groups in the statement of Proposition 2.3. In Table
1 we present an explicit list of S-classes with the UST property (we adopt the Atlas [10]
labelling of classes). In all but three cases, the given list is complete. In the third column
we implicitly exclude the trivial class, and all classes of involutions. Note that there is a
unique class in PSL2(9) ∼= A6 with the UST property.

3. Alternating groups

Let S = An be the alternating group of degree n ≥ 5. Recall that we define

α(S) = max{|CA(x)| : x ∈ S#},
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S Conditions S-classes with the UST property

PSL2(q) 11 < q < 29 all

q = 7, 8 all

q = 5, 11 all except 3A

q = 9 4A

PSL3(q) q = 3, 4 all except 3A

q = 5 all except 4A-B, 5A

q = 7 all except 7A

q = 8 all except 7A-F

q = 9 all except 3A, 4A-B, 8A-D

PSL4(q) q = 2 6B, 15A-B

q = 3 including 4C, 5A, 6A-B, 9A-B, 10A, 12A-C, 13A-D, 20A-B

q = 4 including 4B, 5E, 7A-B, 9A-B, 10A-D, 15E-H, 17A-D, 21A-D, 30A-D,

63A-L, 85A-P

PSL5(2) 5A, 6B, 8A, 12A, 14A-B, 15A-B, 21A-B, 31A-F

PSL6(2) including 7E, 9A, 12A, 14A-B, 15C-E, 21A-B, 31A-F, 63A-F

PSU3(q) q = 3 6A, 7A-B, 8A-B, 12A-B

q = 4 all except 5A-D

q = 5 all except 3A, 5A

q = 7 all except 4A-B, 7A, 8A-D,

q = 8 all except 3A-B

q = 9 all except 3A, 5A-D, 10A-D

PSU4(q) q = 2 9A-B, 12A-B

q = 3 5A, 6B-C, 7A-B, 8A, 9A-D, 12A

q = 4 4B, 5M, 6A-B, 10I-P, 13A-D, 15E-P, 17A-D, 20A-D, 30A-D, 51A-H, 65A-P

PSU5(2) 5A, 6N, 8A, 9C-D, 11A-B, 12E-I, 15A-B, 18A-B

PSU6(2) 7A, 8B-D, 9C, 10A, 11A-B, 12F-H, 15A, 18A-B

Sp4(4) 5E, 15A-D, 17A-D

Sp6(2) 7A, 9A, 12C, 15A

Ω7(3) 7A, 8B, 9C-D, 12F-G, 13A-B, 14A, 15A, 20A

Ω+
8 (2) 9A-C, 10A-C, 12A-C, 12E-G, 15A-C

Ω−8 (2) all except 3A-C, 4A-C, 5A, 6A-C
2B2(8) all

A7 6A, 7A-B

Table 1. Conjugacy classes with the UST property

where A is the automorphism group of S. The next lemma is easily checked (in general,
|CA(x)| is maximal when x is a 3-cycle).

Lemma 3.1. We have

α(A5) = 8, α(A6) = 32, α(A8) = 384, α(An) = 3(n− 3)! (n ≥ 7, n 6= 8).

First we handle the alternating groups of small degree.

Proposition 3.2. If n ∈ {5, 6, 7, 8} then diam(Γ2(An)) = 2.
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Proof. Set S = An and A = Aut(S). If n = 7 or 8 then Proposition 2.3 applies (note
that A8

∼= PSL4(2)), so let us assume n = 5 or 6. In both cases there is a unique A-
class of elements in S with the UST property (comprising the elements of order 5 and 4,
respectively). Set G = S × S and let V ⊂ G be the set of vertices in Γ2(S). First assume
n = 5. Using Magma [2] it is easy to check that |V | = 592 and V is the union of 16
G-classes, with representatives {x1, . . . , x16}. By random search, for each xi and v ∈ V
we can find an element w ∈ V such that G = 〈xi, w〉 = 〈v, w〉, hence diam(Γ2(S)) = 2.
The same method applies when n = 6 (here |V | = 3592 and V comprises 36 distinct
G-classes). �

Proposition 3.3. If n ≥ 9 is odd then

∆(S) ≥
⌈

(n− 1)(n− 2)

18

⌉
≥ 2.

Proof. Let z ∈ S be an n-cycle and set C = zA. By [5, Proposition 6.7], C has the UST
property with corresponding constant η(C) ≥ 1/3 (see (3)). Now |C| = (n − 1)! and
α(S) = 3(n − 3)! (see Lemma 3.1), so the result follows from Proposition 2.2 (setting
t = 1, C1 = C and f1 = 1/3). �

Proposition 3.4. Suppose n ≥ 10 is even and set ε = (2, n/2− 1). Then

∆(S) ≥
⌈
n(n− 1)(n− 2)

18(n2/4− ε2)

⌉
≥ 2.

Proof. Let z ∈ S be an element with exactly two cycles, of lengths n/2 ± ε, where ε =
(2, n/2− 1). By [5, Proposition 6.3], C = zA has the UST property and η(C) ≥ 1/3. Now
|C| = n!/(n2/4− ε2), α(S) = 3(n− 3)! and once again the result follows from Proposition
2.2. �

Corollary 3.5. The conclusion to Theorem 1 holds if S is an alternating group.

