
ON 2-ELUSIVE PRIMITIVE PERMUTATION GROUPS
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Abstract. Let G be a nontrivial transitive permutation group on a finite set Ω. By a
classical theorem of Jordan, G contains a derangement, which is an element with no fixed
points on Ω. Given a prime divisor r of |Ω|, we say that G is r-elusive if it does not
contain a derangement of order r. In a paper from 2011, Burness, Giudici and Wilson
essentially reduce the classification of the r-elusive primitive groups to the case where G is
an almost simple group of Lie type. The classical groups with an r-elusive socle have been
determined by Burness and Giudici, and in this paper we consider the analogous problem
for the exceptional groups of Lie type, focussing on the special case r = 2. Our main
theorem describes all the almost simple primitive exceptional groups with a 2-elusive socle.
In other words, we determine the pairs (G,M), where G is an almost simple exceptional
group of Lie type with socle T and M is a core-free maximal subgroup that intersects every
conjugacy class of involutions in T . Our results are conclusive, with the exception of a finite
list of undetermined cases for T = E8(q), which depend on the existence (or otherwise) of
certain almost simple maximal subgroups of G that have not yet been completely classified.
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1. Introduction

Let G 6 Sym(Ω) be a transitive permutation group on a finite set Ω with |Ω| > 2. By
a classical result of Jordan from 1872, namely [35, Théorème I], there exists an element
in G with no fixed points on Ω. Such an element is called a derangement and there is an
extensive literature on derangements in permutation groups, demonstrating a wide range of
connections and applications to other areas of mathematics. For instance, we refer the reader
to Serre’s article [61], which highlights applications of Jordan’s theorem in number theory
and topology. Another striking example is given by a celebrated theorem of Fein, Kantor and
Schacher [24], which depends on the Classification of Finite Simple Groups. This theorem
states that G always contains a derangement of prime power order, and it turns out to have
important applications in algebraic number theory concerning the structure of Brauer groups
of global field extensions (see [24] for the details).

However, examples show that G does not always contain a derangement of prime order,
and such groups are called elusive. Elusivity turns out to be a rather restrictive property.
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For example, if G is primitive then a theorem of Giudici [27, Theorem 1.1] implies that G
is elusive if and only if G = M11 o K acting with the product action on Ω = ∆k, where
K 6 Symk is transitive, k > 1 and M11 < Sym(∆) is primitive with |∆| = 12. A complete
classification of the transitive elusive groups remains out of reach.

A local version of elusivity was introduced in [10], which is defined as follows: for a prime
divisor r of |Ω|, we say that G is r-elusive if every element in G of order r has fixed points
on Ω. In particular, G is elusive if and only if it is r-elusive for every prime divisor r of
|Ω|. By [10, Theorem 2.1], the classification of the r-elusive primitive groups is to a large
extent reduced to the case where G is an almost simple group (this means that the socle of
G is a nonabelian simple group T and we have T P G 6 Aut(T )). Moreover, the r-elusive
primitive groups with socle an alternating or sporadic group are classified in [10, Theorem
1.1].

So let us assume G is an almost simple primitive group of Lie type with socle T . A detailed
analysis of the case where T is a classical group is presented in [8, 9] and the main results
provide a complete classification of the groups with an r-elusive socle. In this paper, we take
the first steps towards extending these results to the exceptional groups of Lie type, focussing
here on the special case r = 2. Indeed, our main result describes the primitive exceptional
groups with a 2-elusive socle. In more abstract terms, this is equivalent to determining the
pairs (G,M), where G is an almost simple exceptional group of Lie type with socle T , and M
is a core-free maximal subgroup of G that intersects every conjugacy class of involutions in
T . Our results are complete, with the exception of a small (finite) number of undetermined
cases when T = E8(q) and the point stabilizer is an almost simple group with socle L3(3)
or L2(q′) for some odd prime power q′. This seemingly unavoidable ambiguity arises here
because it remains a difficult open problem to determine the existence (or otherwise) of
maximal subgroups of G of this form.

In order to state our main results, we need to introduce some notation. Suppose that G is
an almost simple group with socle T , which is a finite simple exceptional group of Lie type
over Fq, where q = pf for some prime p. Write T = (Ḡσ)′, where Ḡ is a simple algebraic
group of adjoint type over the algebraic closure of Fq and σ is an appropriate Steinberg
endomorphism of Ḡ.

Let M be the set of core-free maximal subgroups of G. We first define a subset C of M
as follows (in (IV), we write soc(H) for the socle of H, which we recall is defined to be the
product of the minimal normal subgroups of H).

Definition 1. A core-free maximal subgroup H ∈M is contained in C if and only if one of
the following holds:

(I) H = NG(H̄σ), where H̄ is a maximal σ-invariant positive-dimensional closed sub-
group of Ḡ;

(II) H is of the same type as G (either a subfield subgroup or a twisted version of G);

(III) H is the normalizer of an exotic r-local subgroup for some prime r 6= p;

(IV) T = E8(q), p > 5 and soc(H) = Alt5×Alt6 (the Borovik subgroup).

We then define S =M\ C, so that M is a disjoint union

M = C ∪ S.

By combining earlier work due to Borovik [4] and Liebeck–Seitz [52], we know that every
subgroup in S is almost simple. At the time of writing, all the subgroups in C have been
determined, up to conjugacy, and the same is true for the maximal subgroups in S so long
as T 6= E7(q), E8(q). We refer the reader to Remark 2.14 for a more detailed description of
the subgroups comprising the collections C and S.

We begin by stating a simplified version of our main result.
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Theorem 2. Let G 6 Sym(Ω) be a finite almost simple primitive permutation group with
point stabilizer H and socle T , which is a simple exceptional group of Lie type in characteristic
p. If T is 2-elusive, then either

(i) (G,H) is known; or

(ii) T = E8(q), H is almost simple with socle S and either (S, p) = (L3(3), 13) or S =
L2(r) for some odd prime power r.

A more detailed version of Theorem 2 is presented as Theorem 3 below, where we refer
to the subgroup collections C and S introduced above. Note that Tables A, B and C can be
found at the end of the paper in Section 10. In addition, the relevant groups with |Ω| odd
are recorded in Theorem 2.22, which is a special case of a theorem of Liebeck and Saxl [45]
on primitive groups of odd degree.

Theorem 3. Let G 6 Sym(Ω) be a finite almost simple primitive permutation group with
point stabilizer H and socle T , which is a simple exceptional group of Lie type in characteristic
p. Set H0 = H ∩ T and assume |Ω| is even.

(i) If H ∈ C, then T is not 2-elusive if and only if (T,H0) is in Table A.

(ii) If T 6= E8(q) and H ∈ S, then T is 2-elusive if and only if (T,H0) is in Table B.

(iii) If T = E8(q) and H ∈ S has socle S, then T is 2-elusive only if p is odd and either
S = L2(pe) with 7 6 pe 6 2621, or if (H0, p) is in Table C.

Remark 4. We record a couple of comments on the statement of Theorem 3.

(a) Typically, we find that T is often 2-elusive when H ∈ C and so it is more efficient to
list the exceptions in Table A. On the other hand, there are fewer groups where T
is 2-elusive and H ∈ S. This explains the contrasting way we have chosen to state
parts (ii) and (iii) in Theorem 3, in comparison with part (i).

(b) In part (iii), we note that T = E8(q) has two conjugacy classes of involutions when
p is odd. So if S = L2(pe) with p odd, then T is 2-elusive only if H0 contains an
involutory diagonal or field automorphism of S. It is also worth noting that at the
time of writing, there is not a single known example of a maximal subgroup H ∈ S
with socle L2(pe). Furthermore, it is conjectured that no such example exists, see
[60, p.560] and [18, Conjecture 3.3].

As a corollary, we obtain the following result by combining Theorem 3 with [9, Theorem
1.5.1] and the main results in [8, 10] for r = 2.

Corollary 5. Let G 6 Sym(Ω) be a finite almost simple primitive permutation group with
point stabilizer H and socle T . Assume |Ω| is even. Then T is 2-elusive if and only if one
of the following holds:

(i) T is an alternating or sporadic group and either G is 2-elusive and (G,H) is recorded
in [10], or (G,H) is one of the cases in Table 1.

(ii) T is a classical group and the possibilities for (G,H) are determined in [8, 9].

(iii) T is an exceptional group of Lie type and the possibilities for (G,H) are determined
in Theorem 3.

Remark 6. Let G 6 Sym(Ω) be an almost simple primitive group with socle T and point
stabilizer H, where T is an alternating or sporadic group. The 2-elusive groups of this form
are determined in [10], but some additional work is required to find all of the examples where
T is 2-elusive. Indeed, if G is 2-elusive then so is T , but the converse is false, in general. For
example, if we consider the natural action of G = Sym6 on Ω = {1, . . . , 6}, then T = Alt6

is 2-elusive, but G is not. By inspecting the relevant proofs in [10], it is a straightforward
exercise to determine the complete list of pairs (G,H) that arise in this way, and these are
the cases recorded in Table 1.
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G H Conditions

Symn Symk × Symn−k H intransitive, n ≡ 2 (mod 4), 1 6 k < n/2 odd

Sym6 Sym5 H primitive
PGL2(9) 32:8

Alt6.22 2× 5:4, 32:SD16

He.2 Sp4(4).4, 52:4Sym4

J2.2 (Alt5 ×D10).2, 52:(4× Sym3)

J3.2 L2(16).4

O′N.2 33:21+4.D10.2

Table 1. The special cases arising in part (i) of Corollary 5

G Conditions

Ln(q) n even, mq odd, and either q ≡ 3 (mod 4) or (n)2 > (q − 1)2

Un(q), n > 3 n even, m = n/2 and (n)2 < (q + 1)2

PSpn(q), n > 4 q ≡ 3 (mod 4) and m odd

PΩ+
n (q), n > 8 q ≡ 3 (mod 4) and either m > n/2− 1, or m is odd and n ≡ 0 (mod 4)

PΩ−n (q), n > 8 q ≡ 7 (mod 8), n ≡ 2 (mod 4) and m odd

Ωn(q), n > 7 q ≡ 3 (mod 4) and m = (n− 1)/2
E7(q) q ≡ 3 (mod 4) and m ∈ {2, 5, 7}

Table 2. The special cases (G,m) arising in Corollary 7

By combining Theorem 3 with [9, Theorem 4.1.7], we obtain the following corollary on
maximal parabolic subgroups of simple groups of Lie type, which may be of independent
interest. For a classical group G, recall that each maximal parabolic subgroup is the stabilizer
of a totally singular m-dimensional subspace of the natural module V , which we denote by
Pm (if G = Ln(q) is a linear group, then we view all subspaces of V as totally singular).
In addition, we adopt the standard Pm notation for the maximal parabolic subgroups of
exceptional groups (this agrees with the usual Bourbaki labelling of the simple roots for G,
as given in [32, 11.4]). Also note that in Table 2, we use the notation (a)2 to denote the
largest power of 2 dividing a.

Corollary 7. Let G be a simple group of Lie type and let H = Pm be a maximal para-
bolic subgroup of G. Then either H contains a representative of every conjugacy class of
involutions in G, or (G,m) is one of the cases recorded in Table 2.

Finally, by combining Corollary 5 with [10, Theorem 2.1], we get the following result for
arbitrary primitive permutation groups.

Corollary 8. Let L 6 Sym(Ω) be a finite primitive permutation group with socle S and
assume |Ω| is even. Then S is 2-elusive if and only if the following hold:

(i) L 6 G o Symk acting with its product action on Ω = ∆k for some k > 1, where
G 6 Sym(∆) is an almost simple primitive group with socle T and point stabilizer
H; and

(ii) T is 2-elusive on ∆, so (G,H) is one of the cases recorded in Corollary 5.

In future work, we will investigate the r-elusive actions of almost simple exceptional groups
of Lie type for all odd primes r.

The structure of this paper is as follows. We begin in Section 2 by presenting a number
of preliminary results, which we will need in the proof of Theorem 3. In particular, we
fix notation and we introduce our algebraic group setup, which we will use throughout the
paper. We also recall some of the main results on the conjugacy classes of maximal subgroups
and involutions in the simple exceptional groups (both finite and algebraic), and we briefly
explain how we will apply computational methods, working with Magma [6]. The remainder
of the paper is dedicated to the proof of Theorem 3. The cases where the point stabilizer
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H is a parabolic or subfield subgroup are straightforward and they are treated in Sections 3
and 4, respectively. The low rank groups are then handled in Section 5, which reduces the
proof of Theorem 3 to the groups with socle T = F4(q), Eε6(q), E7(q) or E8(q), and these
four cases are handled in Sections 6 - 9, respectively. Finally, the relevant tables referred to
in the statement of Theorem 3 are presented in Section 10.

We conclude the introduction by briefly outlining some of the methods used in the proofs
of our main results. Let G be an almost simple exceptional group of Lie type with socle T
and let H be a core-free maximal subgroup with |Ω| = [G : H] even. We will consider each
possibility for G and H in turn, with the aim of determining whether or not H0 = H ∩ T
intersects every T -class of involutions in T (in other words, our goal to determine whether
or not the action of T on Ω = G/H is 2-elusive). In a handful of cases, we find that the
number of T -classes of involutions in T exceeds the number of H0-classes of involutions in
H0, which immediately implies that T is not 2-elusive. But in all other cases, we need to
study the fusion of H0-classes in T in order to determine whether or not every T -class of
involutions has a representative in H0.

Given an involution g ∈ H0, we can usually identify the T -class of g by computing the
dimension of the fixed point space CV (g) of g on the adjoint module V = L(Ḡ) for the
ambient simple algebraic group Ḡ (see Section 2.5). In particular, if we have expressed g
explicitly as a product of root elements, then we can compute dimCV (g) using Magma, as
discussed in Section 2.4. For example, this is typically the approach we take when H0 is a
subgroup of maximal rank, such as the normalizer of a maximal torus in T . In other cases,
we will often compute dimCV (g) by appealing to information available in the literature on
the composition factors of the restriction V ↓ H0. And in cases where this information is
not readily available, then a different argument is required, which may involve working with
an explicit construction of H0 and V ↓ H0.

Recall that we partition the set of maximal subgroups of G into two parts, denoted C and
S. If H ∈ C is of the form H = NG(H̄σ) for some σ-invariant positive-dimensional closed
subgroup H̄ of Ḡ, then we can often work with a description of the composition factors of
V ↓ H̄, which is readily available in the literature (for example, the tables in [67, Chapter
12] provide a convenient source). Similarly, if H ∈ S, then H is almost simple and the
possibilities for H have been determined up to conjugacy for T 6= E7(q), E8(q); in particular,
the structure of V ↓ H0 is known and as before we can use this to determine the fusion of
H0-classes in T . However, it remains an open problem to determine the subgroups H ∈ S
when T = E7(q) or E8(q), despite substantial progress in recent years. Here the possibilities
for the socle of H have been narrowed down to a fairly short list of candidates and to handle
these cases we typically take a computational approach, working with feasible characters as
in [54], which we discuss in Section 2.7. In order to rule out the possibility of a 2-elusive
action of T on G/H, the goal is to compute all the feasible characters of H0 on V and then
show that none of them are consistent with both

(a) the maximality of H as a subgroup of G; and

(b) H0 intersecting every T -class of involutions in T .

If this approach is feasible, then we can use it to rule out the possibility of a 2-elusive action,
without determining whether or not such a maximal subgroup of G exists.

Acknowledgements. We thank David Craven and Alastair Litterick for helpful discussions.
MK was supported by NSFC grant 12350410360.

2. Preliminaries

2.1. Notation. We begin by fixing some of the general notation we will use throughout the
paper. Further notation will be introduced as and when needed.

Let n be a positive integer and let A and B be groups. We denote a cyclic group of order
n by Zn, and often just by n, and we will use [n] to denote an unspecified solvable group
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of order n. We write A:B for an unspecified split extension (semidirect product) of A and
B, where A is a normal subgroup. Similarly, A.B denotes an unspecified extension of A and
B (possibly nonsplit) and we use A ◦ B to denote a central product of A and B. And for
positive integers a and b, we write (a, b) for the highest common factor of a and b.

We adopt the notation for finite simple groups from [38]; for example, we write Ln(q) =
L+
n (q) = PSLn(q) and Un(q) = L−n (q) = PSUn(q) for linear and unitary groups. In some

situations, it will also be convenient to adopt the Lie notation for classical groups, so we will
write An−1(q) and A−n−1(q) for Ln(q) and Un(q), etc.

Our notation for matrices is also fairly standard. First we write In for the identity matrix
of size n, and we use Jn for a unipotent Jordan block of size n. We denote a block-diagonal
matrix with diagonal components A1, . . . , At by writing (A1, . . . , At). For instance, (I2,−I3)
is the 5 × 5 diagonal matrix diag(1, 1,−1,−1,−1). For a positive integer k, we use Jkn to
denote the block-diagonal matrix (Jn, . . . , Jn), which is a unipotent matrix with k Jordan
blocks of size n. This extends naturally to the notation (Jk1

n1
, . . . , Jktnt ) for arbitrary unipotent

matrices and it will be convenient to adopt the shorthand (nk1
1 , . . . , n

kt
t ) for such a matrix.

So for example, (23, 12) denotes an 8 × 8 unipotent matrix with 3 Jordan blocks of size 2,
and 2 Jordan blocks of size 1.

2.2. Setup. Here we fix our basic setup, which we will adopt for the remainder of the paper.
Let G 6 Sym(Ω) be a finite almost simple primitive permutation group with point stabi-

lizer H and socle T . Set H0 = H ∩ T and assume that T is an exceptional group of Lie type
over Fq, where q = pf for some prime p and positive integer f . We can write T = (Ḡσ)′,
where Ḡ is a simple algebraic group of adjoint type over the algebraic closure K = F̄q and
Ḡσ is the subgroup of fixed points of an appropriate Steinberg endomorphism σ of Ḡ. If
Ḡsc denotes the simply connected cover of Ḡ and we write σ for the corresponding Steinberg
endomorphism of Ḡsc, then T ∼=

(
Ḡsc

)
σ
/Z(Ḡsc)σ, unless T = 2G2(3)′, 2F4(2)′ or G2(2)′.

We now give a more precise description of T , following [64] and [29, Chapter 2], which we
also refer the reader to for more details.

Let Φ be the root system of Ḡ and choose a base ∆ = {α1, . . . , α`} of simple roots in Φ,
where we adopt the standard Bourbaki labelling (see [32, 11.4]). Let Φ+ be the corresponding
set of positive roots. We may assume that Ḡ is a Chevalley group as defined in [64], generated
by the set of root elements xα(t) with α ∈ Φ and t ∈ K, which are constructed via reduction
modulo p, as in [64, Chapter 3].

For α ∈ Φ, we write Uα = 〈xα(t) : t ∈ K〉 for the root subgroup corresponding to α. And
for each t ∈ K× we define

wα(t) = xα(t)x−α(−t−1)xα(t), hα(t) = wα(t)wα(1)−1, wα = wα(1).

Then

T̄ = 〈hα(t) : α ∈ Φ, t ∈ K×〉 = 〈hα(t) : α ∈ ∆, t ∈ K×〉
is a maximal torus of Ḡ and W = NḠ(T̄ )/T̄ is the Weyl group of Ḡ.

We have w2
α = hα(−1) and w−α = w−1

α for all α ∈ Φ. In addition, hα(st) = hα(s)hα(t)
and h−α(t) = hα(t−1) for all α ∈ Φ and s, t ∈ K×. Recall that dim T̄ = |∆| is called the
rank of Ḡ.

For α ∈ Φ, we write sα ∈W for the image of the element wα ∈ NḠ(T̄ ), which we refer to
as the reflection corresponding to α. Note that W = 〈sα : α ∈ Φ〉 = 〈sα : α ∈ ∆〉.

Let σq : Ḡ → Ḡ be the Frobenius endomorphism of Ḡ corresponding to the field au-
tomorphism t 7→ tq of K, which maps xα(t) 7→ xα(tq) for all t ∈ K and α ∈ Φ. In the

untwisted case, we have σ = σq and the group Op
′
(Ḡσ) is generated by the set of root ele-

ments {xα(t) : α ∈ Φ, t ∈ Fq}. And we note that Op
′
(Ḡσ) = T unless Ḡσ = G2(2), in which

case Op
′
(Ḡσ) = Ḡσ = T.2.

In the twisted case, the groups that arise are the Steinberg groups and the Suzuki–Ree
groups. For Steinberg groups, we have σ = τσq, where τ is a graph automorphism of Ḡ.
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Here τ corresponds to a permutation τ ′ of the root system Φ with τ ′(∆) = ∆, and as in
Corollary (b) of [64, Theorem 29] we have

τ(xα(t)) = xτ ′(α)(εαt),

where εα = ± for all α ∈ Φ, and εα = + for all α ∈ ±∆. (The values of εα for α /∈ ±∆
depend on the structure constants of the Chevalley basis used in the construction of Ḡ.)

In the case of exceptional groups, the Steinberg groups that arise are T = 3D4(q) and
T = 2E6(q). If T = 3D4(q), then Ḡ is of type D4 and we take τ to be a triality graph
automorphism corresponding to the following permutation τ ′ of ∆ = {α1, α2, α3, α4}:

α1 7→ α3 7→ α4 7→ α1, α2 7→ α2.

For example, notice that T contains the elements xα1(s)xα3(sq)xα4(sq
2
) and xα2(t) for all

s ∈ Fq3 and t ∈ Fq. Similarly, if T = 2E6(q) then Ḡ = E6 and we take τ to be an involutory
graph automorphism defined by the following permutation of ∆:

α1 7→ α6 7→ α1, α3 7→ α5 7→ α3, α2 7→ α2, α4 7→ α4.

Then T contains elements such as xα1(s)xα6(sq), xα3(s)xα5(sq) and xα2(t), xα4(t) for all
s ∈ Fq2 and t ∈ Fq.

For the Suzuki–Ree groups we have σ = ψσq, where ψ : Ḡ→ Ḡ is an exceptional isogeny;

in this case q = pf with f odd, and either p = 2 and T ∈ {2B2(q), 2F4(q)′}, or p = 3 and
T = 2G2(q)′ (note that if T = 2B2(q) then we may assume q > 8 since 2B2(2) = 5:4 is
solvable). Here ψ is defined via a certain involution α 7→ α∨ on Φ which swaps short and
long roots, and preserves angles between the simple roots, see Corollary (b) of [64, Theorem
29]. Then

ψ(xα(t)) =

{
xα∨(εαt) if α is long

xα∨(εαt
2) if α is short,

where once again we have εα = ± for all α ∈ Φ, and εα = + for all α ∈ ±∆.
For more detailed information on the Steinberg groups and the Suzuki–Ree groups, we

refer the reader to [64, Chapter 11] and [29, Chapter 2].

2.3. Algebraic groups. Given the setup introduced in the previous section, we will often
work with algebraic groups and their representations in this paper. In doing so, we will
typically follow Jantzen’s notation from [34], some of which is briefly recalled below.

Let H̄ be a connected semisimple algebraic group of rank ` over K = F̄q. Often we will de-
note H̄ by its type; for example, H̄ = A4A1 means that H̄ is a connected semisimple group of
type A4A1. With respect to a fixed maximal torus and a complete set {α1, . . . , α`} of simple
roots for H̄, we denote the fundamental dominant weights by {$1, . . . , $`}. Throughout the
paper, we will always adopt the standard Bourbaki labelling for the αi and $i, as described
in [32, 11.4]. The Lie algebra of H̄ is denoted by L(H̄) and we refer to it as the adjoint
module for H̄.

By an H̄-module, we will always mean a rational module defined over K. For a dominant
weight λ, we use VH̄(λ) to denote the Weyl module with highest weight λ. Similarly, LH̄(λ)
is the irreducible H̄-module with highest weight λ. When there is no confusion, we will also
use the notation V (λ) and L(λ). Similarly, if H̄ = A1, then we will write c$1 = c for c ∈ Z,
so VH̄(c$1) = VH̄(c) and LH̄(c$1) = LH̄(c) for c > 0.

For simply connected simple H̄ of exceptional type, other than E8, we define the minimal
module Vmin to be the Weyl module VH̄($1), VH̄($4), VH̄($1), VH̄($7) for H̄ = G2, F4, E6, E7,
respectively. Note that Vmin has dimension 7, 26, 27, 56 for H̄ = G2, F4, E6, E7, respectively.

Let W1, W2, . . ., Wt be H̄-modules. Then for an H̄-module V , we will use the notation
V = W1/W2/ · · · /Wt to denote that V has the same composition factors as the direct sum
W1 ⊕W2 ⊕ · · · ⊕Wt.
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2.4. Computational methods. Throughout this paper, we will often need to identify the
conjugacy class of a given involution g ∈ Ḡ, and in some cases we will adopt a computational
approach to do this, working with Magma [6] (version V2.28-11). Typically, the relevant
element g will be written as a product of elements of the form hα(−1), wα and xα(±1), with
respect to the notation in Section 2.2. As we will explain in Section 2.5, we can determine
the Ḡ-class of g by computing the dimension of the fixed point space

CV (g) = {v ∈ V : gv = v}
with respect to the minimal module V = Vmin or the adjoint module V = L(Ḡ), as defined
in Section 2.3.

Let us explain how we can compute dimCV (g) using Magma. As before, let Ḡsc be the
simply connected cover of Ḡ, and define elements x′α(t), h′α(t), w′α in Ḡsc in the same way we
defined the analogous elements in Ḡ (see Section 2.2). There is an isogeny Ḡsc → Ḡ mapping
x′α(t) 7→ xα(t), so for the relevant computations we can work with a suitable element g′ ∈ Ḡsc.
In the cases we are interested in, the element g′ is defined over the prime field Fp since it can
be written as a product of root elements of the form x′α(±1), so g′ ∈ (Ḡsc)(p), which is the
group of Fp-rational points of Ḡsc. Furthermore, as a K[(Ḡsc)(p)]-module, V is defined over
Fp, which means that V = K ⊗Fp V0 for some absolutely irreducible Fp[(Ḡsc)(p)]-module V0.

