Permutation groups, primitivity and derangements

Tim Burness

University of Bristol

Algebra & Combinatorics Seminar University of Auckland June 3rd 2015

Introduction

Let $G \leq \text{Sym}(\Omega)$ be a permutation group on a set Ω .

An element of G is a **derangement** if it has no fixed points on Ω .

Let $\Delta(G)$ be the set of derangements in G.

If G is transitive and H is a point stabilizer, then

$$\Delta(G) = G \setminus igcup_{lpha \in \Omega} G_lpha = G \setminus igcup_{g \in G} g^{-1} Hg$$

In particular, $x \in G$ is a derangement iff $x^G \cap H$ is empty.

Notation. $G_{\alpha} = \{x \in G : x \cdot \alpha = \alpha\}, \quad x^{G} = \{g^{-1}xg : g \in G\}$

Jordan's theorem

Theorem (Jordan, 1872)

Every (non-trivial) finite transitive permutation group has a derangement.

Let $G \leq \text{Sym}(\Omega)$ be such a group. By the **Orbit-Counting Lemma**

$$\frac{1}{|G|}\sum_{x\in G}|\mathsf{fix}_{\Omega}(x)|=1$$

where $fix_{\Omega}(x) = \{ \alpha \in \Omega : x \cdot \alpha = \alpha \}.$

Since $|fix_{\Omega}(1)| = |\Omega| \ge 2$, we must have $|fix_{\Omega}(x)| = 0$ for some x in G.

J.-P. Serre, On a theorem of Jordan, Bull. Amer. Math. Soc., 2003

Infinite groups

Jordan's theorem does **not** extend to transitive actions of **infinite** groups:

Examples

- Let G = FSym(Ω) = {x ∈ Sym(Ω) : x has finite support} be the finitary symmetric group on an infinite set Ω.
- Let $G = 1 \cup x^G$ be an infinite group with two conjugacy classes and set $\Omega = x^G$ (here $H = C_G(x)$ and $\bigcup_{g \in G} g^{-1}Hg = G$).
- Let $G = GL_n(\mathbb{C})$, $B = \{$ upper-triangular matrices in $G \}$, $\Omega = G/B$.
- Fulman & Guralnick, 2003: Let G be a simple algebraic group over K = K, char(K) ≠ 2, and set Ω = G/H with H ≤ G closed.
 Then Δ(G) = Ø iff H contains a Borel subgroup of G.

Primitivity

Let $G \leq \text{Sym}(\Omega)$ be a transitive group with point stabilizer H.

Definition. G is **imprimitive** if there exists a G-invariant partition of Ω , other than $\{\Omega\}$ and $\{\{\alpha\} : \alpha \in \Omega\}$. Otherwise, G is **primitive**.

Equivalently, G is primitive iff H is a maximal subgroup of G.

The structure of a finite primitive group is restricted, e.g. its socle is a direct product of isomorphic simple groups.

O'Nan-Scott Theorem (1979): Five families of finite primitive groups:

- 1. Affine
- 2. Almost simple

- 3. Diagonal type
- 4. Product type
- 5. Twisted product type

Affine and almost simple groups

Let p be a prime and let $AGL(V) = GL(V) \ltimes V$ be the group of affine transformations of $V = (\mathbb{F}_p)^d$:

$$\varphi_{x,u}: v \mapsto xv + u \quad (\text{for } x \in GL(V), \ u \in V)$$

Then $G \leq \text{Sym}(V)$ is affine if

 $V \leqslant G \leqslant \operatorname{AGL}(V)$

G is primitive iff $G_0 \leq GL(V)$ is irreducible

A transitive group $G \leq \text{Sym}(\Omega)$ is **almost simple** if there is a nonabelian finite simple group T such that

 $T \leq G \leq \operatorname{Aut}(T)$

G is primitive iff $G_{\alpha} < G$ is a maximal subgroup

Variations on Jordan's theorem

Let $G \leq \text{Sym}(\Omega)$ be a **finite** transitive permutation group.

Jordan's theorem: G contains a derangement

Q1. How many derangements does G contain?

Q2. Does G contain derangements with special properties?

Counting derangements

Let $G \leq \text{Sym}(\Omega)$ be a finite transitive group with $|\Omega| = n$.

Let $d(G) = |\Delta(G)|/|G|$ be the **proportion** of derangements in G.

Jordan's theorem: d(G) > 0

Theorem (Cameron & Cohen, 1992)

 $d(G) \ge 1/n$, with equality iff G is sharply 2-transitive.

