ON FIXED-POINT-FREE INVOLUTIONS IN ACTIONS OF FINITE
EXCEPTIONAL GROUPS OF LIE TYPE
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ABSTRACT. Let G be a nontrivial transitive permutation group on a finite set 2. By a
classical theorem of Jordan, G contains a derangement, which is an element with no fixed
points on Q. Given a prime divisor r of |Q], we say that G is r-elusive if it does not
contain a derangement of order r. In a paper from 2011, Burness, Giudici and Wilson
essentially reduce the classification of the r-elusive primitive groups to the case where G is
an almost simple group of Lie type. The classical groups with an r-elusive socle have been
determined by Burness and Giudici, and in this paper we consider the analogous problem
for the exceptional groups of Lie type, focussing on the special case » = 2. Our main
theorem describes all the almost simple primitive exceptional groups with a 2-elusive socle.
In other words, we determine the pairs (G, M), where G is an almost simple exceptional
group of Lie type with socle T and M is a core-free maximal subgroup that intersects every
conjugacy class of involutions in T'. Our results are conclusive, with the exception of a finite
list of undetermined cases for T' = Eg(q), which depend on the existence (or otherwise) of
certain almost simple maximal subgroups of G that have not yet been completely classified.
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1. INTRODUCTION

Let G < Sym(Q2) be a transitive permutation group on a finite set Q with || > 2. By
a classical result of Jordan from 1872, namely [36, Théoreme IJ, there exists an element
in G with no fixed points on 2. Such an element is called a derangement and there is an
extensive literature on derangements in permutation groups, demonstrating a wide range of
connections and applications to other areas of mathematics. For instance, we refer the reader
to Serre’s article [62], which highlights applications of Jordan’s theorem in number theory
and topology. Another striking example is given by a celebrated theorem of Fein, Kantor and
Schacher [25], which depends on the Classification of Finite Simple Groups. This theorem
states that G always contains a derangement of prime power order, and it turns out to have
important applications in algebraic number theory concerning the structure of Brauer groups
of global field extensions (see [25] for the details).
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However, examples show that G does not always contain a derangement of prime order,
and such groups are called elusive. Elusivity turns out to be a rather restrictive property.
For example, if G is primitive then a theorem of Giudici [28, Theorem 1.1] implies that G
is elusive if and only if G = M;; ! K acting with the product action on © = A¥, where
K < Symy, is transitive, £ > 1 and M;; < Sym(A) is primitive with |A| = 12. A complete
classification of the transitive elusive groups remains out of reach.

A local version of elusivity was introduced in [10], which is defined as follows: for a prime
divisor r of ||, we say that G is r-elusive if every element in G of order r has fixed points
on (). In particular, G is elusive if and only if it is r-elusive for every prime divisor r of
|2|. By [10, Theorem 2.1], the classification of the r-elusive primitive groups is to a large
extent reduced to the case where G is an almost simple group (this means that the socle of
G is a nonabelian simple group 7" and we have T' < G < Aut(7)). Moreover, the r-elusive
primitive groups with socle an alternating or sporadic group are classified in [10, Theorem
1.1].

So let us assume G is an almost simple primitive group of Lie type with socle T. A detailed
analysis of the case where T' is a classical group is presented in [8, 9] and the main results
provide a complete classification of the groups with an r-elusive socle. In this paper, we take
the first steps towards extending these results to the exceptional groups of Lie type, focussing
here on the special case r = 2. Indeed, our main result describes the primitive exceptional
groups with a 2-elusive socle. In more abstract terms, this is equivalent to determining the
pairs (G, M), where G is an almost simple exceptional group of Lie type with socle T', and M
is a core-free maximal subgroup of G that intersects every conjugacy class of involutions in
T'. Our results are complete, with the exception of a small (finite) number of undetermined
cases when T = FEs(q) and the point stabilizer is an almost simple group with socle L3(3)
or La(q’) for some odd prime power ¢’. This seemingly unavoidable ambiguity arises here
because it remains a difficult open problem to determine the existence (or otherwise) of
maximal subgroups of G of this form.

In order to state our main results, we need to introduce some notation. Suppose that G is
an almost simple group with socle T', which is a finite simple exceptional group of Lie type
over F,, where q = p/ for some prime p. Write T' = (G,)', where G is a simple algebraic
group of adjoint type over the algebraic closure of F, and o is an appropriate Steinberg
endomorphism of G.

Let M be the set of core-free maximal subgroups of G. We first define a subset C of M
as follows (in (IV), we write soc(H) for the socle of H, which we recall is defined to be the
product of the minimal normal subgroups of H).

Definition 1. A core-free maximal subgroup H € M is contained in C if and only if one of
the following holds:

(I) H = Ng(H,), where H is a maximal o-invariant positive-dimensional closed sub-

group of G;
(IT) H is of the same type as G (either a subfield subgroup or a twisted version of G);
(III) H is the normalizer of an exotic r-local subgroup for some prime r # p;
(IV) T = Es(q), p > 5 and soc(H) = Alts x Altg (the Borovik subgroup).

We then define S = M\ C, so that M is a disjoint union
M=CUS.

By combining earlier work due to Borovik [4] and Liebeck—Seitz [53], we know that every
subgroup in § is almost simple. At the time of writing, all the subgroups in C have been
determined, up to conjugacy, and the same is true for the maximal subgroups in S so long
as T # E7(q), Es(q). We refer the reader to Remark for a more detailed description of
the subgroups comprising the collections C and S.

We begin by stating a simplified version of our main result.
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Theorem 2. Let G < Sym(f2) be a finite almost simple primitive permutation group with
point stabilizer H and socle T, which is a simple exceptional group of Lie type in characteristic
p. If T is 2-elusive, then either

(i) (G, H) is known; or

(ii) T = Eg(q), H is almost simple with socle S and either (S,p) = (L3(3),13) or S =
Lo(r) for some odd prime power r.

A more detailed version of Theorem [2] is presented as Theorem [3] below, where we refer
to the subgroup collections C and S introduced above. Note that Tables [A] [B] and [C] can be
found at the end of the paper in Section In addition, the relevant groups with |Q| odd
are recorded in Theorem which is a special case of a theorem of Liebeck and Saxl [40]
on primitive groups of odd degree.

Theorem 3. Let G < Sym(R2) be a finite almost simple primitive permutation group with
point stabilizer H and socle T, which is a simple exceptional group of Lie type in characteristic
p. Set Hy= HNT and assume || is even.

(i) If H € C, then T is not 2-elusive if and only if (T, Hy) is in Table .
(ii) If T # Es(q) and H € S, then T is 2-elusive if and only if (T, Hy) is in Table[B,

(iii) If T = Eg(q) and H € S has socle S, then T is 2-elusive only if p is odd and either
S = La(p®) with 7 < p© < 2621, or if (Ho,p) is in Table @

Remark 4. We record a couple of comments on the statement of Theorem

(a) Typically, we find that T is often 2-elusive when H € C and so it is more efficient to
list the exceptions in Table [Al On the other hand, there are fewer groups where T
is 2-elusive and H € S. This explains the contrasting way we have chosen to state
parts (ii) and (iii) in Theorem (3| in comparison with part (i).

(b) In part (iii), we note that T' = Eg(q) has two conjugacy classes of involutions when p
is odd (see [30, Table 4.5.1] and Section [2.5). So if S = Ly (p®) with p odd, then T is
2-elusive only if Hy contains an involutory diagonal or field automorphism of S. It is
also worth noting that at the time of writing, there is not a single known example of
a maximal subgroup H € S with socle La(p®). Furthermore, it is conjectured that no
such example exists, see [61, p.560] and [19, Conjecture 3.3]. Similarly, it remains an
open problem to determine if there exists a maximal subgroup H of GG corresponding
to any of the cases (Hy,p) listed in Table

As a corollary, we obtain the following result by combining Theorem |3 with [9, Theorem
1.5.1] and the main results in [8] [10] for r = 2.

Corollary 5. Let G < Sym(Q2) be a finite almost simple primitive permutation group with
point stabilizer H and socle T. Assume |Q| is even. Then T is 2-elusive if and only if one
of the following holds:

(i) T is an alternating or sporadic group and either G is 2-elusive and (G, H) is recorded
in [10], or (G, H) is one of the cases in Table[l]

(ii) T is a classical group and the possibilities for (G, H) are determined in [8[9].

(iii) T is an exceptional group of Lie type and the possibilities for (G, H) are determined
in Theorem[3.

Remark 6. Let G < Sym(2) be an almost simple primitive group with socle T" and point
stabilizer H, where T is an alternating or sporadic group. The 2-elusive groups of this form
are determined in [10], but some additional work is required to find all of the examples where
T is 2-elusive. Indeed, if G is 2-elusive then so is T', but the converse is false, in general. For
example, if we consider the natural action of G = Symg on Q = {1,...,6}, then T" = Altg
is 2-elusive, but G is not. By inspecting the relevant proofs in [10], it is a straightforward
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G H Conditions
Sym,, Sym;, X Sym,, . H intransitive, n = 2 (mod 4), 1 < k < n/2 odd
Symg Symsg H primitive

PGL2(9) 328
Altg.22 2 x 5:4, 32:SD1¢

He.2 Spy(4).4, 52:4Sym,
J2.2 (A1t5 X Dlo).Q, 52:(4 X Sym3)
J3.2 L2(16).4

O’'N.2 33:2144 Dg.2

TABLE 1. The special cases arising in part (i) of Corollary

G Conditions

Ln(q) n even, mq odd, and either ¢ = 3 (mod 4) or (n)2 > (¢ —1)2

Un(q), n >3 n even, m =n/2 and (n)2 < (¢ + 1)2

PSp,(¢),n >4 ¢=3(mod 4) and m odd

PQY(q),n>8 q=3(mod 4) and either m > n/2 — 1, or m is odd and n = 0 (mod 4)
PQ7(q),n>8 ¢=7(mod 8),n =2 (mod 4) and m odd

Qn(g),n =7 q=3(mod4) and m = (n—1)/2

Er(q) q=3(mod 4) and m € {2,5,7}

TABLE 2. The special cases (G, m) arising in Corollary

exercise to determine the complete list of pairs (G, H) that arise in this way, and these are
the cases recorded in Table [l

By combining Theorem [3| with [9, Theorem 4.1.7], we obtain the following corollary on
maximal parabolic subgroups of simple groups of Lie type, which may be of independent
interest. For a classical group G, recall that each maximal parabolic subgroup is the stabilizer
of a totally singular m-dimensional subspace of the natural module V', which we denote by
P, (if G = Ly(q) is a linear group, then we view all subspaces of V as totally singular).
In addition, we adopt the standard P,, notation for the maximal parabolic subgroups of
exceptional groups (this agrees with the usual Bourbaki labelling of the simple roots for G,
as given in [33] 11.4]). Also note that in Table |2, we use the notation (a)2 to denote the
largest power of 2 dividing a.

Corollary 7. Let G be a simple group of Lie type and let H = P,, be a maximal para-
bolic subgroup of G. Then either H contains a representative of every conjugacy class of
involutions in G, or (G, m) is one of the cases recorded in Table .

Finally, by combining Corollary [5| with [10, Theorem 2.1}, we get the following result for
arbitrary primitive permutation groups.

Corollary 8. Let L < Sym(2) be a finite primitive permutation group with socle S and
assume Q| is even. Then S is 2-elusive if and only if the following hold:

(i) L < G1Symy acting with its product action on Q = AF for some k > 1, where
G < Sym(A) is an almost simple primitive group with socle T' and point stabilizer
H; and

(ii) T is 2-elusive on A, so (G, H) is one of the cases recorded in Corollary 3]

In future work, we will investigate the r-elusive actions of almost simple exceptional groups
of Lie type for all odd primes 7.

The structure of this paper is as follows. We begin in Section [2] by presenting a number
of preliminary results, which we will need in the proof of Theorem In particular, we
fix notation and we introduce our algebraic group setup, which we will use throughout the
paper. We also recall some of the main results on the conjugacy classes of maximal subgroups
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and involutions in the simple exceptional groups (both finite and algebraic), and we briefly
explain how we will apply computational methods, working with MAGMA [6]. The remainder
of the paper is dedicated to the proof of Theorem The cases where the point stabilizer
H is a parabolic or subfield subgroup are straightforward and they are treated in Sections
and [ respectively. The low rank groups are then handled in Section [f], which reduces the
proof of Theorem (3| to the groups with socle T' = Fy(q), Eg(q), E7(q) or Eg(q), and these
four cases are handled in Sections [6] - [0} respectively. Finally, the relevant tables referred to
in the statement of Theorem [3| are presented in Section

We conclude the introduction by briefly outlining some of the methods used in the proofs
of our main results. Let G be an almost simple exceptional group of Lie type with socle T’
and let H be a core-free maximal subgroup with || = [G : H] even. We will consider each
possibility for G and H in turn, with the aim of determining whether or not Hyp = HNT
intersects every T-class of involutions in 7" (in other words, our goal to determine whether
or not the action of 7" on Q = G/H is 2-elusive). In a handful of cases, we find that the
number of T-classes of involutions in 71" exceeds the number of Hy-classes of involutions in
Hy, which immediately implies that 7" is not 2-elusive. But in all other cases, we need to
study the fusion of Hy-classes in T in order to determine whether or not every T-class of
involutions has a representative in H.

Given an involution g € Hy, we can usually identify the T-class of g by computing the
dimension of the fixed point space Cy(g) of g on the adjoint module V = L(G) for the
ambient simple algebraic group G (see Section . In particular, if we have expressed g
explicitly as a product of root elements, then we can compute dim Cy (g) using MAGMA, as
discussed in Section For example, this is typically the approach we take when Hy is a
subgroup of maximal rank, such as the normalizer of a maximal torus in 7. In other cases,
we will often compute dim Cy (g) by appealing to information available in the literature on
the composition factors of the restriction V' | Hy. And in cases where this information is
not readily available, then a different argument is required, which may involve working with
an explicit construction of Hy and V' | Hy.

Recall that we partition the set of maximal subgroups of G into two parts, denoted C and
S. If H € C is of the form H = Ng(H,) for some o-invariant positive-dimensional closed
subgroup H of G, then we can often work with a description of the composition factors of
V | H, which is readily available in the literature (for example, the tables in [68, Chapter
12] provide a convenient source). Similarly, if H € S, then H is almost simple and the
possibilities for H have been determined up to conjugacy for T' # Er(q), Fs(q); in particular,
the structure of V' | Hy is known and as before we can use this to determine the fusion of
Hy-classes in T. However, it remains an open problem to determine the subgroups H € S
when T' = F;(q) or Eg(q), despite substantial progress in recent years. Here the possibilities
for the socle of H have been narrowed down to a fairly short list of candidates and to handle
these cases we typically take a computational approach, working with feasible characters as
in [55], which we discuss in Section In order to rule out the possibility of a 2-elusive
action of T'on G/ H, the goal is to compute all the feasible characters of Hy on V' and then
show that none of them are consistent with both

(a) the maximality of H as a subgroup of G; and
(b) Hp intersecting every T-class of involutions in 7.