As a consequence, it suffices to determine the action of g′ on V0 and then read off
dimCV0(g′), since tensoring by K does not change the dimension of the fixed point space.

Example 2.1. For instance, the following Magma code verifies that in characteristic p = 2,
the involution g = xα1(1)xα4(1) of Ḡ = F4 has a fixed point space of dimension 14 on
V = Vmin, and dimension 28 on V = L(Ḡ):

G := GroupOfLieType("F4", GF(2) : Isogeny := "SC");

g := elt<G | <1,1>, <4,1>>;

r := HighestWeightRepresentation(G, [0,0,0,1]);

A := Matrix(r(g)); // action of g on V_min

Dimension(Kernel(A-1)); // output: 14

s := AdjointRepresentation(G);

B := Matrix(s(g)); // action of g on Lie(G)

Dimension(Kernel(B-1)); // output: 28

Note that since g is an involution, the dimension of CV (g) uniquely determines the Jordan
normal form of g on V . For instance, in the above example we see that g has Jordan form
(212, 12) on Vmin and (224, 14) on L(Ḡ), and we will often denote this by writing L(Ḡ) ↓ g =
(224, 14), for example. As explained in the next section, this allows us to conclude that g is

contained in the Ḡ-class of involutions labelled A1Ã1.
In the same way, we can calculate the action of g ∈ Ḡ on any given Weyl module V =

VḠ(λ). We will often be interested in performing such calculations when p = 2, in which
case the involutions are unipotent elements. There will also be some cases where we need to
do this when p is odd. In the latter setting, each involution is semisimple and it is helpful
to observe that we can work over the rational numbers Q in order to perform the relevant
computations. This claim is justified as follows.

First let ḠQ be a simply connected Chevalley group over Q of the same type as Ḡsc,
defined using the same structure constants as Ḡsc. For each α ∈ Φ and t ∈ Q, let xQα(t) be
the corresponding root element in ḠQ and let VQ be the ḠQ-module with the same highest
weight as V . Let ḠZ be the subgroup of ḠQ generated by the set {xQα(t) : α ∈ Φ, t ∈ Z}.
From the Chevalley construction, VQ contains a ḠZ-invariant lattice VZ. Furthermore, there
exists a homomorphism

π : ḠZ → Ḡsc

defined by xQα(t) 7→ x′α(t) for all α ∈ Φ and t ∈ Z.
Let ρZ : ḠZ → GL(VZ) be the representation (over Z) corresponding to VZ, and let

ρ : Ḡsc → GL(V ) be the representation (over K) corresponding to V . From the construction
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of Ḡsc via reduction modulo p [64, Chapter 3], we can identify V = K ⊗Z VZ and we have

ρ(π(x)) = IdK ⊗ ρZ(x)

for all x ∈ ḠZ.
Recall that the element g′ ∈ Ḡsc we are interested in can be expressed as a product of

root elements of the form x′α(±1), say

g′ = x′β1
(c1) · · ·x′βt(ct)

for some roots βi ∈ Φ and integers ci ∈ {1,−1}. Now define

gQ = xQβ1
(c1) · · ·xQβt(ct)

and note that g′ = π(gQ).
The following result now justifies our calculations over Q. In the statement, V is an

arbitrary Weyl module VḠ(λ).

Lemma 2.2. Assume that p > 2 and that gQ acts as an involution on VQ. Then g′ acts as
an involution on V and we have dimCV (g′) = dimCVQ(gQ).

Proof. First observe that gQ ∈ ḠZ, so the lattice VZ is gQ-invariant. Since gQ acts as an
involution, it is well known (see for example [22, Theorem 74.3] or [5, Appendix A]) that
there is a basis for VZ such that the corresponding matrix for gQ is block-diagonal of the form
(Ia,−Ib, Ac) for some non-negative integers a, b and c, where A is the 2 × 2 anti-diagonal
matrix antidiag(1, 1).

Now ρ(g′) = IdK ⊗ ρZ(gQ), so the action of g′ on V is given by the reduction modulo p of
this matrix. Since the matrix A is similar to diag(1,−1) over any field of characteristic 6= 2,
in particular over K and over Q, it is clear that g′ also acts as an involution on V . Moreover,
we have dimCV (g′) = dimCVQ(gQ) as required. �

Example 2.3. Let Ḡ = E7 with p > 2 and consider the following elements:

g1 = hα1(−1), g2 = wα2wα5wα7 , g3 = hα1(−1)wα2wα5wα7 .

It is clear that each gi acts as an involution on the adjoint module V = L(Ḡ). By appealing
to Lemma 2.2, the following Magma code shows that dimCV (gi) = 69, 79, 63 for i = 1, 2, 3
respectively:

G := GroupOfLieType("E7", RationalField() : Isogeny := "SC");

g1 := TorusTerm(G,1,-1);

g2 := elt<G|2> * elt<G|5> * elt<G|7>;

g3 := g1*g2;

r := AdjointRepresentation(G);

A1 := Matrix(r(g1)); // action of g1 on Lie(G)

A2 := Matrix(r(g2)); // action of g2 on Lie(G)

A3 := Matrix(r(g3)); // action of g3 on Lie(G)

Dimension(Kernel(A1-1)); // output: 69

Dimension(Kernel(A2-1)); // output: 79

Dimension(Kernel(A3-1)); // output: 63

As we will explain in the next section, this computation allows us to conclude that the invo-
lutions g1, g2 and g3 are contained in the Ḡ-classes of type A1D6, E6T1 and A7, respectively.

2.5. Involutions. Recall that our main aim is to classify the almost simple primitive groups
with point stabilizer H and socle T , an exceptional group of Lie type, with the property that
T is 2-elusive. This is essentially equivalent to determining the pairs (T,H0), where T is a
simple exceptional group of Lie type and H0 = H ∩ T for some core-free maximal subgroup
H of a group with socle T such that H0 intersects every T -class of involutions in T . So in
order to study this problem, we require detailed information on both the conjugacy classes
of involutions in simple exceptional groups, as well as the maximal subgroups of the almost
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Class Representative |CT (x)| V ↓ x
A1 xα1 (1) q12(q6 − 1) (22, 14)
A3

1 xα1 (1)xα3 (1)xα4 (1) q10(q2 − 1) (24)

Table 3. The involution classes in T = 3D4(q) for p = 2

simple exceptional groups. In this section, we focus on the involution classes, and we will
turn to the maximal subgroups in Section 2.6.

The study of involutions divides naturally into two cases, according to the parity of the
underlying characteristic p. Of course, if p = 2 then the involutions are unipotent elements
of Ḡ, while for p 6= 2 they are semisimple. There are some significant differences between
these two cases, so in the proofs of our main results, we will often treat the cases p = 2 and
p 6= 2 separately.

We first consider some of the small rank exceptional groups.

Lemma 2.4. If T = 2B2(q) or 2G2(q)′, then T has a unique conjugacy class of involutions.

Proof. The fact that 2B2(q) and 2G2(q) have a unique conjugacy class of involutions was
originally proved in [65, Proposition 7] and [69, p.63], respectively. This establishes the
lemma except for 2G2(3)′ ∼= L2(8), in which case the result is clear. �

Next we consider the Steinberg triality group. We refer the reader to Table 3 for further
information on the two classes of unipotent involutions when p = 2 (in the table, V denotes
the natural 8-dimensional module for Ḡ = D4).

Lemma 2.5. Suppose that T = 3D4(q).

(i) If q is odd, then T has a unique conjugacy class of involutions.

(ii) If q is even, then T has two conjugacy classes of involutions, labelled A1 and A3
1.

Proof. As noted in [37, Lemma 2.3(i)], claim (i) follows from results in [28]. Alternatively,
one can argue directly as follows: In Ḡ = D4 = SO8(K)/〈±I8〉, each involution is conjugate
to the image of a diagonal matrix in SO8(K), and a calculation shows that there are 4
conjugacy classes of involutions in Ḡ, only one of which is invariant under a triality graph
automorphism of Ḡ. Finally, for part (ii) we refer to [62]. �

In each of the remaining cases, the ambient algebraic group Ḡ is simple of exceptional
type. We begin by discussing the conjugacy classes of involutions in Ḡ.

First assume p = 2. Here the conjugacy classes of involutions in Ḡ are recorded in Table
4, where we adopt the labelling of the classes from the tables in [47, Chapter 22]. The
information in Table 4 is verified as follows. Firstly, the Jordan forms on Vmin and L(Ḡ) can
be read off from the tables in [41] (see Remark 2.6 below). As a consequence, we observe
that the Ḡ-class of a unipotent involution is uniquely determined by its Jordan form on Vmin

and L(Ḡ). We will often use this fact to determine the class of a given involution in Ḡ.
In most cases, the representatives listed in Table 4 are standard ones that can be found in

the literature. In any case, by computing the action of the given elements on Vmin and L(Ḡ)
(for example, with the aid of Magma, as described in Section 2.4), one can verify that the
representatives listed in Table 4 are correct by inspecting [41]. In the cases where Ḡ admits
a graph automorphism τ (or an exceptional isogeny ψ), we have also indicated in Table 4
whether or not the given class is invariant under τ (or ψ). This information is clear from
the table, since the representatives listed are either fixed by τ (or ψ), or mapped to another
representative.

Remark 2.6. In Table 4, we use the labelling of unipotent classes from [47, Chapter 22]
and we note that this differs slightly from the labels used by Lawther in [41], which is our
main reference for Jordan block sizes. Specifically, to avoid any confusion, we note that for
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Ḡ Class Representative Vmin ↓ x L(Ḡ) ↓ x Notes

G2 Ã1 xα1 (1) (23, 1) (26, 12)

A1 xα2 (1) (22, 13) (26, 12)

F4 A1 xα1 (1) (26, 114) (216, 120)

Ã1 xα4 (1) (210, 16) (216, 120)

A1Ã1 xα1 (1)xα4 (1) (212, 12) (224, 14) ψ-invariant

(Ã1)2 xα2+α3 (1)xα2+2α3 (1) (210, 16) (221, 110) ψ-invariant

E6 A1 xα2 (1) (26, 115) (222, 134) τ -invariant

A2
1 xα1 (1)xα6 (1) (210, 17) (232, 114) τ -invariant

A3
1 xα1 (1)xα2 (1)xα6 (1) (212, 13) (238, 12) τ -invariant

E7 A1 xα1 (1) (212, 132) (234, 165)
A2

1 xα1 (1)xα2 (1) (220, 116) (252, 129)

(A3
1)(1) xα2 (1)xα5 (1)xα7 (1) (228) (253, 127)

(A3
1)(2) xα3 (1)xα5 (1)xα7 (1) (224, 18) (262, 19)

A4
1 xα2 (1)xα3 (1)xα5 (1)xα7 (1) (228) (263, 17)

E8 A1 xα1 (1) (258, 1132)

A2
1 xα1 (1)xα4 (1) (292, 164)

A3
1 xα1 (1)xα4 (1)xα6 (1) (2110, 128)

A4
1 xα1 (1)xα4 (1)xα6 (1)xα8 (1) (2120, 18)

Table 4. The involution classes in Ḡ of exceptional type, p = 2

Ḡ Class Representative dimCVmin
(x) dimCL(Ḡ)(x) Notes

G2 A1Ã1 hα1 (−1)hα2 (−1) 3 6 ψ-invariant if p = 3

F4 A1C3 hα1 (−1) 14 24

B4 hα4 (−1) 10 36

E6 A1A5 hα2 (−1) 15 38 τ -invariant

D5T1 hα1 (−1)hα6 (−1) 11 46 τ -invariant

E7 A1D6 hα1 (−1) 32 or 24 69

E6T1 wα2wα5wα7 0 79
A7 hα1 (−1)wα2wα5wα7 0 63

E8 A1E7 hα1 (−1) 136
D8 hα1 (−1)hα2 (−1) 120

Table 5. The involution classes in Ḡ of exceptional type, p 6= 2

p = 2 and Ḡ = E7, the class (A3
1)(1) is denoted by (3A1)′′ in [41], and the class (A3

1)(2) is
denoted by (3A1)′ in [41].

Now assume p > 2. Here the conjugacy classes of involutions in Ḡ are listed in Table 5,
following [29, Table 4.3.1]. In each case, the class of an involution x is labelled by the structure
of the connected component CḠ(x)◦, which for exceptional Ḡ is uniquely determined by the
dimension of the centralizer. Since each involution is semisimple, we have

dimCḠ(x) = dimCL(Ḡ)(x)

by [3, 9.1], so we can determine the Ḡ-class of x by calculating its action on the adjoint
module L(Ḡ). A similar observation is made in [50, Proposition 1.2]. As we did for the case
p = 2, we also list explicit representatives for each class of involutions in Table 5, and we
indicate the classes that are invariant under the relevant maps τ and ψ.

Remark 2.7. Recall that our simple algebraic group Ḡ is of adjoint type, which means that
Vmin is not necessarily a Ḡ-module when Ḡ is of type E6 or E7. However, in these cases we
can lift each involution g ∈ Ḡ to an element g′ ∈ Ḡsc of order 2 or 4 in the simply connected
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cover of Ḡ, and the action on Vmin presented in Tables 4 and 5 corresponds to the action of
g′. More precisely, g′ can be chosen to be an involution, except for elements in the classes
labelled E6T1 and A7 in Ḡ = E7 with p 6= 2. In these two cases, g′ has order 4 and

(g′)2 = z = h′α2
(−1)h′α5

(−1)h′α7
(−1)

generates the center of Ḡsc. (Here h′α(t) is defined in the same way as hα(t) for Ḡ.)
In addition, we note that if Ḡ = E7 and p 6= 2, then there are two possible choices for

the lift g′, namely g′ and g′z. Since z acts as −I56 on Vmin, the value of dimCVmin(g′) may
depend on the choice of lift g′. This issue occurs only for involutions of type A1D6 in Ḡ = E7,
as indicated in Table 5.

We can now use the following lemma to describe the conjugacy classes of involutions in
Ḡσ in terms of the classes in Ḡ. Note that the lemma also includes the cases T = 2B2(q)
and T = 3D4(q).

Lemma 2.8. Assume that T 6= G2(2)′, and let g ∈ Ḡ be an involution. Then the following
statements hold:

(i) gḠ ∩ T is nonempty if and only if gḠ is σ-invariant.

(ii) If T is untwisted, then gḠ ∩ T is nonempty.

(iii) If gḠ ∩ T is nonempty, then gḠ ∩ T consists of a single T -class.

Proof. First assume T ∈ {2G2(3)′, 2F4(2)′}. For T = 2F4(2)′ it is easy to check that T has

two conjugacy classes of involutions, which belong to the Ḡ-classes labelled A1Ã1 and (Ã1)2.
So the result holds in this case (see Table 4). And for T = 2G2(3)′, the result is clear since
T has a unique conjugacy class of involutions (Lemma 2.4).

In the remaining cases T ∼= (Ḡsc)σ/Z(Ḡsc)σ, where Ḡsc is the simply connected cover of Ḡ.
Claim (i) follows from [63, I, 2.7(a)]. Claim (ii) is true more generally, but for the purposes
of this proof it is sufficient to observe that each class representative given in Tables 4 and
5 can be written as a product of root elements of the form xα(±1). Then part (ii) follows
since any such root element is fixed by a Frobenius endomorphism.

For (iii) in the case p = 2, we refer to the tables in [47, Chapter 22] when Ḡ is of
exceptional type; alternatively, see [2]. For p = 2 and T ∈ {2B2(q), 3D4(q)}, the claim
follows from Lemmas 2.4 and 2.5. And for p > 2, we refer to [29, Table 4.5.1], noting that

xT = xḠσ for each involution x ∈ T (see [29, Theorem 4.2.2(j)]). �

To summarize the results in the case where Ḡ is of exceptional type and T 6= G2(2)′,
Lemma 2.8 implies that the conjugacy classes of involutions in T are as described in Table
4 (for p = 2) and Table 5 (for p 6= 2). Therefore, we can determine the T -class of each
involution in T just by computing the dimension of its fixed point space on Vmin or L(Ḡ).
Note that one only needs to do this computation for both modules when (Ḡ, p) = (F4, 2).
Finally, for the record we note that G2(2)′ ∼= U3(3) has a unique class of involutions.

Remark 2.9. For the most part, there is no distinction between classes of involutions in the

socle T = (Ḡσ)′ and the almost simple group G̃ = Inndiag(T ) = Ḡσ. Clearly, if the index

[G̃ : T ] is odd, then every involution in G̃ is contained in T . And for T exceptional, [G̃ : T ]
is even if and only if T = G2(2)′, 2F4(2)′, or E7(q) with q odd.

(a) If T = G2(2)′ then G̃ has two classes of involutions, only one of which is contained
in T . More precisely, the involutions in T are those of type A1 (long root elements),

while the class in G̃ \ T consists of involutions of type Ã1 (short root elements).

(b) If T = 2F4(2)′, then every involution in G̃ = 2F4(2) is contained in T .

(c) Now suppose T = E7(q) and q is odd. Here there are three Ḡ-classes of involutions,
with corresponding centralizers A1D6, E6T1.2 and A7.2, and according to [29, Table
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4.5.1] there are three classes in T and five in G̃. More precisely, there is a single G̃-
class of involutions of type A1D6, which is contained in T . Each of the two remaining

Ḡ-classes correspond to two G̃-classes, only one of which is contained in T (the

splitting of xḠ into two G̃-classes corresponds to the fact that [CḠ(x) : CḠ(x)◦] = 2).

For example, if q ≡ ε (mod 4), then the involutions x ∈ G̃ with |C
G̃

(x)| = 2|SLε8(q)|
are contained in T , while those with |C

G̃
(x)| = 2|SL−ε8 (q)| are in G̃ \ T .

To conclude our discussion of involutions, let us consider the cases where T has a unique
class of involutions. As explained above, this property holds if and only if T is one of the
following:

2B2(q), 2G2(q)′, 3D4(q) (q odd), G2(q) (q odd).

Lemma 2.10. Suppose that T has a unique conjugacy class of involutions. Then T is
2-elusive if and only if |Ω| is even.

Proof. This follows immediately from [53, Lemma 2.1], which implies that |H ∩ T | is even
for every maximal subgroup H of G. �

Remark 2.11. We refer the reader to Theorem 2.22 below for a complete description of the
relevant groups with |Ω| odd.

Now suppose that T has two or more conjugacy classes of involutions. Clearly, if there
are more conjugacy classes of involutions in T than in H0, then T is not 2-elusive. With this
simple observation in mind, we record the following elementary result, which will be useful
later.

Lemma 2.12. Let L be a finite group with a normal subgroup A of odd order. Then L and
L/A have the same number of conjugacy classes of involutions.

Proof. Let t1A, . . . , tkA be representatives for the conjugacy classes of involutions in L/A.
Since A has odd order, we can assume that each ti is an involution in L. To prove the lemma,
it will suffice to show that each involution in L is conjugate to a unique ti. To this end, let
x ∈ L be an involution. Then xA is conjugate to tiA for a unique i, so x is conjugate to tia
for some a ∈ A. Set J = 〈A, ti〉 = A:〈ti〉 = A:〈tia〉. Then 〈ti〉 and 〈tia〉 are J-conjugate by
Sylow’s theorem and the result follows. �

As a special case of Lemma 2.12, note that if L/A has a unique conjugacy class of invo-
lutions, then L also has a unique class of involutions.

Remark 2.13. In the proof of Theorem 3, we will also need some information on the
conjugacy classes of involutions in the finite classical groups. So let L be an almost simple

classical group over Fq with socle S and let L̃ = Inndiag(S) be the subgroup of Aut(S)
generated by the inner and diagonal automorphisms of S.

(a) If q is odd, then detailed information on the conjugacy classes of involutions in L̃
and S is presented in [29, Table 4.5.1].

(b) In even characteristic, Aschbacher and Seitz [2] provide an in-depth analysis of the
involution classes in all groups of Lie type, see also [47, Chapters 6 and 7]. For

classical groups, each involution x ∈ L̃ is contained in S (unless L̃ = Sp4(2) = S.2)
and we observe that x has Jordan form (2k, 1n−2k) on the natural module V for S,
where n = dimV and 1 6 k 6 n/2.

For linear and unitary groups, the S-class and L̃-class of x coincide, and it is
uniquely determined by k. Similarly, if S is a symplectic group, then there is a
unique such class for k odd, denoted bk in [2], whereas there are two classes for each
even k, labelled ak and ck (the a-type involutions have the property that β(v, vx) = 0
for all v ∈ V , where β is the defining symplectic form on V ).
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If S = Ωε
n(q) is an even-dimensional orthogonal group, then k is even and there

are two classes when k < n/2, denoted ak and ck. If k = n/2, then there is a unique
class cn/2 when ε = −, whereas there are three such classes when ε = +, denoted by
an/2, a′n/2 and cn/2 (here the first two S-classes are fused in the full isometry group

S.2 = O+
n (q)). Note that in this case we have S < Spn(q), and for all k even the

class ak (respectively ck) corresponds to the class denoted by ak (respectively ck) in
Spn(q).

(c) If p = 2 and S is a symplectic or orthogonal group, then an involution x ∈ S acts
as a unipotent element on the natural module V of S. In terms of the distinguished
normal form used to describe the unipotent classes in [47], we note that V ↓ x admits
the following orthogonal decomposition according to the S-class of x as described in
part (b):

ak : V ↓ x = W (1)n/2−k ⊥W (2)k/2,

bk : V ↓ x = W (1)n/2−k ⊥W (2)(k−1)/2 ⊥ V (2),

ck : V ↓ x = W (1)n/2−k ⊥W (2)(k−2)/2 ⊥ V (2)2.

For further details, and a description of the summands arising here, we refer the
reader to [47, Chapters 6 and 7] (and Theorem 7.3 in particular).

2.6. Subgroup structure. The purpose of this section is recall some of the main results
from the literature on maximal subgroups of almost simple exceptional groups of Lie type.

As before, let G be an almost simple exceptional group of Lie type over Fq with socle

T = (Ḡσ)′, where q = pf and p is a prime. Let M = C ∪ S be the set of core-free maximal
subgroups of G, where C is the collection of maximal subgroups H of the following types
(see Definition 1):

(I) H = NG(H̄σ) for some maximal σ-invariant positive-dimensional closed subgroup H̄
of Ḡ;

(II) H is of the same type as G (either a subfield subgroup or a twisted version of G);

(III) H is the normalizer of an exotic r-local subgroup for some prime r 6= p;

(IV) T = E8(q), p > 5, and soc(H) = Alt5 ×Alt6 (the Borovik subgroup).

Here the subgroups arising in (I) and (II) are described in [48]. The maximal subgroups
in case (III) were classified (up to conjugacy) in [13], and the subgroup in case (IV) was
first described by Borovik [4]. By combining results of Borovik [4] and Liebeck–Seitz [52], it
follows that the maximal subgroups in S are almost simple.

Remark 2.14. Through the work of many authors, spanning several decades, the maximal
subgroups of G have been determined (up to conjugacy) when T 6= E7(q), E8(q). For exam-
ple, Craven’s recent paper [17] completely classifies the maximal subgroups for the groups
with socle T = F4(q), E6(q) or 2E6(q). Since our main result (Theorem 3) is stated in terms
of the collections C and S, here we provide some more details on the subgroups arising in
each collection:

(a) T = 2B2(q) or 2G2(q)′: The maximal subgroups were determined up to conjugacy
by Suzuki [65] and Kleidman [36], in the two respective cases. For T 6= 2G2(3)′, the
subgroups in M are conveniently recorded in [7, Tables 8.16 and 8.43] and we note
that S is empty. And if T = 2G2(3)′ ∼= L2(8), then every core-free maximal subgroup
of G is solvable and so once again S is empty.

(b) T = 3D4(q): The subgroups in M were determined by Kleidman [37] and they are
listed in [7, Table 8.51]. The collection S is empty for all q.

(c) T = 2F4(q)′: First assume q > 8. The subgroups inM were determined by Malle [57],
modulo the omission of three classes of maximal subgroups isomorphic to PGL2(13)
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when G = 2F4(8) (see [17, Remark 4.11]). Here the collection S is empty unless G =
2F4(8), in which case it comprises the aforementioned maximal subgroups isomorphic
to PGL2(13).

For q = 2, the maximal subgroups of G were determined by Wilson [70], noting the
omission of a unique class of maximal subgroups SU3(2).2 of 2F4(2). We see that S
contains five classes of subgroups when G = T , which are isomorphic to L3(3).2 (two
classes), A6.2

2 (two classes) and L2(25). And for G = T.2 we note that S comprises
a unique class of subgroups isomorphic to L2(25).2.

(d) T = G2(q)′: The maximal subgroups of G were determined by Cooperstein [14] (for
p = 2) and Kleidman [36] (for p 6= 2) and they are conveniently listed in [7, Table
8.30] (for p = 2 and q > 4) and [7, Tables 8.41, 8.42] (for p 6= 2).

If p = 2, then the collection S is empty unless q = 4, in which case it comprises
two classes of subgroups H with H ∩ T = L2(13) or J2. Note that if q = 2 then
T = G2(2)′ ∼= U3(3) and G has a unique class of nonsolvable maximal subgroups
H with H ∩ T = L3(2), which are contained in the collection C. Similarly, if p = 3
then S is empty unless q = 3, in which case it contains a class of subgroups H with
H ∩ T = L2(13). Finally, if p > 5 then the subgroups in S can be read off from [7,
Table 8.41] (the relevant cases are labelled S1 in the first column of [7, Table 8.41]).

(e) T = F4(q), E6(q) or 2E6(q): The subgroups in M have been determined up to
conjugacy by Craven in [17]. More specifically, the subgroups in S are recorded in
Tables 1, 2 and 3 of [17], while the subgroups comprising C are presented in [17,
Tables 7 and 8] for T = F4(q) and [17, Tables 9 and 10] for T = E6(q) and 2E6(q),
respectively.