Here G is 2-transitive if the natural action of G on

$$\mathsf{\Gamma} = \{(\alpha, \beta) : \alpha, \beta \in \Omega, \, \alpha \neq \beta\}$$

is transitive. Further, G is sharply 2-transitive if $G_t = 1$ for $t \in \Gamma$.

e.g. If $V = \mathbb{F}_p$, then AGL(V) is sharply 2-transitive on V

Counting derangements

Let $G \leq \text{Sym}(\Omega)$ be a finite transitive group with $|\Omega| = n$.

Let $d(G) = |\Delta(G)|/|G|$ be the **proportion** of derangements in G.

Jordan's theorem: d(G) > 0

Theorem (Cameron & Cohen, 1992)

 $d(G) \ge 1/n$, with equality iff G is sharply 2-transitive.

Theorem (Guralnick & Wan, 1997)

One of the following holds:

- d(G) ≥ 2/n
- G is sharply 2-transitive
- $(G, n, d(G)) = (S_4, 4, 3/8)$ or $(S_5, 5, 11/30)$

Symmetric groups

Consider $d(S_n)$ with respect to $\Omega = \{1, \ldots, n\}$.

Theorem (Montmort, 1708)

$$d(S_n) = \frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^n}{n!}$$

In particular, $d(S_n) \rightarrow 1/e$ as $n \rightarrow \infty$.

Montmort's formula follows from the inclusion-exclusion principle:

Let E_i be the event that a randomly chosen element of S_n fixes *i*. Then

$$1-d(S_n)=\mathbb{P}(E_1\cup\cdots\cup E_n)=\sum_i\mathbb{P}(E_i)-\sum_{i< j}\mathbb{P}(E_i\cap E_j)+\cdots$$

Simple groups

There are similar formulae for $d(A_n)$ and $d(\mathsf{PSL}_2(q))$ (for the natural actions). In both cases, $d(G) \ge 1/3$ for all $n, q \ge 5$.

Theorem (Fulman & Guralnick, 2014)

There exists an absolute constant $\epsilon > 0$ such that $d(G) > \epsilon$ for any finite simple transitive group G.

- The constant ϵ is undetermined: is $\epsilon = 2/7$ optimal?
- The theorem does **not** extend to almost simple groups

Remark. By a theorem of Boston et al. (1993)

 $\{d(G) : G \text{ is a finite primitive group}\}$

is a dense subset of (0, 1).

Special derangements

Let G be a non-trivial finite transitive permutation group.

Q. Does G contain derangements with special properties?

Theorem (Fein, Kantor & Schacher, 1981)

G contains a derangement of prime power order.

• Let G be a minimal counterexample. We can assume G is primitive.

If $1 \neq N \triangleleft G$ then N is transitive, so minimality implies that N = G, so G is simple. Now use CFSG...

• No "elementary" proof is known

Theorem. Let L/K be a nontrivial finite extension of global fields. Then the relative Brauer group B(L/K) is infinite. Elusivity

Q. Does G contain a derangement of prime order?

A. Not always!

e.g. Take $G = M_{11}$ and $\Omega = G/H$ with $H = \mathsf{PSL}_2(11)$ (here $|\Omega| = 12$)

A transitive group is **elusive** if it has no derangement of prime order.

Theorem (Giudici, 2003)

Let $G \leq \text{Sym}(\Omega)$ be a finite primitive elusive group.

Then $G = M_{11} \wr L$ acting with its product action on $\Omega = \Gamma^k$, where $k \ge 1$, $L \le S_k$ is transitive and $|\Gamma| = 12$.

Conjecture (Marušič, 1981)

If Γ is a finite vertex-transitive graph, then $\mathsf{Aut}(\Gamma)$ is non-elusive.

Extremal permutation groups

Joint work with Hung Tong-Viet (Pretoria)

Conjugacy classes

Let $G \leq \text{Sym}(\Omega)$ be a finite transitive group with point stabilizer H.

Let k(G) be the number of conjugacy classes in $\Delta(G)$.

Jordan's theorem: $k(G) \ge 1$

Theorem (B & Tong-Viet, 2014) Let G be a finite primitive group of degree n. Then $k(G) = 1 \iff G$ is sharply 2-transitive, or $(G, n) = (A_5, 6)$ or $(Aut(PSL_2(8)), 28)$

• "Primitive" can be replaced by "transitive" [Guralnick, 2015]

• For almost simple G, we determine the cases with k(G) = 2, and we show that $k(G) \to \infty$ as $|G| \to \infty$

Proof: The reduction

Suppose $\Delta(G) = x^G$ and let N be a minimal normal subgroup of G.

1. *N* is regular: Here $H \cap N = 1$, G = HN and $N = 1 \cup x^G$.