If this approach is feasible, then we can use it to rule out the possibility of a 2-elusive action,
without determining whether or not such a maximal subgroup of G exists.

Acknowledgements. We thank an anonymous referee for their careful reading of an earlier
version of the paper and for sharing many useful comments and suggestions. We also thank
David Craven and Alastair Litterick for helpful discussions. MK was supported by NSFC
grant 12350410360.
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2. PRELIMINARIES

2.1. Notation. We begin by fixing some of the general notation we will use throughout the
paper. Further notation will be introduced as and when needed.

Let n be a positive integer and let A and B be groups. We denote a cyclic group of order
n by Z,, and often just by n, and we will use [n] to denote an unspecified solvable group
of order n. We write A:B for an unspecified split extension (semidirect product) of A and
B, where A is a normal subgroup. Similarly, A.B denotes an unspecified extension of A and
B (possibly nonsplit) and we use A o B to denote a central product of A and B. And for
positive integers a and b, we write (a,b) for the highest common factor of a and b.

We adopt the notation for finite simple groups from [39]; for example, we write L, (q) =
L (q) = PSL,(q) and U,(q) = L, (¢) = PSU,(q) for linear and unitary groups. In some
situations, it will also be convenient to adopt the Lie notation for classical groups, so we will
write A,—1(¢) and A _,(q) for L,(q) and U,(q), etc.

Our notation for matrices is also fairly standard. First we write I, for the identity matrix
of size n, and we use J,, for a unipotent Jordan block of size n. We denote a block-diagonal

matrix with diagonal components A, ..., A; by writing (A1, ..., A¢). For instance, (2, —I3)
is the 5 x 5 diagonal matrix diag(1,1, -1, —1,—1). For a positive integer k, we use J* to
denote the block-diagonal matrix (J,,...,J,), which is a unipotent matrix with k£ Jordan
blocks of size n. This extends naturally to the notation (J¥!, ..., J&t) for arbitrary unipotent
matrices and it will be convenient to adopt the shorthand (nl . ,nft) for such a matrix.

So for example, (23,12) denotes an 8 x 8 unipotent matrix with 3 Jordan blocks of size 2,
and 2 Jordan blocks of size 1.

2.2. Setup. Here we fix our basic setup, which we will adopt for the remainder of the paper.
Let G < Sym(Q2) be a finite almost simple primitive permutation group with point stabi-
lizer H and socle T'. Set Hy = H N'I"' and assume that T is an exceptional group of Lie type
over [y, where ¢ = p! for some prime p and positive integer f. We can write T' = (Gg)’ ,
where G is a simple algebraic group of adjoint type over the algebraic closure K = IE‘ and
G, is the subgroup of fixed points of an appropriate Steinberg endomorphism o of G If
Gl denotes the simply connected cover of G and we write o for the corresponding Steinberg
endomorphism of Gy, then T = (C_?SC)(7 /Z(Gse)o, unless T = 2Go(3), 2F4(2)" or Go(2)'.

We now give a more precise description of 7', following [65] and [30, Chapter 2], which we
also refer the reader to for more details.

Let @ be the root system of G and choose a base A = {a1,...,as} of simple roots in ®,
where we adopt the standard Bourbaki labelling (see [33] 11.4]). Let ®* be the corresponding
set of positive roots. We may assume that G is a Chevalley group as defined in [65], generated
by the set of root elements z,(t) with a € ® and ¢ € K, which are constructed via reduction
modulo p, as in [65, Chapter 3].

For o € @, we write U, = (x,(t) : t € K) for the root subgroup corresponding to . And
for each t € K* we define

wo(t) = 2a()2_o(—t Hxa(t), ha(t) = wa()wa (1), we = wa(1).
Then
T={(ho(t): a€® te K*)=(ho(t) : a€ A te K*)
is a maximal torus of G and W = Ng(T)/T is the Weyl group of G.

We have w2 = hq ( 1) and w_o = wy* for all & € ®. In addition, ha(st) = ha(s)ha(t)
and h_q(t) = ha(t™!) for all @ € ® and s,t € K*. Recall that dimT = |A] is called the
rank of G. )

For a € ®, we write s, € W for the image of the element w, € N&(T'), which we refer to
as the reﬂectlon corresponding to a. Note that W = (so : o € @) = (54 : v € A).

Let 0, : G — G be the Frobenius endomorphism of G corresponding to the field au-
tomorphism ¢t — t? of K, which maps x,(t) — z4(t?) for all t € K and o € ®. In the
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untwisted case, we have o0 = 0, and the group O” (G,) is generated by the set of root ele-
ments {z,(t) : a € ®, t € F,}. And we note that O” (G,) = T unless G, = G2(2), in which
case O (Gy) = Gy = T.2.

In the twisted case, the groups that arise are the Steinberg groups and the Suzuki—Ree
groups. For Steinberg groups, we have o = 70y, where 7 is a graph automorphism of G.
Here 7 corresponds to a permutation 7" of the root system ® with 7/(A) = A, and as in
Corollary (b) of [65, Theorem 29] we have

T(2a(t)) = T7(a)(€at),

where ¢, = £ for all @ € ®, and ¢, = + for all @« € £A. (The values of ¢, for o ¢ +£A
depend on the structure constants of the Chevalley basis used in the construction of G.)

In the case of exceptional groups, the Steinberg groups that arise are T = 3Dy(q) and
T = 2E¢(q). If T = 3Dy(q), then G is of type Dy and we take 7 to be a triality graph
automorphism corresponding to the following permutation 7’ of A = {ay, a9, ag, ay}:

Q1 = 3 = Qg — o, Qg = Qa.

For example, notice that 7' contains the elements xal(s)x%(sq)xw(sqg) and x4, (t) for all
s € Fys and t € Fy. Similarly, if T'= 2Fs(q) then G = Eg and we take 7 to be an involutory
graph automorphism defined by the following permutation of A:

Qa1 = Qg = 1, Q3 Q5 Q3, Qg g, Q4+ Q4.

Then T contains elements such as zq, (5)Tag(57), Tas(S)Tas(s?) and zq,(t), xq,(t) for all
s€Fp and t € Fy.

For the Suzuki-Ree groups we have o = v¢o,, where 9 : G — G is an exceptional isogeny;
in this case ¢ = pf with f odd, and either p = 2 and T € {?Bs(q),?Fy(q)'}, or p = 3
and T = 2G2(q)’ (note that if T = 2By(q) then we may assume g > 8 since 2By(2) = 5:4 is
solvable). Here 1 is defined via a certain involution o +— " on ® which swaps short and long
roots, and preserves angles between the simple roots, see Corollary (b) of [65, Theorem 29].
Then
Zov(eat) if ais long
Tov(eat?) if ais short,

w(xa(t» = {

where once again we have ¢, = &+ for all « € ®, and ¢, = + for all a € £A.
For more detailed information on the Steinberg groups and the Suzuki-Ree groups, we
refer the reader to [65, Chapter 11] and [30, Chapter 2].

Remark 2.1. As stated above, we adopt the standard Bourbaki labelling of the simple roots
A = {ay,...,a,} for G. But in certain places, we will also need a labelling for the complete
set of positive roots @1 (for instance, see Example and the proofs of Propositions
and Lemmas . It will be convenient to adopt the same ordering of the roots
as used by MAGMA [6] and we will do this consistently throughout the paper.

Let us briefly explain how the MAGMA ordering of roots is determined. First recall that the
height of a positive root o € ®* is the positive integer ht(a) = Y. ¢;, where a = Zle Cioy.
The positive roots are first ordered by height, so ht(a) < ht(5) implies < 5. And then
roots of equal height are ordered lexicographically as follows. For positive roots o, 3 € &,
we have a — 8 = Zle d;c; for some integers d; € Z. If ht(a) = ht(5), then we define o <
if and only if dj, > 0, where k is minimal such that dj # 0. This defines a total order on ®*
with the property that the simple roots asq, ..., ay are the first £ roots in this ordering. We
extend the notation for simple roots by writing «; for the i-th root in ®* with respect to
the ordering defined above.

2.3. Algebraic groups. Given the setup introduced in the previous section, we will often
work with algebraic groups and their representations in this paper. In doing so, we will
typically follow Jantzen’s notation from [35], some of which is briefly recalled below.
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Let H be a connected semisimple algebraic group of rank £ over K = F,. Often we will de-
note H by its type; for example, H = A4A; means that H is a connected semisimple group of
type A4A;. With respect to a fixed maximal torus and a complete set {a1,...,ap} of simple
roots for H, we denote the fundamental dominant weights by {1, ..., @}. Throughout the
paper, we will always adopt the standard Bourbaki labelling for the «; and w;, as described
in [33, 11.4]. The Lie algebra of H is denoted by £(H) and we refer to it as the adjoint
module for H.

By an H-module, we will always mean a rational module defined over K. For a dominant
weight A, we use V() to denote the Weyl module with highest weight A. Similarly, Lz (\)
is the irreducible H-module with highest weight A. When there is no confusion, we will also
use the notation V(\) and L()\). Similarly, if H = Aj, then we will write ceoy = ¢ for ¢ € Z,
so Vg(cw1) = Vg(c) and Lg(cwy) = Lg(c) for ¢ > 0.

For simply connected simple H of exceptional type, other than Fg, we define the minimal
module Vipin to be the Weyl module Vi (ww1), Vg (w4), Vi (w1), Vi (w7) for H = G, Fy, Eg, Ex,
respectively. Note that Vi, has dimension 7, 26, 27, 56 for H = G, Fy, Eg, E7, respectively.

Let Wy, Wa, ..., W, be H-modules. Then for an H-module V, we will use the notation
V =Wy /Wy/--- /W, to denote that V has the same composition factors as the direct sum
WieWy@--- @& W

2.4. Computational methods. Throughout this paper, we will often need to identify the
conjugacy class of a given involution g € G, and in some cases we will adopt a computational
approach to do this, working with MAcMA [6] (version V2.28-11). Typically, the relevant
element g will be written as a product of elements of the form h,(—1), w, and x4 (£1), with
respect to the notation in Section As we will explain in Section [2.5] we can determine
the G-class of g by computing the dimension of the fixed point space

Cv(g)={veV :gv=u}

with respect to the minimal module V' = V;;, or the adjoint module V' = £L(G), as defined
in Section 2.3

Let us explain how we can compute dim Cy (g) using MAGMA. As before, let Gy be the
simply connected cover of G, and define elements 2/, (t), h. (t), w), in Gy in the same way we
defined the analogous elements in G (see Section. There is an isogeny Gg. — G mapping
2!, (t) = 4(t), so for the relevant computations we can work with a suitable element ¢’ € Gi..
In the cases we are interested in, the element ¢’ is defined over the prime field F,, since it can
be written as a product of root elements of the form z/,(+1), so ¢’ € (Gs.)(p), which is the
group of F,-rational points of Gg.. Furthermore, as a K[(Gsc)(p)]-module, V is defined over
[, which means that V' = K ®p, Vo for some absolutely irreducible Fp[(Gse)(p)]-module Vp.

As a consequence, it suffices to determine the action of ¢’ on Vj and then read off
dim Cy; (¢’), since tensoring by K does not change the dimension of the fixed point space.

Example 2.2. For instance, the following MAGMA code verifies that in characteristic p = 2,
the involution g = Za,(1)za,(1) of G = Fy has a fixed point space of dimension 14 on
V' = Vinin, and dimension 28 on V = L(G):

GroupOfLieType("F4", GF(2) : Isogeny := "SC");
elt<G | <1,1>, <4,1>>;
HighestWeightRepresentation(G, [0,0,0,1]);
Matrix(r(g)); // action of g on V_min
Dimension(Kernel(A-1)); // output: 14

s := AdjointRepresentation(G);

B := Matrix(s(g)); // action of g on Lie(G)
Dimension(Kernel(B-1)); // output: 28

= Hm @
I

Note that since g is an involution, the dimension of Cy (g) uniquely determines the Jordan
normal form of g on V. For instance, in the above example we see that g has Jordan form
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(2'2,12) on Viuin and (2%4,1%) on £(G), and we will often denote this by writing £(G) | g =
(224,1%), for example. As explained in the next section, this allows us to conclude that g is
contained in the G-class of involutions labelled A;A;.

In the same way, we can calculate the action of g € G on any given Weyl module V =
Va(A). We will often be interested in performing such calculations when p = 2, in which
case the involutions are unipotent elements. There will also be some cases where we need to
do this when p is odd. In the latter setting, each involution is semisimple and it is helpful
to observe that we can work over the rational numbers Q in order to perform the relevant
computations. This is advantageous because the computations over Q allow us to deduce
results over K, which are independent of the choice of (odd) characteristic p.

Let us explain why we can work over Q for computations when p is odd. To see this,
first let Gg be a simply connected Chevalley group over Q of the same type as G, defined
using the same structure constants as Gg.. For each a € ® and t € Q, let 22(t) be the
corresponding root element in G@ and let Vo be the GQ—module with the same highest
weight as V. Let Gz be the subgroup of Gg generated by the set {z2(t) : a € ®, t € Z}.
From the Chevalley construction, Vg contains a Gz-invariant lattice Vz. Furthermore, there
exists a homomorphism

T GZ — GSC
defined by zQ(t) +— 2., (t) for all « € ® and t € Z.

Let pz : Gz — GL(Vz) be the representation (over Z) corresponding to Vz, and let
p: Gsc — GL(V) be the representation (over K) corresponding to V. From the construction
of Gy via reduction modulo p [65, Chapter 3], we can identify V = K ®z Vz and we have

p(m(z)) =ldg @ pz(z)
for all z € G.

Recall that the element ¢’ € Gy we are interested in can be expressed as a product of
root elements of the form z/ (£1), say

/ / /
g = 5051(01) e 'xﬂt(ct)
for some roots f; € ® and integers ¢; € {1,—1}. Now define

g =2 (e1) o5 (er)

and note that ¢’ = m(gg).
The following result now justifies our calculations over Q. In the statement, V is an
arbitrary Weyl module V().

Lemma 2.3. Assume that p > 2 and that gg acts as an involution on Vg. Then ¢’ = 7(gq)
acts as an involution on V' and we have dim Cy (g") = dim Cy,(gq)-

Proof. First observe that gg € Gz, so the lattice V7 is go-invariant. Since gg acts as an
involution, it is well known (see for example [23, Theorem 74.3] or [5, Appendix A]) that
there is a basis for 1z such that the corresponding matrix for gg is block-diagonal of the form
(Ig, —Ip, A°) for some non-negative integers a,b and ¢, where A is the 2 x 2 anti-diagonal
matrix antidiag(1,1).