(f) T = E7(q): The subgroups in C are recorded in [19, Table 4.1]. By the main theorem
of [19], the collection S comprises the subgroups in [19, Table 1.1], with the possible
inclusion of some additional subgroups with socle L2(q′) for q′ ∈ {7, 8, 9, 13}.

(g) T = E8(q): Here the collection C comprises 8 conjugacy classes of maximal parabolic
subgroups, together with the maximal rank subgroups of the form NG(H̄σ) recorded
in [46, Tables 5.1, 5.2]. In addition, C contains several classes of non-maximal rank
subgroups of the form NG(H̄σ), where the possibilities for soc(H̄σ) are listed in [49,
Table 3], as well as subfield subgroups of type E8(q0) and the exotic local subgroups
appearing in [13, Table 1]. And for p > 5, the collection C also contains the Borovik
subgroup H with soc(H) = Alt5 × Alt6. In particular, all the subgroups in C have
been determined up to conjugacy.

At the time of writing, it remains an open problem to determine the subgroups in
S (even up to isomorphism). However, by combining earlier results of several authors
[16, 20, 50, 51, 54] with Craven’s ongoing work [15], we know that if S denotes the
socle of a subgroup in S, then one of the following holds (here Lie(p) denotes the set
of finite simple groups of Lie type in characteristic p):

– S ∈ Lie(p) and either S = L2(q0) with 7 6 q0 6 (2, q − 1) · 1312, or

S ∈ {Lε3(3), Lε3(4), U3(8), U4(2), 2B2(8)}.

– S 6∈ Lie(p) and either

∗ S = Alt6 (p 6= 5), Alt7 (p 6= 2), M11 (p = 3, 11), J3 (p = 2) or Th (p = 3);

∗ S = L2(q′) with q′ ∈ {7, 8, 11, 13, 16, 17, 19, 25, 29, 31, 32, 41, 49, 61}; or

∗ S = L3(3), L3(5), L4(5), U3(3), U4(2), PSp4(5), 2B2(8), 2B2(32), 3D4(2)
or 2F4(2)′.

It is worth noting that the collection S is known to be nonempty for certain values
of q. For example, if G = E8(2) then the main theorem of [59] shows that S contains
unique conjugacy classes of subgroups isomorphic to L3(5).2 and PGSp4(5).
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Next we look more closely at the subgroups of type (I) in the definition of the collection
C. Here H = NG(H̄σ) for some σ-stable positive-dimensional closed subgroup H̄ of Ḡ and
the possibilities for H̄ can be divided into the following cases (recall that a closed subgroup
H̄ of Ḡ has maximal rank if H̄◦ contains a maximal torus of Ḡ):

(a) H̄ is a parabolic subgroup;

(b) H̄◦ is a maximal torus;

(c) H̄ is reductive of maximal rank and H̄◦ is not a torus;

(d) H̄ is reductive, not of maximal rank.

In general, the structure of the finite group H̄σ depends on the choice of Ḡ-conjugate of
H̄. Let us explain this in more general terms.

Let X be a group that σ acts on. We denote by H1(σ,X) the equivalence classes of X
under the relation ∼ defined by x ∼ y if and only if x = σ(g)−1yg for some g ∈ X. The
following result is [63, 2.7].

Lemma 2.15. Let X be a σ-invariant closed subgroup of Ḡ, and let X be the set of σ-
invariant Ḡ-conjugates of X. Denote by X/Ḡσ the set of Ḡσ-classes in X . Then there is a
bijection

X/Ḡσ → H1(σ,NḠ(X)/NḠ(X)◦),

which maps the class [Xg] to the image of σ(g)g−1 in H1(σ,NḠ(X)/NḠ(X)◦).

In particular, if NḠ(X) is connected, then Lemma 2.15 implies that all of the σ-invariant
Ḡ-conjugates of X are conjugate in Ḡσ. In the context of maximal subgroups, one special
case where this applies is when H̄ is a parabolic subgroup, in which case NḠ(H̄) = H̄ is
connected.

For each maximal subgroup H = NG(H̄σ) as in case (I), we have H̄ = NḠ(H̄) by the max-
imality of H̄. Therefore, Lemma 2.15 implies that the Ḡσ-classes of σ-invariant conjugates
of H̄ are in bijection with the set H1(σ, H̄/H̄◦). More precisely, a σ-invariant conjugate
H̄g with g ∈ Ḡ corresponds to the image of the element w = σ(g)g−1 in H1(σ, H̄/H̄◦).
Furthermore, (

H̄g
)
σ

=
(
H̄wσ

)g
and

(
Ḡσ
)′

=
((
Ḡwσ

)′)g
, (1)

where wσ denotes the Steinberg endomorphism x 7→ σ(x)w of Ḡ. In particular, if we are
interested in studying the 2-elusivity of T , then it will be sufficient to consider involutions in

the group H̃0 = NḠ(H̄wσ) ∩
(
Ḡwσ

)′
. We formalize this observation in the following lemma.

Lemma 2.16. Let H̄ be a maximal σ-invariant positive-dimensional closed subgroup of Ḡ
and let H̄g be a σ-invariant conjugate of H̄, corresponding to the image of w = σ(g)g−1 in
H1(σ, H̄/H̄◦). Assume H = NG(

(
H̄g
)
σ
) is a maximal subgroup of G and set

H̃0 = NḠ(H̄wσ) ∩
(
Ḡwσ

)′
.

Then the following statements hold:

(i) We have (H̃0)g = H0.

(ii) Assume that T 6= G2(2)′. Then T is 2-elusive on Ω = G/H if and only if H̃0 meets
every σ-invariant conjugacy class of involutions in Ḡ.

Proof. The first claim follows from equation (1) above. And in view of (i), the second claim
is an immediate consequence of Lemma 2.8. �

Remark 2.17. Suppose Ḡ is of exceptional type and Ḡσ 6= G2(2), 2G2(3), 2F4(2). If Ḡ 6=
E6, E7, then Ḡ is simply connected and(

Ḡwσ
)′

= Ḡwσ and H̃0 = NḠwσ(H̄wσ).
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In the proof of Theorem 3, no issues arise when Ḡ = E6 since the index of (Ḡwσ)′ in Ḡwσ
is (3, q ± 1) and thus every involution in Ḡwσ is contained in (Ḡwσ)′. However, if Ḡ = E7

then we have [Ḡwσ : (Ḡwσ)′] = (2, q − 1) and so there is a difference between the classes of
involutions in Ḡwσ and (Ḡwσ)′ when q is odd, as highlighted in Remark 2.9. But here we

can verify that a given element x ∈ NḠwσ(H̄wσ) is contained in
(
Ḡwσ

)′
by checking that it

lifts to an element x′ ∈
(
Ḡsc

)
w′σ

, where w′ is a lift of w to Ḡsc. This is simply a consequence
of the fact that (

Ḡsc

)
w′σ

/Z(Ḡsc)w′σ ∼=
(
Ḡwσ

)′
,

where the isomorphism is induced by an isogeny Ḡsc → Ḡ. In proofs, we will often verify

x ∈
(
Ḡwσ

)′
by identifying a specific lift x′ ∈

(
Ḡsc

)
w′σ

that centralizes both w′ and σ. These
calculations can be done with Magma, and appear for example in the proof of Lemma 8.5.

Example 2.18. To illustrate such a calculation with an example, consider Ḡ = E7 with q
odd, and let H̄ = E6T1.2. (This is discussed in Case 1.6 of the proof of Lemma 8.5, which
also contains more details.) Here we can take H̄ to be the normalizer of a Levi factor of type
E6:

H̄◦ = 〈T̄ , Uα : α ∈ Φ′〉,
where T̄ is a maximal torus of Ḡ and Φ′ is the root subsystem of Φ with base {α1, . . . , α6}.
Then H̄ = H̄◦:〈w〉, where

w = wα1wα2wα5wα7wα37wα55wα61

corresponds to the longest element of the Weyl group of E7. Here αi denotes the i-th root
in the ordering of Φ used in Magma.

The following Magma code verifies that in the simply connected cover Ḡsc, a lift w′ of w
centralizes w′α and h′α(−1) in Ḡsc for all α ∈ Φ. (The fact that w′ centralizes hα(−1) is also
clear from the fact that w′ acts as α 7→ −α on Φ.)

G := GroupOfLieType("E7", RationalField() : Isogeny := "SC");

w := elt<G|1>*elt<G|2>*elt<G|5>*elt<G|7>*elt<G|37>*elt<G|55>*elt<G|61>;

{w*elt<G|i> eq elt<G|i>*w : i in [1..63]}; // output: {true}

{w*TorusTerm(G,i,-1) eq TorusTerm(G,i,-1)*w : i in [1..63]}; // output: {true}

Moreover w′α and h′α(−1) are clearly fixed in Ḡsc by σ for all α ∈ Φ, we can conclude that

wα, hα(−1) ∈ (Ḡwσ)′

for all α ∈ Φ. Define t = hα2(−1) and

h = wα2wα28wα38wα46 ∈ H̄◦,

so t, h ∈ H̄∩(Ḡwσ)′ and h corresponds to the longest element of the Weyl group of E6. With
the following Magma code, we verify that t, w, and thw are involutions in Ḡ. Moreover,
we calculate that in the adjoint representation, these elements have respective fixed point
spaces of dimensions 69, 79 and 63:

G := GroupOfLieType("E7", RationalField() : Isogeny := "SC");

w := elt<G|1>*elt<G|2>*elt<G|5>*elt<G|7>*elt<G|37>*elt<G|55>*elt<G|61>;

h := elt<G|2>*elt<G|28>*elt<G|38>*elt<G|46>;

t := TorusTerm(G,2,-1);

r := AdjointRepresentation(G);

A1 := Matrix(r(t));

A2 := Matrix(r(t*h*w));

A3 := Matrix(r(w));

[Order(i) eq 2 : i in [A1,A2,A3]]; // output: [true,true,true]

[Dimension(Kernel(i-1)) : i in [A1,A2,A3]]; // output: [ 69, 79, 63 ]
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We conclude then from Table 5 that t, thw, w are involutions of type A1D6, E6T1, A7,
respectively. Consequently H̄ ∩ (Ḡwσ)′ meets every Ḡ-class of involutions.

Typically, the set H1(σ, H̄/H̄◦) is very small (and often trivial) unless H̄◦ is a maximal
torus. So next we will look more closely at the normalizers of maximal tori in Ḡσ, referring
the reader to [12, 3.3] for more details.

First recall that a maximal torus of Ḡσ is a subgroup of the form T̄σ, where T̄ is a σ-
invariant maximal torus of Ḡ. In order to describe the Ḡσ-classes of σ-invariant maximal
tori, let us first observe that σ acts on the Weyl group W = NḠ(T̄ )/T̄ , since T̄ is σ-invariant,
and we refer to H1(σ,W ) as the set of σ-conjugacy classes of W . Note that if σ = σq is
a Frobenius endomorphism, then σ(wα) = wα for all α ∈ Φ. So in the untwisted case,
H1(σ,W ) is just the set of conjugacy classes of W . In the general setting, we have the
following result, which is a special case of Lemma 2.15 (see Propositions 3.3.1, 3.3.2 and
3.3.3 in [12]). Here π : NḠ(T̄ )→W is the quotient map.

Lemma 2.19. Let g ∈ Ḡ. Then the map T̄ g 7→ π(σ(g)g−1) defines a bijection from the set
of Ḡσ-classes of σ-invariant maximal tori in Ḡ to the set H1(σ,W ).

Let w ∈W and write w = π(n), where n = σ(g)g−1 ∈ NḠ(T̄ ) for some g ∈ Ḡ. Then under
the bijection of Lemma 2.19, the σ-class of w corresponds to the Ḡσ-class of T̄w := T̄ g. And
as before (see (1)), we have(

T̄w
)
σ

=
(
T̄nσ
)g

and NḠσ(T̄w) =
(
NḠ(T̄ )nσ

)g
,

where nσ denotes the Steinberg endomorphism x 7→ σ(x)n of Ḡ. In particular, for compu-
tations involving NḠσ(T̄w), it will often be more convenient to work with the Ḡ-conjugate

NḠ(T̄ )nσ instead.
In order to describe the structure of the normalizer of T̄w in Ḡσ, we define the σ-centralizer

of w ∈W by

CW,σ(w) = {x ∈W : σ(x)−1wx = w}.
Then the following result is [12, Proposition 3.3.6].

Lemma 2.20. We have NḠσ(T̄w)/
(
T̄w
)
σ
∼= CW,σ(w) for all w ∈W .

In particular, as a consequence of Lemma 2.20, we deduce that

NḠ(T̄ )nσ/T̄nσ ∼= CW,σ(w),

with an isomorphism induced by the quotient map π : NḠ(T̄ )→W .
The following result, which is due to Tits [68], will also be useful.

Theorem 2.21. Let T̄ be a maximal torus and set W0 = 〈wα : α ∈ Φ〉. Then NḠ(T̄ ) =
T̄W0. Furthermore, if p = 2, then W ∼= W0 and NḠ(T̄ ) = T̄ :W0 is a split extension.

Finally, we conclude this section by presenting Theorem 2.22 below, which describes all
the core-free maximal subgroups of odd index in an almost simple exceptional group of Lie
type. This is a special case of a more general result of Liebeck and Saxl [45] on primitive
permutation groups of odd degree.

In the second column of Table 6, we refer to the type of H, which gives an approximate
description of the structure of H (working with the Lie notation for classical groups). In
each case, the precise structure is readily available in the literature. For example, we refer
the reader to [46, Tables 5.1, 5.2] in the cases where H is a non-parabolic maximal rank
subgroup. Note that for T = E6(q) we write P1 and P6 for representatives of the two T -
classes of maximal parabolic subgroups with Levi factors of type D5(q). Also observe that in
the final column of Table 6 we write “graphs” to indicate that the given subgroup is maximal
only if G contains a graph (or graph-field) automorphism of T , and similarly if we write “no
graphs”.
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T Type of H Conditions

E8(q) A1(q)8, D8(q), D4(q)2

(q − ε)8 q ≡ ε (mod 4)
E7(q) A1(q)7, A1(q)D6(q), A1(q)3D4(q)

(q − ε)7 q ≡ ε (mod 4)
E6(q) P1, P6 no graphs

D5(q)× (q − 1) graphs

D4(q)× (q − 1)2

(q − 1)6 q ≡ 1 (mod 4)
2E6(q) D−5 (q)× (q + 1), D4(q)× (q + 1)2

(q + 1)6 q ≡ 3 (mod 4)

F4(q) B4(q), D4(q)
3D4(q) G2(q), A1(q)A1(q3)

Aε2(q)× (q2 + εq + 1) q ≡ ε (mod 4)

G2(q) A1(q)2

Aε2(q) q ≡ ε (mod 4)
(q − ε)2 p = 3, q > 9, q ≡ ε (mod 4), graphs

G2(2), 23.L3(2) q = p ≡ ±3 (mod 8)
2G2(q)′ A1(q) q > 27

23:7 q = 3

Table 6. The groups with |Ω| odd in Theorem 2.22(iii)

Theorem 2.22. Let G 6 Sym(Ω) be a finite almost simple primitive permutation group
with point stabilizer H and socle T , which is a simple exceptional group of Lie type over Fq.
Then |Ω| is odd if and only if one of the following holds:

(i) q is even and H is a parabolic subgroup of G.

(ii) q is odd and H is a subfield subgroup over Fq0, where q = qk0 and k is an odd prime.

(iii) q is odd and (G,H) is one of the cases recorded in Table 6.

2.7. Feasible characters. As before, let G be an almost simple exceptional group of Lie
type with socle T = (Ḡσ)′ and writeM = C∪S for the set of core-free maximal subgroups of
G. Recall that the subgroups inM have been determined up to conjugacy, with the exception
of a finite number of open cases involving the collection S when T = E7(q) or E8(q) (see
Remark 2.14). We conclude this preliminary section by explaining how the theory of feasible
characters can be used to study 2-elusivity in the presence of these undetermined cases. As
before, we write K for the algebraic closure of Fq, where q = pf with p a prime.

We begin with a general definition. Let H be a finite group and let V be a finite-
dimensional Ḡ-module. Following Litterick [54, Definition 3.2], we say that a KH-module
V0 with Brauer character χ is a feasible decomposition of H on V if dimV0 = dimV and
each character value χ(x) for a p′-element x ∈ H corresponds to the trace on V of some
semisimple element in Ḡ. Moreover, this correspondence should be compatible with the
associated power maps. In this situation, χ is called a feasible character. Clearly, if H is
a finite subgroup of Ḡ, then the restriction V ↓ H is a feasible decomposition of H on V .
However, it is not true that every feasible decomposition corresponds to a finite subgroup of
Ḡ.

In [54], Litterick considers the case where H is a finite simple group, which is not a group
of Lie type in characteristic p, and he develops a computational approach for finding the list
of feasible decompositions of H with respect to the minimal module Vmin and the adjoint
module L(Ḡ). This describes the possible embeddings of such a finite simple group H into
Ḡ, which in turn severely limits the possibilities for the socle of a maximal subgroup of G in
class S.

In this paper, we will use Litterick’s Magma code in [55] to find feasible characters in
certain cases where H is almost simple, but not necessarily simple. Referring to the proof of
Theorem 3, this will help us to overcome some of the difficulties that arise when T = E7(q)



20 TIMOTHY C. BURNESS AND MIKKO KORHONEN

or E8(q), and the point stabilizer H is an almost simple maximal subgroup in the class S,
where a complete list of such subgroups is not currently known.

In order to develop these ideas further, we need to introduce some additional notation and
terminology.

Let H be a finite subgroup of Ḡ. Following Craven [18, Definition 3.2], we say that H is
strongly imprimitive if H < L < Ḡ for some subgroup L of Ḡ such that

(a) L is a positive-dimensional maximal closed subgroup of Ḡ; and

(b) L is both σ-stable and NAut+(Ḡ)(H)-stable, where Aut+(Ḡ) is the group generated

by the inner, graph and p-power field automorphisms of Ḡ (note that the latter are
automorphisms of Ḡ as an abstract group, but not as an algebraic group).

Now each automorphism of Ḡσ extends to an element of Aut+(Ḡ). Therefore, if H < Ḡσ
is strongly imprimitive with L as above, then NAut(Ḡσ)(H) is contained in NAut(Ḡσ)(Lσ) (see

[18, p.12]). As a consequence, we obtain the following result.

Lemma 2.23. Let H be a subgroup of G such that H ∩T is a strongly imprimitive subgroup
of Ḡσ. Then H is not contained in the collection S.

The next lemma, which follows from [18, Proposition 4.5], is our main tool for showing
that a given subgroup of G is strongly imprimitive. Note that if Ḡ = E7 or E8, then the
adjoint module L(Ḡ) is irreducible unless (Ḡ, p) = (E7, 2).

Lemma 2.24. Let H be a subgroup of G and assume that the Ḡ-module V = L(Ḡ) is
irreducible. If H fixes a nonzero element of V , then H is strongly imprimitive.

In order to effectively apply Lemma 2.24, we need a condition which forces a KH-module
to have a nonzero fixed point. The following cohomological condition was introduced by
Litterick in [54, Chapter 6, p.70], where it is referred to as property (P).

Definition 2.25. Let H be a finite group and let V0 be a finite-dimensional KH-module
with composition factors W1, . . . ,Wt. Let m > 0 be the number of trivial composition factors
and let W ∗i be the dual of Wi. Then we say that V0 (or the Brauer character of V0) has
property (P) if and only if

(a)
∑t

i=1 dimH1(H,Wi) > m; and

(b) If
∑t

i=1 dimH1(H,Wi) = m, then for some i ∈ {1, . . . , t} we have H1(H,Wi) = 0
and H1(H,W ∗i ) 6= 0, or H1(H,Wi) 6= 0 and H1(H,W ∗i ) = 0.

Then the key result here is the following.

Proposition 2.26. Let H be a subgroup of G and assume that V = L(Ḡ) is an irreducible
Ḡ-module. If the restriction of V to H ∩ T does not have property (P), then H is not
contained in the collection S.

Proof. By [54, Proposition 3.6], if (P) does not hold, then H ∩ T has a 1-dimensional trivial
submodule on V . The result now follows from Lemmas 2.23 and 2.24. �

Remark 2.27. Let H be a subgroup of G and let V0 be a feasible decomposition of H on
the adjoint module V = L(Ḡ). Then we can use Magma to check property (P) in Definition
2.25. To do this, first observe that each composition factor Wi is defined over a finite field,
so we have Wi

∼= K ⊗Fqi W
′
i for some absolutely irreducible FqiH-module W ′i , where qi is

some power of p. Then

H1(H,Wi) ∼= K ⊗Fqi H
1(H,W ′i )

and thus dimK H
1(H,Wi) = dimFqi H

1(H,W ′i ). Cohomology groups over finite fields can be

computed with Magma and this allows us to compute dimK H
1(H,Wi) for all i.
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Example 2.28. For instance, the following Magma code first constructs all seven absolutely
irreducible modules W of H = PGL2(7) in characteristic p = 3. We then calculate that each
cohomology group H1(H,W ) is trivial, with a single exception, which is 1-dimensional.

H := PGL(2,7);

M := AbsolutelyIrreducibleModules(H, GF(3));

[CohomologicalDimension(x,1) : x in M]; // output: [ 0, 0, 0, 0, 0, 1, 0 ]

We are now in a position to summarize our approach for studying the 2-elusive problem
when T = E7(q) or E8(q) and the point stabilizer H is contained in the collection S. Set
V = L(Ḡ) and assume that (Ḡ, p) 6= (E7, 2), so V is an irreducible Ḡ-module. Suppose H is
an almost simple subgroup in S with H0 = H ∩ T . We can proceed as follows:

(a) First we use Litterick’s Magma code [55] to determine all the feasible decompositions
V0 for the action of H0 on V .

(b) For each feasible decomposition in (a), we proceed as in Remark 2.27 to determine
if V0 has property (P).

(c) Given a feasible decomposition V0 with property (P), we then study the composition
factors of V0 in order to compute dimCV0(x) for each involution x ∈ H0. See Remark
2.29 below for more details.

(d) By examining Tables 4 and 5, we see that dimCV (x) uniquely determines the T -class
of each involution x ∈ H0. So from (c), we can determine if there are any feasible
characters with property (P) such that H0 meets every T -class of involutions.

(e) If no such feasible characters are identified in (d), we can conclude that there is no
action of G with point stabilizer H ∈ S such that H ∩ T = H0 and T is 2-elusive.

Remark 2.29. In step (c) above, we need to compute dimCV0(x) for each involution x ∈ H0.
If p 6= 2, then x is semisimple and we can read off dimCV0(x) from the Brauer character χ
of V0. Indeed, we have

dimCV0(x) =
1

2
(dimV0 + χ(x))

for every involution x ∈ H0.
For p = 2, the calculation is more difficult and our approach will depend on the situation.

For example, if V0 is irreducible as a KH0-module, then we can usually construct V0 in
Magma via the function AbsolutelyIrreducibleModules, which constructs all absolutely
irreducible modules in a given characteristic. In some cases, we find that |H0| is large
and constructing all absolutely irreducible modules is not feasible, but in our situation it is
important to note that dimV0 6 248. Indeed, this allows us to appeal to the work of Hiss and
Malle [30, 31], where all the absolutely irreducible modules of dimension at most 250 of all
quasisimple finite groups are determined. In particular, the possible composition factors of
V0 ↓ soc(H0) are known and can be constructed. Then by Frobenius-Nakayama reciprocity,
the KH0-module V0 can in turn be constructed as a simple quotient of an induced module
IndH0

soc(H0)(W ), see Example 2.31.

We note that in many cases, explicit generators for certain quasisimple groups with respect
to certain low-dimensional absolutely irreducible modules are available in the Web Atlas
[71]. In other cases, we can often obtain the relevant module as a composition factor of a
suitable permutation module corresponding to the action of H0 on the cosets of a maximal
subgroup, working with the Magma function PermutationModule to construct the relevant
permutation module. We illustrate this approach in Example 2.31.

Example 2.30. To illustrate the approach outlined above, let us assume T = E8(q) and
(H0, p) = (PGL2(7), 3), (PGL2(11), 5) or (PGL2(13), 7). We present the following informa-
tion in Tables 7, 8 and 9, which has been computed using Magma:

(a) The absolutely irreducible KH0-modules W are listed according to their dimension
and they are indexed alphabetically. For example, if (H0, p) = (PGL2(7), 3) then
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1a 1b 6a 6b 6c 7a 7b
dimH1(H0,W ) 0 0 0 0 0 1 0

χ(t1) 1 2 0 0 0 1 2

χ(t2) 1 1 1 2 2 2 2

1 5 9 5 3 3 10 14

2 6 8 5 3 3 9 15
3 6 10 7 3 3 9 13

4 7 9 7 1 5 8 14

5 7 9 7 5 1 8 14

6 7 10 0 7 7 8 13 (?)

7 7 12 2 7 7 8 11 (?)
8 13 1 5 3 3 18 6 (?)

9 14 0 5 3 3 17 7 (?)

10 14 2 7 3 3 17 5 (?)
11 15 1 7 1 5 16 6 (?)

12 15 1 7 5 1 16 6 (?)

13 15 2 0 7 7 16 5
14 15 4 2 7 7 16 3

Table 7. H0 = PGL2(7), p = 3

1a 1b 10a 10b 10c 10d 10e 11a 11b
dimH1(H0,W ) 0 0 0 0 0 0 0 1 0

χ(t1) 1 4 0 0 0 0 0 1 4
χ(t2) 1 1 3 3 2 2 2 4 4

1 4 8 2 2 2 0 0 6 10

2 5 8 1 4 0 1 1 5 10

3 5 8 3 2 0 1 1 5 10
4 12 0 2 2 2 0 0 14 2 (?)

Table 8. H0 = PGL2(11), p = 5

H0 has exactly three 6-dimensional absolutely irreducible modules, denoted by 6a,
6b and 6c. In the first row of each table, we record dimH1(H0,W ).