Remark 3.6. The lower bounds obtained in Propositions 3.3 and 3.4 are respectively
quadratic and linear in n. It is natural to ask whether or not a better lower bound can
be obtained via Proposition 2.1. Let z ∈ S be an element such that C = zA has the UST
property. Clearly, if z has four or more cycles then 〈z, (1, 2, 3)〉 is intransitive, so z has at
most three cycles. In particular, if n is odd then z is either an n-cycle (which is the class
used in the proof of Proposition 3.3), or z has exactly three cycles, so there are less than
n2 possibilities for C. This shows that by simply counting classes we cannot do better
than a quadratic function in n. Similarly, if n is even then z has exactly two cycles, and
so in this situation we cannot improve on a linear bound in n.

Remark 3.7. It would be interesting to determine all the A-classes in S with the UST
property, but this appears to be a difficult problem. Now, if n ≥ 15 is odd and z ∈ S
has cycle-shape (n1, n2, n3), with ni ≥ 3 for all i, and (ni, nj) = 1 for i 6= j, then one can
show that zA has the UST property. Indeed, in this situation the analysis is simplified
by the fact that z belongs to exactly three maximal subgroups of S, each of which is
intransitive (see the proof of [17, Proposition 7.1]), so S = 〈x, z〉 if and only if 〈x, z〉 is
transitive. Similarly, if n ≥ 10 is even and z ∈ S has cycle-shape (n1, n2), where n1 and
n2 are coprime, then zA has the UST property.

Next we show that the lower bound ∆(S) ≥ 2 in Theorem 1 is best possible. We note
that S = A5 is the only finite simple group for which the exact value of ∆(S) is currently
known.

Proposition 3.8. We have diam(Γ3(A5)) = 3, so ∆(A5) = 2.
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Proof. Let S = A5, A = S5 and set x = (x1, x2, x3) ∈ S3 and y = (y1, y2, y3) ∈ S3, where
xi = (1, 2, 3) and yi = (1, 3)(4, 5) for all i. It is easy to check that x and y are non-isolated
vertices in Γ(S3). There are exactly 16 elements s ∈ S such that S = 〈x1, s〉 = 〈y1, s〉,
each of which is a 5-cycle, namely

{(1, 2, 4, 3, 5)i, (1, 2, 4, 5, 3)i, (1, 2, 5, 3, 4)i, (1, 2, 5, 4, 3)i : 1 ≤ i ≤ 4}

It is straightforward to check that if z1, z2 and z3 are distinct 5-cycles with this property
then two of the zi are either CA(x1)-conjugate or CA(y1)-conjugate. We conclude that
there is no z ∈ S3 such that S3 = 〈x, z〉 = 〈y, z〉, whence diam(Γ3(A5)) ≥ 3 and thus
∆(A5) = 2, as claimed.

To see that diam(Γ3(S)) = 3 we have to work harder. Let z1 = (1, 2, 3, 4, 5), z2 = (1, 2, 3)
and z3 = (1, 2)(3, 4). Set Ci = zAi and note that S# = C1 ∪C2 ∪C3. Let di be the degree
of zi in Γ(S) (that is, di = |{x ∈ S : S = 〈x, zi〉}|) and set δi = di/|CA(zi)|. In addition,
let αi (respectively βi, γi) be the number of elements z in C1 (respectively C2, C3) such
that S = 〈z, zi〉. It is straightforward to check that these parameters take the following
values:

i |Ci| δi αi βi γi

1 24 10 20 20 10

2 20 6 24 6 6

3 15 3 16 8 0

Note that (x1, . . . , xn) ∈ Γ(Sn) is non-isolated if and only if |{xr : xr ∈ Ci}| ≤ δi for
i = 1, 2, 3. In particular, every vertex in (S#)3 is non-isolated. We also note the following:

(?) Every pair of elements in C1 × C2 generates S, while (u, v) ∈ C1 × C1 is a pair of
generators if and only if 〈u〉 6= 〈v〉.

Let x = (x1, x2, x3) and y = (y1, y2, y3) be any two vertices of Γ3(S). To complete the
proof of the proposition, it suffices to establish the following:

(i) x is connected to two vertices u = (u1, u2, u3) and v = (u1, u2, u
′
3) in C1×C2×C1

with 〈u3〉 6= 〈u′3〉;
(ii) y is connected to a vertex in C2 × C1 × C1;

(iii) Every vertex in C2 × C1 × C1 is connected to u or v.

First consider (i). A vertex t = (t1, t2, t3) in C1 ×C2 ×C1 is connected to x if and only
if S = 〈xi, ti〉 for all i and (x1, t1) is not A-conjugate to (x3, t3) (since t is in C1×C2×C1,
(x2, t2) cannot be A-conjugate to (x1, t1) or (x3, t3)). As recorded in the above table,
any nontrivial element in S generates with at least 16 elements in C1 and with at least 6
elements in C2. Hence, there are at least 16 · 6 = 96 choices for (t1, t2) ∈ C1 × C2 such
that S = 〈x1, t1〉 = 〈x2, t2〉.