Now p(¢’) = Idg ® pz(9qg), so the action of ¢’ on V is given by the reduction modulo p of
this matrix. Since the matrix A is similar to diag(1, —1) over any field of characteristic # 2,
in particular over K and over Q, it is clear that ¢’ also acts as an involution on V. Moreover,
we have dim Cy (g’) = dim Cy, (gg) as required. O

Example 2.4. Let G = E; with p > 2 and consider the following elements:

g1 = ha1<_1)7 g2 = WayWasWar, g3 = ha1(_1)wa2wa5wa7'
It is clear that each g; acts as an involution on the adjoint module V = £(G). By appealing
to Lemma [2.3] the following MAGMA code shows that dim Cy (g;) = 69, 79,63 for i = 1,2,3

respectively:
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G := GroupOfLieType("E7", RationalField() : Isogeny := "SC");
gl := TorusTerm(G,1,-1);

g2 := elt<G|2> * elt<G|5> * elt<G|7>;

g3 = glxg2;

r := AdjointRepresentation(G);

Al := Matrix(r(gl)); // action of gl on Lie(G)

A2 := Matrix(r(g2)); // action of g2 on Lie(G)

A3 := Matrix(r(g3)); // action of g3 on Lie(G)

Dimension(Kernel(A1-1)); // output: 69
Dimension(Kernel(A2-1)); // output: 79
Dimension(Kernel(A3-1)); // output: 63

As we will explain in the next section, this computation allows us to conclude that the invo-
lutions g1, g2 and g3 are contained in the G-classes of type A1 Dg, FgT1 and Ay, respectively.

2.5. Involutions. Recall that our main aim is to classify the almost simple primitive groups
with point stabilizer H and socle T, an exceptional group of Lie type, with the property that
T is 2-elusive. This is essentially equivalent to determining the pairs (T, Hy), where T is a
simple exceptional group of Lie type and Hy = H NT for some core-free maximal subgroup
H of a group with socle T such that Hj intersects every T-class of involutions in 7. So in
order to study this problem, we require detailed information on both the conjugacy classes
of involutions in simple exceptional groups, as well as the maximal subgroups of the almost
simple exceptional groups. In this section, we focus on the involution classes, and we will
turn to the maximal subgroups in Section

The study of involutions divides naturally into two cases, according to the parity of the
underlying characteristic p. Of course, if p = 2 then the involutions are unipotent elements
of G, while for p # 2 they are semisimple. There are some significant differences between
these two cases, so in the proofs of our main results, we will often treat the cases p = 2 and
p # 2 separately.

We first consider some of the small rank exceptional groups.

Lemma 2.5. If T = 2By(q) or 2Ga(q)’, then T has a unique conjugacy class of involutions.

Proof. The fact that 2Ba(q) and 2Gs(q) have a unique conjugacy class of involutions was
originally proved in [66, Proposition 7] and [70, p.63], respectively. This establishes the
lemma except for 2G(3)" = Ly(8), in which case the result is clear. O

Next we consider the Steinberg triality group. We refer the reader to Table [3| for further
information on the two classes of unipotent involutions when p = 2 (in the table, V' denotes
the natural 8-dimensional module for G = Dy).

Lemma 2.6. Suppose that T = 3Dy(q).

(i) If q is odd, then T has a unique conjugacy class of involutions.
(ii) If q is even, then T has two conjugacy classes of involutions, labelled Ay and A3.

Proof. As noted in [38, Lemma 2.3(i)], claim (i) follows from results in [29]. Alternatively,
one can argue directly as follows: In G = Dy = SOg(K)/(£Ig), each involution is conjugate
to the image of a diagonal matrix in SOg(K), and a calculation shows that there are 4
conjugacy classes of involutions in G, only one of which is invariant under a triality graph
automorphism of G. Finally, for part (ii) we refer to [63]. O

In each of the remaining cases, the ambient algebraic group G is simple of exceptional
type. We begin by discussing the conjugacy classes of involutions in G.

First assume p = 2. Here the conjugacy classes of involutions in G are recorded in Table
where we adopt the labelling of the classes from the tables in [48, Chapter 22]. The
information in Table [4is verified as follows. Firstly, the Jordan forms on Vi, and £(G) can
be read off from the tables in [42] (see Remark below). As a consequence, we observe
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Class Representative |Cr ()] Vi
A wa, (1) ¢2(¢° -1 (2°,1%)
A} w0 (DTas(Mras (1) ¢'%(? 1) (2%

TABLE 3. The involution classes in T = 3Dy(q) for p = 2

G  Class Representative Vimin 4z L(G) 1= Notes
G2 A Loy (1) (2371) (26’12)
A as(D) (22,1%) (25,12
F4 41 Ta, (1) (26’114) (2167120)
Al xa4(1) (2107 16) (216’ 120)
A1Ar 2oy (Dzay (1) (212,12)  (224)1%)  y-invariant
(A1)2  Tastas(DTagt2as(1) (210,16)  (221,110)  y-invariant
Es Ay Tagy (1) (26,115)  (222,134)  r-invariant
A2 ZTay (1)zag (1) (219,17)  (232,1'%)  r-invariant
A3 Zay (D)Zay (1)zag (1) (212,13)  (238,12?) T-invariant
E7 Al Ta, (1) (2127132) (2347165)
A oy (1) ey (1) (220,116)  (22,1%9)
(ADD 2oy (Dzag (D)Tar (1) (2°%) (253,1%7)
(AD® oy (Dzag(1)zar (1) (24,18)  (2%%,19)
At Tay (1)zas ()2as (1)Tar (1) (27%) (203,17)
Es A Zay (1) (258,1132)
A7 Toy (1)Tay (1) (292,164)
A? Tay (1)zay (1)Tag (1) (2110,128)
Azll ZTa; (1)Zay (1)Tag (1)Tag (1) (2120718)

TABLE 4. The involution classes in G of exceptional type, p = 2

that the G-class of a unipotent involution is uniquely determined by its Jordan form on Vi,
and £(G). We will often use this fact to determine the class of a given involution in G.

In most cases, the representatives listed in Table [4] are standard ones that can be found in
the literature. In any case, by computing the action of the given elements on Vi, and £(G)
(for example, with the aid of MAGMA, as described in Section , one can verify that the
representatives listed in Table [4] are correct by inspecting [42]. In the cases where G admits
a graph automorphism 7 (or an exceptional isogeny 1), we have also indicated in Table
whether or not the given class is invariant under 7 (or ¢). This information is clear from
the table, since the representatives listed are either fixed by 7 (or 1), or mapped to another

representative.

Remark 2.7. In Table 4] we use the labelling of unipotent classes from [48, Chapter 22]
and we note that this differs slightly from the labels used by Lawther in [42], which is our
main reference for Jordan block sizes. Specifically, to avoid any confusion, we note that for
p=2and G = Fy, the class (A%)(") is denoted by (341)” in [42], and the class (43)? is
denoted by (34;)" in [42].

Now assume p > 2. Here the conjugacy classes of involutions in G are listed in Table
following 30}, Table 4.3.1]. In each case, the class of an involution z is labelled by the structure
of the connected component Cg(z)°, which for exceptional G is uniquely determined by the
dimension of the centralizer. Since each involution is semisimple, we have

dim Cg(z) = dim Cp gy (2)

by [3, 9.1], so we can determine the G-class of = by calculating its action on the adjoint
module £(G). A similar observation is made in [51, Proposition 1.2]. As we did for the case
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G Class Representative dimCy, ;, (®) dimCpg)(x) Notes
Ga A1A1 hay(—1)hay(-1) 3 6 1-invariant if p = 3
Fy  A1Cs  ha,y(—1) 14 24
B By (—1) 10 36
E¢ A1As  hay(—1) 15 38 T-invariant
DsTy hay(—1)hag(—1) 11 46 T-invariant
Er A1Dg  hay (1) 32 or 24 69
EeTT  WapWasWasq 0 79
Az hay (=) waywaswar 0 63
Es A1Er  ha,(—1) 136
Dg hay (—1)hay(—1) 120

TABLE 5. The involution classes in G of exceptional type, p # 2

p = 2, we also list explicit representatives for each class of involutions in Table [5] and we
indicate the classes that are invariant under the relevant maps 7 and .

Remark 2.8. Recall that our simple algebraic group G is of adjoint type, which means that
Vinin is not necessarily a G-module when G is of type Eg or E7. However, in these cases we
can lift each involution g € G to an element ¢’ € Gy, of order 2 or 4 in the simply connected
cover of G, and the action on Vi, presented in Tables 4| and |5| corresponds to the action of
g'. More precisely, ¢’ can be chosen to be an involution, except for elements in the classes
labelled EgT} and A7 in G = E7 with p # 2. In these two cases, ¢’ has order 4 and

(') = 2 = hy (=D, (= 1)hi,, (1)

generates the center of Gyc. (Here h/,(t) is defined in the same way as hq(t) for G.)
In addition, we note that if G = E7 and p # 2, then there are two possible choices for
the lift ¢’, namely ¢’ and g'z. Since z acts as —I56 on Viin, the value of dim Cy;; (¢') may

depend on the choice of lift ¢’. This issue occurs only for involutions of type A1 Dg in G = E7,
as indicated in Table [5l

~ We can now use the following lemma to describe the conjugacy classes of involutions in
G, in terms of the classes in G. Note that the lemma also includes the cases T' = 2Bs(q)
and T = 3Dy(q).

Lemma 2.9. Assume that T # G2(2), and let g € G be an involution. Then the following
statements hold:

i) ¢ 1s nonempty if and only 1 7 s o-invariant.
i) ¢“NT ty d only if g¢ t
ii s untwiste en g= N'T is nonempty.
ii) If T is untwisted, then ¢ N'T i pty
(iii) If g% N'T is nonempty, then ¢ N'T consists of a single T-class.

Proof. First assume T' € {2G2(3)',2F4(2)'}. For T = 2Fy(2) it is easy to check that T has
two conjugacy classes of involutions, which belong to the G-classes labelled A;A; and (Al)g.
So the result holds in this case (see Table . And for T = 2G5(3)’, the result is clear since
T has a unique conjugacy class of involutions (Lemma .

In the remaining cases T' = (Gse)o/Z(Gsc)o, where Gy is the simply connected cover of G.
Claim (i) follows from [64) I, 2.7(a)]. Claim (ii) is true more generally, but for the purposes
of this proof it is sufficient to observe that each class representative given in Tables [4] and
can be written as a product of root elements of the form z,(£1). Then part (ii) follows
since any such root element is fixed by a Frobenius endomorphism.

For (iii) in the case p = 2, we refer to the tables in [48, Chapter 22] when G is of
exceptional type; alternatively, see [2]. For p = 2 and T € {2B2(q),3D4(q)}, the claim
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follows from Lemmas and And for p > 2, we refer to [30, Table 4.5.1], noting that
2T = 2% for each involution x € T (see [30, Theorem 4.2.2(j)]). O

To summarize the results in the case where G is of exceptional type and T # G2(2)’,
Lemma implies that the conjugacy classes of involutions in T are as described in Table
(for p = 2) and Table [5| (for p # 2). Therefore, we can determine the T-class of each
involution in 7" just by computing the dimension of its fixed point space on Vi, or L(G).
Note that one only needs to do this computation for both modules when (G,p) = (Fy,2).
Finally, for the record we note that G3(2)" = Us(3) has a unique class of involutions.

Remark 2.10. For the most part, there is no distinction between classes of involutions in
the socle T = (G,) and the almost simple group G = Inndiag(T) = G,. Clearly, if the
index [G T] is odd, then every involution in G is contained in T. And for T exceptional,
[G : T is even if and only if T = G5(2)', 2F4(2)', or Ey(q) with ¢ odd.

(a) If T = G2(2)' then G has two classes of involutions, only one of which is contained
in T. More precisely, the involutions in 7" are those of type A; (long root elements),
while the class in G \ T consists of involutions of type A; (short root elements).

(b) If T = 2F,(2)/, then every involution in G = 2F,(2) is contained in 7.

(c) Now suppose T = E;(q) and ¢ is odd. Here there are three G-classes of involutions,
with corresponding centralizers A Dg, EgT1.2 and A7.2, and according to [30, Table
4.5.1] there are three classes in T" and five in G. More precisely, there is a single G-
class of involutions of type Ay Dg, which is contained in T'. Each of the two remaining
G-classes correspond to two G-classes, only one of which is contained in T (the
splitting of 2€ into two G-classes corresponds to the fact that [Cy(z) : Ca(2)°] = 2).
For example, if ¢ = ¢ (mod 4), then the involutions z € G with |Ca(z)| = 2[SL5(q)|
are contained in 7', while those with |Cx(z)| = 2|SLg“(q)| are in G\T.

Remark 2.11. Let € T be an involution and set A = Aut(7"). By considering the above
description of the conjugacy classes of involutions in 7', it is not difficult to show that either

(a) 24 =27, or
(b) T = Fu(q), p = 2 and z is in one of the T-classes labelled A; or Aj in Table {4] in
which case 24 = yT U 27 with y € A; and z € A;.

To conclude our discussion of involutions, let us consider the cases where 1" has a unique
class of involutions. As explained above, this property holds if and only if 7" is one of the
following:

*Ba(q), *Ga(q)’, *Da(q) (g 0dd), Ga2(q) (¢ odd).

Lemma 2.12. Suppose that T has a unique conjugacy class of involutions. Then T is
2-elusive if and only if |Q| is even.

Proof. This follows immediately from [54, Lemma 2.1], which implies that |[H N T| is even
for every maximal subgroup H of G. O

Remark 2.13. We refer the reader to Theorem below for a complete description of the
relevant groups with || odd.

Now suppose that T" has two or more conjugacy classes of involutions. Clearly, if there
are more conjugacy classes of involutions in 7" than in Hp, then T is not 2-elusive. With this
simple observation in mind, we record the following elementary result, which will be useful
later.

Lemma 2.14. Let L be a finite group with a normal subgroup A of odd order. Then L and
L/A have the same number of conjugacy classes of involutions.
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Proof. Let t1A, ...t A be representatives for the conjugacy classes of involutions in L/A.
Since A has odd order, we can assume that each t; is an involution in L. To prove the lemma,
it will suffice to show that each involution in L is conjugate to a unique ¢;. To this end, let
x € L be an involution. Then z A is conjugate to ¢; A for a unique i, so x is conjugate to t;a
for some a € A. Set J = (A,t;) = A:(t;) = A:(t;a). Then (t;) and (t;a) are J-conjugate by
Sylow’s theorem and the result follows. O

As a special case of Lemma note that if L/A has a unique conjugacy class of invo-
lutions, then L also has a unique class of involutions.

Remark 2.15. In the proof of Theorem we will also need some information on the
conjugacy classes of involutions in the finite classical groups. So let L be an almost simple
classical group over F, with socle S and let L = Inndiag(S) be the subgroup of Aut(S)
generated by the inner and diagonal automorphisms of S.