(b) In each case, H0 has exactly two classes of involutions, with representatives denoted
t1 and t2, where CH0(t1) = D2(p−1) and CH0(t2) = D2(p+1). In the second and
third row of each table, we present the character values χ(ti) for each irreducible
KH0-module in (a).

(c) The remaining rows in each table give the multiplicities of composition factors for
all the feasible characters of H0 on V = L(Ḡ) with property (P). In general, there
can be many feasible characters that do not have property (P). For example, if
(H0, p) = (PGL2(7), 3) then we calculate that there are 49 feasible characters of H0

on V , but only 14 of them have property (P) and they are denoted 1-14 in Table 7.

(d) In the final column of each table, we use the symbol (?) to denote the feasible
characters with property (P) and the additional condition that H0 intersects both
classes of involutions in T . So for example, if p = 5 and there exists a subgroup H ∈ S
with H0 = PGL2(11), then T is 2-elusive if and only if V ↓ H0 has composition factors
1a, 10a, 10b, 10c, 11a and 11b, with respective multiplicities 12, 2, 2, 2, 14 and 2. But
it remains an open problem to determine whether or not such a maximal subgroup
actually exists.

Example 2.31. Here we present an example where generators for the relevant representation
are not available in the Web Atlas [71]. Suppose that Ḡ = E8, and denote the adjoint module
by V = L(Ḡ). We consider the case where p = 2 and H0 has socle S = L4(5), noting that
the existence of an embedding L4(5) < E8(4) is proved in [13, Section 5]. Then [54, 6.329]
implies that V ↓ S is irreducible. It follows from the discussion in [31] that in characteristic
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1a 1b 12a 12b 14a 14b 14c 14d 14e
dimH1(H0,W ) 0 0 1 0 0 0 0 0 0

χ(t1) 1 1 0 0 2 2 5 5 5

χ(t2) 1 6 5 2 0 0 0 0 0

1 1 1 7 3 1 1 1 3 3

2 2 2 4 0 2 2 2 4 4
3 3 1 8 3 0 1 3 2 2

4 3 3 8 4 0 0 5 1 1

5 4 2 5 0 1 2 4 3 3

6 4 2 5 0 3 0 4 3 3

7 4 4 5 1 1 1 6 2 2
8 4 4 5 1 4 6 0 1 1 (?)

Table 9. H0 = PGL2(13), p = 7

p = 2, there are two absolutely irreducible modules of dimension 248 for S, and both of these
are defined over F2.

Now up to conjugacy, there is a unique maximal subgroup J < S of index 806. This
maximal subgroup arises from a parabolic subgroup of SL4(5) with structure 54: SL2(5)2:4
(this is the stabilizer of a 2-dimensional subspace of the natural module). From the natural
coset action of S on S/J , we can construct the permutation module F2[S/J ], and it turns
out that the two irreducible F2[S]-modules of dimensional 248 arise as composition factors
of F2[S/J ]. The following Magma code constructs these two composition factors.

S := PSL(4,5);

L := MaximalSubgroups(S);

L := [x : x in L | (#S div x`order) eq 806];

// unique maximal subgroup of index 806, up to conjugacy

J := L[1]`subgroup;

// permutation module corresponding to the coset action on S/J

V := PermutationModule(S,J,GF(2));

C := CompositionFactors(V);

// contains two non-isomorphic irreducible modules of dimension 248.

C := [x : x in C | Dimension(x) eq 248];

M1 := C[1];

M2 := C[2];

IsIsomorphic(M1,M2); // output: false

Continuing this example, we also need to consider the possibility that S < H0 6 Aut(S).
In this case since W = V ↓ S is irreducible, it follows from Frobenius-Nakayama reciprocity
that V ↓ H0 arises as a simple quotient of the induced module IndH0

S (W ). Consider, for
example, the case where H0 = S.2 is the unique index 2 subgroup of PGL4(5). Here each

248-dimensional irreducible F2[S]-module W extends to H0 and we find that IndH0
S (W ) is

uniserial, with two composition factors of dimension 248. Hence, the extension of W to H0

is unique, up to isomorphism, and it can be constructed with the following Magma code
(continuing from the code above).

G0 := PGL(4,5);

H0 := sub<G0 | S, G0.1^2>; // index 2 in PGL(4,5)

I1 := Induction(M1,H0);

I2 := Induction(M2,H0);
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N1 := I1/Socle(I1);

N2 := I2/Socle(I2);

[IsIrreducible(x) : x in [N1,N2]]; // output: [true,true]

[Dimension(x) : x in [N1,N2]]; // output: [248,248]

IsIsomorphic(N1,N2); // output: false

3. Parabolic subgroups

We are now ready to begin the proof of Theorem 3 and we start by handling the groups
where the point stabilizer H is a maximal parabolic subgroup. Here, and for the remainder
of the paper, we freely adopt all of the notation and terminology introduced in Section 2.

Recall that every σ-invariant parabolic subgroup of Ḡ is conjugate to a standard parabolic
PI , where the subset I ⊆ ∆ = {α1, . . . , α`} is σ-stable (note that if T = (Ḡσ)′ is untwisted,
then every subset of ∆ is σ-stable). We have a Levi decomposition PI = UI :LI , with
unipotent radical

UI =
∏

α∈Φ+\ZI

Uα

and Levi factor
LI = 〈T̄ , Uα : α ∈ Φ ∩ ZI〉

for some maximal torus T̄ of Ḡ. Both UI and LI are σ-invariant and we have

(PI)σ = (UI)σ:(LI)σ.

Note that LI is a reductive group with root system Φ∩ZI. In addition, LI = Z(LI)
◦L′I and

the derived subgroup L′I is semisimple (or trivial).
Recall that we use the standard Bourbaki labelling of the simple roots αi, as given in [32,

11.4]. For each simple root αm, we will adopt the standard notation Pm for the maximal
parabolic subgroup P∆\{αm} of Ḡ (and similarly for the corresponding subgroup of T = (Ḡσ)′

if the subset ∆ \ {αm} is σ-invariant).
The following easy observation will be useful in the proof of Proposition 3.2 below.

Lemma 3.1. Let V be an n-dimensional vector space over Fq, where n is odd and q ≡ 3
(mod 4). Then there is no element g ∈ GL(V ) such that g2 = −In.

Proof. If g2 = −In for some g ∈ GL(V ), then by taking determinants we get det(g)2 = −1.
But since det(g) ∈ Fq, this implies that −1 is a square in Fq, which is incompatible with the
condition q ≡ 3 (mod 4). �

Proposition 3.2. If H is a parabolic subgroup, then either

(i) Every involution in T has fixed points; or

(ii) T = E7(q), q ≡ 3 (mod 4) and H0 = P2, P5 or P7.

Furthermore, if (ii) holds then every involution in H0 is of type A1D6.

Proof. If q is even, then |Ω| is odd (see Theorem 2.22) and thus every involution in T has
fixed points. For the remainder, we may assume q is odd.

If T = 2G2(q)′ or 3D4(q) then T has a unique class of involutions (see Lemmas 2.4 and
2.5) and the result follows from Lemma 2.10. In the remaining cases, Ḡ is of exceptional
type and either T is untwisted or T = 2E6(q). Since H0 = H̄σ ∩ T contains T̄σ ∩ T , where
T̄ is a σ-stable maximal torus of Ḡ, by inspecting Table 5 we deduce that H0 meets every
T -class of involutions, with the possible exception of the groups with T = E7(q) (note that
in the latter case, we have [Ḡσ : T ] = 2).

So let us assume T = E7(q) and q is odd, in which case H0 = Pm for some m ∈ {1, . . . , 7}
and the involution classes in T are listed in Table 5. Recall (see Remark 2.17) that here
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an involution x ∈ Ḡσ is contained in T if and only if it lifts to a σ-invariant element in the
simply connected cover Ḡsc of Ḡ. With this in mind, we first observe that hα1(−1) ∈ H0, so
by inspecting Table 5 we deduce that H0 contains an involution of type A1D6.

If m ∈ {1, 3, 4, 6}, then H0 also contains the elements wα2 , wα5 and wα7 , which in turn
implies that H0 contains representatives of the classes labelled E6T1 and A7 in Table 5.

So we may assume m ∈ {2, 5, 7}. We first consider q ≡ 1 (mod 4), in which case λ2 = −1
for some λ ∈ Fq. Then λq = λ, so it follows that H0 contains the involutions

x = hα2(λ)hα5(λ)hα7(λ), y = hα1(−1)hα2(λ)hα5(λ)hα7(λ).

A Magma computation (see Section 2.4) shows that dimCV (x) = 79 and dimCV (y) = 63
with respect to the adjoint module V = L(Ḡ). So by inspecting Table 5 we conclude that x
and y are of type E6T1 and A7, respectively, and this means that every involution in T has
fixed points.

Finally, let us assume T = E7(q), q ≡ 3 (mod 4) and H0 = Pm with m ∈ {2, 5, 7}. Here
H̄ = PI = UI :LI , where I = ∆ \ {αm} and L′I is semisimple of type E6, A4A2, A6 for
m = 2, 5, 7, respectively. To complete the proof of the proposition, we will show that H0

does not contain involutions of type E6T1 or A7. (We remark that the elements x and y
defined in the previous paragraph are not in H0, since the property λq = −λ implies that
x, y ∈ Ḡσ \ T .)

Seeking a contradiction, suppose that g ∈ H0 is an involution of type E6T1 or A7. Let Ḡsc

be the simply connected cover of Ḡ. Now g lifts to an element g′ ∈
(
Ḡsc

)
σ

of order 4 such
that

(g′)2 = h′α2
(−1)h′α5

(−1)h′α7
(−1)

generates the center of Ḡsc (see Remark 2.7). Here (g′)2 acts as a scalar on every irreducible
Ḡsc-module, and on the 56-dimensional minimal module Vmin it acts as −I56.

Let P be the parabolic subgroup of Ḡsc corresponding to PI , with Levi factorization
P = U :L. Then g′ ∈ Pσ and every 2-element of Pσ = Uσ:Lσ can be conjugated into Lσ, so
we can assume that g′ is contained in the Levi factor Lσ.

The composition factors of Vmin ↓ L′ are given in [67, Table 13.4] and the submodule struc-
ture for Vmin ↓ L is identical. It follows that Vmin ↓ L has an odd-dimensional composition
factor (specifically, one of dimension 27, 15, 7 for L′ = E6, A4A2, A6, respectively).

Since the highest weight of Vmin is p-restricted, we have Vmin = K⊗FqV0 for some absolutely

irreducible Fq[(Ḡsc)σ]-module V0. Moreover, by inspecting [67, Table 13.4], we see that the
highest weight of each composition factor of Vmin ↓ L′ is also p-restricted, so the dimensions
of the composition factors of V0 ↓ Lσ and Vmin ↓ L are the same. In particular, V0 ↓ Lσ has
a composition factor of odd dimension. But we have already noted that (g′)2 acts as −I56

on V , so by appealing to Lemma 3.1 we reach a contradiction. �

Remark 3.3. An alternative approach to the proof of Proposition 3.2 is as follows. Let H
be a parabolic subgroup, and let χ = 1TH0

be the corresponding permutation character for T .
For p odd, we could use [44, Corollary 3.2] to show that χ(x) > 0 for each involution x ∈ T ,
except when (ii) holds in Proposition 3.2. However, evaluating the expression for χ(x) in
[44, Corollary 3.2] for each involution x is a non-trivial calculation, so we prefer the more
direct approach we have adopted in the proof of Proposition 3.2.

4. Subfield subgroups and twisted versions

In this short section, we prove Theorem 3 in the cases where H ∈ C is of type (II) in
Definition 1, which means that H is either a subfield subgroup, or a twisted version of G.
We begin by handling the subfield subgroups.

Proposition 4.1. Suppose H is a subfield subgroup over Fq0, where q = qk0 and k is a
prime. Then either qk is odd, in which case |Ω| is odd, or T is 2-elusive. In particular, every
involution in T has fixed points.
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Proof. We can assume that |Ω| is even. If T has a unique conjugacy class of involutions, then
T is 2-elusive by Lemma 2.10. So this takes care of the groups with T = 2B2(q) or 2G2(q)′

(see Lemma 2.4), and also T = 3D4(q) with q odd (Lemma 2.5).
In the remaining cases, by inspecting Tables 3, 4 and 5, we see that every conjugacy class

of involutions in T has a representative that can be written as a product of root elements
of the form xα(±1). Since the scalars ±1 are contained in the prime field Fp, it follows that
the subfield subgroup H intersects every conjugacy class of involutions in T and therefore T
is 2-elusive. �

Proposition 4.2. Suppose that H is of the same type as T , but a twisted version. Then T
is not 2-elusive if and only if T = F4(q), p = 2 and H0 = 2F4(q0) with q = q2

0.

Proof. By arguing as in the proof of Proposition 4.1, we may assume T has at least two
classes of involutions. Therefore, q = q2

0 and either (T,H0) = (F4(q), 2F4(q0)) with p = 2, or
(T,H0) = (E6(q), 2E6(q0)).

If T = F4(q) and p = 2, then neither of the two T -classes of root elements are ψ-invariant

(see Table 4), so H0 = 2F4(q0) = CT (ψ) does not contain any involutions of type A1 nor Ã1.
Now assume T = E6(q) and H0 = 2E6(q0) = CT (γ), where γ = σq0τ is an involutory

graph-field automorphism of T . As noted in the proof of Proposition 4.1, each class of
involutions in T is stable under the field automorphism σq0 . And by inspecting Tables 4 and
5, we see that each class is also stable under τ , whence H0 meets every T -class of involutions
and thus T is 2-elusive. �

5. The low rank groups

In this section, our goal is to complete the proof of Theorem 3 for the low rank groups
with socle one of the following:

2B2(q), 2G2(q)′, G2(q)′, 2F4(q)′, 3D4(q).

Proposition 5.1. If T ∈ {2B2(q), 2G2(q)′, G2(q)′} and |Ω| is even, then T is 2-elusive unless
(T,H0) = (G2(4),L2(13)).

Proof. If T ∈ {2B2(q), 2G2(q)′}, or if T = G2(q)′ with q = 2 or q odd, then T has a unique
class of involutions and the result follows from Lemma 2.10. So for the remainder we may
assume T = G2(q) and q > 4 is even, in which case T has two classes of involutions corre-

sponding to long and short root elements, labelled A1 and Ã1 in Table 4. The possibilities
for H are conveniently listed in [7, Table 8.30] and we note that H is non-parabolic since |Ω|
is even (see Theorem 2.22). In view of Proposition 4.1, we may also assume that H is not a
subfield subgroup.

First assume that H ∈ S, so q = 4 and H0 = L2(13) or J2 (see Remark 2.14(d)). If
H0 = L2(13) then H0 has a unique class of involutions and thus T is not 2-elusive (for the
record, the involutions in H0 are of type A1). On the other hand, if H0 = J2 then H0 has
two classes of involutions and one can check (with the aid of Magma [6], for example) that
they are not fused in T , so T is 2-elusive. For the remainder, we may assume H ∈ C.

Suppose H0 = SLε3(q).2 = NT (H̄σ), where H̄ = A2.2 is a σ-stable maximal rank subgroup
of Ḡ. If V denotes the 6-dimensional irreducible module LḠ($1) for Ḡ, then V ↓ H̄◦ =
W ⊕W ∗, where W is the natural module for H̄◦ = A2. If x ∈ H̄◦ is an involution, then it
has Jordan form (2, 1) on W , and hence (22, 12) on V . On the other hand, if y ∈ H̄ is an
involutory graph automorphism of H̄◦, then y interchanges W and W ∗, and therefore has
Jordan form (23) on V . It follows that x and y are not T -conjugate and thus T is 2-elusive.

Finally, if H0 = SL2(q)×SL2(q) then involutions of the form (x, 1) and (1, y) in H0 are not
T -conjugate (indeed, the two SL2(q) factors are generated by long and short root elements,
respectively). Therefore T is 2-elusive. �

Next we turn to the large Ree groups with socle T = 2F4(q)′. Here the maximal subgroups
of G were determined by Wilson [70] (for q = 2, noting the omission of a maximal subgroup
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SU3(2).2 of 2F4(2)) and Malle [57] (for q > 8, noting the omission of 3 conjugacy classes
of maximal subgroups PGL2(13) in 2F4(8), as noted by Craven [17, Remark 4.11]). For
q = 2, recall that S comprises the maximal subgroups with socle Alt6, L2(25) or L3(3) (see
Remark 2.14(c)). And for q > 8, the collection S is empty unless G = 2F4(8), in which case
it comprises the three conjugacy classes of subgroups isomorphic to PGL2(13).

The special case q = 2 can be handled using Magma.

Proposition 5.2. Suppose T = 2F4(2)′ and |Ω| is even.

(i) If H ∈ C, then T is 2-elusive unless H0 = 31+2:D8 or 13:6.

(ii) If H ∈ S, then T is 2-elusive if and only if H0 = Alt6.2
2.

Proof. This is a straightforward Magma computation. To do this, we first use the function
AutomorphismGroupSimpleGroup to construct G as a permutation group of degree 1755. We
then use the command MaximalSubgroups to construct a representative of each conjugacy
class of core-free maximal subgroups H of G. We can then take a set of representatives for
the conjugacy classes of involutions x ∈ H0 = H ∩ T and we can read off the corresponding
T -class by computing |CT (x)|. In this way, it is easy to verify the result.

Finally, note that the maximality of H implies that G = T.2 for H0 ∈ {31+2:D8, 13:6} in
part (i), whereas G = T in (ii) with H0 = Alt6.2

2. �

Proposition 5.3. Suppose T = 2F4(q) and |Ω| is even, where q > 8.

(i) If H ∈ C, then T is 2-elusive unless H0 = PGU3(q).2, SU3(q).2, (q + 1)2:GL2(3) or

(q2 ±
√

2q3 + q ±
√

2q + 1):12.

(ii) If H ∈ S, then T is not 2-elusive.

Proof. First recall that T has two classes of involutions, say xT and yT , labelled A1Ã1 and
(Ã1)2 in Table 4, with |CT (x)| = q9|SL2(q)| and |CT (y)| = q10|2B2(q)|, as recorded in [47,
Table 22.2.5]. In particular, y does not commute with any element in T of order 3. By
Theorem 2.22(i) and Proposition 4.1, we may assume that H is neither a parabolic nor a
subfield subgroup of T . We now inspect the remaining possibilities in turn.

First assume H ∈ S, so G = 2F4(8) and H = PGL2(13). Here H has two classes of
involutions, say aH and bH , with |CH(a)| = 24 and |CH(b)| = 28, and it follows that a is in

the T -class labelled A1Ã1 since |CT (y)| is indivisible by 3. In order to determine the T -class
of b, we can work with Craven’s construction H < G < GL26(8) in Magma, which is defined
in terms of the action of G on the 26-dimensional minimal module V26 over F8. Here explicit
matrices generating H are given in the supplementary file ConstructPGL213in2F48.txt to
[17]. We find that both a and b have Jordan form (212, 12) on V26, so by inspecting Table

4 we deduce that both involutions are in the Ḡ-class labelled A1Ã1. In particular, every
involution in H is of type A1Ã1 and thus T is not 2-elusive.

For the remainder, we may assume H ∈ C, noting that the possibilities for H are recorded
in the main theorem of [57].

First assumeH0 = PGU3(q).2. If t ∈ H0 is an involutory graph automorphism of PGU3(q),

then |CPGU3(q)(t)| = |SL2(q)| is divisible by 3, which places t in the class labelled A1Ã1. And

if t ∈ PGU3(q) is an involution, then |CPGU3(q)(t)| = q3(q + 1) does not divide |CT (y)| =

q10|2B2(q)|, so once again t is an A1Ã1 involution. It follows that T is not 2-elusive. The
case H0 = SU3(q).2 is entirely similar and the same conclusion holds.

Next assume H0 = 2B2(q) o Sym2 and set B0 = 2B2(q)2. If t ∈ H0 \ B0 is an involution,

then CB0(t) = 2B2(q) and we deduce that t is in the class (Ã1)2. If we take t = (t1, t2) ∈ B0,
where both t1 and t2 are involutions, then we find that t ∈ C2 × C2 < C4 embeds in C4

as a c4-type involution in the notation of [2] (see Remark 2.13(b) and the proof of Lemma
4.17 in [11]). Then by considering the embedding of C4 in Ḡ, we deduce that t is in the

T -class labelled A1Ã1 and we conclude that T is 2-elusive. The case H0 = Sp4(q):2 is similar:

c2-type involutions in Sp4(q) < H0 are in the A1Ã1 class, while those of type a2 are in (Ã1)2.
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To complete the proof, we may assume H is the normalizer of a maximal torus of G. First

assume H0 = (q2±
√

2q3 + q±
√

2q+ 1):12. Here Lemma 2.12 implies that H0 has a unique
class of involutions and thus T is not 2-elusive. (In fact, by appealing to [11, Corollary 4.4],

we see that every involution in H0 is contained in the T -class labelled A1Ã1.)
Next suppose H0 = NT (S) = S:[96], where S = (q+ ε

√
2q+ 1)2 and ε = ±, with q > 32 if

ε = −. By [11, Corollary 4.4], there is an involution t1 ∈ H0 that inverts the maximal torus

S and this is in the T -class labelled A1Ã1. In addition, since

S < 2B2(q)2 < 2B2(q) o Sym2 < T

we see that H0 also contains an involution t2 interchanging the two factors of S. This implies
that |CH0(t2)| is divisible by q + ε

√
2q + 1, which places t2 in the T -class labelled (Ã1)2. In

particular, T is 2-elusive.
Finally, let us assume H0 = NT (S) = S:GL2(3), where S = (q + 1)2. Let t ∈ H0 be an

involution. If t inverts S, then [11, Corollary 4.4] implies that t is contained in the T -class

A1Ã1. If not, then t either inverts one of the factors of S (and centralizes the other), or it
interchanges the two factors. In both cases, it follows that |CH0(t)| is divisible by q + 1 and

this means that t is of type A1Ã1. We conclude that every involution in H0 is of type A1Ã1

and thus T is not 2-elusive. �

To conclude our analysis of the low rank groups, we may assume T = 3D4(q). Here the
maximal subgroups of G were determined by Kleidman [37] and we refer to [7, Table 8.51]
for a convenient list of the subgroups that arise.

Proposition 5.4. Suppose T = 3D4(q) and |Ω| is even. Then H ∈ C and T is 2-elusive
unless q is even and either H0 = (q2 ± q + 1)2.SL2(3) or (q4 − q2 + 1).4, or q > 4 and
H0 = PGLε3(q) with q ≡ ε (mod 3).

Proof. First recall that T has a unique class of involutions when q is odd (see Lemma 2.5). So
in view of Lemma 2.10, we may assume that q is even. Here T has two classes of involutions,
labelled A1 and A3

1 in Table 3, with respective centralizer orders q12(q6− 1) and q10(q2− 1).
Note that H ∈ C since the collection S is empty (see Remark 2.14(b)). We proceed by
inspecting the cases arising in [7, Table 8.51]. Note that |Ω| is odd if H is a parabolic
subgroup (see Proposition 2.22), while Proposition 4.1 applies if H is a subfield subgroup.

If H0 = PGLε3(q), then H0 has a unique class of involutions and thus T is not 2-elusive.
Similarly, if H0 is the normalizer of a maximal torus, then H0 = (q2 ± q + 1)2.SL2(3) or
(q4 − q2 + 1).4, and Lemma 2.12 implies that H0 has a unique class of involutions. So once
again, we conclude that T is not 2-elusive.

Next suppose H0 = G2(q) and note that H0 has two classes of involutions, labelled A1 and

Ã1 in Table 4. We can embed the ambient algebraic group H̄ = G2 in Ḡ by first embedding
it in a subgroup L = C3 of Ḡ (here H̄ acts irreducibly on the natural module for L, while
L is embedded in Ḡ by restricting one of the two 8-dimensional spin modules for Ḡ). Under
the embedding H̄ < L, we find that involutions in the A1 class of H0 are of type a2 when
viewed as elements of L (with respect to the notation of [2]), while those in the other class
are of type b3. And then by considering the embedding of L in Ḡ, we deduce that H0 meets
both T -classes of involutions and thus T is 2-elusive.

Next suppose H0 = L2(q3) × L2(q). Clearly, if t = (1, s) ∈ H0 is an involution, then
L2(q3) 6 CH0(t) and thus t is in the T -class A1. We claim that if t = (s, 1) ∈ H0 is an
involution, then t is in the other class of involutions and thus T is 2-elusive. To see this, it
will be helpful to view H0 in terms of the following embedding:

H0 = {(x, xψ, xψ2
, y) : x ∈ L2(q3), y ∈ L2(q)} < A4

1 = D2
2 < D4 = Ḡ,

where ψ is an order 3 field automorphism of L2(q3). Here we view D2 = A2
1, identifying the

natural 4-dimensional module for D2 with the tensor product of the natural modules for the
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two A1 factors. Then in terms of this embedding, t = (s, 1) ∈ H0 is of the form (J2, J2, J2, I2)
and therefore has Jordan form

(J2 ⊗ J2)⊕ (J2 ⊗ I2) = (J4
2 )

on the natural module for Ḡ. By inspecting Table 3 we deduce that t is contained in the
T -class labelled A3

1, as claimed.
To complete the proof, we may assume H0 = J.2, where J = ((q2 + εq + 1) ◦ SLε3(q)).fε

and fε = (3, q2 + εq+ 1). As noted in [37, Table II], we have J = CT (x) and H0 = NT (J) =
NT (〈x〉) for a certain semisimple element x ∈ T of order q2 + εq+ 1. Since the centralizer of
an involution of type A3

1 has order q10(q2−1), which is not divisible by q2 + εq+ 1, it follows
that every involution in J is of type A1.

We claim that H0 also contains an involution of type A3
1, which means that T is 2-elusive.