Let (u1, u2) ∈ C1 × C2 be one of these choices and set

Tu1,u2 = {u ∈ C1 : S3 = 〈x, (u1, u2, u)〉},

so u ∈ Tu1,u2 if and only if u ∈ C1, S = 〈x3, u〉 and the pairs (x1, u1), (x3, u) are not A-
conjugate. If x1 and x3 are not A-conjugate then |Tu1,u2 | ≥ 16 (in this situation, u ∈ Tu1,u2
if and only if u ∈ C1 and S = 〈x3, u〉). On the other hand, if x3 = xα1 for some α ∈ A then
there are |CA(x1)| choices for y ∈ C1 such that (x1, u1) is A-conjugate to (x3, y). Since x3
generates with at least 16 elements in C1, and |CA(x1)| ≤ 8, it follows that |Tu1,u2 | ≥ 8.
Therefore, in every case we have |Tu1,u2 | ≥ 8, so we can find u3, u

′
3 ∈ Tu1,u2 such that

〈u3〉 6= 〈u′3〉. This establishes (i), with u = (u1, u2, u3) and v = (u1, u2, u
′
3). By symmetry,

(ii) also holds.
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Finally, let us turn to (iii). Let t = (t1, t2, t3) be a vertex in C2 × C1 × C1. Then u is
connected to t if and only if S = 〈ti, ui〉 for all i, so (?) implies that u is connected to
every vertex in the set {(t1, t2, t3) ∈ C2 × C1 × C1 : t3 6∈ 〈u3〉}. Similarly, v is connected
to every vertex in the set {(t1, t2, t3) ∈ C2 × C1 × C1 : t3 6∈ 〈u′3〉}. Therefore, (iii) holds
and the proof of the proposition is complete. �

We now consider upper bounds on ∆(An), with the aim of establishing Theorem 2.

Proposition 3.9. Let S = An with n ≥ 6. Set ξ = 6 if n is even, otherwise ξ = 8. Then

∆(S) ≤ 1

2
(n2 − 5n+ ξ).

Proof. Let s = (1, 2, 3) ∈ S and suppose σ ∈ S is a permutation such that S = 〈s, σ〉. Let
fix(σ) be the set of fixed points of σ. Since 〈s, σ〉 is transitive, |fix(σ)| ≤ 2 and σ has at
most 3− |fix(σ)| cycles.

First assume n is even. The following three cases arise:

(i) If |fix(σ)| = 0 then σ has exactly two cycles (since n is even).

(ii) If |fix(σ)| = 1 then σ is an (n− 1)-cycle, and the fixed point is 1, 2 or 3.

(iii) If |fix(σ)| = 2 then σ has to be an (n−2)-cycle, but there are no such permutations
in S (since n is even).

Let k be the number of pairwise non-A-conjugate pairs (s, σ) such that S = 〈s, σ〉 and
|fix(σ)| = 0. Then k = |F |/|CA(s)|, where F is the set of fixed-point-free permutations
σ ∈ S with S = 〈s, σ〉. Note that F ⊆ T , where

T = {σ ∈ S : |fix(σ)| = 0, 〈s, σ〉 is transitive}.

As observed above, if 〈s, σ〉 is transitive and |fix(σ)| = 0 then σ has exactly two cycles.
Let 1 < a ≤ n/2 be an integer and let Ta be the set of permutations σ ∈ S of shape

(a, n− a) such that 〈s, σ〉 is transitive. Note that T =
⋃n/2
a=2 Ta. It is easy to check that if

a < n/2 then

|Ta| = 3

(
n− 3

a− 1

)
(a− 1)!(n− a− 1)! + 3

(
n− 3

a− 2

)
(a− 1)!(n− a− 1)! = 3(n− 2)!

and similarly

|Tn/2| =
((

n− 3

n/2− 1

)
+ 2

(
n− 3

n/2− 2

))
(n/2− 1)!(n/2− 1)! =

3

2
(n− 2)!

We conclude that

|T | =
n/2∑
a=2

|Ta| =
n/2−1∑
a=2

3(n− 2)! +
3

2
(n− 2)! =

3

2
(n− 2)!(n− 3).

In particular, since |CA(s)| = 3(n− 3)!, it follows that

k ≤ 3

2
(n− 2)!(n− 3)/3(n− 3)! =

1

2
(n2 − 5n+ 6).

Let x = (x1, . . . , xk, xk+1) ∈ Γk+1(S) and y = (y1, . . . , yk, yk+1) ∈ Γk+1(S), where
xi = (1, 2, 3) and yi = (4, 5, 6) for all i. (Note that x (and also y) is a non-isolated
vertex in Γ(Sk+1); indeed, by definition of k there exists z = (z1, . . . , zk+1) ∈ Sk+1 with
Sk+1 = 〈x, z〉, where each zi with i ≤ k is a fixed-point-free permutation, and zk+1 has a
single fixed point.) Since xi and yi have disjoint support, there is no element σ ∈ S with
fixed points such that S = 〈xi, σ〉 = 〈yi, σ〉. In particular, if z = (z1, . . . , zk+1) ∈ Sk+1 and
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Sk+1 = 〈x, z〉 = 〈y, z〉 then each zi must be fixed-point-free, but the definition of k implies
that 〈x, z〉 is a proper subgroup of Sk+1, a contradiction. We conclude that

∆(S) ≤ k ≤ 1

2
(n− 2)(n− 3).