(a) If ¢ is odd, then detailed information on the conjugacy classes of involutions in L
and S is presented in [30, Table 4.5.1].

(b) In even characteristic, Aschbacher and Seitz [2] provide an in-depth analysis of the
involution classes in all groups of Lie type, see also [48, Chapters 6 and 7]. For
classical groups, each involution z € L is contained in S (unless L = Sp,(2) = S.2)
and we observe that z has Jordan form (2¥,17"2%) on the natural module V for S,
where n =dimV and 1 < k < n/2.

For linear and unitary groups, the S-class and L-class of z coincide, and it is
uniquely determined by k. Similarly, if S is a symplectic group, then there is a
unique such class for k odd, denoted by, in [2], whereas there are two classes for each
even k, labelled ay and ¢ (the a-type involutions have the property that (v, v") =0
for all v € V, where  is the defining symplectic form on V).

If S = Q%(q) is an even-dimensional orthogonal group, then k is even and there
are two classes when k < n/2, denoted ay and ci. If & = n/2, then there is a unique
class ¢, /o when € = —, whereas there are three such classes when ¢ = +, denoted by
/2, al, /2 and ¢, /5 (here the first two S-classes are fused in the full isometry group

5.2 = O/ (q)). Note that in this case we have S < Sp,,(¢), and for all k even the
class ay, (respectively ¢i) corresponds to the class denoted by ay (respectively ci) in

Sp,(q)-

(c) If p =2 and S is a symplectic or orthogonal group, then an involution z € S acts
as a unipotent element on the natural module V of S. In terms of the distinguished
normal form used to describe the unipotent classes in [48], we note that V' | z admits
the following orthogonal decomposition according to the S-class of x as described in
part (b):

ag: V9ax=wQ)*F L w(2)k?,
bp: V=W (Q)"*F Lwe)kE1/2 L v(©2),
e V9ix=wW(Q)*k Lw2)k-2/2 | v(2)2

For further details, and a description of the summands arising here, we refer the
reader to [48, Chapters 6 and 7] (and Theorem 7.3 in particular).

2.6. Subgroup structure. The purpose of this section is recall some of the main results
from the literature on maximal subgroups of almost simple exceptional groups of Lie type.

As before, let G be an almost simple exceptional group of Lie type over F, with socle
T = (G,)', where ¢ = pf and p is a prime. Let M = CU S be the set of core-free maximal
subgroups of G, where C is the collection of maximal subgroups H of the following types
(see Definition [I):
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H = Ng(H,) for some maximal o-invariant positive-dimensional closed subgroup H
of G,

H is of the same type as G (either a subfield subgroup or a twisted version of G);
H is the normalizer of an exotic r-local subgroup for some prime r # p;

T = Es(q), p > 5, and soc(H) = Alts x Altg (the Borovik subgroup).

Here the subgroups arising in (I) and (II) are described in [49]. The maximal subgroups
in case (IIT) were classified (up to conjugacy) in [13], and the subgroup in case (IV) was
first described by Borovik [4]. By combining results of Borovik [4] and Liebeck—Seitz [53], it
follows that the maximal subgroups in S are almost simple.

Remark 2.16. Through the work of many authors, spanning several decades, the maximal
subgroups of G have been determined (up to conjugacy) when 17" # E7(q), Es(q). For exam-
ple, Craven’s recent paper [I8] completely classifies the maximal subgroups for the groups
with socle T = Fy(q), E¢(q) or 2Eg(q). Since our main result (Theorem |3 is stated in terms
of the collections C and S, here we provide some more details on the subgroups arising in
each collection:

(a)

T = 2By(q) or 2Ga(q)’: The maximal subgroups were determined up to conjugacy
by Suzuki [66] and Kleidman [37], in the two respective cases. For T # 2G5(3)’, the
subgroups in M are conveniently recorded in [7, Tables 8.16 and 8.43] and we note
that S is empty. And if T' = 2G5(3)’ = Ly(8), then every core-free maximal subgroup
of GG is solvable and so once again S is empty.

T = 3Dy4(q): The subgroups in M were determined up to conjugacy by Kleidman
[38] and they are listed in [7, Table 8.51]. The collection S is empty for all g.

T = 2Fy(q)": First assume ¢ > 8. The subgroups in M were determined up to
conjugacy by Malle [58], modulo the omission of three classes of maximal subgroups
isomorphic to PGL2(13) when G = 2Fy(8) (see [I8, Remark 4.11]). Here the collection
S is empty unless G = 2Fy(8), in which case it comprises the aforementioned maximal
subgroups isomorphic to PGL2(13).

For ¢ = 2, the conjugacy classes of maximal subgroups of G were determined by
Wilson [71], noting the omission of a unique class of maximal subgroups SU3(2).2
of 2F4(2). We see that S contains five classes of subgroups when G = T, which are
isomorphic to L3(3).2 (two classes), Ag.22 (two classes) and Ly (25). And for G = T.2
we note that S comprises a unique class of subgroups isomorphic to L(25).2.

T = Gs(q): The maximal subgroups of G were determined up to conjugacy by
Cooperstein [15] (for p = 2) and Kleidman [37] (for p # 2), and they are conveniently
listed in [7, Table 8.30] (for p = 2 and ¢ > 4) and [7, Tables 8.41, 8.42] (for p # 2).
If p = 2, then the collection § is empty unless ¢ = 4, in which case it comprises
two classes of subgroups H with H N'T = Ly(13) or Jo. Note that if ¢ = 2 then
T = G3(2)" = U3(3) and G has a unique class of nonsolvable maximal subgroups
H with HNT = L3(2), which are contained in the collection C. Similarly, if p = 3
then § is empty unless ¢ = 3, in which case it contains a class of subgroups H with
HNT = Ly(13). Finally, if p > 5 then the subgroups in S can be read off from [7,
Table 8.41] (the relevant cases are labelled S; in the first column of [7, Table 8.41]).

T = Fu(q), Es(q) or 2Eg(q): The subgroups in M have been determined up to
conjugacy by Craven in [I8]. More specifically, the subgroups in S are recorded in
Tables 1, 2 and 3 of [18], while the subgroups comprising C are presented in [I8|
Tables 7 and 8] for T' = Fy(q) and [I8, Tables 9 and 10] for T' = Eg(q) and ?Es(q),
respectively.

T = E7(q): The subgroups in C are recorded up to conjugacy in [20, Table 4.1]. By
the main theorem of [20], the collection S comprises the subgroups in [20, Table 1.1],
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which are described up to conjugacy, together with the possible inclusion of some
additional subgroups with socle La(¢') for ¢’ € {7,8,9,13}.

(g) T = Eg(q): Here the collection C comprises 8 conjugacy classes of maximal parabolic
subgroups, together with the maximal rank subgroups of the form Ng(H,) recorded
in [47, Tables 5.1, 5.2]. In addition, C contains several classes of non-maximal rank
subgroups of the form Ng(H,), where the possibilities for soc(H,) are listed in [50]
Table 3], as well as subfield subgroups of type Fg(gp) and the exotic local subgroups
appearing in [I3], Table 1]. And for p > 5, the collection C also contains the Borovik
subgroup H with soc(H) = Alts x Altg. In particular, all the subgroups in C have
been determined up to conjugacy.

At the time of writing, it remains an open problem to determine the subgroups in
S, even up to isomorphism. However, by combining earlier results of several authors
17, 2], 51, 52 5] with Craven’s ongoing work [16], we know that if S denotes the
socle of a subgroup in S, then one of the following holds (here Lie(p) denotes the set

of finite simple groups of Lie type in characteristic p):
— S € Lie(p) and either S = La(qp) with 7 < ¢o < (2,¢— 1) - 1312, or
S € {L§(3)7 L§(4)7 U3(8)7 U4(2)7 2B2(8)}

— S ¢ Lie(p) and either
xS = Altg (p #5), Alty (p# 2), M1 (p=3,11), J3 (p =2) or Th (p = 3);
x S = La(¢") with ¢’ € {7,8,11,13,16, 17,19, 25,29, 31, 32,41, 49,61}; or
+ S = L3(3), L(5), La(5), Us(3), Us(2), PSpy(5), *Ba(8), *B2(32), *D4(2)

or 2Fy(2)".
It is worth noting that the collection § is known to be nonempty for certain values

of q. For example, if G = Eg(2) then the main theorem of [60] shows that S contains
unique conjugacy classes of subgroups isomorphic to L3(5).2 and PGSp,(5).

Next we look more closely at the subgroups of type (I) in the definition of the collection
C. Here H = Ng(H,) for some o-stable positive-dimensional closed subgroup H of G and
the possibilities for H can be divided into the following cases (recall that a closed subgroup
H of G has maximal rank if H° contains a maximal torus of G):

(a) H is a parabolic subgroup;

(b) H° is a maximal torus;

(c) H is reductive of maximal rank and H° is not a torus;
(d) H is reductive, not of maximal rank.

In general, the structure of the finite group H, depends on the choice of G-conjugate of
H. Let us explain this in more general terms.

Let X be a group that o acts on. We denote by H'(o, X) the equivalence classes of X
under the relation ~ defined by = ~ vy if and only if = o(g) 'yg for some g € X. The
following result is [64], 2.7].

Lemma 2.17. Let X be a o-invariant closed subgroup of G, and let X be the set of o-
invariant G-conjugates of X. Denote by X /G, the set of G,-classes in X. Then there is a
bijection

X /Gy — H'(0,Na(X)/Na(X)°),
which maps the class [X9] to the image of o(g)g~' in H' (0, No(X)/Ng(X)°).

In particular, if Ng(X) is connected, then Lemma implies that all of the o-invariant
G-conjugates of X are conjugate in G. In the context of maximal subgroups, one special
case where this applies is when H is a parabolic subgroup, in which case NG(H ) = H is
connected.
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For each maximal subgroup H = Ng(H,) as in case (I), we have H = Nz (H) by the max-
imality of H. Therefore, Lemma implies that the G,-classes of o-invariant conjugates
of H are in bijection with the set H'(c, H/H®). More precisely, a o-invariant conjugate
HY with g € G corresponds to the image of the element w = o(g)g~! in H'(o, H/H®).

Furthermore,
g

(), = (Huo)* and (Go)' = ((Guo)')". (1)
where wo denotes the Steinberg endomorphism x +— o(z)® of G. In particular, if we are
interested in studying the 2-elusivity of T', then it will be sufficient to consider involutions in
the group f{vo = Né(ﬁwg) N (C_}wg)/. We formalize this observation in the following lemma.
Lemma 2.18. Let H be a mazimal o-invariant positive-dimensional closed subgroup of G
and let H9 be a o-invariant conjugate of H, corresponding to the image of w = o(g)g~" in
H'(o, H/H®). Assume H = Ng((ﬁg)a) is a maximal subgroup of G and set

ﬁO = NG(HwU) N (Gwcr),-
Then the following statements hold:
(i) We have (E))g = Hp.

(ii) Assume that T # Go(2)'. Then T is 2-elusive on Q@ = G/H if and only if Hy meets
every o-invariant conjugacy class of involutions in G.

Proof. The first claim follows from equation (|1)) above. And in view of (i), the second claim
is an immediate consequence of Lemma, [2.9 O

Remark 2.19. Suppose G is of exceptional type and Gy # G2(2),2G2(3),2Fy(2). If G #
Eg, E7, then G is simply connected and

(Guwo)' = Guo and Hy = Ng, (Huo).

In the proof of Theorem [3| no issues arise when G = Fj since the index of (@wo)’ in Guo

is (3,¢ £ 1) and thus every involution in Gy, is contained in (Gy,)'. However, if G = E7

then we have [Guo : (Guwo)'] = (2,¢ — 1) and so there is a difference between the classes of
involutions in Gy, and (Guw,)" when ¢ is odd, as highlighted in Remark But here we
can verify that a given element x € N(;w(f[wg) is contained in (C_}wa)/ by checking that it
lifts to an element 2’ € (Gsc)w,g, where w' is a lift of w to Gg.. This is simply a consequence
of the fact that
(GSC)wlO. /Z(Gsc)w’o = (Gwo)/ )

where the isomorphism is induced by an isogeny Gs. — G. In proofs, we will often verify
T € (ng)/ by identifying a specific lift =’ € (Gsc)w,o that centralizes both w’ and o. These
calculations can be done with MAGMA, and appear for example in the proof of Lemma [8.5

Example 2.20. To illustrate such a calculation with an example, consider G = E; with ¢
odd, and let H = EgT}.2. (This is discussed in Case 1.6 of the proof of Lemma which
also contains more details.) Here we can take H to be the normalizer of a Levi factor of type
EG:
H° =(T,Uy:a€®),
where T is a maximal torus of G and @’ is the root subsystem of ® with base {a,...,ag}.
Then H = H°:(w), where
W = Waoy Wag Wars Wary Wazy Wass Waey

corresponds to the longest element of the Weyl group of E7. Here «; denotes the i-th root
in the ordering of ® used in MAGMA (see Remark .

The following MAGMA code verifies that in the simply connected cover Gy, a lift w’ of w

centralizes w!, and h!,(—1) in Gy for all « € ®. (The fact that w’ centralizes ho(—1) is also
clear from the fact that v’ acts as a — —a on D.)
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G := GroupOfLieType("E7", RationalField() : Isogeny := "SC");

w = elt<G|1>*elt<G|2>*elt<G|5>*xelt<G|7>*elt<G|37>*elt<G|55>*elt<G|61>;
{w*elt<G|i> eq elt<G|i>*w : i in [1..63]}; // output: {true}
{w*TorusTerm(G,i,-1) eq TorusTerm(G,i,-1)*w : i in [1..63]}; // output: {true}

Moreover, as w’, and h’,(—1) are clearly fixed in Gg. by o for all a € ®, we can conclude
that

wouhoz(_l) € (GWU),
for all @ € ®. Define t = hq,(—1) and
R = Wy Weans WassWays € HC,

sot,h € HN(Gwe) and h corresponds to the longest element of the Weyl group of Eg. With
the following MAGMA code, we verify that ¢, w, and thw are involutions in G. Moreover,
we calculate that in the adjoint representation, these elements have respective fixed point
spaces of dimensions 69, 79 and 63:

G := GroupOfLieType("E7", RationalField() : Isogeny := "SC");

w = elt<G|1>*elt<G|2>*elt<G|5>*elt<G|7>*elt<G|37>*elt<G|55>*elt<G|61>;
h := elt<G|2>*elt<G|28>*elt<G|38>*elt<G|46>;

t := TorusTerm(G,2,-1);

r := AdjointRepresentation(G);

Al := Matrix(r(t));

A2 := Matrix(r(t*xh*w));

A3 := Matrix(r(w));

[Order(i) eq 2 : i in [A1,A2,A3]]; // output: [true,true,true]
[Dimension(Kernel(i-1)) : i in [A1,A2,A3]]; // output: [ 69, 79, 63 ]

We conclude then from Table [5] that ¢, thw, w are involutions of type A;Dg, E¢T1, Az,
respectively. Consequently H N (Gyy)" meets every G-class of involutions.