To see this, we will work with a more precise description of the structure of H0. First observe
that the representative for the conjugacy class of x used in [37] is y = s4 for ε = + and y = s9

for ε = −, where s4 and s9 are defined as follows in [23, Table 2.1]:

s4 = hα1(t)hα3(tq)hα4(tq
2
), where t 6= 1 and tq

2+q+1 = 1

s9 = hα1(t)hα3(t−q)hα4(tq−1), where t 6= 1 and tq
2−q+1 = 1

with respect to the notation we defined in Section 2.2. In both cases, CḠ(y) = T2A2 is a
subsystem subgroup that corresponds to a subsystem of Φ with base {α2,−α0} (denoted by
J3 in [23, Table 1.0]), where α0 is the longest root of Φ.

Next let w ∈ NḠ(T̄ ) be an element with image −sα1+2α2+α3+α4 in the Weyl group W of
Ḡ. (Note that W contains a central involution and we have −sα1+2α2+α3+α4 = −w1+2 in
the notation of [23].) Since −sα1+2α2+α3+α4 = sα1sα3sα4 , we can choose w = wα1wα3wα4 .
Note that w acts on Φ by mapping α1 7→ −α1, α3 7→ −α3 and α4 7→ −α4, so y ∈ {s4, s9} is
inverted by w. In addition, note that w2

α = hα(−1) = 1 for all α ∈ Φ (recall that p = 2) and
thus w is an involution.

It follows that the normalizer of CḠ(y) is equal to H̄ = CḠ(y).2 = CḠ(y):〈w〉. Now
following [23, Table 2.1], we have H = NG(

(
H̄g
)
σ
), where under the bijection of Lemma

2.15, the σ-invariant subgroup H̄g corresponds to the image of n ∈ Ḡ in H1(σ, H̄/H̄◦), with

n =

{
1, if ε = +,

w, if ε = −.

Thus by Lemma 2.16, it will suffice to consider involutions in H̃0 = H̄nσ ∩
(
Ḡnσ

)′
= H̄nσ.

Then w ∈ H̃0, since w = wα1wα3wα4 is fixed by both σ and n ∈ {1, w}.
Finally, we will now verify that w is an involution of type A3

1, which will complete the
proof of the proposition. Let w′ be the involution corresponding to w in the simply connected
cover of Ḡ. As explained in Section 2.4, we can use Magma to show that w′ has Jordan
form (J4

2 ) on the 8-dimensional natural module for Ḡ. Then by inspecting Table 3, we see
that w is in the T -class labelled A3

1 and hence T is 2-elusive. �

6. The groups with socle F4(q)

Next we handle the groups with socle T = F4(q). The maximal subgroups of G have been
determined up to conjugacy by Craven [17], extending earlier work of Norton and Wilson
[58] for q = 2. In particular, the subgroups comprising the collection C are listed in [17,
Tables 7 and 8], while those in S are presented in [17, Table 1].

Remark 6.1. Here we take the opportunity to point out that (q2 + 1)2.(SL2(3):4) is the
correct structure of the torus normalizer expressed as (q2 + 1)2.(4 ◦GL2(3)) in [17, Table 8];
the source of this minor error is [46, Table 2]. Referring to the bijection in Lemma 2.19, the
maximal torus (q2 +1)2 corresponds to a certain conjugacy class of elements of order 4 in the
Weyl group W of Ḡ = F4, with representative w(22) given in [42, p.93]. A computation shows
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i |xH0
i | Jordan form on V1 Jordan form on V2

1 117 (26, 114) (210, 16)

2 117 (210, 16) (26, 114)

3 2106 (210, 16) (210, 16)
4 5265 (212, 12) (212, 12)

5 10530 (212, 12) (212, 12)

Table 10. The case H0 = L4(3).22 < F4(2)

that such an element has centralizer SL2(3):4 in W , which implies that the torus normalizer
has structure (q2 + 1)2.(SL2(3):4) (see Lemma 2.20). In fact, one can check that W does not
have a subgroup isomorphic to 4 ◦GL2(3).

We begin by handling the subgroups in S.

Proposition 6.2. Suppose T = F4(q) and |Ω| is even. If H ∈ S, then T is 2-elusive if and
only if q = 2 and H0 = L4(3).22, or if q = p > 3 and H0 = 3D4(2).3.

Proof. The possibilities for H0 are listed in [17, Table 1] and we recall that T has 2(1 + δ2,p)
classes of involutions (see Tables 4 and 5). Of course, if H0 contains a unique class of
involutions, then T is not 2-elusive. And similarly if q is even and H0 has at most three
involution classes. So by inspecting [17], we quickly deduce that T is 2-elusive only if one of
the following holds:

(a) H0 = L4(3).22, q = 2;

(b) H0 = 3D4(2).3, q = p > 3;

(c) H0 = PGL2(13) and either q = 7, or q = p 6= 13 and p ≡ ±1 (mod 7), or q = p3 is
odd and p ≡ ±2,±3 (mod 7).

Consider case (a). Here the notation indicates that H0 contains involutory graph auto-
morphisms of L4(3) with centralizer PGSp4(3) and we find that H0 has precisely 5 classes
of involutions, with representatives x1, . . . , x5. Let V1 = LḠ($1) and V2 = LḠ($4) be the
two 26-dimensional irreducible modules for Ḡ, and note that V1 and V2 are interchanged by
a graph automorphism of Ḡ. As recorded in [54, Table 6.32], H0 acts irreducibly on V1 and
V2. Moreover, both modules for H0 can be constructed using Magma (see Remark 2.29,
for example) and this allows us to compute the respective Jordan forms of each involution
in H0. This is detailed in Table 10, up to some choice of labelling of the involution class
representatives in H0. By considering Table 4 we immediately deduce that x1 ∈ A1, x2 ∈ Ã1

and x4, x5 ∈ A1Ã1 (up to a choice of labelling for x1 and x2). In addition, since x3 has

the same Jordan form on V1 and V2, it follows that x3 ∈ (Ã1)2, and we conclude that T is
2-elusive.

Next let us turn to case (b) above, so q = p is odd. Here both H0 and T have two classes
of involutions, with every involution of H0 contained in soc(H0) = 3D4(2). Moreover, we
note that H0 acts irreducibly on the 52-dimensional adjoint module V = L(Ḡ) (see [54,
6.1.35, Table 6.36]). By inspecting the Brauer character table of H0 (see [33, pp.250–253]),
we observe that a 52-dimensional irreducible K[H0]-module arises as the reduction modulo
p of a 52-dimensional representation in characteristic zero. Thus the dimension of the fixed
point spaces on V for each involution in H0 can be read off from the character table of H0.
From this, it follows that the two H0-classes are not fused in T , and thus T is 2-elusive.

Finally, let us consider case (c). As discussed in Section 2.7, we can use the Magma code
from [55] to compute the feasible characters of H0 = PGL2(13) on V = L(Ḡ). For each
feasible character, we check that every involution in H0 has trace −4 on V , which implies
that every involution in H0 is of type A1C3. In particular, T is not 2-elusive. �

We now complete the proof of Theorem 3 for T = F4(q) by handling the cases with H ∈ C.
Recall that the possibilities for H are listed in [17, Tables 7 and 8] (see Remark 6.1).
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Proposition 6.3. Suppose T = F4(q) and |Ω| is even. If H ∈ C then T is 2-elusive unless
one of the following holds:

(i) q is odd and H0 is one of the following:

3D4(q).3, PGL2(q) (p > 13), G2(q) (p = 7), ASL3(3) (q = p > 5).

(ii) q is even and H0 is one of the following:

2F4(q0), (SLε3(q) ◦ SLε3(q)).(3, q − ε).2, Sp4(q2).2,

(q2 ± q + 1)2.(3× SL2(3)), (q4 − q2 + 1).12, (q2 + 1)2.(SL2(3):4),

where q = q2
0.

Proof. By Propositions 3.2 and 4.1, we know that T is 2-elusive if H is a parabolic or
subfield subgroup, while Proposition 4.2 shows that T is not 2-elusive when H0 = 2F4(q0)
with q = q2

0. For the remainder of the proof, it will be convenient to write V = L(Ḡ) for the
52-dimensional adjoint module for Ḡ.

We begin by considering the subgroups of the form H = NG(H̄σ), where H̄ is a maximal
rank subgroup. The possibilities for H̄ are as follows:

B4 (p 6= 2), C4 (p = 2), D4.Sym3, A
2
2.2, A1C3 (p 6= 2), C2

2 .2 (p = 2), T4.W (p = 2)

where T4 = T̄ is a maximal torus of Ḡ and W = O+
4 (3) is the Weyl group of Ḡ.

In each of these cases, we are free to assume that H = NG(
(
H̄g
)
σ
), where H̄ is the

normalizer of a standard subsystem subgroup

H̄◦ = 〈T̄ , Uα : α ∈ Φ′〉,

and H̄g is a σ-invariant conjugate of H̄. Here T̄ is a maximal torus of Ḡ as in the setup of
Section 2.2, and Φ′ is a root subsystem of Φ.

First suppose H̄ = B4, so q is odd and the subsystem Φ′ has base {−α0, α1, α2, α3}, where
α0 is the longest root of Φ. We have H0 = H̄σ = Spin9(q) = 2.Ω9(q), which is the centralizer
in T of a B4-type involution. Moreover, hα1(−1) ∈ H0 is an involution of type A1C3 (Table
5), so T is 2-elusive. By inspecting [40, Table 14], we deduce that the same conclusion holds
when H̄ = C4 and q is even, in which case H0 = Sp8(q).

Next assume H̄ = D4.Sym3. Here the subsystem Φ′ has base {−α0, α1, α2, β}, where
β = α2 + 2α3 + 2α4, and −β is the highest root of the B4 subsystem discussed in the
previous paragraph. In this case there are two possibilities for H0. If H0 = 3D4(q).3 then
either q is odd and H0 has a unique class of involutions, or q is even and H0 has two such
classes (see Proposition 2.5); in both cases it is clear that T is not 2-elusive. Now assume
H0 is of type PΩ+

8 (q), so we have

H0 = H̄σ = Spin+
8 (q).Sym3 = (2, q − 1)2.PΩ+

8 (q).Sym3.

If q is odd then by inspecting [11, Table 13] we see that H0 contains involutions of type
A1C3. In addition the element t = h−α0(−1)hα1(−1) is contained in H0. A computation
with Magma (see Section 2.4) shows that t has fixed point space of dimension 36 on V ,
and thus is an involution of type B4 (Table 5). Therefore, T is 2-elusive when q is odd. By
considering the embeddings D4 < B4 < F4 and inspecting [40, Section 4.4], it is easy to check
that T is also 2-elusive when q is even. For example, if t ∈ Ω+

8 (q) is a c4-type involution (in
the notation of [2]; see Remark 2.13(b)), then the D4-class of t is labelled A1 + D2, which

embeds in the B4-class labelled A1 + B
(2)
1 in [40, Table 4], and this in turn is contained in

the Ḡ-class A1Ã1.
Next suppose H̄ = A2

2.2, in which case the subsystem Φ′ has base {−α0, α1} ∪ {α3, α4}.
We have H̄ = 〈H̄◦, w〉, where w ∈ NḠ(T̄ ) corresponds to the central involution in the Weyl
group of F4 that acts as α 7→ −α on Φ. Explicitly, we can choose w = wα1wα3wα14wα21 ,
where αi is the i-th root respect to the specific ordering of the roots of Ḡ used by Magma.
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Now under the bijection of Lemma 2.15, the σ-invariant conjugate H̄g corresponds to the
image of n ∈ H̄ in H1(σ, H̄/H̄◦), where n ∈ {1, w}. Then

H0 = (SLε3(q) ◦ SLε3(q)).2 = e.(Lε3(q)× Lε3(q)).e.2

where e = (3, q − ε), and ε = + or ε = − according to whether n = 1 or n = w. Now by

Lemma 2.16, it suffices to consider involutions in H̃0 = H̄nσ. We have hα1(−1), hα4(−1) ∈
H̃0, since both elements are contained in H̄ and are fixed by w and σ. In other words, H̄
contains representatives for the classes A1C3 and B4 from Table 5, so T is 2-elusive when q
is odd.

Now assume H̄ = A2
2.2 and q is even, in which case H̄ = H̄◦:〈w〉 since w is an involution.

By inspecting [40, Section 4.7], we observe that there are no involutions of type (Ã1)2 in H̄◦.
Since w acts on Φ as α 7→ −α, the action of w on both A2 factors of H̄◦ = A2

2 is via the
standard inverse-transpose graph automorphism. Hence it follows from [29, Lemma 4.4.6]
that there is a unique H̄-class of involutions in H̄ \ H̄◦, and so every involution in H̄ \ H̄◦
is conjugate to w. A computation with Magma (see Section 2.4) shows that w has Jordan
form (224, 14) on V , and from Table 4 we deduce that w is contained in the class labelled

A1Ã1. So for H̄ = A2
2.2 we conclude that T is 2-elusive if and only if q is odd.

Next suppose H̄ = A1C3, so q is odd and H0 is the centralizer of an A1C3-type involution.
By inspecting [11, Table 13], we see that H0 also contains involutions of type B4 and thus
T is 2-elusive.

To complete the proof for maximal rank subgroups, we may assume q is even and H̄ = C2
2 .2

or T4.W . Notice that in both cases, the maximality of H implies that G contains a graph
(or graph-field) automorphism of T (see [46, Tables 5.1, 5.2]).

For H0 = Sp4(q)2.2 = Sp4(q) o Sym2 we have H0 < Sp8(q) < T and it is easy to check
that every class of involutions in Sp8(q) has a representative in H0. Since we have already
noted that T is 2-elusive when H0 = Sp8(q), we deduce that the same conclusion holds when
H0 = Sp4(q)2.2. Similarly, if H0 = Sp4(q2).2 then by considering the natural embedding
of H0 in Sp8(q) we deduce that every involution in H0 is of type a4 or c4 as an element

of Sp8(q), which in turn implies that there are no involutions of type A1 or Ã1 in H0. In
particular, T is not 2-elusive in this case.

Now assume H0 is the normalizer of a maximal torus of T , so H̄ = T̄ .W . For the tori
of order (q2 ± q + 1)2 and q4 − q2 + 1, Lemma 2.12 implies that H0 has a unique class of
involutions and thus T is not 2-elusive. Similarly, H0 = (q2 + 1)2.(SL2(3):4) has only two
classes of involutions and so once again T is not 2-elusive.

To complete the proof for normalizers of maximal tori, we may assume H0 = (q − ε)4.W .
Let w = wα1wα3wα14wα21 be an element corresponding to the central involution of W as in
the case H̄ = A2

2.2. Then under the bijection of Lemma 2.15, the σ-invariant conjugate T̄ g

corresponds to the image of n ∈ H̄ in H1(σ, H̄/H̄◦), where n = 1 if ε = + and n = w if
ε = −.

By Lemma 2.16, it will suffice to consider involutions in H̃0 = NḠ(T̄ )nσ. Note that w
is contained in the subgroup W0 = 〈wα : α ∈ Φ〉, which is isomorphic to W by Theorem

2.21. In particular, W0 6 H̃0. With the aid of Magma (see Section 2.4), we can calculate
the Jordan form of each involution in W0 on both the minimal module Vmin and the adjoint
module V = L(Ḡ). In this way, we can verify that W0 meets every conjugacy class of
involutions in T and thus T is 2-elusive. More specifically, by computing the Jordan forms
of the elements

wα1 , wα4 , wα1wα4 , wα2+α3wα3

on Vmin and V , we can read off from Table 4 that they are contained in the classes labelled
A1, Ã1, A1Ã1, (Ã1)2, respectively.
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By inspecting [17, Tables 7 and 8], in order to complete the proof of the proposition we
may assume q is odd and H0 is one of the following:

PGL2(q)×G2(q) (q > 5), PGL2(q) (p > 13), G2(q) (p = 7), ASL3(3) (q = p > 5).

In the latter two cases, H0 has a unique class of involutions and thus T is not 2-elusive.
Next assume H0 = PGL2(q)×G2(q). Here H0 contains involutions of type B4 (see [11, Table
18]) and from the fact that

V ↓ A1G2 = L(A1G2)/(VA1(4)⊗ VG2(ω1))

(see [67, Table 12.2]) we deduce that an involution t ∈ H0 of the form (1, s) is of type
A1C3. Indeed, t has Jordan form (−I8, I9) on L(A1G2) ∼= VA1(2) ⊕ VG2(ω2) and it acts on
VA1(4) ⊗ VG2(ω1) as I5 ⊗ (−I4, I3) = (−I20, I15), so dimCV (t) = 24 and the claim follows.
Therefore, T is 2-elusive.

Finally, suppose H0 = PGL2(q) with p > 13. In this case H0 = H̄σ where H̄ = H̄◦ = A1.
Since H̄ has a unique conjugacy class of involutions, it follows that the two H0-classes of
involutions are fused in Ḡ. In particular, T is not 2-elusive in this case. �

7. The groups with socle Eε6(q)

In this section we establish Theorem 3 for the groups with socle E6(q) or 2E6(q). In order
to handle both cases simultaneously, we will write T = Eε6(q), where ε = + if T = E6(q),
and ε = − if T = 2E6(q). In addition, Vmin will denote the 27-dimensional minimal module
VḠsc

($1) for the simply connected cover Ḡsc of Ḡ. In this section, we will occasionally

determine the class of an involution g ∈ Ḡ by computing its action on Vmin, and by this we
mean the action of the unique involution g′ ∈ Ḡsc that g lifts to (see Remark 2.7).

We begin by considering the groups with H ∈ S, noting that the possibilities for H are
recorded in [17, Table 2] (for ε = +) and [17, Table 3] (for ε = −).

Proposition 7.1. Suppose T = Eε6(q) and |Ω| is even. If H ∈ S, then T is 2-elusive if and
only if H0 = 2F4(2) and q = p ≡ ε (mod 4), or (ε, q) = (−, 2) and H0 = Ω7(3) or Fi22.

Proof. By inspecting [17, Tables 2 and 3] and considering the number of classes of involutions
in H0, we immediately deduce that T is 2-elusive only if one of the following holds:

(a) H0 = 2F4(2), q = p ≡ ε (mod 4);

(b) H0 = M12, (ε, q) = (+, 5);

(c) H0 = Ω7(3) or Fi22, (ε, q) = (−, 2).

First consider (a). As recorded in [54, Table 6.109], we note that H0 lifts to a subgroup
of Ḡsc that acts irreducibly on Vmin. By inspecting the Brauer character table of H0 (see
[33, pp.188–191]), we deduce that the 27-dimensional irreducible K[H0]-modules arise as
the reduction modulo p of a 27-dimensional irreducible representation in characteristic zero.
Thus the dimension of the fixed point spaces on V for each involution of H0 can be read
from the character table of H0, and from this we deduce that T is 2-elusive.

Similarly, in (b) we find that H0 acts irreducibly on the adjoint module V = L(Ḡ) (see [54,
Table 6.61]) and using Magma we calculate that every involution in H0 acts as (−I40, I38)
on V . This means that every involution is of type A1A5 and thus T is not 2-elusive.

Finally, consider the cases in (c). Here H0 acts irreducibly on V = L(Ḡ) (see [54, 6.2.67,
6.105]) and using Magma we can compute the Jordan form of every involution in H0. In
this way, we conclude that T is 2-elusive. �

For the remainder of this section, we may assume H ∈ C. Here the possibilities for H are
listed in [17, Table 9] (for ε = +) and [17, Table 10] (for ε = −).

Proposition 7.2. Suppose T = Eε6(q), |Ω| is even and H ∈ C. Set e = (3, q − ε). Then T
is 2-elusive unless one of the following holds:
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(i) H0 = Lε3(q3).3, (3D4(q)× (q2 + εq + 1)/e).3 or G2(q).

(ii) H0 = (q2 + εq + 1)3/e.(31+2.SL2(3)).

(iii) H0 = PGL±3 (q).2, where p > 5 and q ≡ ε (mod 4).

(iv) H0 = 33+3:SL3(3), where q = p > 5 and q ≡ ε (mod 3).

Proof. By Propositions 3.2, 4.1, and 4.2, we know that T is 2-elusive if H is a parabolic
subgroup, or a subfield subgroup, or if ε = + and H0 = 2E6(q0) with q = q2

0. So to complete
the proof we need to work through the remaining cases arising in [17, Tables 9 and 10]. Set
d = (2, q − 1).

First assume H = NG(H̄σ), where H̄ is a maximal rank subgroup. The possibilities for H̄
are as follows:

A1A5, D5T1, A
3
2.Sym3, D4T2.Sym3, T6.W,

where in the latter case, T6 is a maximal torus of Ḡ and W = PGSp4(3) is the Weyl group.
As in the proof of Proposition 6.3, we are free to assume that H = NG(

(
H̄g
)
σ
), where H̄ is

the normalizer of a standard subsystem subgroup

H̄◦ = 〈T̄ , Uα : α ∈ Φ′〉,

and H̄g is a σ-invariant conjugate of H̄. Here T̄ is a maximal torus of Ḡ, as in the setup of
Section 2.2, and Φ′ is a σ-invariant root subsystem of Φ.

Suppose H̄ = A1A5, in which case H0 = d.(L2(q)× Lε6(q)).de. For q even, we deduce that
T is 2-elusive by inspecting [40, Section 4.8]. And for q odd, we first note that H0 is the
centralizer in T of an involution of type A1A5 and by inspecting [11, Table 13] we see that
H0 also contains involutions of type D5T1. Therefore, T is 2-elusive for all q.

In the case H̄ = D5T1, the subsystem Φ′ has base {−α0, α2, α4, α3, α5}, and we have
H0 = H̄σ ∩ T . If q is odd, then H0 is the centralizer in T of an involution of type D5T1,
and by inspecting [11, Table 13] we deduce that T is 2-elusive. Now assume q is even, so
H0 = Ωε

10(q)× (q − ε)/e, and H0 contains the involutions

xα2(1), xα3(1)xα5(1), xα2(1)xα3(1)xα5(1).

Using Magma, as described in Section 2.4, we can calculate the action of these involutions
on V = Vmin and we deduce that the dimensions of the respective fixed point spaces are 21,
17 and 15. By inspecting Table 4, we conclude that these involutions are contained in the
T -classes labelled A1, A2

1 and A3
1, respectively, and thus T is 2-elusive. (It is also easy see

that these involutions are conjugate by a Weyl group element to the representatives listed
in Table 4.)

Next suppose H̄ = A3
2.Sym3, so Φ′ has base {α1, α3} ∪ {α5, α6} ∪ {−α0, α2}, and H is of

type Aε2(q)3, A2(q2)A−ε2 (q) or Aε2(q3). In the latter case, we note that H0 = Lε3(q3).3 has a
unique class of involutions and thus T is not 2-elusive. We claim that T is 2-elusive in the
other two cases.

Suppose q is even and let t be an involution in a group of type A2. Then both H0 = Aε2(q)3

and H0 = A2(q2)A−ε2 (q) contain conjugates of (1, 1, t), (t, t, 1), and (t, t, t) from H̄◦ = A3
2.

And by inspecting [40, Section 4.9], we deduce that these elements represent the three classes
of involutions in Ḡ, whence T is 2-elusive.

Now assume q is odd. From [11, Table 13] we note that H0 contains involutions of type
D5T1. And as above, H0 contains a conjugate of (1, 1, t) ∈ H̄◦, where t ∈ A2 is an involution.
A simple group of type A2 has a unique conjugacy class of involutions, which for the factor
corresponding to the simple roots {−α0, α2} has hα2(−1) as a representative. This is precisely
the representative of the class A1A5 presented in Table 5, so we conclude that T is 2-elusive.

Now assume H̄ = D4T2.Sym3, in which case Φ′ has base {α2, α4, α3, α5} and H̄◦ is a Levi
factor. If H is of type 3D4(q)× (q2 + εq + 1) then H0 has 1 + δ2,p classes of involutions, so
T is not 2-elusive. For the remainder, we may assume H0 = J.Sym3 with

J = d2.(PΩ+
8 (q)× ((q − ε)/d)2/e).d2.
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Let w ∈ NH̄(T̄ ) be an element that corresponds to the longest element of the Weyl group
of E6, explicitly we choose w = wα36wα4wα15wα23 , where αi is the i-th root respect to the
specific ordering of the roots of Ḡ used by Magma.

Now under the bijection of Lemma 2.15, the σ-invariant conjugate H̄g corresponds to the
image of n ∈ H̄ in H1(σ, H̄/H̄◦), where n = 1 if ε = + and n = w if ε = −. Then in view of

Lemma 2.16, it suffices to consider involutions in H̃0 = NḠ(H̄nσ) ∩
(
Ḡnσ

)′
. Moreover, every

involution in H̄nσ is contained in
(
Ḡnσ

)′
, so we only need to find involutions in H̄nσ.

If q is odd, then we observe that the torus T̄nσ < H̄nσ contains the class representatives
in Table 5 and thus T is 2-elusive. Now assume q is even and note that we may assume w is
contained in the subgroup W0 = 〈wα : α ∈ Φ〉. We have W0

∼= W (see Theorem 2.21), so the
elements wα2 , wα3wα5 and wα1wα2wα6 are fixed by w and σ since the corresponding elements
in W are centralized by the longest element. Using Magma to compute the respective Jordan
normal forms on L(Ḡ) (see Section 2.4) and inspecting Table 4, we deduce that wα2 , wα3wα5

and wα1wα2wα6 are involutions of type A1, A2
1 and A3

1, respectively. Since each of these
involutions is contained in H̄nσ, we conclude that T is also 2-elusive when q is even.

To complete the analysis of maximal rank subgroups, we may assume H̄ = T6.W is the
normalizer of a maximal torus, noting that there are two separate cases to consider. First
assume H0 = ((q− ε)6/e).W . We claim that T is 2-elusive. As in the previous paragraph, to
justify the claim it suffices to show that H̄nσ meets every Ḡ-class of involutions, where n = 1
if ε = +, and n corresponds to the longest element of W if ε = −. As before, if q is odd,
then T̄nσ < H̄nσ contains the class representatives listed in Table 5 and the claim follows.
Similarly, if q is even then H̄nσ contains the involutions wα2 , wα3wα5 and wα1wα2wα6 . As
noted in the previous paragraph, these elements represent the three classes of involutions in
Ḡ.