If N is non-abelian then |N| is divisible by at least 3 primes, which is not possible. Therefore N is abelian, so $N \leq C_G(x)$,

$$|\Delta(G)| = |G: C_G(x)| \leq |G: N| = |H| = |G|/n$$

and thus $d(G) \leq 1/n$, where n = |G:H|.

But Cameron-Cohen implies that $d(G) \ge 1/n$, with equality iff G is sharply 2-transitive.

2. *N* is non-regular: A longer and more technical argument shows that *G* is almost simple.

Proof: Groups of Lie type

Strategy:

(a) Identify two conjugacy classes, say x_1^G and x_2^G , such that

$$\mathcal{M} = \{ M < G \text{ maximal} : x_1^G \cap M \neq \emptyset \text{ or } x_2^G \cap M \neq \emptyset \}$$

is very restricted.

(b) We may assume that $H \in \mathcal{M}$. Work directly with these subgroups...

If x^G is one of the classes in (a) then

$$\mathbb{P}(G = \langle x, y \rangle \, : \, y \in G) \gg 0$$

so these classes arise naturally in problems on random generation.

Application: Character theory

Let G be a finite group, let $\chi \in Irr(G)$ and let $n(\chi)$ be the number of conjugacy classes on which χ vanishes.

Burnside, 1903: If χ is non-linear then $n(\chi) \ge 1$

Problem

Investigate the groups G with $n(\chi) = 1$ for some non-linear $\chi \in Irr(G)$

Suppose $\chi = \varphi_H^G$ is **induced**, where H < G and $\varphi \in Irr(H)$. Then

$$n(\chi) = 1 \implies G \setminus \bigcup_{g \in G} g^{-1} Hg = x^G$$

for some $x \in G$.

If H is core-free, our theorem applies. In the general case, we can give detailed information on the normal structure of G.

Prime powers

Let $G \leq \text{Sym}(\Omega)$ be a finite transitive group.

Fein, Kantor & Schacher: G has a derangement of prime power order

Theorem (Isaacs, Keller, Lewis & Moretó, 2006)

If every derangement in G has order 2, then either

- G is an elementary abelian 2-group; or
- G is a Frobenius group with kernel an elementary abelian 2-group.

Q. What about odd primes and prime powers?

Let $G \leq \text{Sym}(\Omega)$ be a finite primitive group with point stabilizer H.

Property (\star): Every derangement in *G* is an *r*-element, for some fixed prime *r*

Theorem (B & Tong-Viet, 2014)

If (\star) holds, then G is either almost simple or affine.

The almost simple groups with property (\star)

G	Н	Conditions
$PSL_3(q)$	P_1,P_2	$q^2 + q + 1 = (3, q - 1)r$
		$q^2 + q + 1 = 3r^2$
$PFL_2(q)$	$N_G(D_{2(q+1)})$	r = q - 1 Mersenne prime
$PGL_2(q)$	$N_G(P_1)$	r = 2, q Mersenne prime
$PSL_2(q)$	P_1	$q = 2r^e - 1$
	$P_1, D_{2(q-1)}$	r = q + 1 Fermat prime
	$D_{2(q+1)}$	r = q - 1 Mersenne prime
$P\Gamma L_2(8)$	$N_G(P_1), N_G(D_{14})$	<i>r</i> = 3
PSL ₂ (8)	P_1,D_{14}	<i>r</i> = 3
M ₁₁	$PSL_{2}(11)$	<i>r</i> = 2

Let $G \leq \text{Sym}(\Omega)$ be a finite primitive group with point stabilizer H.

Property (\star) : Every derangement in *G* is an *r*-element, for some fixed prime *r*

Theorem (B & Tong-Viet, 2014)

• If (*) holds, then G is either almost simple or affine.

 If G ≤ AGL(V) is affine with V = (𝔽_p)^d, then (⋆) holds iff r = p and every two-point stabilizer in G is an r-group.

The affine groups with this property have been extensively studied:

- Guralnick & Wiegand, 1992: Structure of Galois field extensions
- Fleischmann, Lempken & Tiep, 1997: r'-semiregular pairs

Some related problems

1. Determine the primitive groups such that every derangement has prime power order.

In particular, determine the **strongly non-elusive** primitive groups: every derangement has prime order.

- 2. Determine an explicit constant in the Fulman-Guralnick theorem on transitive simple groups. Is 2/7 optimal?
- Study the proportion of conjugacy classes of derangements.
 For almost simple groups, is it bounded away from zero?
- 4. **J.G. Thompson:** G primitive $\implies \Delta(G)$ is a transitive subset of G?