A similar argument applies when n is odd. Here the following three cases arise:

(i) If |fix(σ)| = 0 then σ has at most three cycles, so either σ is an n-cycle, or σ has
exactly three cycles.

(ii) If |fix(σ)| = 1 then σ has exactly two cycles, and the fixed point is 1, 2 or 3.

(iii) If |fix(σ)| = 2 then σ is an (n− 2)-cycle and fix(σ) = {1, 2}, {1, 3} or {2, 3}.
Define k, F and T as before, and set

P = {σ ∈ S : |fix(σ)| = 0, 〈s, σ〉 is primitive} ⊆ T.
Note that if n = 3m and σ is a permutation with precisely three cycles of length m then
〈s, σ〉 is contained in a maximal imprimitive subgroup of S of type S3 o Sm.

In order to define certain subsets of P and T , set

I = {a ∈ Z : 0 ≤ a ≤ (n− 3)/2, a 6= 1, a 6= n/3}
and

J = {(a, b) ∈ Z2 : 2 ≤ a ≤ b(n− 3)/3c, a+ 1 ≤ b ≤ b(n− a− 1)/2c}.
For a ∈ I, let Pa,a (respectively Ta,a) be the set of permutations σ ∈ S of shape (a, a, n−2a)
such that 〈s, σ〉 is primitive (respectively transitive). Similarly, for (a, b) ∈ J let Pa,b
(respectively Ta,b) be the set of permutations σ ∈ S of shape (a, b, n − a − b) such that
〈s, σ〉 is primitive (respectively transitive). Note that

P =
⋃
a∈I

Pa,a ∪
⋃

(a,b)∈J

Pa,b ⊆
⋃
a∈I

Ta,a ∪
⋃

(a,b)∈J

Ta,b.

It is straightforward to check that |T0,0| = (n− 1)! and

|Ta,a| = 3

(
n− 3

a− 1

)
(a− 1)!

(
n− a− 2

a− 1

)
(a− 1)!(n− 2a− 1)! = 3(n− 3)!

if a ∈ I is non-zero. Similarly, if (a, b) ∈ J then

|Ta,b| = 6

(
n− 3

a− 1

)
(a− 1)!

(
n− a− 2

b− 1

)
(b− 1)!(n− (a+ b)− 1)! = 6(n− 3)!

and we calculate that

|I| =

{
1
2(n− 3)− 1 if 3 divides n
1
2(n− 3) otherwise

and

|J | =
b(n−3)/3c∑

a=2

(b(n− a− 1)/2c − a) =

{
1
12(n2 − 12n+ 39) if 3 divides n
1
12(n2 − 12n+ 35) otherwise.

Therefore,

|P | ≤
∑
a∈I
|Ta,a|+

∑
(a,b)∈J

|Ta,b| = (n− 1)! + 3(n− 3)!(|I| − 1) + 6(n− 3)!|J |

and thus

k = |F |/3(n− 3)! ≤ |P |/3(n− 3)! ≤

{
1
6(3n2 − 15n+ 22) if 3 divides n
1
6(3n2 − 15n+ 24) otherwise
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since |CA(s)| = 3(n− 3)!. We now complete the argument as in the n even case to get

∆(S) ≤ k ≤ 1

2
(n2 − 5n+ 8)

as required. �

By combining Propositions 3.3 and 3.9, we obtain the following quadratic bounds on
∆(S) when S is an alternating group of odd degree.

Corollary 3.10. If n ≥ 9 is odd then

1

18
(n2 − 3n+ 2) ≤ ∆(An) ≤ 1

2
(n2 − 5n+ 8).

This completes the proof of Theorem 2. Note that when n is even, Proposition 3.4
provides a linear lower bound on ∆(An). As the next result demonstrates, a quadratic
lower bound can be established in some special cases.

Proposition 3.11. Suppose S = An, where n = 2p with p > 3 a prime. Then

∆(S) ≥ 1

48
(n2 − 8n+ 12).

Proof. Let Ch be the Sn-class of permutations in S of shape (a, 2p− a), where a = 2h+ 1
is odd and 1 ≤ h ≤ (p− 3)/2. Let σ1, σ2 ∈ S be nontrivial permutations and set

ζ(Ch, σ1, σ2) := {z ∈ Ch : S = 〈z, σ1〉 = 〈z, σ2〉}

and

ζ(Ch) = min{|ζ(Ch, σ1, σ2)| : σ1, σ2 ∈ S#}.
Note that ζ(Ch) = |Ch|η(Ch) (see (3)). Since a is odd and a ≤ p − 2, it follows that the
integers a and 2p − a are coprime, whence S = 〈z, σi〉 if and only if 〈z, σi〉 is transitive.
We claim that

ζ(Ch) ≥ 3

(
n− 4

a− 2

)
(a− 1)!(n− a− 1)! (6)

Clearly, in order to establish this lower bound, we may assume that each σi has prime
order. Write σ1 = σ1,1 . . . σ1,r and σ2 = σ2,1 . . . σ2,s as disjoint cycles, where each σi,j has
prime length. There are two cases to consider.