Finally, suppose

H0 = (q2 + εq + 1)3/e.(31+2.SL2(3)).

Since SL2(3) has a unique conjugacy class of involutions, Lemma 2.12 implies that H0 also
has a unique class of involutions and thus T is not 2-elusive.

By inspecting [17, Tables 9 and 10], in order to complete the proof we may assume H0 is
one of the following:

F4(q), PGSp8(q) (p 6= 2), Lε3(q)×G2(q), G2(q), PGLδ3(q).2 (p > 5), 33+3:SL3(3) (p > 5).

In the latter case, Lemma 2.12 implies that H0 has a unique class of involutions and thus
T is not 2-elusive. The same conclusion holds if H0 = G2(q) since H0 has 1 + δ2,p classes of
involutions. In each of the remaining cases we have H0 = NT (H̄σ), where H̄ is a σ-stable
subgroup of Ḡ of rank at most 4.

First assume H0 = F4(q). If q is even then the information in [41, Table A] indicates
that T is 2-elusive, so let us assume q is odd and let V be the adjoint module for Ḡ.
Then V ↓ F4 = L(F4)/Vmin(F4) (see [67, Table 12.3]), so from Table 5 we deduce that
dimCV (t) = 38 for the involutions t ∈ H0 of type A1C3, whereas dimCV (t) = 46 for those
of type B4. Therefore, T is 2-elusive.

Next suppose H0 = PGSp8(q), so H̄ is of type C4 and q is odd. Let {ω1, . . . , ω4} be a
set of fundamental dominant weights for H̄. By lifting H̄ to the simply connected cover of
Ḡ and inspecting [67, Table 12.3], we note that Vmin ↓ C4 = VC4(ω2). Then by a Magma
calculation over Q (see Lemma 2.2), we see that H̄ contains involutions with fixed point
spaces of dimensions 11 and 15 on Vmin. For example, we can take the involutions h′α(−1)
and h′β(−1), where α and β are short and long roots, respectively, in the root system of C4.
It follows that T is 2-elusive.

Now assume H0 = Lε3(q) × G2(q), so H̄ = A2G2 and we write {ω1, ω2} and {δ1, δ2} for
the fundamental dominant weights of the two simple factors. By appealing to [40, Section
5.12], we deduce that T is 2-elusive when q is even. Now assume q is odd. Here [11, Table
18] indicates that H0 contains involutions of type T1D5. If V = L(Ḡ) is the adjoint module,
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then [67, Table 12.3] gives

V ↓ A2G2 = L(A2G2)/(VA2(ω1 + ω2)⊗ VG2(δ1)).

Then with the aid of Magma (see Section 2.4) we calculate that an involution x ∈ H0 of the
form (1, s) has Jordan form (−I40, I38) on V , which places x in the class A1A5. In particular,
T is 2-elusive.

Finally, let us assume H0 = PGLδ3(q).2, in which case p > 5 and H̄ = A2.2. We claim that
every involution in H̄ is of type A1A5 and thus T is not 2-elusive. To see this, let V = L(Ḡ)
be the adjoint module and observe that

V ↓ A2 = L(A2)/VA2(4ω1 + ω2)/VA2(ω1 + 4ω2)

as in [67, Table 12.3], where {ω1, ω2} are fundamental dominant weights for H̄◦ = A2. Now
the composition factors of V ↓ A2 are irreducible Weyl modules by [56, 6.6], so it follows
from [34, Lemma II.2.14] that V ↓ A2 is completely reducible. Therefore

V ↓ A2 = L(A2)⊕ VA2(4ω1 + ω2)⊕ VA2(ω1 + 4ω2).

If x ∈ H̄ \ H̄◦ is an involution, then x acts on H̄◦ = A2 as a graph automorphism (see [66,
Claim, p.314]). Thus x acts as (−I5, I3) on L(A2), and it interchanges the two 35-dimensional
summands in the above decomposition, which means that x acts as (−I40, I38) on V .

The connected component H̄◦ has a unique conjugacy class of involutions, represented by
x = h′β(−1), where β is a root of A2. Using Magma, we calculate that x acts as (−I4, I4)

on L(A2) and as (−I18, I17) on the other two summands. It follows that dimCV (t) = 38
for every involution t ∈ H̄, which justifies the above claim and completes the proof of the
proposition. �

8. The groups with socle E7(q)

The main goal of this section is to prove Theorem 3 for the groups with socle T = E7(q).
As before, we will divide our analysis according to whether or not H is in C or S. Recall
that T has 3 + 2δ2,p classes of involutions (see Tables 4 and 5)

We begin by considering the groups where H is an almost simple subgroup contained in the
collection S. At the time of writing, the subgroups in S have not been fully determined, but
Craven’s recent work in [19] severely restricts the possibilities. More precisely, he proves
that H is either one of the almost simple subgroups recorded in [19, Table 1.1], all of
which are known to be maximal, or H is a putative maximal subgroup with socle L2(r)
for r ∈ {7, 8, 9, 13} arising in part (iii) of [19, Theorem 1.1] (with the restrictions on q listed
in [19, Table 1.2]). By considering each possibility in turn, we will show that T always
contains a derangement of order 2 (see Proposition 8.2).

Remark 8.1. Typically, we find that T is 2-elusive if H is of the form NG(H̄σ) and H̄ is
a maximal rank subgroup. And as in previous cases, we will often verify this by identifying
explicit representatives in H0 for each T -class of involutions. Now if p = 2, then T = (Ḡσ)′ =
Ḡσ and so it suffices to find suitable representatives in H̄σ 6 H0. However, if p is odd then
[Ḡσ : T ] = 2 and so it is not sufficient to find representatives in H̄σ. In the latter case, in
order to verify that a given element x ∈ H̄ is contained in H0, we need to check that x lifts
to an element in the simply connected cover Ḡsc that is fixed by σ. We refer the reader to
Remark 2.17 for further details.

Proposition 8.2. Suppose T = E7(q), |Ω| is even and H ∈ S. Then T is not 2-elusive.

Proof. Let S denote the socle of H and assume for now that H is one of the subgroups
recorded in [19, Table 1.1]. Just by considering the number of classes of involutions in H0,
we see that T is 2-elusive only if H0 = M12.2 and q = p = 5. Here both T and H0 have
three classes of involutions and by considering the composition factors of the adjoint module
V = L(Ḡ) restricted to S (see [54, Table 6.147]) we deduce that every involution in S has
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trace 5 on V . This implies that every involution in S is of type A1D6 (see Table 5). And
since there is a unique class of involutions in H0 \ S, we conclude that T is not 2-elusive.

To complete the proof, we may assume S = L2(r) with r ∈ {7, 8, 9, 13}, as in part (iii)
of [19, Theorem 1.1]. Recall that it remains an open problem to determine whether or not
G has a maximal subgroup of this form. In any case, we will prove that if such a subgroup
H does exist, then the corresponding action of T on G/H is not 2-elusive. As before, by
considering the number of involution classes in H0, we deduce that T is 2-elusive only if
H0 = L2(9).2 ∼= Sym6 or L2(9).22. Here p > 5 and H0 has three classes of involutions. As
before, let V = L(Ḡ) be the adjoint module.

Suppose p > 7. Then [19, Section 6.3] gives

V ↓ S = 102 ⊕ 93 ⊕ 84
1 ⊕ 83

2 ⊕ 53
1 ⊕ 53

2,

where the irreducible 8-dimensional modules 81 and 82 are interchanged by an involution
in H0 \ S (corresponding to a transposition in Sym6). But the multiplicities of 81 and 82

as composition factors of V ↓ S are unequal, so H0 does not act on V and we have a
contradiction. We conclude that if p > 7 and H is a maximal subgroup with socle L2(9),
then H0 has at most two conjugacy classes of involutions and so T is not 2-elusive.

Finally, let us assume p = 5. First suppose H0
∼= Sym6. By using Magma to compute

the feasible characters of H0 on V (see Section 2.7), we deduce that every involution in H0

has trace −8 on V . This is in fact true for all feasible characters of H0, not just the ones
with property (P). In any case, every involution in H0 is of type A1D6 and so T is not
2-elusive. This also proves that T is not 2-elusive in the case H0 = L2(9).22, since H0 has
three conjugacy classes of involutions, and two of them are contained in L2(9).2 ∼= Sym6. �

For the remainder of this section we may assume H ∈ C is one of the maximal subgroups
recorded in [19, Table 4.1]. Our main result is the following.

Proposition 8.3. Suppose T = E7(q), |Ω| is even and H ∈ C. Then T is 2-elusive unless
H0 is one of the following:

Pm (m ∈ {2, 5, 7} and q ≡ 3 (mod 4)),

(L2(q3)× 3D4(q)).3, L2(q7).7, L2(q)× PGL2(q) (p > 5),

PGL±3 (q).2 (p > 5), 3D4(q).3 (p > 3), L2(q) (two classes; p > 17, 19)

We divide the proof of Proposition 8.3 into a sequence of lemmas, recalling that we have
already proven the result when H is a parabolic or a subfield subgroup (see Propositions 3.2
and 4.1). Set d = (2, q − 1).

Remark 8.4. Here we take the opportunity to correct an error in the original arXiv version
of [19]. This concerns the precise structure of a 2-local maximal subgroup, which is presented
as (22 × PΩ+

8 (q).22).3 in [19, Table 4.1]. Here q is odd and the correct structure is

H0 =

{
(22 × PΩ+

8 (q).22).Sym3 if q ≡ ±1 (mod 8)

(22 × PΩ+
8 (q).22).3 if q ≡ ±3 (mod 8).

This error originates from an inaccuracy in one of the entries in [1, Table 1] and we refer the
reader to [39] for more details.

We begin by handling the remaining maximal rank subgroups of G.

Lemma 8.5. The conclusion to Proposition 8.3 holds if H = NG(H̄σ) and H̄ is a reductive
σ-stable maximal rank subgroup of Ḡ.

Proof. By inspecting [19, Table 4.1], we see that H̄ is one of the following types:

A1D6, E6T1.2, A7.2, A2A5.2, A
3
1D4.Sym3, A

7
1.L3(2), T7.W.
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Here T7 is a maximal torus of Ḡ and W = 2 × Sp6(2) is the Weyl group of Ḡ. As in the
proof of Propositions 6.3 and 7.2, we are free to assume that H = NG(

(
H̄g
)
σ
), where H̄ is

the normalizer of a standard subsystem subgroup

H̄◦ = 〈T̄ , Uα : α ∈ Φ′〉

and H̄g is a σ-invariant conjugate of H̄. Here T̄ is a maximal torus of Ḡ as in the setup of
Section 2.2, and Φ′ is a root subsystem of Φ.

Note that the Weyl group of H̄◦ can be identified with the subgroup 〈sα : α ∈ Φ′〉 of W .
Then H̄ is generated by H̄◦, together with the elements of NḠ(T̄ ) that normalize the Weyl
group of H̄◦. In particular, H̄ contains an element w ∈ NḠ(T̄ ) which maps to the central
involution of W . Explicitly, we have

w = wα1wα2wα5wα7wα37wα55wα61 ∈ H̄, (2)

where αi denotes the i-th positive root in Φ with respect to the specific ordering of the roots
of Ḡ used by Magma. Then w acts as α 7→ −α on Φ, and a computation shows that

w2 = hα2(−1)hα5(−1)hα7(−1) = 1,

so w is an involution in Ḡ. We will write α0 for the longest root of Φ.
Let n ∈ NḠ(T̄ ) be an element of H̄ such that under the bijection of Lemma 2.15, the

σ-invariant conjugate H̄g corresponds to the image of n in H1(σ, H̄/H̄◦). Then in view of

Lemma 2.16, for determining 2-elusivity it suffices to consider involutions in H̃0 = NḠ(H̄nσ)∩(
Ḡnσ

)′
.

We now make an observation which will be useful in the cases where n ∈ {1, w}. A
computation with Magma (which can be done over Q, as described in Section 2.4) shows
that the lift of w to Ḡsc centralizes the lifts of hα(−1) and wα for all α ∈ Φ. Moreover
hα(−1) and wα are both fixed by σ, which leads to the following conclusion:

hα(−1), wα ∈
(
Ḡσ
)′ ∩ (Ḡwσ)′ for all α ∈ Φ. (3)

For the proof of the lemma, first assume H̄ = T7.W is the normalizer of a maximal torus
of Ḡ. We claim that T is 2-elusive. Here H0 = S.W = NT (S) with S = (q − ε)7/d (see [19,
Table 4.1]), and we can take n = 1 if ε = + and n = w if ε = −. We begin by assuming

q is odd. In view of (3), we have hα(−1), wα ∈ H0 for all α ∈ Φ. Hence H̃0 contains the
following involutions:

hα1(−1), wα2wα5wα7 , hα1(−1)wα2wα5wα7 ,

which are of type A1D6, E6T1 and A7, respectively (see Table 5). We conclude that T is
2-elusive.

Now assume q is even. Here Theorem 2.21 implies that H0 = S:W is a split extension and
we may identify W with the subgroup of E7(2) generated by the set {wα : α ∈ Φ}. Then
using Magma (see Section 2.4), we can calculate the Jordan form of each involution class
representative in W on the adjoint module L(Ḡ) and by inspecting Table 4 we conclude that
T is 2-elusive.

We now turn to the remaining possibilities for H̄, dividing the analysis according to the
parity of q. To begin with, we will assume q is odd.

Case 1.1. H̄ = A1D6, q odd

Here H̄ = H̄◦ corresponds to a subsystem Φ′ with base {−α0, α2, α3, α4, α5, α6, α7}. Then
H0 = H̄ ∩ T contains the elements hα3(−1), wα2wα5wα7 and hα3(−1)wα2wα5wα7 , and it
is easy to check that they are conjugate to the three class representatives listed in Table
5. (This can also be verified by computing the dimension of each fixed point space on the
adjoint module L(Ḡ), as discussed in Section 2.4.) We conclude that T is 2-elusive.

Case 1.2. H̄ = A7.2, q odd
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In this case, H̄◦ = A7 corresponds to a subsystem Φ′ with base

{β1, . . . , β7} = {−α0, α1, α3, α4, α5, α6, α7}.

In addition, the element w defined in (2) is contained in H̄ \ H̄◦ (since the Weyl group of A7

does not contain −1), so we have a split extension H̄ = H̄◦:〈w〉. Thus in this case we can

take n ∈ {1, w} and it suffices to consider involutions in H̃0 = H̄ ∩
(
Ḡnσ

)′
.

Define t = hα4(−1) ∈ H̄, which is an involution of type A1D6. Next we choose an
involution g ∈ H̄◦ corresponding to the longest element in the Weyl group of H̄◦. Specifically,
we take

g = wβ1(wβ2wβ1) · · · (wβ7wβ6 · · ·wβ1),

which one can verify is an involution by direct calculation.

In view of (3), we have t, w, g ∈
(
Ḡnσ

)′
, so we deduce that t, w, g ∈ H̃0. Then by computing

the actions of t, tgw and w on L(Ḡ), we see that they are involutions with fixed point spaces
of dimensions 69, 79 and 63, respectively. So by inspecting Table 5, we deduce that T is
2-elusive.

Case 1.3. H̄ = A2A5.2, q odd

Here H̄◦ = A2A5 corresponds to a subsystem of Φ with base {−α0, α1, α2, α4, α5, α6, α7}.
As in the previous case, we have H̄ = H̄◦:〈w〉, so we can take n ∈ {1, w} and it suffices to

consider involutions in H̃0 = H̄ ∩
(
Ḡnσ

)′
.

Now the elements t = hα1(−1) and g = wα2wα5wα7 are contained in H̄, and moreover

t, g ∈ H̃0 by (3). Then t, g and tg coincide precisely with the representatives given in Table
5, so T is 2-elusive.

Case 1.4. H̄ = A3
1D4.Sym3, q odd

First observe that

H̄◦ = A3
1D4 = A1D2D4 < A1D6,

where A1D6 is the maximal rank subgroup we treated in Case 1.1. In addition, H̄◦ corre-
sponds to a subsystem of Φ with base {−α0, α7,−β, α2, α3, α4, α5}, where β = α49 is the
longest root of the D6 factor in A1D6.

There are two possibilities for H0, as recorded in [19, Table 4.1]. The first is

H0 = 22.(L2(q)3 × PΩ+
8 (q)).22.Sym3.

In this case we can take n = 1, so H̃0 = H0 = H̄ ∩ T . Then H0 contains the elements
hα3(−1), wα2wα5wα7 and hα3(−1)wα2wα5wα7 from Case 1.1 and thus T is 2-elusive.

The other possibility is H0 = J.3, where J = L2(q3) × 3D4(q). Clearly, every involution
in H0 is contained in J and we note that there are three such classes. As in the other cases,

it suffices to consider involutions in H̃0 = H̄ ∩
(
Ḡnσ

)′
. Here we can choose n ∈ NḠ(T̄ ) such

that n transitively permutes the three roots {−α0, α7,−β} of the A3
1 factor and induces a

triality automorphism on the D4 factor, transitively permuting the roots {α2, α3, α5}.
Then the unique conjugacy classes of involutions in the L2(q3) and 3D4(q) factors are

represented by the elements t, t′ ∈ H̃0, respectively, where

t = hα7(−1)hα0(−1)hβ(−1), t′ = hα2(−1)hα3(−1)hα5(−1),

and the third class of involutions in H̃0 is represented by their product tt′ = t′t. But this

means that every involution in H̃0 lifts to an involution in the simply connected cover Ḡsc,

and hence every involution in H̃0 is of type A1D6. So in this case, we conclude that T is not
2-elusive.

Case 1.5. H̄ = A7
1.L3(2), q odd
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Here the connected component H̄◦ = A7
1 is embedded in Ḡ via

H̄◦ = A7
1 = A1(A2

1)3 < A1(A2
1D4) < A1D6 < Ḡ.

In particular, H̄◦ corresponds to a subsystem with base {α0, α2, α3, α5, γ, β, α7}, where γ =
α28 is the longest root in the D4 factor of A2

1D4 < D6, and β = α49 is the longest root in
the D6 factor of A1D6. As noted in [19, Table 4.1], there are two possibilities for H0.

If H0 = L2(q7).7, then H0 has a unique class of involutions and thus T is not 2-elusive.
The other possibility is H0 = 23.L2(q)7.23.L3(2), in which case H0 = H̄ ∩ T and it follows
that H0 contains the involutions listed in Case 1.1. Therefore, T is 2-elusive.

Case 1.6. H̄ = E6T1.2, q odd

To complete the proof of the lemma for q odd, we may assume H̄ = E6T1.2, so H̄◦ is a
standard Levi factor corresponding to a root system with base {α1, . . . , α6}. As in Case 1.2,
we have H̄ = H̄◦:〈w〉, so we can take n ∈ {1, w} and it suffices to consider involutions in

H̃0 = H̄ ∩
(
Ḡnσ

)′
.

Set t = hα1(−1) ∈ H̄◦, which is an involution of type A1D6, and define

h = wα2wα28wα38wα46 ∈ H̄◦,

which corresponds to the longest element of the Weyl group of E6. As in Case 1.2, we

have t, w, h ∈ H̃0. A computation (discussed also in Remark 2.17) shows that t, w, hw are

involutions in H̃0 from classes A1D6, A7, E6T1, respectively. Therefore T is 2-elusive.

In order to complete the proof of the lemma, we may assume q is even. Note that in this

case Ḡσ =
(
Ḡσ
)′

and thus H̃0 = H̄nσ. As above, we partition the analysis into a number of
subcases.

Case 2.1. H̄ = A1D6 or A2A5.2, q even

In both cases, the Ḡ-class of each unipotent element in H̄◦ has been determined by
Lawther, see [40, Sections 4.10, 4.12], and it follows that H̄◦ meets every Ḡ-class of in-
volutions. Since H0 meets every unipotent conjugacy class in H̄◦, we deduce that T is
2-elusive.

Case 2.2. H̄ = A7.2, q even

By inspecting [40, Section 4.1], we deduce that H̄◦ contains involutions of type A1, A2
1

and (A3
1)(2). Since H0 = PGLε8(q).2 meets every unipotent conjugacy class of H̄◦, it follows

that H0 contains involutions in each of these classes.
As noted in Case 1.2, we have H̄ = H̄◦:〈w〉. Thus we can take n ∈ {1, w} and it suffices

to consider involutions in H̃0 = H̄nσ. We now define g ∈ H̄◦ as in Case 1.2; by (3) we have

g, w ∈ H̃0. Another computation with Magma (as described in Section 2.4) shows that w
and gw are involutions with respective Jordan forms (263, 17) and (253, 127) on L(Ḡ), so they

are in the Ḡ-classes labelled A4
1 and (A3

1)(1), respectively. Since w, gw ∈ H̃0, we deduce that
T is 2-elusive.

Case 2.3. H̄ = A3
1D4.Sym3, q even

As in Case 1.4, H̄◦ corresponds to a subsystem with base {−α0, α7,−β, α2, α3, α4, α5},
where β is the longest root in the root system of D6. There are two possibilities for H0.

First assume H0 = (L2(q)3 × Ω+
8 (q)).Sym3, in which case H0 = H̄σ. Setting xi = xαi , we

see that H0 contains the following involutions

x7(1), x7(1)x5(1), x7(1)x5(1)x3(1), x7(1)x5(1)x2(1), x0(1)x7(1)x5(1)x2(1). (4)

By using Magma to calculate the Jordan form of each of these elements on the adjoint
module L(Ḡ), we deduce that the corresponding Ḡ-classes are A1, A2

1, (A3
1)(2), (A3

1)(1) and
A4

1, respectively, and it follows that T is 2-elusive.
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Now assume H0 = (L2(q3)× 3D4(q)).3. As in Case 1.4, it suffices to consider involutions

in H̃0 = H̄nσ, where n fixes α4 and it acts as a 3-cycle on the sets {−α0, α7,−β} and
{α2, α3, α5}. Explicitly, we can choose

n = wα20wα48wα47wα30 .

Then the L2(q3) factor has a unique class of involutions, with a representative given by
t = x−α0(1)x−β(1)xα7(1). There are two classes of involutions in 3D4(q), with representatives

given by s = xα2(1)xα3(1)xα5(1) and s′ = xα4(1) (see Table 3). We have t, s, s′ ∈ H̃0, and

any involution in H̃0 is conjugate to t, s, s′, ts or ts′. By computing the respective Jordan
forms on the adjoint module L(Ḡ), we find that the corresponding Ḡ-classes are (A3

1)(1),

(A3
1)(2), A1, A4

1 and A4
1, respectively. Therefore, H̃0 does not contain any involutions of type

A2
1 and thus T is not 2-elusive.

Case 2.4. H̄ = A7
1.L3(2), q even

As in Case 1.5, H̄◦ corresponds to a subsystem with base {α0, α2, α3, α5, γ, β, α7}, where
γ is the longest root for the D4 factor of A2

1D4 < D6, and β is the longest root for the D6

factor of A1D6. If H0 = L2(q)7.L3(2), then H0 = H̄σ contains all the involutions in (4) and
thus T is 2-elusive by the argument in Case 2.3. On the other hand, if H0 = L2(q7).7 then
H0 has a unique class of involutions and thus T is not 2-elusive.

Case 2.5. H̄ = E6T1.2, q even

Finally, to complete the proof we may assume q is even and H̄ = E6T1.2, which is the
normalizer of a standard Levi factor H̄◦ = E6T1 with base {α1, . . . , α6} for the root system of

(H̄◦)′ = E6. As in Case 1.6, it suffices to consider involutions in H̃0 = H̄nσ with n ∈ {1, w}.
It follows from (3) that H̃0 contains the following involutions

wα2 , wα2wα3 , wα2wα3wα5 .

By computing their action on L(Ḡ), we see that these involutions are contained in the Ḡ-

classes labelled A1, A2
1 and (A3

1)(2), respectively.
Next define h ∈ H̄◦ as in Case 1.6, which corresponds to the longest element of the Weyl

group of E6. As before, we have h,w ∈ H̃0 and with the aid of Magma we can show that
w and hw are involutions with respective Jordan forms (263, 17) and (253, 127) on L(Ḡ). By

inspecting Table 4, we deduce that w and hw are in the Ḡ-classes labelled A4
1 and (A3

1)(1),
respectively, and this allows us to conclude that T is 2-elusive. �

To complete the proof of Proposition 8.3, which in turn completes the proof of Theorem 3
for the groups with socle E7(q), it just remains to consider the cases where H = NG(H̄σ) and
H̄ is a maximal positive-dimensional closed subgroup of Ḡ that does not contain a maximal
torus. Note that this includes the family of exotic 2-local subgroups from [13, Table 1], which
we treat separately in the following lemma.

Lemma 8.6. Suppose p is odd and H = NG(E), where E = 22 and

NḠσ(E) = (E × Inndiag(PΩ+
8 (q)).Sym3.

Then T is 2-elusive.

Proof. We begin by recalling some basic properties of E, as described in the proof of [13,
Lemma 2.15]. First, let us record the fact that the three involutions in E are all of type A7. In
addition, CḠ(E) = E×D4, where the D4 factor is of adjoint type. Since NḠσ(E)/CḠσ(E) ∼=
Sym3 acts transitively on the set of involutions in E, it follows that E 6 T and thus
H0 = NT (E) contains involutions of type A7. Since the lift of the D4 factor to Ḡsc is also of
adjoint type, it follows that

CT (E) = CḠσ(E) = E × Inndiag(PΩ+
8 (q)),
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(also see [39, Theorem 1.1]). We claim that CT (E) also contains involutions of type A1D6

and E6T1, which implies that T is 2-elusive.
To see this, first write E = 〈e, f〉. Here e ∈ CḠ(e)◦ and f ∈ CḠ(e) \ CḠ(e)◦, since lifts of

e and f to the simply connected cover Ḡsc do not commute, as observed in the proof of [13,
Lemma 2.15]. Recall that CḠ(e)◦ is of type A7. More precisely, we can identify CḠ(e)◦ with
SL8(K)/〈ζ2I8〉, where ζ ∈ K is a primitive 8th root of unity. Then the central involution
e ∈ CḠ(e)◦ corresponds to the image of the scalar matrix ζI8. Furthermore, we can assume
that f acts as the inverse-transpose graph automorphism on CḠ(e)◦.