Typically, the set H'(o, H/H®) is very small (and often trivial) unless H° is a maximal
torus. So next we will look more closely at the normalizers of maximal tori in G, referring
the reader to [12), 3.3] for more details.

First recall that a mazimal torus of G4 is a subgroup of the form 7T,, where T is a o-
invariant maximal torus of G. In order to describe the G,-classes of o-invariant maximal
tori, let us first observe that o acts on the Weyl group W = Ng(T)/T, since T is o-invariant,
and we refer to H'(o, W) as the set of o-conjugacy classes of W. Note that if 0 = oy is
a Frobenius endomorphism, then o(w,) = wy for all @« € ®. So in the untwisted case,
H'(o,W) is just the set of conjugacy classes of W. In the general setting, we have the
following result, which is a special case of Lemma (see Propositions 3.3.1, 3.3.2 and
3.3.3 in [12]). Here 7 : N&(T) — W is the quotient map.

Lemma 2.21. Let g € G. Then the map TY = 7(o(g)g™") defines a bijection from the set
of Go-classes of o-invariant mazimal tori in G to the set H' (o, W).

Let w € W and write w = 7(n), where n = o(g)g~" € Ng(T) for some g € G. Then under
the bijection of Lemma the o-class of w corresponds to the G,-class of T,, := T9. And
as before (see (1)), we have

(Tw), = (Tno)* and Ng, (Tw) = (Ng(T)no)"

where no denotes the Steinberg endomorphism z + o(x)" of G. In particular, for compu-
tations involving Ng_(Ty), it will often be more convenient to work with the G-conjugate

N&(T) e instead.
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In order to describe the structure of the normalizer of T}, in G, we define the o-centralizer
of we W by
Cweolw)={zeW : o(z)  wz = w}.
Then the following result is [I12, Proposition 3.3.6].

Lemma 2.22. We have Ng_(T,)/ (Tw)(7 = Cwo(w) for allw e W.

In particular, as a consequence of Lemma we deduce that
NG(T)no—/Tno = CW,O’(w)7

with an isomorphism induced by the quotient map 7 : Nm(T) — W.
The following result, which is due to Tits [69], will also be useful.

Theorem 2.23. Let T be a mazximal torus and set Wo = (wq : o € ®). Then Ng(T) =
TWy. Furthermore, if p =2, then W = Wy and Ng(T') = T:Wy is a split extension.

Finally, we conclude this section by presenting Theorem [2.24] below, which describes all
the core-free maximal subgroups of odd index in an almost simple exceptional group of Lie
type. This is a special case of a more general result of Liebeck and Saxl [46] on primitive
permutation groups of odd degree.

In the second column of Table [6] we refer to the type of H, which gives an approximate
description of the structure of H (working with the Lie notation for classical groups). In
each case, the precise structure is readily available in the literature. For example, we refer
the reader to [47, Tables 5.1, 5.2] in the cases where H is a non-parabolic maximal rank
subgroup. Note that for T = FEg(q) we write P; and Py for representatives of the two T-
classes of maximal parabolic subgroups with Levi factors of type Ds(q). Also observe that in
the final column of Table[6] we write “graphs” to indicate that the given subgroup is maximal
only if G contains a graph (or graph-field) automorphism of 7', and similarly if we write “no
graphs”.

Theorem 2.24. Let G < Sym(Q) be a finite almost simple primitive permutation group
with point stabilizer H and socle T', which is a simple exceptional group of Lie type over F,.
Then || is odd if and only if one of the following holds:

(i) ¢ is even and H is a parabolic subgroup of G.
(ii) q is odd and H is a subfield subgroup over Fg,, where ¢ = qé“ and k is an odd prime.
(iii) ¢ is odd and (G, H) is one of the cases recorded in Table 6]

2.7. Feasible characters. As before, let G be an almost simple exceptional group of Lie
type with socle T = (G,)’ and write M = CUS for the set of core-free maximal subgroups of
G. Recall that the subgroups in M have been determined up to conjugacy, with the exception
of a finite number of open cases involving the collection S when T' = Er(q) or Es(q) (see
Remark . We conclude this preliminary section by explaining how the theory of feasible
characters can be used to study 2-elusivity in the presence of these undetermined cases. As
before, we write K for the algebraic closure of F,, where ¢ = p! with p a prime.

We begin with a general definition. Let H be a finite group and let V be a finite-
dimensional G-module. Following Litterick [55, Definition 3.2], we say that a K H-module
Vo with Brauer character x is a feasible decomposition of H on V if dim Vy = dim V' and
each character value x(z) for a p’-element x € H corresponds to the trace on V of some
semisimple element in G. Moreover, this correspondence should be compatible with the
associated power maps. In this situation, y is called a feasible character. Clearly, if H is
a finite subgroup of G, then the restriction V | H is a feasible decomposition of H on V.
However, it is not true that every feasible decomposition corresponds to a finite subgroup of
G.

In [55], Litterick considers the case where H is a finite simple group, which is not a group
of Lie type in characteristic p, and he develops a computational approach for finding the list
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T Type of H Conditions
Es(q)  A1(9)% Ds(a), Da(q)?

(qg—¢)® g = € (mod 4)
BEr(q)  A1()7, A1(9)De(q), A1(a)®Da(q)

(a—29) g = € (mod 4)
E¢(q) P, Ps no graphs

Ds(q) % (g —1) graphs

Da(q) x (¢ —1)*

(¢g—1)8 g =1 (mod 4)
2Es(q) D3 (q) x (¢+1), Da(q) x (¢+ 1)

(q+1)8 g = 3 (mod 4)

Fy(q) Bu(q), Da(q)

3Da(q)  G2(q9), A1(9)A1(¢?)
A5(q) % (¢* +eq+1) q = e (mod 4)
Ga(g)  Ai(g)?
A3(9) g = e (mod 4)
(q—e)? p=3,q¢>9, g =¢e(mod 4), graphs
G2(2), 23.L3(2) g =p =43 (mod 8)
2Ga(q)  Aila) q=27
23:7 q=3

TABLE 6. The groups with || odd in Theorem iii)

of feasible decompositions of H with respect to the minimal module Vi,;; and the adjoint
module £(G). This describes the possible embeddings of such a finite simple group H into
G, which in turn severely limits the possibilities for the socle of a maximal subgroup of G in
class S.

In this paper, we will use Litterick’'s MAGMA code in [56] to find feasible characters in
certain cases where H is almost simple, but not necessarily simple. Referring to the proof of
Theorem , this will help us to overcome some of the difficulties that arise when T' = E7(q)
or Fs(q), and the point stabilizer H is an almost simple maximal subgroup in the class S,
where a complete list of such subgroups is not currently known.

In order to develop these ideas further, we need to introduce some additional notation and
terminology.

Let H be a finite subgroup of G. Following Craven [19, Definition 3.2], we say that H is
strongly imprimitive if H < L < G for some subgroup L of G such that

(a) L is a positive-dimensional maximal closed subgroup of G; and
(b) L is both o-stable and Ny ¢+ ) (H)-stable, where Aut™(G) is the group generated

by the inner, graph and p-power field automorphisms of G (note that the latter are
automorphisms of G as an abstract group, but not as an algebraic group).

Now each automorphism of G, extends to an element of Aut*(G). Therefore, if H < G,
is strongly imprimitive with L as above, then Ny, )(H) is contained in Ny, )(Lo) (see
[19, p.12]). As a consequence, we obtain the following result.

Lemma 2.25. Let H be a subgroup of G such that HN'T is a strongly imprimitive subgroup
of G5. Then H is not contained in the collection S.

The next lemma, which follows from [I9, Proposition 4.5], is our main tool for showing
that a given subgroup of G is strongly imprimitive. Note that if G = E7 or Es, then the
adjoint module £(G) is irreducible unless (G, p) = (E7,2).

Lemma 2.26. Let H be a subgroup of G and assume that the G-module V. = L(G) is
irreducible. If H fizes a nonzero element of V', then H is strongly imprimitive.

In order to effectively apply Lemma [2.26] we need a condition which forces a K H-module
to have a nonzero fixed point. The following cohomological condition was introduced by
Litterick in [55, Chapter 6, p.70], where it is referred to as property (P).
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Definition 2.27. Let H be a finite group and let V4 be a finite-dimensional K H-module
with composition factors Wy, ..., W;. Let m > 0 be the number of trivial composition factors
and let W* be the dual of W;. Then we say that Vp (or the Brauer character of Vj) has
property (P) if and only if

(a) Yo', dim H'(H,W;) > m; and
(b) If S°t_, dim H'(H,W;) = m, then for some i € {1,...,t} we have H'(H,W;) = 0
and HY(H,W}) #0, or H*(H,W;) # 0 and H'(H,W}) = 0.
Then the key result here is the following.

Proposition 2.28. Let H be a subgroup of G and assume that V = L(G) is an irreducible
G-module. If the restriction of V- to H N'T does not have property (P), then H is not
contained in the collection S.

Proof. By [565, Proposition 3.6], if (P) does not hold, then H N7 has a 1-dimensional trivial
submodule on V. The result now follows from Lemmas [2.25] and 2.26] O

Remark 2.29. Let H be a subgroup of G and let 1|y be a feasible decomposition of H on
the adjoint module V = £(G). Then we can use MAGMA to check property (P) in Definition
To do this, first observe that each composition factor W; is defined over a finite field,
so we have W; = K QF,, W/ for some absolutely irreducible Fy, H-module W/, where ¢; is
some power of p. Then
H'(H,W;) = K @p, H'(H,W)

and thus dimyx H'(H,W;) = dimg, H L(H,W!). Cohomology groups over finite fields can be
computed with MAGMA and this allows us to compute dimy H'(H, W;) for all .

Example 2.30. For instance, the following MAGMA code first constructs all seven absolutely
irreducible modules W of H = PGL2(7) in characteristic p = 3. We then calculate that each
cohomology group H'(H, W) is trivial, with a single exception, which is 1-dimensional.

H := PGL(2,7);
M := AbsolutelyIrreducibleModules(H, GF(3));
[CohomologicalDimension(x,1) : x in M]; // output: [ O, O, O, O, O, 1, 0 ]

We are now in a position to summarize our approach for studying the 2-elusive problem
when T' = FE;(q) or Eg(q) and the point stabilizer H is contained in the collection S. Set
V = L(G) and assume that (G,p) # (E7,2), so V is an irreducible G-module. Suppose H is
an almost simple subgroup in S with Hy = H NT. We can proceed as follows:

(a) First we use Litterick’s MAGMA code [56] to determine all the feasible decompositions
Vo for the action of Hy on V.

(b) For each feasible decomposition in (a), we proceed as in Remark to determine
if Vp has property (P).

(c) Given a feasible decomposition Vj with property (P), we then study the composition
factors of Vp in order to compute dim Cy; (x) for each involution x € Hy. See Remark
237 below for more details.

(d) By examining Tables 4| and [5| we see that dim Cy (z) uniquely determines the T-class
of each involution x € Hy. So from (c), we can determine if there are any feasible
characters with property (P) such that Hy meets every T-class of involutions.

(e) If no such feasible characters are identified in (d), we can conclude that there is no
action of G with point stabilizer H € S such that H NT = Hy and T is 2-elusive.

Remark 2.31. In step (c) above, we need to compute dim Cy; (z) for each involution =z € Hy.
If p # 2, then x is semisimple and we can read off dim Cy;(z) from the Brauer character x
of V. Indeed, we have

dim Cy, () = %(dimVo +x(x)



22 TIMOTHY C. BURNESS AND MIKKO KORHONEN

for every involution x € Hy.

For p = 2, the calculation is more difficult and our approach will depend on the situation.
For example, if Vj is irreducible as a K Hp-module (and thus absolutely irreducible since
K is algebraically closed), then we can usually construct Vj in MAGMA via the function
AbsolutelyIrreducibleModules, which constructs all absolutely irreducible modules in a
given characteristic. In some cases, we find that |Hy| is large and constructing all absolutely
irreducible modules is not feasible, but in our situation it is important to note that dim Vj <
248. Indeed, this allows us to appeal to the work of Hiss and Malle [31], 32], where all the
absolutely irreducible modules of dimension at most 250 of all quasisimple finite groups are
determined. In particular, the possible composition factors of V | soc(Hy) are known and
can be constructed. Then by Frobenius-Nakayama reciprocity, the K Hy-module V| can in
turn be constructed as a simple quotient of an induced module Indg‘é( HO)(I/V)7 see Example
2.33

We note that in many cases, explicit generators for certain quasisimple groups with respect
to certain low-dimensional absolutely irreducible modules are available in the Web Atlas
[72]. In other cases, we can often obtain the relevant module as a composition factor of a
suitable permutation module corresponding to the action of Hy on the cosets of a maximal
subgroup, working with the MAGMA function PermutationModule to construct the relevant
permutation module. We illustrate this approach in Example

Example 2.32. To illustrate the approach outlined above, let us assume 7' = Eg(q) and
(Hp,p) = (PGL2(7),3), (PGL2(11),5) or (PGL2(13),7). We present the following informa-
tion in Tables [7] [§ and [9), which has been computed using MAGMA:

(a) The absolutely irreducible K Hy-modules W are listed according to their dimension
and they are indexed alphabetically. For example, if (Hp,p) = (PGL2(7),3) then
Hy has exactly three 6-dimensional absolutely irreducible modules, denoted by 6,,
6, and 6.. In the first row of each table, we record dim H'(Hgy, W).

(b) In each case, Hy has exactly two classes of involutions, with representatives denoted
t1 and tg, where Cp,(t1) = Dy(p—1) and Ch,(t2) = Dy(pt+1)- In the second and
third row of each table, we present the character values x(¢;) for each irreducible
K Hy-module in (a).

(¢c) The remaining rows in each table give the multiplicities of composition factors for
all the feasible characters of Hy on V = £(G) with property (P). In general, there
can be many feasible characters that do not have property (P). For example, if
(Ho,p) = (PGL2(7),3) then we calculate that there are 49 feasible characters of Hy
on V', but only 14 of them have property (P) and they are denoted 1-14 in Table

(d) In the final column of each table, we use the symbol () to denote the feasible
characters with property (P) and the additional condition that Hy intersects both
classes of involutions in 7T'. So for example, if p = 5 and there exists a subgroup H € S
with Hy = PGLg(11), then T is 2-elusive if and only if V' | H( has composition factors
14, 104, 104, 10., 11, and 11;, with respective multiplicities 12, 2, 2, 2, 14 and 2. But
it remains an open problem to determine whether or not such a maximal subgroup
actually exists.