First suppose σ1,a = σ2,b for some a, b. In this case,

|ζ(Ch, σ1, σ2)| ≥ 2

(
n− 2

a− 1

)
(a− 1)!(n− a− 1)! ≥ 2(n− 2)! ≥ 3(n− 4)!(a− 1)(n− a− 1)

and the desired bound follows.

Now assume σ1,a 6= σ2,b for all a, b. Given π ∈ Sn let supp(π) denote the support of
π. Then there exists {x1, x2} ∈ supp(σ1,1) and {y1, y2} ∈ supp(σ2,1) such that either
{x1, x2} ∩ {y1, y2} = ∅ or {x1, x2} ∩ {y1, y2} = {x1} = {y1}. In the former situation we
have

|ζ(Ch, σ1, σ2)| ≥ 4

(
n− 4

a− 2

)
(a− 1)!(n− a− 1)!

while in the latter case we calculate that

|ζ(Ch, σ1, σ2)| ≥
((

n− 3

a− 1

)
+

(
n− 3

a− 2

))
(a−1)!(n−a+1)! ≥ 3

(
n− 4

a− 2

)
(a−1)!(n−a−1)!

This establishes the lower bound in (6).
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Now Lemma 3.1 states that α(S) = 3(n− 3)!, so Proposition 2.2 yields

∆(S) ≥

1
2
(p−3)∑
h=1

ζ(Ch)

6(n− 3)!
.

Finally, by using the lower bound on ζ(Ch) in (6), we calculate that

∆(S) ≥

1
2
(p−3)∑
h=1

3
(
2p−4
2h−1

)
(2h)!(2p− 2h− 2)!

6(2p− 3)!
=

(p− 1)(p− 3)(2p− 1)

12(2p− 3)
>

1

48
(n− 2)(n− 6)

as required. �

4. Sporadic groups

Proposition 4.1. The conclusion to Theorem 1 holds if S is a sporadic group.

Proof. Let S be a sporadic simple group and let z ∈ S be an element in the S-class
recorded in the second column of [5, Table 7]. Then [5, Lemma 6.1] states that C = zA

has the UST property with corresponding constant η(C) ≥ 1/3 (see (3)) and the desired
bound ∆(S) ≥ 2 quickly follows from Proposition 2.2. (Note that α(S) can be easily
calculated from the character table of S – see [10].) For example, if S = M11 and we take
C = zS to be the class 11A then |C| = 720, η(C) = 1/3, α(S) = 48 and we deduce that
∆(S) ≥ 3. The remaining cases are entirely similar. �

5. Classical groups

In this section we establish Theorems 1 and 3 for classical groups.

Proposition 5.1. Let S be a finite simple classical group over Fq with automorphism

group A. Write q = pf where p is a prime. Then α(S) ≤ Λ, where Λ is given in Table 2.

Proof. Let G = Inndiag(S) be the group of inner-diagonal automorphisms of S. Define
d and Q as in Table 2. Let x ∈ S be an element of prime order and define the integer
ν(x) as in [8, Definition 3.16] (so ν(x) is the codimension of the largest eigenspace of a lift
x̂ ∈ GL(V ) of x on V ⊗ F̄q, where V is the natural S-module). Note that CA(x) ⊆ CA(xi)
for all i ≥ 1, so we only need to consider elements of prime order.

First assume S = PSLn(q). If n = 2 then it is easy to check that |CG(x)| ≤ d(q + 1)
and thus |CA(x)| ≤ df(q + 1) since |A : G| = f . If n ≥ 3 then [8, Corollary 3.38] implies

that |xG| > 1
2q

2n−2, so |CG(x)| < 2qn
2−2n+1 (since |G| < qn

2−1) and we deduce that

|CA(x)| < 4fqn
2−2n+1 since |A : G| = 2f . An entirely similar argument applies when S is

a unitary group.

Next suppose S = PSpn(q)′. First observe that if x is a transvection then

|xG| = |Spn(q)|
|Spn−2(q)|q2n−1

= qn − 1.

Now, if n = 4 and q is even then it is easy to check that |CG(x)| is maximal when x
is a transvection, so |CG(x)| ≤ q4(q2 − 1) and thus |CA(x)| ≤ fq4(q2 − 1) (note that a
transvection is not centralized by a graph automorphism of S). On the other hand, if
n = 4 and q is odd then |CG(x)| ≤ 2|Sp2(q)|2 = 2q2(q2 − 1)2, so |CA(x)| ≤ 2fq2(q2 − 1)2.
Now assume n ≥ 6. If x is not a transvection then ν(x) ≥ 2 and thus [8, Corollary 3.38]
yields |xG| > 1

4Q
−1q2n−4. We deduce that transvections have the largest centralizers, so

|CG(x)| < qn(n−1)/2 and thus |CA(x)| < fqn(n−1)/2.