Let t be an involution in CḠ(e)◦ corresponding to the diagonal matrix (−I2, I6) in SL8(K)
and note that

L(Ḡ) ↓ A7 = L(A7)/Λ4(W ),

where W is the natural module for A7 (see [67, Table 12.4]). Here t has trace 15 on the
first summand and trace −10 on the second, so t has trace 5 on L(Ḡ) and it is therefore an
involution of type A1D6. Now the central involution e acts as I63 on L(A7) and as −I70 on
Λ4(V ). Therefore, the involution et has trace 15 + 10 = 25 on L(Ḡ) and so it belongs to the
class E6T1.

Therefore, in order to prove that T is 2-elusive, it suffices to show that the subgroup
Inndiag(PΩ+

8 (q)) of CT (E) contains an involution x that is conjugate to t. But this is clear
since the D4 subgroup of CḠ(E) is the image of the orthogonal subgroup SO8(K) < SL8(K).
The result now follows since x is in the class A1D6 and the product ex is an involution of
type E6T1. �

Lemma 8.7. The conclusion to Proposition 8.3 holds if H = NG(H̄σ) and H̄ is a positive-
dimensional non-maximal rank subgroup of Ḡ.

Proof. By inspecting [19, Table 4.1], we see that the possibilities for H̄ are as follows:

A1F4, G2C3, A1G2 (p > 3), A2
1 (p > 5), A2.2 (p > 5), A1 (two classes; p > 17, 19),

together with (22 ×D4).Sym3 for p > 3.
First assume q is even, so H̄ = A1F4 or G2C3. As explained in [40, Section 5.12], the

Ḡ-class of each involution in H̄ can be read off from [40, Table 38] and we quickly deduce
that T is 2-elusive. For the remainder we may assume q is odd. Let V = L(Ḡ) be the adjoint
module.

Suppose H̄ = A1F4, in which case H0 = L2(q)× F4(q) and

V ↓ A1F4 = (VA1(2)⊗ VF4(δ4))/(VA1(2)⊗ 0)/(0⊗ VF4(δ1))

by [67, Table 12.4], where 0 is the trivial module and {δ1, . . . , δ4} is a set of fundamental
dominant weights for the F4 factor. Let t ∈ H0 be an involution in the L2(q) factor, and
let s, s′ be representatives of the two classes of involutions in F4(q). A Magma calculation
(which can be done over Q; see Lemma 2.2) shows that s, ts and ts′ have respective fixed
point spaces of dimension 69, 63 and 79 on V . It follows that T is 2-elusive.

Next assume H̄ = G2C3, so H0 = G2(q)× PSp6(q) and

V ↓ G2C3 = (VG2(ω1)⊗ VC3(δ2))/(VG2(ω2)⊗ 0)/(0⊗ VC3(2δ1))

as recorded in [67, Table 12.4], where {ω1, ω2} and {δ1, δ2, δ3} are fundamental dominant
weights for the two factors of H̄◦. Here the G2(q) factor has a unique class of involutions,
which is represented by t = h′α(−1) for some root α for G2. Next let s ∈ PSp6(q) be an
involution which lifts to an element of order 4 in Sp6(q). Here a representative is given by
s = w′′β1

w′′β3
, where {β1, β2, β3} are the simple roots of C3 and w′′β is a standard Chevalley

generator of C3, as defined in Section 2.2.
Working with Magma, we calculate that t, s and ts have fixed point spaces of dimensions

69, 79 and 63 on V . So once again we conclude that T is 2-elusive. The case H̄ = A1G2 is
entirely similar and the same conclusion holds.
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Now suppose H̄ = A2
1. Here p > 5, H0 = L2(q)× PGL2(q) and [67, Table 12.4] gives

V ↓ A2
1 = (VA1(6)⊗ VA1(4))/(VA1(4)⊗ VA1(6))/(VA1(4)⊗ VA1(2))/

(VA1(2)⊗ VA1(8))/(VA1(2)⊗ VA1(4))/(VA1(2)⊗ 0)/(0⊗ VA1(2)).

Note that both A1 factors in H̄ are of adjoint type. We claim that H̄ does not contain any
involutions of type E6T1 and thus T is not 2-elusive.

To see this, let t ∈ H̄ be an involution in the first A1 factor and let s be an involution
in the second. Then every involution in H̄ is conjugate to t, s or ts. Let c > 0 be an even
integer and consider the Weyl module VA1(c) for an A1 group of adjoint type. Then it is
easy to check that the dimension of the fixed point space of an involution on VA1(c) is given
by the expression

1

2

(
c+ 1 + (−1)c/2

)
and we deduce that t, s and ts have respective fixed point spaces of dimensions 63, 69 and
63 on V . By inspecting Table 5, it follows that H̄ does not contain involutions of type E6T1,
as claimed above.

For the two cases with H̄ = A1 we note that H0 = L2(q) has a unique class of involutions
and thus T is not 2-elusive.

If H̄ = A2.2, then Craven notes in [19, Section 4] that H̄σ = PGLε3(q).2, and either
H0 = PGLε3(q) or H0 = PGLε3(q).2, without giving the precise structure in all cases. In any
case, H0 has at most two classes of involutions and thus T is not 2-elusive.

To complete the proof, we may assume H̄ = (22 ×D4).Sym3, in which case there are two
possibilities to consider. If H0 = 3D4(q).3 then H0 has a unique class of involutions and thus
T is not 2-elusive. The other possibility was handled in Lemma 8.6. �

This completes the proof of Theorem 3 for the groups with socle T = E7(q).

9. The groups with socle E8(q)

Finally, we turn to the groups with socle T = E8(q). As usual, we write M = C ∪ S for
the set of core-free maximal subgroups of G and we refer the reader to Remark 2.14(g) for
a brief description of the subgroups in the C and S collections. In particular, we recall that
it remains an open problem to determine the subgroups in S, even up to isomorphism.

Our main result for the groups with H ∈ C is the following. This completes the proof of
Theorem 3(i).

Proposition 9.1. Suppose T = E8(q), |Ω| is even and H ∈ C. Then T is 2-elusive unless
one of the following holds:

(i) H0 = SU5(q2).4, PGU5(q2).4, U3(q2)2.8, or U3(q4).8.

(ii) H0 = (q4 ± q3 + q2 ± q + 1)2.(5× SL2(5)) or (q8 ± q7 ∓ q5 − q4 ∓ q3 ± q + 1).30.

(iii) p = 2 and H0 is one of Ω+
8 (q2).(Sym3 × 2), 3D4(q2).6, (q2 ± q + 1)4.2.(3 × U4(2)),

(q4 − q2 + 1)2.(12 ◦GL2(3)) or (q2 + 1)4.(4 ◦ 21+4).Alt6.2.

(iv) H0 = F4(q) and p = 3.

(v) H0 = SO5(q) and p > 5.

(vi) H0 = PGL2(q) (three classes; p > 23, 29, 31).

(vii) H0 = ASL3(5) and p 6= 2, 5.

We divide the proof of Proposition 9.1 into several cases. In view of Propositions 3.2 and
4.1, we may assume that H is not a parabolic nor a subfield subgroup. We start by dealing
with the remaining subgroups arising in part (I) of Definition 1, so H = NG(H̄σ) and one of
the following holds:

(a) H̄ is a maximal torus;
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(b) H̄ is reductive of maximal rank and H̄◦ is not a maximal torus;

(c) H̄ is not a maximal rank subgroup.

Throughout, we will write V = L(Ḡ) for the adjoint module of Ḡ. We begin by considering
the cases where H̄ is a maximal torus of Ḡ, noting that the possibilities for H0 are recorded
in [46, Table 5.2].

Lemma 9.2. The conclusion to Proposition 9.1 holds if H = NG(H̄σ) and H̄ is a maximal
torus of Ḡ.

Proof. We can assume that H = NG(
(
T̄ g
)
σ
), where T̄ is the σ-stable maximal torus from

the setup of Section 2.2. Let W = NḠ(T̄ )/T̄ = 2.O+
8 (2) be the Weyl group of Ḡ.

By Lemma 2.19, the σ-stable torus T̄ g corresponds to a conjugacy class xW in W , and the
latter determines H up to Ḡσ-conjugacy. Let n ∈ NḠ(T̄ ) be a lift of x. By Lemmas 2.16 and
2.19, for the purpose of determining the 2-elusivity of T it suffices to consider involutions in

H̃0 = NḠ(T̄ )nσ = S.F, (5)

where S = T̄nσ and F = CW (x) (see Lemma 2.20). As noted above, the possibilities for H0

are recorded in [46, Table 5.2].
First notice that if

S = (q4 ± q3 + q2 ± q + 1)2 or q8 ± q7 ∓ q5 − q4 ∓ q3 ± q + 1

then |S| is odd and F ∈ {5× SL2(5), Z30} has a unique class of involutions, so Lemma 2.12
implies that T is not 2-elusive.

We now consider the remaining cases. To begin with, we will assume that q is odd. By [11,
Corollary 4.4], H0 contains involutions in the D8-class, so it remains to determine whether
or not H0 also contains A1E7 involutions.

Suppose S = (q − ε)8, in which case we can assume that n ∈ {1, w}, where w ∈ NḠ(T̄ )
corresponds to the central involution in the Weyl group. Since w acts on Φ as α 7→ −α, it
follows that w centralizes hα(−1) for all α ∈ Φ. Thus S = T̄nσ contains the representatives
hα1(−1) and hα1(−1)hα2(−1) from Table 5. In particular, T is 2-elusive.

For q odd, it remains to consider the following four possibilities for S:

(q2 ± q + 1)4, (q2 + 1)4, (q4 − q2 + 1)2.

In order to describe the element n ∈ NḠ(T̄ ) in these cases (see (5)), set hi = hαi(−1) and
wj = wβj , where 1 6 i 6 8, 1 6 j 6 240 and βj is the j-th root in Φ with respect to the
specific ordering of roots used by Magma.

First assume S = (q2 + 1)4. By inspecting [25], we see that H0 = S.F is a non-split
extension. Moreover, [25, Table 8] gives S = T̄nσ with n = w2w3w4w7w120w18w8w74 and a
Magma computation (which can be done over Q, as explained in Section 2.4) shows that

a = h2w2w5 and b = w4w17 centralize n. Therefore a, b ∈ H̃0. Moreover, we can use Magma
to show that a2 and (ab)2 are involutions, with fixed point spaces on V with dimensions 120
and 136, respectively. Therefore, T is 2-elusive in this case.

In each of the remaining cases (with q odd), the maximal torus S has a complement R in

H̃0, with explicit generators for R presented in [25, Table 7].
For example, suppose S = (q2 +q+1)4, which is labelled as torus 56 in [25]. By inspecting

[25, Table 7], we can take n = w1w2w3w5w6w8w120w69 and we set R = 〈a, b, c〉, where

a = n2w0, b = h1h4w1w4w18w44, c = h1h3h5h6h7h8w1w2w64w116w26w28w32w120

and

w0 = h2h5h7w1w2w5w7w44w71w89w120.

A computation with Magma shows that R centralizes n, so R 6 H̃0. In addition, we can use
Magma to show that a3 and b have order two, with fixed point spaces on V of dimensions
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120 and 136 respectively, so once again T is 2-elusive. By appealing to [25, Lemma 2.5], we
deduce that the same conclusion holds when S = (q2 − q + 1)4.

For q odd, the final case S = (q4 − q2 + 1)2 is very similar (this is torus 67 in [25]). Here
we take n = w2w32w5w7w1w4w6w65 and R = 〈a, b, c〉, where

a = n, b = h3h5h6w18w45w92w112, c = h2h3h4w2w29w4w17.

Then R centralizes n and we have H̃0 = SR. Moreover, a Magma computation shows that
a6 and c2 are involutions with fixed point spaces on V of dimensions 120 and 136 respectively,
so T is 2-elusive.

To complete the proof, we may assume p = 2. Here Theorem 2.21 implies that H0 = S:F
is a split extension and we may identify F with a subgroup of 〈wα : α ∈ Φ〉. Since the
involutions in the class labelled A1 are long root elements, [43, Proposition 1.13(iii)] implies
that H0 contains such an involution if and only if F contains a reflection in W . By inspecting
[46, Table 5.2], we see that F contains such an element if and only if H0 = (q− ε)8:W , so T
is not 2-elusive in all of the remaining cases. Finally, using Magma one can check that the
subgroup W < E8(2) contains a representative of every E8(2)-class of involutions and this
allows us to conclude that T is 2-elusive when S = (q − ε)8. �

Lemma 9.3. The conclusion to Proposition 9.1 holds if H = NG(H̄σ) and H̄ is a maximal
rank subgroup.

Proof. In view of Lemma 9.2, we may assume H̄◦ is reductive and not a maximal torus, so
the possibilities for H0 are listed in [46, Table 5.1]. By Theorem 2.22, we see that |Ω| is odd
if H0 is of type D8(q), D4(q)2 or A1(q)8, so we can exclude these cases for the remainder of
the proof. Then the possibilities for H̄ are as follows:

A1E7, A8.2, A2E6.2, A
2
4.4, D

2
4.(Sym3 × 2), A4

2.GL2(3).

As before, we are free to assume that H = NG(
(
H̄g
)
σ
), where H̄ is the normalizer of a

standard subsystem subgroup

H̄◦ = 〈T̄ , Uα : α ∈ Φ′〉,

and H̄g is a σ-invariant conjugate of H̄. Here T̄ is a maximal torus of Ḡ, as in the setup of
Section 2.2, and Φ′ is a root subsystem of Φ. As usual, we will denote the longest root of Φ
by α0.

Recall that the Weyl group of H̄◦ can be identified with the subgroup 〈sα : α ∈ Φ′〉 of W .
Then H̄ is generated by H̄◦, together with the elements of NḠ(T̄ ) that normalize the Weyl
group of H̄◦. In particular, H̄ contains an element w ∈ NḠ(T̄ ) which maps to the central
involution of W . Explicitly, we can choose

w = wα1wα2wα5wα7wα44wα71wα89wα120 ∈ H̄,

where αi denotes the i-th positive root in Φ with respect to the specific ordering of the roots
of Ḡ = E8 used by Magma. Then w acts as α 7→ −α on Φ, and a computation shows that
w2 = 1, so w is an involution in Ḡ.

For later use, we note that when q is odd, a computation with Magma shows that w has
a fixed point space of dimension 120 on V . Therefore w is an involution of type D8 (Table
5) when q is odd.

Let n ∈ NḠ(T̄ ) be an element of H̄ such that under the bijection of Lemma 2.15, the
σ-invariant conjugate H̄g corresponds to the image of n in H1(σ, H̄/H̄◦). Then in view of

Lemma 2.16, for determining 2-elusivity it suffices to consider involutions in H̃0 = H̄nσ.
As in the proof of Lemma 8.5, we will partition the analysis according to the parity of q.

To begin with, we will assume q is odd.

Case 1.1. H̄ = A1E7, q odd
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Suppose H̄ = A1E7, in which case Φ′ has base {α1, α2, . . . , α7} ∪ {−α0} and H0 = H̄σ.
Thus H0 contains the representatives hα1(−1) and hα1(−1)hα2(−1) from Table 5, and we
conclude that T is 2-elusive in this case.

Case 1.2. H̄ = A8.2 or A2E6.2, q odd

Next suppose H̄ = A8.2, in which case Φ′ has base {α1, α3, α4, . . . , α8,−α0}. Moreover
H̄ = H̄◦:〈w〉, so we can take n ∈ {1, w}. Now w centralizes hα(−1) for all α ∈ Φ, so hα(−1) ∈
H̃0 for all α ∈ Φ. Thus H̃0 contains the representatives hα1(−1) and hα1(−1)hα2(−1) from
Table 5, and so T is 2-elusive.

Now assume H̄ = A2E6.2, in which case Φ′ has base {α1, . . . , α6} ∪ {α8,−α0}. Here we
also have H̄ = H̄◦:〈w〉 and once again we conclude that T is 2-elusive.

Case 1.3. H̄ = A2
4.4, q odd

Next assume H̄ = A2
4.4, in which case Φ′ has base {α1, α3, α4, α2}∪{α6, α7, α8,−α0}. We

can choose n ∈ {1, w, x, x−1}, where the image of x in H̄/H̄◦ has order 4.
If n ∈ {1, w}, then as in Case 1.2 it is easy to see that the representatives from Table 5 are

contained in H̃0, whence T is 2-elusive. Now assume n ∈ {x, x−1}, in which case H0 = J.4
with J = SU5(q2) or PGU5(q2). We will prove that every involution in H0 is of type D8.

First we consider the types of involutions in H̄◦ = A2
4. There are two conjugacy classes of

involutions in each A4 factor, with representatives given by

t1 = hα1(−1), t2 = hα1(−1)hα4(−1)

in the first factor, and
t′1 = hα6(−1), t′2 = hα6(−1)hα8(−1)

in the second factor. A computation with Magma shows that for i = 1, 2 the involution
tit
′
i has a fixed point space of dimension 120 on V , and thus belongs to class D8 (Table 5).

We conclude that the involutions in H̄◦ of the form (t, t) belong to the class D8. Now an
involution in J < H0 embeds into H̄◦ as (t, t), so it follows that every involution in J is of
type D8.

Next we will prove that every involution in H̄ \ H̄◦ is of type D8. To this end, note that
w ∈ H̄ \H̄◦, so all involutions in H̄ \H̄◦ are contained in H̄◦w. Since w acts on Φ as α 7→ −α,
the action of w on both A4 factors of H̄◦ = A2

4 is via the standard inverse-transpose graph
automorphism. Hence it follows from [29, Lemma 4.4.6] that there is a unique H̄-class of
involutions in H̄◦w. Since w is an involution of type D8, it follows that every involution in
H̄ \ H̄◦ is of type D8. Consequently, the involutions in H0 \J are of type D8, so we conclude
that every involution in H0 is of type D8, and T is not 2-elusive.

Case 1.4. H̄ = D2
4.(Sym3 × 2), q odd

In this case Φ′ has base {α3, α4, α2, α5} ∪ {α7, α8, β,−α0}, where −β is the longest root
in the D8 root subsystem with base {α2, α3, . . . , α8,−α0}. Explicitly we have β = α97.

Here H0 is of type D4(q)2, D4(q2), 3D4(q)2 or 3D4(q2). As noted in the proof of [46,
Lemma 2.5], the image of n in H̄/H̄◦ = Sym3 × 2 is either the central involution, or it has
order 1, 3 or 6. In other words, the image of n is contained in the unique cyclic subgroup of
order 6 in Sym3 × 2. A computation shows that the image of

g = wα92wα89wα90wα60wα72wα56

in the Weyl group of E8 has order 6 and it normalizes the Weyl group of H̄◦. Another
computation shows that g is also an element of order 6 in Ḡ. Hence g ∈ H̄ and H̄◦.6 = H̄◦:〈g〉,
so we can assume that n ∈ 〈g〉. In particular, n centralizes g and thus g ∈ H̃0 = H̄nσ.

A computation with Magma shows that g3 has a fixed point space of dimension 136 on V ,

so g3 is an involution of type A1E7. Moreover g centralizes t = hα2(−1)hα7(−1), so t ∈ H̃0.
Yet another computation shows that t is an involution of type D8. So we conclude that T is
2-elusive in every case.
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Case 1.5. H̄ = A4
2.GL2(3), q odd

In this case Φ′ has base {α1, α3} ∪ {α5, α6} ∪ {−α69, α2} ∪ {α8,−α0}, where α69 is the
longest root in a root subsystem of type E6. By the proof of [46, Lemma 2.5], the image
of n in H̄/H̄◦ ∼= GL2(3) is contained in a cyclic subgroup of order 8. Thus we can take

n ∈ {1, w, x2, x}, where the image of x has order 8 in GL2(3). Then H̃0 is contained in
H̄◦〈x〉.

If n ∈ {1, w}, then as in Case 1.2, the representatives from Table 5 are contained in H̃0,
and so T is 2-elusive. Now assume n ∈ {x2, x}, in which case H0 = J.8 and J = U3(q2)2 or
J = U3(q4). We will prove that every involution in H0 is of type D8.

To this end, let t ∈ H̃0 be an involution. If t ∈ H̄◦, then up to conjugacy, t embeds in H̄◦

as the image of (z, z, z, z), (z, z, 1, 1) or (1, 1, z, z), where z is an involution in A2 (note that
(z, z, z, z) is the only possibility when J = U3(q4)). In any case, representatives in H̄◦ for
these involutions are given by

t1 = hα1(−1)hα5(−1)hα2(−1)hα8(−1),

t2 = hα1(−1)hα5(−1),

t3 = hα2(−1)hα8(−1).

A computation with Magma shows that t1, t2, t3 all have a fixed point space of dimension
120 on V , and so they are all of type D8.

Suppose then that t ∈ H̄ \ H̄◦, in which case t ∈ H̄◦w. As in Case 1.3, it follows from
[29, Lemma 4.4.6] that t must be H̄-conjugate to w. Since w is an involution of type D8, we
conclude that every involution in H0 is of type D8, and T is not 2-elusive.

To complete the proof, we may assume q is even.

Case 2.1. H̄ = A1E7, A8.2 or A2E6.2, q even

In each of these cases, we can use [40] to show that H̄◦ contains a representative of each
Ḡ-class of involutions, whence T is 2-elusive.

Case 2.2. H̄ = A2
4.4 or D2

4.(Sym3 × 2), q even

First assume H̄ = A2
4.4. As above, by inspecting [40] we see that H̄◦ contains a represen-

tative of each Ḡ-class of involutions and this immediately implies that T is 2-elusive when
H0 is of type Lε5(q)2. On the other hand, if H0 = SU5(q2).4 or PGU5(q2).4, then H0 only
has three classes of involutions, so T is not 2-elusive.

Now suppose H̄ = D2
4.(Sym3 × 2). If H0 = Ω+

8 (q2).(Sym3 × 2) or 3D4(q2).6, then [43,
Proposition 1.13] implies that H0 does not contain any A1-type involutions, so T is not
2-elusive. Now assume H0 = Ω+

8 (q)2.(Sym3 × 2) or 3D4(q)2.6. There are two classes of
involutions in 3D4(q), which embed in the algebraic group D4 as involutions of type a2 or c4

(in terms of the notation in [2]). So in both cases, by considering the natural embedding of
H0 in D2

4, we deduce that H0 contains involutions of the form

(a2, 1), (a2, a2), (c4, 1), (c4, c4),

which embed in D8 < Ḡ as involutions of type a2, a4, c4 and c8. With respect to Lawther’s
notation for involution classes in D8 (see [40, Table 8]), these elements are contained in the
respective D8-classes A1, 2A1, A1 +D2 and 3A1 +D2. Then by inspecting [40, Section 4.13]
we deduce that the corresponding Ḡ-classes are A1, A2

1, A3
1 and A4

1, respectively, and thus
T is 2-elusive.

Case 2.3. H̄ = A4
2.GL2(3), q even

First assume H0 = U3(q2)2.8 or U3(q4).8. In view of [43, Proposition 1.13] and the
embedding of H0 in H̄, it is easy to see that H0 does not contain any A1-type involutions
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and thus T is not 2-elusive. Now assume H0 is of type Lε3(q)4. We may embed

H̄◦ = A2(A3
2) < A2E6 < Ḡ

and we note that the maximal rank subgroup A3
2 < E6 contains a representative of all three

involution classes in E6. Then by considering the embedding of A2E6 in Ḡ (see [40, Section
4.15]) we deduce that H̄◦ contains a representative of all four Ḡ-classes of involutions. This
implies that T is 2-elusive and the proof of the lemma is complete. �

Lemma 9.4. The conclusion to Proposition 9.1 holds if H = NG(H̄σ) and H̄ is a positive-
dimensional non-maximal rank subgroup of Ḡ.

Proof. According to [48, Theorem 1], the possibilities for H̄ are as follows:

G2F4, A1G
2
2.2 (p > 3), F4 (p = 3), A1A2.2 (p > 5),

B2 (p > 5), A1 (3 classes; p > 23, 29, 31), A1 × Sym5 (p > 7).

Note that we have included the special case (H̄, p) = (F4, 3) described in [21], which was
incorrectly omitted in [48].

We begin by handling the subgroups with H̄◦ = A1. If H̄ = A1 then H0 = PGL2(q) and T
is not 2-elusive since H̄ has a unique class of involutions. So we may assume H̄ = A1×Sym5,
in which case H0 = PGL2(q)× Sym5 and p > 7. We claim that T is 2-elusive.

To see this, first note that the Sym5 factor contains involutions of type A1E7 (see [11,
Lemma 5.6]). Let z ∈ PGL2(q) < H0 be the image of (−I1, I1) ∈ GL2(q). Then as explained
in the proof of [11, Lemma 5.6], we can embed z in a maximal rank subgroup J = A2

4 of Ḡ,
where z = z1z2 and each zi ∈ A4 acts as (−I2, I3) on the natural module for A4. Now

V ↓ J = L(A2
4)/(U1 ⊗ Λ2(U2))/(Λ2(U1)⊗ U∗2 )/(Λ2(U1)∗ ⊗ U2)/(U∗1 ⊗ Λ2(U2)∗)

where U1 and U2 are the natural modules for the two A4 factors of J (see [67, Table 12.5]).
We calculate that z has a 24-dimensional 1-eigenspace on each summand, so dimCV (z) = 120
and therefore z is a D8-type involution. This justifies the claim.

Now suppose H̄ = B2, so H0 = SO5(q), p > 5 and [67, Table 12.5] gives

V ↓ B2 = VB2(3ω1 + 2ω2)/VB2(6ω2)/VB2(2ω2).