Example 2.33. Here we present an example where generators for the relevant representation
are not available in the Web Atlas [72]. Suppose that G = Eg, and denote the adjoint module
by V = L(G). We consider the case where p = 2 and Hy has socle S = L4(5), noting that
the existence of an embedding L4(5) < Eg(4) is proved in [I3] Section 5]. Then [55, 6.329]
implies that V' | S is irreducible. It follows from the discussion in [32] that in characteristic
p = 2, there are two absolutely irreducible modules of dimension 248 for S, and both of these

are defined over Fs.
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la 1, 64 6, 60 70 Tp
dmH (H,,W)[ 0 0 0 0 0 1 0
xt)| 1 2 0 0 0 1 2
x(t2) | 1 1 1 2 2 2 2
1[5 9 5 3 3 10 14
2|6 8 5 3 3 9 15
3|6 10 7 3 3 9 13
4|7 9 7 1 5 8 14
5|7 9 7 5 1 8 14
6|7 10 0 7 7 8 13 (%)
707 12 2 7 7 8 11 (%)
813 1 5 3 3 18 6 (%)
914 0 5 3 3 17 7 (%)
1014 2 7 3 3 17 5 (%)
11|15 1 7 1 5 16 6 (%)
12115 1 7 5 1 16 6 (%)
1315 2 0 7 7 16 5
14|15 4 2 7 7 16 3
TABLE 7. Hy = PGLy(7), p=3

1o, 1, 10, 10, 10, 104 10, 11, 11y
dimHY(Ho,W) | 0 0 0 0 0 0 0 1 0
xt) | 1 4 0 0 0 0 0 1 4
x(t2)| 1 1 3 3 2 2 2 4 4
114 8 2 2 2 0 0 6 10
2|5 8 1 4 0 1 1 5 10
3|5 8 3 2 0 1 1 5 10
4112 0 2 2 2 0 0 14 2 (%
TABLE 8. Hy = PGLa(11),p=5
lo 1y 12, 12, 14, 14, 14, 144 14,
dimHY(Ho,W) | 0 0 1 0 0 0 0 0 0
xt)| 1 1 0 0 2 2 5 5 5
xt)| 1 6 5 2 0 0 0 0 0
11 1 7 3 1 1 1 3 3
212 2 4 0 2 2 2 4 4
3/3 1 8 3 0 1 3 2 2
413 3 8 4 0 0 5 1 1
5| 4 2 5 0 1 2 4 3 3
6| 4 2 5 0 3 0 4 3 3
714 4 5 1 1 1 6 2 2
8| 4 4 5 1 4 6 0 1 1 (%)

TABLE 9. Hy = PGLy(13), p=7

Now up to conjugacy, there is a unique maximal subgroup J < S of index 806. This
maximal subgroup arises from a parabolic subgroup of SL4(5) with structure 5%: SLo(5)%:4
(this is the stabilizer of a 2-dimensional subspace of the natural module). From the natural
coset action of S on S/J, we can construct the permutation module F2[S/J], and it turns
out that the two irreducible F3[S]-modules of dimensional 248 arise as composition factors
of Fo[S/J]. The following MAGMA code constructs these two composition factors.

0]
1]

PSL(4,5);
:= MaximalSubgroups(S) ;
L :=1[x:xin L | (#S div x order) eq 806];

=
]

// unique maximal subgroup of index 806, up to conjugacy
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J := L[1] subgroup;

// permutation module corresponding to the coset action on S/J
V := PermutationModule(S,J,GF(2));

C :

CompositionFactors(V);

// contains two non-isomorphic irreducible modules of dimension 248.
C := [x : x in C | Dimension(x) eq 248];

M1 := C[1];

M2 := C[2];

IsIsomorphic(M1,M2); // output: false

Continuing this example, we also need to consider the possibility that S < Hy < Aut(S).
In this case since W =V | S is irreducible, it follows from Frobenius-Nakayama reciprocity
that V | Hy arises as a simple quotient of the induced module Inng(W). Consider, for
example, the case where Hy = S.2 is the unique index 2 subgroup of PGL4(5). Here each
248-dimensional irreducible F3[S]-module W extends to Hyp and we find that Indg"0 (W) is
uniserial, with two composition factors of dimension 248. Hence, the extension of W to Hjy
is unique, up to isomorphism, and it can be constructed with the following MAGMA code
(continuing from the code above).

GO :
HO :

PGL(4,5);
sub<GO | S, GO.172>; // index 2 in PGL(4,5)

I1 := Induction(M1,HO0);

I2 := Induction(M2,HO0);
N1 := I1/Socle(Il);
N2 := I2/Socle(I2);

[IsIrreducible(x) : x in [N1,N2]]1; // output: [true,true]
[Dimension(x) : x in [N1,N2]]; // output: [248,248]
IsIsomorphic(N1,N2); // output: false

3. PARABOLIC SUBGROUPS

We are now ready to begin the proof of Theorem [3| and we start by handling the groups
where the point stabilizer H is a maximal parabolic subgroup. Here, and for the remainder
of the paper, we freely adopt all of the notation and terminology introduced in Section

Recall that every o-invariant parabolic subgroup of G is conjugate to a standard parabolic
Py, where the subset I C A = {a1,...,au} is o-stable (note that if T = (G,)’ is untwisted,
then every subset of A is o-stable). We have a Levi decomposition P; = U:Ly, with
unipotent radical

U= [] Ua

aed+\ZI
and Levi factor
Li=(T,U, : a € PNZI)
for some maximal torus T of G. Both U; and L; are o-invariant and we have
(Pr)o = (Ur)o:(L1)o-
Note that Ly is a reductive group with root system ® NZI. In addition, Ly = Z(L;)°L; and
the derived subgroup L} is semisimple (or trivial).

Recall that we use the standard Bourbaki labelling of the simple roots «;, as given in [33]
11.4]. For each simple root a,,, we will adopt the standard notation P, for the maximal
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parabolic subgroup Pa\{a,,} of G (and similarly for the corresponding subgroup of T = (G, )’
if the subset A\ {a,} is o-invariant).
The following easy observation will be useful in the proof of Proposition below.

Lemma 3.1. Let V be an n-dimensional vector space over F,, where n is odd and ¢ = 3
(mod 4). Then there is no element g € GL(V) such that g> = —1I,,.

Proof. If g*> = —1I,, for some g € GL(V), then by taking determinants we get det(g)? = —1.
But since det(g) € Fy, this implies that —1 is a square in [, which is incompatible with the
condition ¢ = 3 (mod 4). O

Proposition 3.2. If H is a parabolic subgroup, then either

(i) every involution in T has fized points; or

(ii) T = E+(q), ¢ = 3 (mod 4) and Hy = P, Ps or Ps.
Furthermore, if (ii) holds then every involution in Hy is of type AjDsg.

Proof. If ¢ is even, then |Q] is odd (see Theorem and thus every involution in 7' has
fixed points. For the remainder, we may assume ¢ is odd.

If T = 2G5(q)" or 3Dy(q) then T has a unique class of involutions (see Lemmas and
and the result follows from Lemma In the remaining cases, G is of exceptional
type and either T is untwisted or T = 2E4(q). Since Hy = H, N T contains T, N T, where
T is a o-stable maximal torus of G, by inspecting Table |5| we deduce that Hy meets every
T-class of involutions, with the possible exception of the groups with 7' = E7(q) (note that
in the latter case, we have [G, : T] = 2).

So let us assume T' = E7(q) and ¢ is odd, in which case Hy = P, for some m € {1,...,7}
and the involution classes in T" are listed in Table |5l Recall (see Remark that here
an involution x € G, is contained in T if and only if it lifts to a o-invariant element in the
simply connected cover Gg. of G. With this in mind, we first observe that ha,(—1) € Hp, so
by inspecting Table 5] we deduce that Hy contains an involution of type AjDg.

If m € {1,3,4,6}, then Hy also contains the elements we,, Wa; and we,, which in turn
implies that Hy contains representatives of the classes labelled EgT} and A7 in Table

So we may assume m € {2,5,7}. We first consider ¢ = 1 (mod 4), in which case A\? = —1
for some A € Fy. Then A7 = A, so it follows that Hy contains the involutions

& = ha, ()‘)hocs ()‘)how(/\)v Yy =ha (_1)ha2 ()‘)hocs ()‘)how ()‘)
A MAGMA computation (see Section shows that dim Cy(z) = 79 and dim Cy (y) = 63
with respect to the adjoint module V = £(G). So by inspecting Table [5| we conclude that x
and y are of type FgT1 and Ay, respectively, and this means that every involution in 7" has
fixed points.

Finally, let us assume T' = E7(q), ¢ = 3 (mod 4) and Hy = P, with m € {2,5,7}. Here
H = P; = Up:L;, where I = A\ {a,} and L' is semisimple of type Eg, A4As, Ag for
m = 2,5,7, respectively. To complete the proof of the proposition, we will show that Hy
does not contain involutions of type EgT; or A7. (We remark that the elements z and y
defined in the previous paragraph are not in Hy, since the property A? = —X implies that
v,y € G, \T.)

Seeking a contradiction, suppose that ¢ € Hy is an involution of type E¢T} or A7. Let Gy
be the simply connected cover of G. Now g¢ lifts to an element ¢’ € (G’Sc)g of order 4 such
that

(¢)2 = Bl (~1)H, (~1)Rl (<1)
generates the center of Gy, (see Remark [2.8)). Here (¢')? acts as a scalar on every irreducible
Gse-module, and on the 56-dimensional minimal module Vi, it acts as —Isg.

Let P be the parabolic subgroup of G. corresponding to Pj, with Levi factorization
P = U:L. Then ¢’ € P, and every 2-element of P, = U,:L, can be conjugated into L, so
we can assume that ¢’ is contained in the Levi factor L.
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The composition factors of Vipi, | L’ are given in [68, Table 13.4] and the submodule struc-
ture for Vinin 4 L is identical. It follows that Vi, | L has an odd-dimensional composition
factor (specifically, one of dimension 27,15,7 for L' = Eg, Ay As, Ag, respectively).

Since the highest weight of Vi, is p-restricted, we have Vipin = K®p, Vp for some absolutely
irreducible F,[(Gsc)o]-module V5. Moreover, by inspecting [68, Table 13.4], we see that the
highest weight of each composition factor of Vi, | L is also p-restricted, so the dimensions
of the composition factors of Vy | L, and Vi, | L are the same. In particular, Vi | L, has
a composition factor of odd dimension. But we have already noted that (¢')? acts as —Isg
on V, so by appealing to Lemma [3.1] we reach a contradiction. O

Remark 3.3. An alternative approach to the proof of Proposition [3.2]is as follows. Let H
be a parabolic subgroup, and let x = 150 be the corresponding permutation character for 7.
For p odd, we could use [45), Corollary 3.2] to show that x(z) > 0 for each involution z € T,
except when (ii) holds in Proposition However, evaluating the expression for x(z) in
[45, Corollary 3.2] for each involution x is a non-trivial calculation, so we prefer the more
direct approach we have adopted in the proof of Proposition

4. SUBFIELD SUBGROUPS AND TWISTED VERSIONS

In this short section, we prove Theorem (3| in the cases where H € C is of type (II) in
Definition [I| which means that H is either a subfield subgroup, or a twisted version of G.
We begin by handling the subfield subgroups.

Proposition 4.1. Suppose H is a subfield subgroup over Fq,, where q = qé’ and k is a
prime. Then either gk is odd, in which case || is odd, or T is 2-elusive. In particular, every
involution in T has fixed points.

Proof. We can assume that || is even. If T" has a unique conjugacy class of involutions, then
T is 2-elusive by Lemma So this takes care of the groups with T' = 2Bs(q) or 2Ga(q)’
(see Lemma , and also T = 3Dy4(q) with ¢ odd (Lemma .

In the remaining cases, by inspecting Tables and [5 we see that every conjugacy class
of involutions in T' has a representative that can be written as a product of root elements
of the form z,(%1). Since the scalars £1 are contained in the prime field I, it follows that
the subfield subgroup H intersects every conjugacy class of involutions in 7" and therefore T’
is 2-elusive. Il

Proposition 4.2. Suppose that H is of the same type as T, but a twisted version. Then T
is mot 2-elusive if and only if T = Fy(q), p=2 and Hy = ?Fy(qo) with ¢ = 3.

Proof. By arguing as in the proof of Proposition 4.1, we may assume T has at least two
classes of involutions. Therefore, ¢ = g3 and either (T, Hy) = (Fu(q),%Fu(qo)) with p = 2, or
(T, Ho) = (Es(q),*Es(q0))-

If T'= Fy(q) and p = 2, then neither of the two T-classes of root elements are )-invariant
(see Table , where v is an exceptional isogeny of the algebraic group G = Fj. Therefore,
Hoy = 2Fy(q0) = Cr(v) does not contain any involutions of type A; nor Aj.

Now assume T' = Fg(q) and Hy = 2Eg(q0) = Cr(7), where v = 0,47 is an involutory
graph-field automorphism of T'. As noted in the proof of Proposition each class of
involutions in 7" is stable under the field automorphism oy,. And by inspecting Tables @ and
we see that each class is also stable under 7, whence Hy meets every T-class of involutions
and thus T is 2-elusive. 0

5. THE LOW RANK GROUPS

In this section, our goal is to complete the proof of Theorem [3| for the low rank groups
with socle one of the following:

232(‘])? QGQ(Q)/> G2(Q)/7 2F4(q),? 3D4(Q)'
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Proposition 5.1. If T € {?By(q),%G2(q)", G2(q)'} and || is even, then T is 2-elusive unless
(T, Ho) = (G2(4),L2(13)).

Proof. It T € {2B3(q),2G2(q)'}, or if T = Ga(q)’ with ¢ = 2 or ¢ odd, then T has a unique
class of involutions and the result follows from Lemma So for the remainder we may
assume 1" = G(q) and ¢ > 4 is even, in which case T" has two classes of involutions corre-
sponding to long and short root elements, labelled A; and A; in Table |4l The possibilities
for H are conveniently listed in [7, Table 8.30] and we note that H is non-parabolic since |Q]
is even (see Theorem . In view of Proposition we may also assume that H is not a
subfield subgroup.

First assume that H € S, so ¢ = 4 and Hy = Ly(13) or Jo (see Remark 2.16(d)). If
Hp = Ly(13) then Hy has a unique class of involutions and thus 7" is not 2-elusive (for the
record, the involutions in Hy are of type Aj). On the other hand, if Hy = Jo then Hj has
two classes of involutions and one can check (with the aid of MAGMA [6], for example) that
they are not fused in T, so T is 2-elusive. For the remainder, we may assume H € C.

Suppose Hy = SL§(q).2 = Nr(H,), where H = A5.2 is a o-stable maximal rank subgroup
of G. If V denotes the 6-dimensional irreducible module Ls(cwq) for G, then V | H° =
W @ W*, where W is the natural module for H° = A,. If x € H° is an involution, then it
has Jordan form (2,1) on W, and hence (22,12) on V. On the other hand, if y € H is an
involutory graph automorphism of H°, then y interchanges W and W*, and therefore has
Jordan form (23) on V. It follows that x and y are not T-conjugate and thus 7T is 2-elusive.