ON THE GENERATING GRAPH OF DIRECT POWERS OF A SIMPLE GROUP 13

S Conditions Λ

PSLn(q) n ≥ 3 4fqn
2−2n+1

PSL2(q) df(q + 1)

PSUn(q) n ≥ 3 4fQqn
2−2n+1

PSpn(q) n ≥ 6 fq
1
2n(n−1)

PSp4(q)′ 2fq2(q2 − 1)2

PΩεn(q) n ≥ 8, n even, (n, ε) 6= (8,+) 8fQq
1
2n

2− 5
2n+6

PΩ+
8 (q) 6fq18

Ωn(q) nq odd, n ≥ 7 4fq
1
2n

2− 3
2n+1

d = (2, q − 1), f = logp q, Q = (q + 1)/q

Table 2. Upper bounds α(S) ≤ Λ, S classical

Finally, let us assume S is an orthogonal group. If n is even and (n, ε) 6= (8,+) then
we apply [8, Corollary 3.38] as before, noting that ν(x) ≥ 2 since x ∈ S. Similarly,
if (n, ε) = (8,+) then |xG| is minimal when x is a long root element, in which case
|CG(x)| = q12(q2 − 1)3 and thus |CA(x)| < 6fq18 since |A : G| = 6f . Finally, suppose n

is odd. We claim that |CG(x)| < 2qn
2/2−3n/2+1. If ν(x) ≥ 2 then [8, Corollary 3.38] gives

|xG| > 1
4Q
−1q2n−6 and the claim follows. On the other hand, if ν(x) = 1 then x is an

involution and |CG(x)| ≤ 2|SO−n−1(q)| < 2qn
2/2−3n/2+1. This justifies the claim and we

conclude that |CA(x)| < 4fqn
2/2−3n/2+1. �

Proposition 5.2. The conclusions to Theorems 1 and 3 hold when S = PSLn(q).

Proof. First assume n = 2. If q < 29 (and q 6= 9) then Proposition 2.3 applies, so we may
assume q ≥ 29 (note that PSL2(9) ∼= A6, so Proposition 3.2 applies in this case). Then
Proposition 5.1 states that α(S) ≤ df(q+ 1), and [5, Proposition 5.24] provides an A-class
C with η(C) ≥ 1/3 (see (3)) and |C| ≥ q(q − 1). Therefore, by applying Proposition 2.2,
we deduce that

∆(S) ≥
⌈
q(q − 1)

6df(q + 1)

⌉
≥ 2.

Now consider the general case n ≥ 3. Here α(S) ≤ 4fqn
2−2n+1 and by inspecting [5,

Table 5 and Section 5.12] we see that there exists an A-class C of regular semisimple

elements with η(C) ≥ 1/3. Therefore, |C| > 1
2q
n(n−1) and thus Proposition 2.2 implies

that

∆(S) ≥
⌈
qn−1

48f

⌉
.

This bound is sufficient unless n = 3 (with q < 11), n = 4 (with q < 5) or (n, q) = (5, 2),
(6, 2). In each of these exceptional cases, Proposition 2.3 applies. �

Remark 5.3. The lower bounds obtained in the proof of Proposition 5.2 are good enough
to establish Theorems 1 and 3 when S = PSLn(q), but they can be improved. For example,
suppose S = PSLn(q) with n ≥ 12. Let z ∈ S be a regular semisimple element which lifts
to an element ẑ ∈ SLn(q) of order lcm(qe − 1, qn−e − 1)/(q − 1), where

e =


(n+ 1)/2 if n is odd

n/2 + 2 if n ≡ 2 (mod 4)

n/2 + 1 if n ≡ 0 (mod 4).
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(Here ẑ preserves a decomposition V = U ⊕W of the natural SLn(q)-module V , acting
irreducibly on both U and W , with dimU = e. Also note that (e, n − e) = 1.) By [5,
Proposition 5.23], the S-class C = zS has the UST property, with η(C) ≥ 1/2. Indeed,
ẑ is contained in exactly two maximal subgroups of SLn(q); namely, the stabilizers of the
subspaces U and W . Let N be the number of distinct A-classes in S containing regular
semisimple elements of this form. By considering the possible eigenvalues of ẑ (in F̄q), it
is easy to see that

N ≥ φ((qe − 1)/(q − 1))

e
· φ((qn−e − 1)/(q − 1))

n− e
· 1

|Out(S)|
=: N ′

where φ is the Euler totient function. Therefore, by arguing as in the proof of Proposition
5.2, using Proposition 2.2, we obtain the better lower bound

∆(S) ≥
⌈
qn−1N ′

48f

⌉
.

By carefully inspecting [5, Section 5], similar lower bounds on the number of A-classes
with the UST property can be derived for any classical group S. However, we do not
have a good upper bound on ∆(S) when S is a group of Lie type, so the accuracy of the
improved lower bounds is difficult to determine.

Proposition 5.4. The conclusions to Theorems 1 and 3 hold when S = PSUn(q).