The involutions in H0 are of type (−I4, I1) and (−I2, I3), which we can write as h′β1
(−1) and

w′β2
with respect to a set of simple roots {β1, β2} for B2. A calculation with Magma (see

Section 2.4) shows that both involutions have trace −8 on V . Therefore, every involution in
H0 is of type D8 and thus T is not 2-elusive.

Next assume H̄ = A1A2.2, so p > 5. By inspecting [11, Table 18], we see that H0 contains
involutions of type A1E7. Let t = (z, 1) ∈ L2(q)× Lε3(q) < H0 be an involution. Now z has
trace (−1)` on the Weyl module VA1(2`) and so by considering the restriction of V to H̄◦

(see [67, Table 12.5]) we calculate that dimCV (t) = 120 and thus t is an involution of type
D8.

The case H̄ = A1G
2
2.2 is very similar. Here p > 3 and the socle of H0 is either L2(q) ×

G2(q)2 or L2(q)×G2(q2). By [11, Table 18], H0 contains involutions of type A1E7. Let t be
an involution in the L2(q) factor of soc(H0). Then by considering the restriction of V to H̄◦

we calculate that dimCV (t) = 120 and thus T is 2-elusive.
Next suppose that H̄ = G2F4, so H0 = G2(q)×F4(q). If p = 2 then the information in [40,

Table 38] immediately implies that T is 2-elusive, so let us assume p > 3. By inspecting [11,
Table 18], we see that H0 contains involutions of type A1E7. Let t be a B4-type involution
in the F4(q) factor and note that t has trace −6 and 20 on the respective Weyl modules
VF4(δ4) and VF4(δ1). From [67, Table 12.5] we see that

V ↓ G2F4 = L(G2F4)/(VG2(ω1)⊗ VF4(δ4))/(VG2(ω2)⊗ 0)/(0⊗ VF4(δ1))

and this allows us to deduce that dimCV (t) = 120. Therefore, t is an involution of type D8

and we conclude that T is 2-elusive.
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To complete the proof, it remains to consider the special case arising in [21], where H̄ = F4

and p = 3. Let t1, t2 ∈ H0 = F4(q) be representatives of the two H0-classes of involutions as
in Table 5, say t1 = h′β1

(−1) and t2 = h′β4
(−1), where CH̄(t1) = A1C3 and CH̄(t2) = B4. In

[21, Section 3], expressions for the generators x′βi(c), h
′
βi

(c) of H̄ are presented in terms of

the generators for Ḡ, namely

t1 = h′β1
(−1) = hα4(−1)hα6(−1),

t2 = h′β4
(−1) = hα1(−1)hα3(−1)hα4(−1)hα5(−1)hα7(−1).

With the aid of Magma (see Section 2.4), we can use these expressions to show that both
t1 and t2 have trace −8 on V . Therefore, every involution in H0 is of type D8 and thus T is
not 2-elusive. �

In order to complete the proof of Proposition 9.1, it just remains to consider the groups
where H is either an exotic local subgroup or the Borovik subgroup.

Lemma 9.5. The conclusion to Proposition 9.1 holds if H is an exotic local subgroup.

Proof. The exotic local subgroups were classified in [13], and from [13, Theorem 1] we see
that there are two possibilities:

(a) H0 = 53.SL3(5), p 6= 2, 5 and q ∈ {p, p2};
(b) H0 = 25+10.L5(2) and q = p > 3.

If H0 = 53.SL3(5), then p 6= 2, 5 and it follows from [13, Lemma 5.2] that H0 is isomorphic
to the affine group ASL3(5). This implies that H0 has a unique class of involutions and thus
T is not 2-elusive.

Now assume H0 = 25+10.L5(2). Here H0 = NT (E), where E = 25 is elementary abelian,
and we inspect the proof of [13, Lemma 2.17]. As explained in “Part A” of the proof, every
involution in E is of type D8. And in “Part B” we see that E is centralized by an element
e1 ∈ T (in the notation of [13]), which is of type A1E7. Therefore, T is 2-elusive. �

Lemma 9.6. Suppose T = E8(q), p > 7 and H0 = (Alt5× Sym6).2 is the Borovik subgroup.
Then T is 2-elusive.

Proof. We will refer to Borovik’s original paper [4] for various properties of this subgroup.
Write H0 = (L1 × L2.2).2, where L1 = Alt5 and L2 = Alt6. By [4, Lemma 6.8], every
involution in L1 and L2 is of type D8.

In order to establish the existence of involutions in the A1E7 class, let z ∈ L1 be an element
of order 3 and set J = CḠ(z). Following [4, p.177], we have J = A8 and L2 acts irreducibly
on the natural module U for J = A8. Therefore, L2.2 = Sym6 also acts irreducibly on U and
from the character table of Sym6 we deduce that a transposition x ∈ L2.2 acts as (−I6, I3)
on U . Finally, we observe that

V ↓ J = L(J)/Λ3(U)/Λ6(U)

(see [67, Table 12.5], noting that λ5 should be λ6 in the case labelled 62) and we calculate
that x has trace 8 on each summand. Therefore, x has trace 24 on V and we conclude that
x is an involution of type A1E7. �

To complete the proof of Theorem 3, we may assume T = E8(q) and H ∈ S, in which case
H is almost simple with socle S. Recall that Lie(p) denotes the set of simple groups of Lie
type defined over a field of characteristic p.

We begin by considering the groups with S 6∈ Lie(p). Recall from Remark 2.14(g) that S is
one of the following (it remains an open problem to determine the precise list of possibilities
for S):

(a) S = Alt6 (p 6= 5), Alt7 (p 6= 2), M11 (p = 3, 11), J3 (p = 2) or Th (p = 3);

(b) S = L2(q′) with q′ ∈ {7, 8, 11, 13, 16, 17, 19, 25, 29, 31, 32, 41, 49, 61}; or
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(c) S = L3(3), L3(5), L4(5), U3(3), U4(2), PSp4(5), 2B2(8), 2B2(32), 3D4(2) or 2F4(2)′.

Proposition 9.7. Suppose T = E8(q), |Ω| is even and H ∈ S with socle S 6∈ Lie(p). Then
T is 2-elusive only if one of the following holds:

(i) H0 = Sym6, Alt6.2 ∼= PGL2(9) or Alt6.2
2, with p 6= 2, 5.

(ii) H0 = PGL2(r) with (r, p) = (7, 3), (11, 5) or (13, 7).

(iii) H0 = L3(3).2 and p = 13.

Proof. We will divide the proof into a number of separate cases, according to the socle S.
As usual, let V = L(Ḡ) be the adjoint module.

Case 1. S = Altn, n > 5

First assume S = Altn is an alternating group. It is not known whether or not T has
a maximal subgroup with socle S, but the main theorem of [20] tells us that this can only
happen if S = Alt6 and p 6= 5, or if S = Alt7 and p > 3. Then by considering the number of
conjugacy classes of involutions in H0, it follows that T is 2-elusive only if

(a) H0 ∈ {Sym6,PGL2(9),Alt6.2
2} and p 6= 2, 5; or

(b) H0 = Sym7 and p > 3.

The possibilities in (a) are recorded in part (i) of the proposition. As a comment, we
observe that computations with Magma show that for all the groups listed in (a), there
are several feasible characters with property (P) such that H0 intersects every T -class of
involutions, and also several such that every involution H0 belongs to the same T -class. So
this case remains inconclusive.

Now assume H0 = Sym7, so G = T and H = Sym7. Then by inspecting [20, Theorem 4],
we see that the composition factors of V ↓ S are as follows:

154, 136, 105, (10∗)5, 110 p = 3
354, 154, 10, 10∗, 82, 62 p = 5{
353, 21, 14a, 142

b , 107, 52 or
354, 142

a, 106, 54 p = 7

354, 154, 142
a, 10, 10∗ p > 11

Using the computational approach described in Section 2.7, we can work with Litterick’s
Magma code in [55] to find all the feasible characters of Sym7 on V . As a consequence, we
find that if p 6∈ {3, 7}, then Sym7 does not have a feasible character that is consistent with
the composition factors of V ↓ S given above.

Finally, for p ∈ {3, 7} we claim that every involution in H0 is of type D8 and thus T is
not 2-elusive. Suppose p = 3. Using Magma, we find that the only feasible character of
H0 = Sym7, which is consistent with V ↓ S, has composition factors

205, 153
a, 15b, 13a, 135

b , 1
6
a, 1

4
b

Here V ↓ S has property (P) and the composition factors of V ↓ S are described in the row
labelled 1) in [54, Table 6.250]. In any case, with these composition factors every involution
in H0 has trace −8 on V and the claim follows. Similarly, if p = 7 then there are only three
feasible characters of H0 = Sym7 that are consistent with V ↓ S, namely 354

a, 142
a, 106

a, 5
4
b

352
a, 35b, 21b, 14b, 14c, 14d, 104

a, 103
b , 5a, 5b

352
a, 352

b , 142
b , 104

a, 102
b , 5

2
a, 5

2
b

Here the respective composition factors of V ↓ S are as in entries 3), 2), 3) of [54, Table
6.248]. Once again, for each possibility we calculate that every involution in H0 is of type
D8 and the proof of the claim is complete.

Case 2. S is a sporadic group
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Here the possibilities for S can be read off from [50, Table 10.2] and by applying [54,
Theorem 8] we deduce that S = M11 (with p = 3 or 11), Th (p = 3) or J3 (p = 2). In the
first two cases, H = H0 = S has a unique class of involutions and thus T is not 2-elusive.
The same conclusion holds when S = J3 and p = 2 since H0 has at most two classes of
involutions, whereas T has four.

Case 3. S is a group of Lie type

By inspecting [50, Tables 10.3, 10.4] and [54, Theorem 8] we see that S is one of the
following:

(a) S = L2(q′) with q′ ∈ {7, 8, 11, 13, 16, 17, 19, 25, 29, 31, 32, 41, 49, 61};
(b) S = L3(3), L3(5), U3(3) (p = 2, 7), U4(2), 3D4(2), 2F4(2)′ (p = 3), 2B2(8), L4(5)

(p = 2), PSp4(5) (p = 2) or 2B2(32) (p = 5).

Note that in (a) we have excluded the case q′ = 9, since L2(9) ∼= Alt6.

Case 3(a). S = L2(q′)

We begin by considering the groups in (a). In each case, any almost simple group with
socle S has at most 3 classes of involutions, so we can assume that p is odd. In addition, we
may assume H0 6= S since S has a unique class of involutions. In particular, if q′ is a prime,
then H0 = PGL2(q′) is the only possibility. Note that if q′ ∈ {8, 32} then H0 has a unique
class of involutions, so T is not 2-elusive in these cases. For the remainder, we may assume
q′ 6= 8, 32.

To handle the remaining cases, we proceed as in Case 1, using Litterick [55] to analyze
feasible characters with the aid of Magma, as discussed in Section 2.7. Recall the definition
of property (P) (see Definition 2.25) and recall that H0 ∈ S only if there exists a feasible
character of H0 on V ↓ H0 with property (P). For the remainder of the proof, we will refer
to such a character as a compatible feasible character.

First assume q′ is a prime, in which case we may assume H0 = PGL2(q′). If we take
q′ ∈ {17, 29, 41, 61}, then one can check that H0 has no compatible feasible characters. Now
assume q′ ∈ {7, 11, 13, 19, 31}. In these cases, we have used Magma to determine all the
compatible feasible characters (see Example 2.30) and by computing traces we deduce that
T is 2-elusive only if (H0, p) is one of the following:

(PGL2(7), 3), (PGL2(11), 5), (PGL2(13), 7),

which correspond to the cases listed in part (ii) of the proposition. Therefore, to complete
our analysis of the groups with S = L2(q′), we may assume q′ ∈ {16, 25, 49}. In each case,
we claim that T is not 2-elusive.

Suppose q′ = 16, in which case H0 = L2(16).2 or H0 = Aut(S) = PΓL2(16) = L2(16).4.
Using Magma to calculate all the feasible characters of L2(16).2 on V , we deduce that every
involution in L2(16).2 has trace −8 on V . Since every involution in Aut(S) is contained in
L2(16).2, we conclude that T is not 2-elusive when q′ = 16.

Next assume q′ = 25. Once again we claim that every involution in H0 is of type D8.
Since every involution in Aut(S) is contained in PGL2(25) or PΣL2(25), we may assume that
H0 = S.2 is one of these two groups. For H0 = PΣL2(25) we find that H0 has a compatible
feasible character if and only if p = 13, in which case every involution in H0 has trace −8
on V and the claim follows. And a very similar argument gives the same conclusion when
H0 = PGL2(25) (here H0 has compatible feasible characters for all p > 3 with p 6= 5).

Finally, suppose q′ = 49. As in the previous case, we may assume H0 = PGL2(49) or
PΣL2(49), and with the aid of Magma we can show that H0 does not admit a compatible
feasible character.

Case 3(b). The remaining Lie type groups

To complete the proof of the proposition, we may assume S is one of the groups in (b).
Just by considering the number of classes of involutions in H0 we see that T is 2-elusive only
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if S = U4(2) (p > 5), 3D4(2) or 2F4(2)′ (p = 3), or if H0 is one of the following:

L3(3).2 (p > 5), L3(5).2 (p > 3), U3(3).2 (p = 7),

L4(5).22 (p = 2), L4(5).D8 (p = 2), PSp4(5).2 (p = 2).

We now need to consider each of these possibilities in turn.
First assume H0 = L3(3).2 and p > 5, noting that H0 has two classes of involutions. If

p 6= 13, then p does not divide |H0|. Computing the feasible characters of H0 with Magma
shows that every feasible character of H0 on V has a trivial composition factor, and so there
are no compatible feasible characters in this case (see Lemma 2.24). However, the same
approach is inconclusive for p = 13. Indeed, there are four feasible characters and we find
that T is 2-elusive with respect to exactly three of them.

Now suppose H0 = U3(3).2 and p = 7. Here we use Magma to determine the list of
compatible feasible characters and in each case we find that every involution in H0 is of type
D8. Hence, T is not 2-elusive. We can also eliminate the case H0 = L3(5).2 with p > 3 since
H0 does not admit a compatible feasible character.

Next assume S = U4(2) and p > 5. If H0 = S, then by examining the feasible characters
labelled (P) in [54, Tables 6.334, 6.335], and by inspecting the Brauer character table of H0

(see [33, pp.60–62]), we conclude that every involution in H0 has trace −8 on V . Therefore
T is not 2-elusive when H0 = S. Now assume H0 = U4(2).2. Here we determine that H0

has a unique compatible feasible character and by calculating traces we conclude once again
that T is not 2-elusive.

For S = 3D4(2) we first note that Aut(S) = S.3 and so every involution in H0 is contained
in S. Now S has two classes of involutions, and by inspecting the compatible feasible
characters in [54, Tables 6.343, 6.344], we deduce that every involution in H0 is of type D8.
Therefore, T is not 2-elusive in this case.

Next suppose S = 2F4(2)′ with p = 3, noting that every involution in H0 is contained
in S. For H0 = Aut(S) = S.2 we use Magma to show that H0 has no compatible feasible
characters, so we must have H0 = S. By inspecting [54, Table 6.347] we deduce that every
compatible feasible character of H0 corresponds to an embedding with the property that
V ↓ H0 has composition factors 124a and 124b (note that the label (P) has been incorrectly
omitted in the first row of [54, Table 6.347]). Then both classes of involutions in H0 have
trace −8 on V and thus T is not 2-elusive.

Next assume S = L4(5) and p = 2. First observe that H0 has at most 3 classes of
involutions, unless H0 = S.22 or H0 = Aut(S) = S.D8. In particular, we may assume H0

contains J = S.2, which is the extension isomorphic to the unique subgroup of index 2 in
PGL4(5). In addition, S acts irreducibly on V (see [54, Table 6.329]), so the same must be
true for H0 and J = S.2. As discussed in Example 2.31, every 248-dimensional irreducible
K[J ]-module W can be constructed with Magma. In this way, we find that there is an
involution x ∈ J with dimCW (x) = 124. But since there is no such involution in T , it
follows that J does not embed into T . We conclude that T is not 2-elusive if S = L4(5) and
p = 2.

Finally, let us assume S = PSp4(5) and p = 2. Since S has only two classes of involutions,
we may assume H0 = Aut(S) = S.2, in which case H0 has four such classes, with represen-
tatives t1, t2, t3 and t4 such that |CH0(ti)| = 31200, 28800, 1440 and 960 for i = 1, 2, 3 and
4, respectively. We calculate that H0 has 6 absolutely irreducible modules of dimension at
most 248 in characteristic p = 2. In Table 11, we record dimCW (ti) for each such module
W and each involution ti.

Using Magma to compute the feasible characters of H0, we see that there are two possi-
bilities for the composition factors of V ↓ H0, namely

1042
a, 40 and 64, 402, 244, 18.

(As noted in Remark (iii) on p.316 of [59], if q = 2 then V ↓ H0 has composition factors
1042

a, 40.) If we write U1, . . . , Uk for the composition factors in each case, then we can read
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W dimCW (t1) dimCW (t2) dimCW (t3) dimCW (t4)

1 1 1 1 1

24 12 16 12 12
40 26 24 22 20

64 38 36 32 34

104a 65 60 55 54
104b 52 56 56 52

Table 11. The case T = E8(q), p = 2, soc(H) = PSp4(5)

off dimCUj (ti) from Table 11 and the trivial bound

dimCV (ti) 6
k∑
j=1

dimCUj (ti)

implies that dimCV (ti) 6 156 for all i. This means that H0 does not contain any A1-type
involutions (since dimCV (y) = 190 for each involution y in the class A1) and thus T is not
2-elusive. �

Finally, in order to complete the proof of Theorem 3, we may assume T = E8(q) and
H ∈ S is an almost simple subgroup with socle S ∈ Lie(p).

Proposition 9.8. Suppose T = E8(q), |Ω| is even, and H ∈ S with socle S ∈ Lie(p). Then
T is 2-elusive only if S = L2(q0) with p odd and 7 6 q0 6 2621.

Proof. As discussed in Remark 2.14(g), it remains an open problem to determine the max-
imal subgroups of this form (even up to isomorphism). However, there has been significant
progress towards this goal and at the time of writing, the possibilities for S are as follows:

(a) S = L2(q0) with 7 6 q0 6 (2, q − 1) · 1312; or

(b) S = Lε3(3), Lε3(4), U3(8), U4(2) or 2B2(8).

Let us also note that there is not a single known example of a maximal subgroup H ∈ S of
this form.

First assume S = L2(q0), where q0 = pe 6 (2, q − 1) · 1312. If p = 2 then q0 6 210 and
it is easy to check that H0 has at most three conjugacy classes of involutions, hence T is
not 2-elusive. Now assume p is odd, so we have 7 6 q0 6 2621 as in the statement of the
proposition (note that there is no maximal subgroup H ∈ S with socle L2(5) ∼= Alt5 by [20,
Theorem 2]). Of course, if H0 = S then H0 has a unique class of involutions and T is not
2-elusive. So we may assume H0 6= S has at least two classes of involutions (for example, we
could have H0 = PGL2(q0)) but we have not been able to rule out any of these possibilities.
One of the main obstacles here is the very large number of possibilities for the composition
factors of V ↓ H0, which typically leads to a situation where there exists a compatible feasible
character for which there are involutions x, y ∈ H0 with respective traces −8 and 24 on V .
So to resolve this situation, we would essentially have to rule out the existence of such a
maximal subgroup, which seems to be a very difficult problem. There is important ongoing
work of Craven [15] in this direction, but there is still a lot more to do.

To complete the proof, let us turn to the cases in (b). If S = Lε3(3) then T is 2-elusive
only if H0 = S.2, in which case both T and H0 have two classes of involutions. Similarly, if
p = 2 then we may assume H0 = L3(4).22, L3(4).D12 or U4(2).2.

Suppose H0 = L3(3).2 and note that the 3-modular Brauer character table of H0 is
available in GAP [26]. By inspecting [16, Proposition 8.1(2)] we deduce that the set of
composition factors of V ↓ H0 is one of the following:

(305, 12, 78, 63, 112), (303, 123, 710, 67, 110), (304, 27, 12, 78, 64, 19)

noting that H0 has two irreducible modules over F̄3 of dimension 7, and also two of dimen-
sion 27. For each possibility, by inspecting the Brauer character table, we deduce that the
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involutions in S have trace −8 on V , so they are of type D8. However, if x ∈ H0 \ S is
an involution, then the trace of x on V is neither −8 nor 24, no matter which modules of
dimension 7 or 27 we choose. This means that H0 = S is the only possibility and so T is not
2-elusive in this case.

A very similar argument applies when H0 = U3(3).2. Here [16, Proposition 8.2(1)] implies
that the set of composition factors of V ↓ H0 is one of the following:

(304, 123, 78, 65, 16), (304, 27, 122, 76, 65, 15).

Then by inspecting the 3-modular Brauer character table of H0 we deduce that the invo-
lutions in S are of type D8, but the trace of an involution in H0 \ S is incompatible with
containment in T . So as above, this case can be discarded.

Finally, let us assume p = 2 and H0 = L3(4).22, L3(4).D12 or U4(2).2. Suppose H0 =
U4(2).2, in which case H0 has four conjugacy classes of involutions. The 2-modular Brauer
character table of H0 is available in GAP and by applying [16, Proposition 7.2] we deduce
that V ↓ H0 has composition factors

402, 144, 87, 68, 18.

Let x ∈ H0 be an involution. We can use Magma to compute dimCVi(x) for each composi-
tion factor Vi of V ↓ H0 and by summing these dimensions we deduce that dimCV (x) 6 158
for every involution x ∈ H0. So this implies that H0 does not contain any involutions in the
T -class A1 and thus T is not 2-elusive.

An entirely similar argument, applying [16, Proposition 8.1], shows that the same conclu-
sion holds when H0 = L3(4).22 or L3(4).D12 (in fact, we find that dimCV (x) 6 144 for every
involution in x ∈ H0, so there are no A1 or A2

1 involutions in H0). �

This completes the proof of Theorem 3.

10. The tables

In this final section we present Tables A, B and C from Theorem 3. Note that in Table
A with T = F4(q) and p = 2, we write “graphs” to indicate that H is maximal only if G
contains a graph (or graph-field) automorphism of T .
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T H0 Conditions
2F4(q)′ 31+2:D8, 13:6 q = 2, G = T.2

PGU3(q).2, SU3(q).2, (q + 1)2:GL2(3) q > 8

(q2 ±
√

2q3 + q ±
√

2q + 1):12 q > 8

3D4(q) (q4 − q2 + 1).4, (q2 ± q + 1)2.SL2(3) p = 2

PGLε3(q) p = 2, q > 4, q ≡ ε (mod 3)

F4(q) 3D4(q).3 p > 3

PGL2(q) p > 13
G2(q) p = 7

ASL3(3) q = p > 5
2F4(q0) q = q2

0 , q0 = 2a, a > 1 odd

(SLε3(q) ◦ SLε3(q)).e.2 p = 2, e = (3, q − ε)
Sp4(q2).2 p = 2, graphs
(q2 + εq + 1)2.(3× SL2(3)) p = 2, graphs, q > 4 if ε = −
(q4 − q2 + 1).12, (q2 + 1)2.(SL2(3):4) p = 2, graphs, q > 4

Eε6(q) Lε3(q3).3, G2(q), (3D4(q)× (q2 + εq + 1)/e).3

(q2 + εq + 1)3/e.(31+2.SL2(3))

PGL±3 (q).2 p > 5, q ≡ ε (mod 4)

33+3:SL3(3) q = p > 5, q ≡ ε (mod 3)

E7(q) P2, P5, P7 q ≡ 3 (mod 4)

(L2(q3)× 3D4(q)).3, L2(q7).7

L2(q)× PGL2(q), PGL±3 (q).2 p > 5
3D4(q).3 p > 3
L2(q) 2 classes; p > 17, 19

E8(q) SU5(q2).4, PGU5(q2).4, U3(q2)2.8, U3(q4).8
(q4 ± q3 + q2 ± q + 1)2.(5× SL2(5))

(q8 ± q7 ∓ q5 − q4 ∓ q3 ± q + 1).30

Ω+
8 (q2).(Sym3 × 2), 3D4(q2).6, (q2 + q + 1)4.2.(3×U4(2)) p = 2

(q4 − q2 + 1)2.(12 ◦GL2(3)), (q2 + 1)4.(4 ◦ 21+4).Alt6.2 p = 2
(q2 − q + 1)4.2.(3×U4(2)) p = 2, q > 4

F4(q) p = 3

SO5(q) p > 5
PGL2(q) 3 classes; p > 23, 29, 31

ASL3(5) p 6= 2, 5

Table A. The pairs (T,H0) in Theorem 3(i): H ∈ C, T is not 2-elusive

T H0 Conditions

G2(q)′ J2 q = 4

J1 q = 11

U3(3).2 q = p > 5
L2(13) q = p ≡ ±1,±3,±4 (mod 13), or

q = p2, p 6= 2 and p ≡ ±2,±5,±6 (mod 13)
L2(8) q = p ≡ ±1 (mod 9), or

q = p3, p 6= 2 and p ≡ ±2,±4 (mod 9)

2F4(q)′ Alt6.22 q = 2, G = T

F4(q) L4(3).22 q = 2
3D4(2).3 q = p > 3

Eε6(q) 2F4(2) q = p ≡ ε (mod 4), G = T
Ω7(3) (ε, q) = (−, 2), G = T.2

Fi22 (ε, q) = (−, 2)

Table B. The pairs (T,H0) in Theorem 3(ii): H ∈ S, T is 2-elusive
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H0 Conditions

Sym6, Alt6.2 ∼= PGL2(9), Alt6.22 p 6= 2, 5

PGL2(r) (r, p) = (7, 3), (11, 5), (13, 7)
L3(3).2 p = 13

Table C. The subgroups H0 in Theorem 3(iii): T = E8(q), H ∈ S
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