Finally, if Hy = SL2(q) x SLa(g) then involutions of the form (z, 1) and (1,y) in Hy are not
T-conjugate (indeed, the two SLa(q) factors are generated by long and short root elements,
respectively). Therefore T is 2-elusive. U

Next we turn to the large Ree groups with socle T' = 2 F,(q)’. Here the maximal subgroups
of G were determined by Wilson [71] (for ¢ = 2, noting the omission of a maximal subgroup
SU3(2).2 of 2F4(2)) and Malle [58] (for ¢ > 8, noting the omission of 3 conjugacy classes
of maximal subgroups PGL2(13) in 2F}(8), as observed by Craven [I8, Remark 4.11]). For
q = 2, recall that S comprises the maximal subgroups with socle Altg, La(25) or L3(3) (see
Remark (c)) And for ¢ > 8, the collection S is empty unless G' = 2Fy(8), in which case
it comprises the three conjugacy classes of subgroups isomorphic to PGL2(13).

The special case ¢ = 2 can be handled using MAGMA.

Proposition 5.2. Suppose T' = 2F,(2) and || is even.

(i) If H € C, then T is 2-elusive unless Hy = 3'72:Dg or 13:6.
(i) If H € S, then T is 2-elusive if and only if Hy = Altg.22.

Proof. This is a straightforward MAGMA computation. To do this, we first use the function
AutomorphismGroupSimpleGroup to construct G as a permutation group of degree 1755. We
then use the command MaximalSubgroups to construct a representative of each conjugacy
class of core-free maximal subgroups H of G. We can then take a set of representatives for
the conjugacy classes of involutions € Hy = H N'I" and we can read off the corresponding
T-class by computing |Cr(z)|. In this way, it is easy to verify the result.

Finally, note that the maximality of H implies that G' = T.2 for Hy € {3'*2:Dg, 13:6} in
part (i), whereas G = T in (ii) with Hy = Altg.22. O

Proposition 5.3. Suppose T = 2Fy(q) and |Q| is even, where q > 8.
(i) If H € C, then T is 2-elusive unless Hy = PGU3(q).2, SU3(q).2, (¢ + 1)%:GL2(3) or
(> £ v/2¢° + g £ /2 + 1):12.
(ii) If H € S, then T is not 2-elusive.

Proof. First recall that T has two classes of involutions, say 27 and y7, labelled A;A; and
(A1) in Table 4 with |C7(z)| = ¢°|SL2(q)] and |Cr(y)| = ¢'°|*B2(q)|, as recorded in [48,
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Table 22.2.5]. In particular, y does not commute with any element in 7" of order 3. By
Theorem [2.24(i) and Proposition we may assume that H is neither a parabolic nor a
subfield subgroup of T'. We now inspect the remaining possibilities in turn.

First assume H € S, so G = 2Fy(8) and H = PGL3(13), as noted above. Here H has
two classes of involutions, say aff and b, with |Cy(a)| = 24 and |Cy(b)| = 28, and it
follows that a is in the T-class labelled A;A; since |Cr(y)| is indivisible by 3. In order
to determine the T-class of b, we can work with Craven’s construction H < G < GLgg(8)
in MAGMA, which is defined in terms of the action of G on the 26-dimensional minimal
module Vaog over Fg. Here explicit matrices generating H are given in the supplementary file
ConstructPGL213in2F48.txt to [I8]. We find that both a and b have Jordan form (2'2,12)
on Va6, so by inspecting Table |4 I we deduce that both involutions are in the G-class labelled
Ay A;. In particular, every involution in H is of type A; A; and thus T is not 2-elusive.

For the remainder, we may assume H € C, noting that the possibilities for H are recorded
in the main theorem of [5§].

First assume Hy = PGU3(q).2. Ift € Hy is an involutory graph automorphism of PGU3(q),
then |Cpqu,(q) (t)] = [SLa(q)| is divisible by 3, which places t in the class labelled A;A;. And
if t € PGU3(q ) is an involution, then [Cpguy g (t)| = ¢*(g + 1) does not divide [Cr(y)| =

q'°2B2(q)|, so once again t is an A Ay 1nvolut10n. It follows that T is not 2-elusive. The
case Hy = SU3(q).2 is entirely similar and the same conclusion holds.

Next assume Hy = 2Bs(q) 1 Symy and set By = 2By(q)?. In this paragraph, we remind
the reader that Cy denotes the simple algebraic group Spe,(K), rather than a cyclic group
of order ¢ (for the latter we use Z; (or just £), as stated in Section [2.1). If t € Hy \ By is
an involution, then Cp,(t) = 2Bs(q) and we deduce that t is in the class (A1)s. If we take
t = (t1,t2) € By, where both ¢; and ty are involutions, then we find that ¢t € Cy x Cy < Cy
embeds in Cy as a ¢-type involution in the notation of [2] (see Remark [2.15{(b) and the proof
of Lemma 4.17 in [I1]). Then by considering the embedding of Cy in G, we deduce that ¢ is
in the T-class labelled A3 A; and we conclude that T is 2-elusive. The case Hy = Spy(q):2 is
similar: co-type involutions in Sp,(q) < Hy are in the A1 A, class, while those of type ag are
n (Al)g.

To complete the proof, we may assume H is the normalizer of a maximal torus of GG. First
assume Hy = (q2 + \/ﬁ—i— q++/2q+1):12. Here Lemma implies that Hy has a unique
class of involutions and thus 7' is not 2-elusive. (In fact, by appealing to [11, Corollary 4.4],
we see that every involution in Hj is contained in the T-class labelled Alfil )

Next suppose Hy = N7 (S) = S:[96], where S = (¢ +¢ev/2¢+1)? and € = +, with ¢ > 32 if
e = —. By [11}, Corollary 4.4], there is an involution ¢; € Hy that inverts the maximal torus
S and this is in the T-class labelled Alfll. In addition, since

S < 2By(q)? <?By(¢)1Symy < T

we see that Hy also contains an involution ¢3 interchanging the two factors of S. This implies
that |Cp,(t2)] is divisible by ¢ 4+ £y/2q + 1, which places t5 in the T-class labelled (Aj)2. In
particular, T is 2-elusive.

Finally, let us assume Hy = Np(S) = S:GLy(3), where S = (¢ + 1)2. Let t € Hy be an
involution. If ¢ inverts S, then [I1, Corollary 4.4] implies that ¢ is contained in the T-class
Ay A, If not, then ¢ either inverts one of the factors of S (and centralizes the other), or it
interchanges the two factors. In both cases, it follows that |Cr,(t)| is divisible by ¢ + 1 and
this means that ¢ is of type A;A;. We conclude that every involution in Hy is of type A1 A4;
and thus T is not 2-elusive. O

To conclude our analysis of the low rank groups, we may assume T = 3Dy(q). Here the
maximal subgroups of G were determined by Kleidman [38] and we refer to [7, Table 8.51]
for a convenient list of the subgroups that arise.
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Proposition 5.4. Suppose T = 3Dy(q) and || is even. Then H € C and T is 2-elusive
unless q is even and either Hy = (¢*> £ q + 1)2.SLa(3) or (¢* — ¢*> + 1).4, or ¢ > 4 and
Hy = PGL5(q) with ¢ = € (mod 3).

Proof. First recall that T" has a unique class of involutions when ¢ is odd (see Lemma. So
in view of Lemma [2.12] we may assume that ¢ is even. Here T has two classes of involutions,
labelled A; and A3 in Table [3| with respective centralizer orders ¢'2(q% — 1) and ¢*°(¢* — 1).
Note that H € C since the collection S is empty (see Remark [2.16(b)). We proceed by
inspecting the cases arising in [7, Table 8.51]. Note that || is odd if H is a parabolic
subgroup (see Proposition , while Proposition applies if H is a subfield subgroup.

If Hy = PGL5(q), then Hyp has a unique class of involutions and thus T is not 2-elusive.
Similarly, if Hy is the normalizer of a maximal torus, then Hy = (¢? 4 ¢ + 1)2.SLs(3) or
(¢* — ¢*> +1).4, and Lemma implies that Hp has a unique class of involutions. So once
again, we conclude that T is not 2-elusive.

Next suppose Hy = G2(q) and note that Hy has two classes of involutions, labelled A; and
Aj in Table 4l We can embed the ambient algebraic group H = G5 in G by first embedding
it in a subgroup L = C3 of G (here H acts irreducibly on the natural module for L, while
L is embedded in G by restricting one of the two 8-dimensional spin modules for G). Under
the embedding H < L, we find that involutions in the A; class of Hy are of type ap when
viewed as elements of L (with respect to the notation of [2]), while those in the other class
are of type bs. And then by considering the embedding of L in G, we deduce that Hy meets
both T-classes of involutions and thus 7' is 2-elusive.

Next suppose Hg = La(¢®) x La(q). Clearly, if t = (1,s) € Hy is an involution, then
L2(¢%) < Og,(t) and thus t is in the T-class A;. We claim that if t = (s,1) € Hp is an
involution, then ¢ is in the other class of involutions and thus 7" is 2-elusive. To see this, it
will be helpful to view Hy in terms of the following embedding:

HO = {(.’E,l’w,xw2,y) S L2(q3)ay € L2(q)} < Ail = D% < D4 = Ga

where 1) is an order 3 field automorphism of La(¢®). Here we view Dy = A2, identifying the
natural 4-dimensional module for Dy with the tensor product of the natural modules for the
two A; factors. Then in terms of this embedding, t = (s,1) € Hy is of the form (Ja, Ja, Jo, I2)
and therefore has Jordan form

(J2® J2) ® (Jo ® Ip) = (Jy)

on the natural module for G. By inspecting Table [3| we deduce that ¢ is contained in the
T-class labelled A3, as claimed.

To complete the proof, we may assume Hy = J.2, where J = ((¢*> + eq + 1) 0 SL§(q)). f-
and f- = (3,¢> +eq+1). As noted in [38, Table I1], we have J = Cr(x) and Hy = Ny (J) =
Nr((z)) for a certain semisimple element = € T of order ¢ + eq + 1. Since the centralizer of
an involution of type A3 has order ¢'°(¢? — 1), which is not divisible by ¢* +eq+ 1, it follows
that every involution in J is of type Aj.

We claim that Hy also contains an involution of type A3, which means that T is 2-elusive.
To see this, we will work with a more precise description of the structure of Hy. First observe
that the representative for the conjugacy class of z used in [38] is y = s4 for e = + and y = sg
for e = —, where s4 and sg are defined as follows in [24, Table 2.1]:

$4 = hay (t)has (t) oy, (tqQ), where t # 1 and t°T9+! = 1

59 = hay ()has (™ ha, (1771, where ¢ # 1 and t9°~4+! = 1
with respect to the notation we defined in Section In both cases, Ca(y) = ToAs is a
subsystem subgroup that corresponds to a subsystem of ® with base {ag2, —ap} (denoted by
Js in [24, Table 1.0]), where g is the longest root of ®.

 Next let w € Ng(T') be an element with image —sa,+2as+as+as in the Weyl group W of
G. (Note that W contains a central involution and we have —Sq,12a5+as+a, = —Wit+2 i
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the notation of [24].) Since —Sa;+2as+as+0s = Sa;SaszSas, We can choose W = Wq, WasWay, -
Note that w acts on ® by mapping a1 — —ai, as — —ag and oy — —ay, so y € {s4,59} is
inverted by w. In addition, note that w? = h,(—1) = 1 for all a € ® (recall that p = 2) and
thus w is an involution.

It follows that the normalizer of C(y) is equal to H = Cg(y).2 = Ca(y):(w). Now
following [24, Table 2.1], we have H = Ng((H 9)0), where under the bijection of Lemma
the o-invariant subgroup HY corresponds to the image of n € G in H'(o, H/H®), with

{1, ife =+,
n —=

w, ife=—.

Thus by Lemma it will suffice to consider involutions in J/EIB = H,, N (Gm), = H,,.

Then w € Hy, since w = Wq, WayWa, is fixed by both o and n € {1, w}.

Finally, we will now verify that w is an involution of type A3, which will complete the
proof of the proposition. Let w’ be the involution corresponding to w in the simply connected
cover of G. As explained in Section we can use MAGMA to show that w’ has Jordan
form (J3) on the 8-dimensional natural module for G. Then by inspecting Table [3, we see
that w is in the T-class labelled A3 and hence T is 2-elusive. O

6. THE GROUPS WITH SOCLE Fy(q)

Next we handle the groups with socle 7' = Fy(q). The maximal subgroups of G have been
determined up to conjugacy by Craven [18], extending earlier work of Norton and Wilson
[59] for ¢ = 2. In particular, the subgroups comprising the collection C are listed in [I8],
Tables 7 and 8], while those in S are presented in [I8, Table 1]. Referring to Section [2.5] let
us recall that T" has exactly 2 + 2J2 ), classes of involutions.

Remark 6.1. Here we take the opportunity to point out that (g% + 1)2.(SLy(3):4) is the
correct structure of the torus normalizer expressed as (g% + 1)2.(4 o GLg(3)) in [I8, Table
8]; the source of this error is [47, Table 2]. Referring to the bijection in Lemma the
maximal torus (¢2+1)? corresponds to a certain conjugacy class of elements of order 4 in the
Weyl group W of G = Fy, with representative W(a2) given in [43, p.93]. A computation shows
that such an element has centralizer SLa(3):4 in W, which implies that the torus normalizer
has structure (¢ +1)2.(SL2(3):4) (see Lemma . In fact, one can check that W does not
have a subgroup isomorphic to 4 o GLy(3).

We begin by handling the subgroups in S.

Proposition 6.2. Suppose T = Fy(q) and || is even. If H € S, then T is 2-elusive if and
only if ¢ =2 and Hy = L4(3).22, orif g =p > 3 and Hy = 3D4(2).3.

Proof. The possibilities for Hy are listed in [18, Table 1] and we recall that 7" has 2(1 4 d2,)
classes of involutions (see Tables [4| and . Of course, if Hy contains a unique class of
involutions, then T is not 2-elusive. And similarly if ¢ is even and Hg has at most three
involution classes. So by inspecting [18], we quickly deduce that T" is 2-elusive only if one of
the following holds:

(a) Ho=L4(3).22, ¢ = 2;

(b) Ho="2D4(2).3, g =p > 3;

(c) Hy = PGLy(13) and either ¢ = 7, or ¢ = p # 13 and p = £1 (mod 7), or ¢ = p? is
odd and p = +2, 43 (mod 7).