Proof. If n = 3 (and q < 11), n = 4 (and q < 5) or (n, q) = (5, 2), (6, 2) then Proposition
2.3 applies, so let us assume otherwise. By inspecting [5, Propositions 5.21, 5.22], it follows
that there exists an A-class C with η(C) ≥ 1/3 and

|C| ≥ |GUn(q)|
(qn−1 + 1)(q + 1)

>
1

2

(
qn−1

qn−1 + 1

)
qn(n−1).

As before, by applying Proposition 2.2 and the upper bound on α(S) recorded in Table 2,
we deduce that

∆(S) ≥
⌈

1

48f

(
q

q + 1

)(
qn−1

qn−1 + 1

)
qn−1

⌉
.

This bound is sufficient unless (n, q) = (7, 2). Here

α(S) = 212|GU5(2)|, |C| ≥ |GU7(2)|
27 + 1

(see [5, Proposition 5.21]) and by applying Proposition 2.2 we deduce that ∆(S) ≥ 6. �

Proposition 5.5. The conclusions to Theorems 1 and 3 hold when S = PSpn(q)′.

Proof. First assume n = 4. If 2 < q < 5 then Proposition 2.3 applies (see Proposition 3.2
for the case q = 2, since PSp4(2)′ ∼= A6). Suppose q ≥ 5. By [5, Propositions 5.8, 5.12],
there exists an A-class C with |C| ≥ q4(q2 − 1)2 and η(C) ≥ 1/3. In the usual way, via
Propositions 2.2 and 5.1, we deduce that ∆(S) ≥

⌈
q2/12f

⌉
and the result follows.

Now assume n ≥ 6. The case q = 2 requires special attention; indeed, this is one of
the exceptional cases recorded in [5, Theorem 1.1]. By [5, Proposition 5.8], if z ∈ S is an

irreducible element of order 2n/2 + 1 then C = zS has the UST property. Now there are
precisely φ(2n/2 + 1)/n distinct A-classes of such elements, so Proposition 2.1 implies that

∆(S) ≥ 1

n
φ(2n/2 + 1).

It is easy to check that this bound implies that ∆(S) ≥ 2 when 8 ≤ n ≤ 14. In general, if

we write 2n/2 + 1 =
∏
i p
ai
i , where the pi are distinct primes, then

φ(2n/2 + 1) =
∏
i

φ(paii ) =
∏
i

pai−1i (pi − 1) ≥
∏
i

p
ai/2
i = (2n/2 + 1)

1
2 .
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The subsequent bound

∆(S) ≥
⌈

1

n
(2n/2 + 1)

1
2

⌉
is sufficient for all n ≥ 16. The case (n, q) = (6, 2) is covered by Proposition 2.3.

Finally, let us assume n ≥ 6 and q ≥ 3. By inspecting [5, Propositions 5.8, 5.10, 5.12],
we see that there exists an A-class C with η(C) ≥ 1/3 and

|C| ≥ |Spn(q)|
(qn/2−1 + 1)(q + 1)

>
1

2

(
qn/2−1

qn/2−1 + 1

)
q

1
2
n2
.

The desired result now follows in the usual way via Proposition 2.2, using the upper bound
on α(S) given in Table 2. �

Proposition 5.6. The conclusions to Theorems 1 and 3 hold when S = PΩε
n(q).

Proof. We may assume n ≥ 7. First suppose (n, ε) = (8,+). If q = 2 then Proposition 2.3
applies. Now if q = 3 then [5, Table 3] indicates that there is an A-class C = zA in S with
the UST property, where |z| = 20 and η(C) ≥ 2(1− 195/455) = 67/455 (here z preserves
an orthogonal decomposition 8+ = 4− ⊥ 4− of the natural S-module into nondegenerate
4-spaces of minus type). We calculate that

|C| = 3
|SO+

8 (3)|
34 − 1

, α(S) = 6|Sp2(3)||SO+
4 (3)|39

and thus Proposition 2.2 implies that ∆(S) ≥ 34. Similarly, if q = 4 then [5, Table 3]
provides an A-class C = zA in S with |z| = 65 (preserving a decomposition 8+ = 2− ⊥ 6−),
η(C) ≥ 1/3 and

|C| = 3
|SO+

8 (4)|
(43 + 1)(4 + 1)

, α(S) = 3|Sp2(4)||SO+
4 (4)|49.

Once again, the desired result follows by applying Proposition 2.2.

Next assume (n, ε) = (8,+) and q ≥ 5. By [5, Lemma 5.15], there is an A-class C with

|C| ≥ |SO+
8 (q)|

(2, q)(q2 + 1)2
>

1

2

(
q2

q2 + 1

)2

q24

and η(C) ≥ 1/3. According to Proposition 5.1, we have α(S) ≤ 6fq18, so Proposition 2.2
implies that

∆(S) ≥

⌈
1

72f

(
q2

q2 + 1

)2

q6

⌉
.

It is easy to check that this bound is always sufficient.

For the remainder we may assume that (n, ε) 6= (8,+). We first deal with the case
where n is odd and q = 3. Note that if n ≡ 1 (mod 4) then S is one of the exceptional
cases recorded in [5, Theorem 1.1]. In view of Proposition 2.3, we may assume that n ≥ 9.
By [5, Propositions 5.7, 5.19], there is an A-class C in S such that

|C| ≥ |SOn(3)|
3(3(n−3)/2 + 1)

>
1

2

(
3(n−3)/2

3(n−3)/2 + 1

)
3

1
2
n2−n+ 1

2

and η(C) ≥ 1/3. By combining this lower bound with the upper bound on α(S) given in
Proposition 5.1, we quickly deduce that Proposition 2.2 yields

∆(S) ≥

⌈
1

48f

(
3(n−3)/2

3(n−3)/2 + 1

)
3

1
2
(n−1)

⌉
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S E8(q) E7(q) E6(q) F4(q) G2(q)′

Λ fq57|E7(q)| fq33|SO+
12(q)| 2fq21|SL6(q)| fq15|Sp6(q)| 2f |SU3(q)|

2E6(q) 2F4(q)′ 2G2(q)′ 2B2(q), q > 2 3D4(q)

2fq21|SU6(q)| fq10|2B2(q)| fq3 fq2 3fq9|SL2(q3)|
f = logp q

Table 3. Upper bounds α(S) ≤ Λ, S exceptional

and this bound is sufficient unless n = 9. Here α(S) = 2|SO+
8 (3)| and there is an A-class

C such that η(C) ≥ 1/3 and |C| = |SO9(3)|/82 (see [5, Proposition 5.7]). In the usual
way, via Proposition 2.2, we deduce that ∆(S) ≥ 7.

The remaining cases are very similar. By inspecting [5, Sections 5.6, 5.8, 5.9] it follows
that there is an A-class C = zA in S of regular semisimple elements such that η(C) ≥ 1/3
and

|C| ≥ |SOε
n(q)|

(2, q)(q + 1)3qr−3
>

1

2

(
q

q + 1

)3

q
1
2
n2−n+ι,

where r denotes the rank of S, and ι = 1/2 if n is odd, otherwise ι = 0. The result now
follows in the usual way, via Propositions 5.1 and 2.2. For example, if n is even then we
deduce that

∆(S) ≥

⌈
1

96f

(
q

q + 1

)4

q
3
2
n−6

⌉
,

and this bound is sufficient unless (n, q) = (8, 2), which is one of the cases handled in
Proposition 2.3. �

6. Exceptional groups

Here we complete the proof of Theorems 1 and 3 by dealing with the exceptional groups
of Lie type.

Proposition 6.1. Let S be a finite simple exceptional group of Lie type over Fq, where

q = pf with p a prime. Then α(S) ≤ Λ, where Λ is given in Table 3.

Proof. Detailed information on the conjugacy classes in S can be found in the literature,
and the result follows by inspecting the relevant lists of conjugacy class sizes. For ex-
ample, let S = E8(q) and let x ∈ S be an element of prime order. The sizes of the
unipotent classes in S are conveniently listed in [20, Table 22.2.1], and it is easy to see
that |CS(x)| ≤ q57|E7(q)|, with equality if and only if x is a long root element. For
semisimple x, the possibilities for |CS(x)| are listed in [16] and it is easy to check that
|CS(x)| ≤ |E7(q)||SL2(q)|. Since |A : S| = f (where A = Aut(S)) we conclude that
α(S) ≤ fq57|E7(q)| as claimed. The other cases are very similar and we leave the reader
to check the details. (See [15, 20] for the sizes of conjugacy classes in E7(q) and Eε6(q);
[24, 26] for F4(q), [9, 14] for G2(q), [25] for 2F4(q), [30] for 2G2(q), [29] for 2B2(q) and
[12, 27] for 3D4(q).) �

Proposition 6.2. The conclusion to Theorem 1 holds when S is a finite simple exceptional
group of Lie type.
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Proof. By [5, Lemma 6.2], there exists an A-class C = zA of regular semisimple elements
in S with η(C) ≥ 1/3 (see [17, Propositions 6.1, 6.2]). The desired result now follows via
Proposition 2.2, using the upper bound on α(S) in Proposition 6.1 and a suitable lower
bound on |C|. For example, suppose S = G2(q)

′. If q = 2 then S ∼= PSU3(3) and thus
Proposition 5.4 applies. For q > 2 we have |C| > 1

2Q
−2q12 (where Q = (q+1)/q as before)

and α(S) < 2fq8, so Proposition 2.2 yields

∆(S) ≥

⌈
1

24f

(
q

q + 1

)2

q4

⌉
.

It is easy to check that this bound gives the desired result. Similarly, if S = 2G2(q)
′ (so

that q = 32m+1 for some positive integer m) then

|C| ≥ |2G2(q)|
(q1/2 + 1)2

>
1

2

(
q1/2

q1/2 + 1

)2

q6

and we deduce that

∆(S) ≥

 1

12f

(
q1/2

q1/2 + 1

)2

q2

 .
This bound is sufficient if q > 3, while Proposition 5.2 applies if q = 3 (since S ∼= PSL2(8)).
The remaining cases are entirely similar. �

This completes the proof of Theorems 1 and 3.
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