Consider case (a). Here the notation indicates that Hp contains involutory graph auto-
morphisms of L4(3) with centralizer PGSp,(3) and we find that Hy has precisely 5 classes
of involutions, with representatives z1,...,z5. Let Vi = Ls(w;) and Vo = La(wy) be the
two 26-dimensional irreducible modules for G, and note that V; and V5 are interchanged by
a graph automorphism of G. As recorded in [55, Table 6.32], Hy acts irreducibly on V; and
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7 \xf]°| Jordan form on V;  Jordan form on Vs
1 117 (26,119) (219, 15)
2 117 (210,16) (26,114)
3 2106 (219,19) (210,19)
4 5265 (212,12) (212,12)
5 10530 (212,12) (212,12)

Va. Moreover, both modules for Hy can be constructed using MAGMA (see Remark
for example) and this allows us to compute the respective Jordan forms of each involution
in Hy. This is detailed in Table up to some choice of labelling of the involution class
representatives in Hy. By considering Table We immediately deduce that x1 € Ay, x5 € Ay
and x4,x5 € Alfll (up to a choice of labelling for x; and x2). In addition, since z3 has
the same Jordan form on V; and V5, it follows that z3 € (211)2, and we conclude that T is
2-elusive.

Next let us turn to case (b) above, so ¢ = p is odd. Here both Hy and 7" have two classes
of involutions, with every involution of Hy contained in soc(Hp) = 3Dy (2). Moreover, we
note that Hy acts irreducibly on the 52-dimensional adjoint module V = L(G) (see [55,
6.1.35, Table 6.36]). By inspecting the Brauer character table of Hy (see [34], pp.250-253]),
we observe that a 52-dimensional irreducible K[Hpl-module arises as the reduction modulo
p of a 52-dimensional representation in characteristic zero. Thus the dimension of the fixed
point spaces on V for each involution in Hy can be read off from the character table of Hy.
From this, it follows that the two Hg-classes are not fused in 7', and thus T is 2-elusive.

Finally, let us consider case (¢). As discussed in Section we can use the MAGMA code
from [56] to compute the feasible characters of Hy = PGLy(13) on V = L(G). For each
feasible character, we check that every involution in Hy has trace —4 on V, which implies
that every involution in Hy is of type A1C3. In particular, T is not 2-elusive. O

We now complete the proof of Theorem [3|for T = Fy(q) by handling the cases with H € C.
Recall that the possibilities for H are listed in [18, Tables 7 and 8| (see Remark [6.1]).

Proposition 6.3. Suppose T' = Fy(q) and || is even. If H € C then T is 2-elusive unless
one of the following holds:

(i) q is odd and Hy is one of the following:
°Da(q)-3, PGLa2(q) (p = 13), Ga2(q) (p =7), ASL3(3) (¢ = p > 5).
(ii) q is even and Hy is one of the following:
2F4(Q0)’ (SL%(Q) o SL%(q))(Ba q— 8)'27 Sp4(q2)2a
(> £q+1)%.(3 x SLa(3)), (¢* — ¢* +1).12, (¢° + 1)*.(SLa(3):4),
where ¢ = qg.

Proof. By Propositions and we know that T is 2-elusive if H is a parabolic or
subfield subgroup, while Proposition shows that T is not 2-elusive when Hy = 2Fy(qo)
with ¢ = qg. For the remainder of the proof, it will be convenient to write V = £(G) for the
52-dimensional adjoint module for G.

Case 1. H is a mazimal rank subgroup.

We begin by considering the subgroups of the form H = Ng(H,), where H is a maximal
rank subgroup. By inspecting [47, Tables 5.1, 5.2], we see that the possibilities for H are as
follows:

where Ty = T is a maximal torus of G and W = O} (3) is the Weyl group of G.



32 TIMOTHY C. BURNESS AND MIKKO KORHONEN

In each of these cases, we are free to assume that H = N(;((Hg)a), where H is the
normalizer of a standard subsystem subgroup

A = (T, Uy : o€ d),
and HY is a o-invariant conjugate of H. Here T is a maximal torus of G as in the setup
of Section and ®’ is a root subsystem of ®. In each case, the precise structure of H is
recorded in [47, Tables 5.1, 5.2] and we refer the reader to [47, p.300] for some details on

how the structure of H is determined from H (also see [I8, Tables 7 and 8]). Referring to
(2), we now consider each possibility for H in turn.

Case 1.1. H® is not a mazximal torus of G.

First suppose H = By, so ¢ is odd and the subsystem ®' has base {—ag, a1, a2, a3}, where
v is the longest root of ®. We have Hy = H, = Sping(q) = 2.Q9(q), which is the centralizer
in T of a By-type involution. Moreover, hq, (—1) € Hy is an involution of type A1C3 (Table
, so T is 2-elusive. By inspecting [41), Table 14], we deduce that the same conclusion holds
when H = C; and q is even, in which case Hy = Spg(q).

Next assume H = D4.Symg. Here the subsystem ®' has base {—ag, a1, a2, 3}, where
B8 = as + 2a3 + 2a4, and —f( is the highest root of the By subsystem discussed in the
previous paragraph. In this case there are two possibilities for Hy. If Hy = 3Dy4(q).3 then
either ¢ is odd and Hy has a unique class of involutions, or ¢ is even and Hy has two such
classes (see Proposition ; in both cases it is clear that T is not 2-elusive. Now assume
Hy is of type PQJ (q), so we have

Hy = H, = Sping (¢).Symg = (2,q — 1)2.PQ§'(q).Sym3.

If ¢ is odd then by inspecting [11, Table 13] we see that Hj contains involutions of type
A1Cs. In addition the element ¢t = h_q,(—1)hq,(—1) is contained in Hp. A computation
with MAGMA (see Section shows that ¢ has fixed point space of dimension 36 on V,
and thus is an involution of type By (Table . Therefore, T is 2-elusive when ¢ is odd. By
considering the embeddings Dy < By < F; and inspecting [41} Section 4.4], it is easy to check
that 7' is also 2-elusive when ¢ is even. For example, if t € Qf (¢) is a es-type involution (in
the notation of [2]; see Remark [2.15(b)), then the Dy-class of ¢ is labelled A; 4+ Ds, which
embeds in the Bj-class labelled A7 + B§2) in [41, Table 4], and this in turn is contained in
the G-class A; A;.

Next suppose H = A3.2, in which case the subsystem ® has base {—ag, a1} U {as, a4}
We have H = (H°,w), where w € Ng(T') corresponds to the central involution in the Weyl
group of Fy that acts as o — —a on ®. Explicitly, we can choose w = wq, WasWay, Was,
where o is the i-th root respect to the specific ordering of the roots of G' used by MAGMA
(as described in Remark [2.1)).

Now under the bijection of Lemma the o-invariant conjugate HY corresponds to the
image of n € H in H'(o, H/H®), where n € {1,w}. Then

Hy = (SL3(q) o SL3(q))-2 = e.(L3(q) x L3(q))-€.2
where e = (3,¢g —¢), and e = + or e = — accordigg; to whether n = 1 or n = w. Now by
i

it suffices to consider involutions in Hy = H,,. We have hg, (—1), ha,(—1) €

Hy, since both elements are contained in H and are fixed by w and o. In other words, H
contains representatives for the classes A1C3 and By from Table [b|, so T is 2-elusive when ¢
is odd.

Now assume H = A2.2 and ¢ is even, in which case H = H°:(w) since w is an involution.

Lemma

By inspecting [41], Section 4.7], we observe that there are no involutions of type (A;)s in H°.
Since w acts on ® as a — —a, the action of w on both As factors of H° = A3 is via the
standard inverse-transpose graph automorphism. Hence it follows from [30, Lemma 4.4.6]
that there is a unique H-class of involutions in H \ H°, and so every involution in H \ H°
is conjugate to w. A computation with MAGMA (see Section shows that w has Jordan
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form (224,1%) on V, and from Table |4/ we deduce that w is contained in the class labelled
Ay A;. So for H = A%.Q we conclude that T' is 2-elusive if and only if ¢ is odd.

Next suppose H = A;C3, so q is odd and Hy is the centralizer of an A;C3-type involution.
By inspecting [I1, Table 13|, we see that Hp also contains involutions of type By and thus
T is 2-elusive.

To complete the proof in Case 1.1, we may assume q is even and H = C3.2. Here we have
Ho = Sp,(q)%.2 = Sp4(¢)1Sym, and the maximality of H implies that G contains a graph (or
graph-field) automorphism of T' (see [47, Table 5.1]). Now Hp < Spg(q) < T and it is easy
to check that every class of involutions in Spg(g) has a representative in Hy. Since we have
already noted that T' is 2-elusive when Hy = Spg(gq), we deduce that the same conclusion
holds when Hy = Sp,(q)?.2. Similarly, if Hy = Sp,(¢?).2 then by considering the natural
embedding of Hy in Spg(q) we deduce that every involution in Hy is of type a4 or c4 as an
element of Spg(q), which in turn implies that there are no involutions of type A; or A in
Hy. In particular, T is not 2-elusive in this case.

Case 1.2. H° is a mazimal torus of G.

Now assume Hj is the normalizer of a maximal torus of T, so H = T.W, ¢ is even and
the maximality of H implies that G contains graph or graph-fields automorphisms (see [47,
Table 5.2]). For the tori of order (¢ +¢+1)% and ¢* — ¢ +1, Lemmaimplies that Hy has
a unique class of involutions and thus 7T is not 2-elusive. Similarly, Hy = (¢ +1)2.(SL2(3):4)
has only two classes of involutions and so once again T is not 2-elusive.

To complete the proof for normalizers of maximal tori, we may assume Hy = (¢ —)*.W.
Let w = Wa, WayWay,Way be an element corresponding to the central involution of W as in
the case H = A3.2. Then under the bijection of Lemma [2.17] . the o-invariant conJugate T9
corresponds to the image of n € H in H' (0, H/H®), where n = 1 if ¢ = + and n = w if
e = —

By Lemma 2.18| it will suffice to consider involutions in E) = Ng&(T)po. Note that w
is contained in the subgroup Wy = (w, : a € ®), which is isomorphic to W by Theorem
In particular, Wy < E). With the aid of MAGMA (see Section , we can calculate
the Jordan form of each involution in Wy on both the minimal module Vi, and the adjoint
module V' = L£(G). In this way, we can verify that W, meets every conjugacy class of
involutions in 7" and thus T is 2-elusive. More specifically, by computing the Jordan forms
of the elements

Wepy Way, WaiWayy; Was+azWas

on Viin and~V, we can read off from Table |§| that they are contained in the classes labelled
Aq, Aq, A1Aq, (Al)g, respectively.

Case 2. The remaining cases.

By inspecting [I8, Tables 7 and 8], in order to complete the proof of the proposition we
may assume ¢ is odd and Hj is one of the following:

PGLa(q) x Ga(q) (¢ = 5), PGLa2(q) (p > 13), Ga(q) (p = 7), ASL3(3) (¢ =p = 5).

In the latter two cases, Hy has a unique class of involutions and thus 7" is not 2-elusive.
Next assume Hy = PGLa(q) x G2(q). Here Hy contains involutions of type By (see [11, Table
18]) and from the fact that

V 1 A1Gy = L(A1G2)/(Va, (4) @ Vi, (wr))

(see [68, Table 12.2]) we deduce that an involution ¢ € Hy of the form (1,s) is of type
A1C5. Indeed, t has Jordan form (—Ig, Ig) on £L(A1G2) = V4, (2) ® Vi, (w2) and it acts on
Va, (4) & VGQ(wl) as Iy @ (—1y,I3) = (—1Is, I15), so diva(t) = 24 and the claim follows.
Therefore, T is 2-elusive.
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Finally, suppose Ho = PGLa(q) with p > 13. In this case Ho = H, where H = H° = A;.
Since H has a unique conjugacy class of involutions, it follows that the two Ho-classes of
involutions are fused in G. In particular, T' is not 2-elusive in this case. Il

7. THE GROUPS WITH SOCLE E§(q)

In this section we establish Theorem for the groups with socle Eg(q) or 2Eg(q). In order
to handle both cases simultaneously, we will write 7" = E§(q), where ¢ = + if T' = Es(q),
and ¢ = — if T = 2Fg(q). In addition, Vi, will denote the 27-dimensional minimal module
Vg, (w1) for the simply connected cover Gy of G. In this section, we will occasionally
determine the class of an involution g € G by computing its action on Vini,, and by this we
mean the action of the unique involution ¢’ € G that g lifts to (see Remark. It may be
helpful to recall that T'= E§(q) has exactly 2 + d2, classes of involutions (see Section .

We begin by considering the groups with H € S, noting that the possibilities for H are
recorded in [I8, Table 2] (for ¢ = +) and [18, Table 3] (for e = —).

Proposition 7.1. Suppose T' = E§(q) and || is even. If H € S, then T is 2-elusive if and
only if Hy = 2F4(2) and ¢ = p=¢ (mod 4), or (¢,q) = (—,2) and Hy = Q7(3) or Figs.

Proof. By inspecting [18, Tables 2 and 3| and considering the number of classes of involutions
in Hg, we immediately deduce that T is 2-elusive only if one of the following holds:

(a) Ho =2F4(2), ¢ = p = ¢ (mod 4);

(b) Ho = Mg, (¢,9) = (+,5);

(C) Ho = Q7(3) or Figg, (E,q) = (—,2).

First consider (a). As recorded in [55, Table 6.109], we note that Hy lifts to a subgroup
of Gy that acts irreducibly on Vi,;,. By inspecting the Brauer character table of H (see
[34, pp.188-191]), we deduce that the 27-dimensional irreducible K[Hp]-modules arise as
the reduction modulo p of a 27-dimensional irreducible representation in characteristic zero.
Thus the dimension of the fixed point spaces on V for each involution of Hy can be read
from the character table of Hy, and from this we deduce that T is 2-elusive.

Similarly, in (b) we find that Hy acts irreducibly on the adjoint module V = £(G) (see [55,
Table 6.61]) and using MAGMA we calculate that every involution in Hy acts as (—1I40, I3s)
on V. This means that every involution is of type A; A5 and thus T is not 2-elusive.

Finally, consider the cases in (c¢). Here Hy acts irreducibly on V = L(G) (see [55, 6.2.67,
6.105]) and using MAGMA we can compute the Jordan form of every involution in Hy. In
both cases, Hy has three classes of involutions, labelled 24, 2B and 2C in the Atlas [14], and
we find that each class representative has the following Jordan form on V:

24: (222,134, 2B: (232,111, 2c: (2%8,1?).
In this way, we conclude that T is 2-elusive. O

For the remainder of this section, we may assume H € C. Here the possibilities for H are
listed in [I8, Table 9] (for e = +) and [I8] Table 10] (for ¢ = —).

Proposition 7.2. Suppose T' = E§(q), || is even and H € C. Set e = (3,q —¢). Then T
is 2-elusive unless one of the following holds:
() Ho = L5(¢*):3, ®Da(q) (¢ +2q +1)/€):3 or Galg).
(i) Ho = (¢ +eq+1)3/e.(3172.SLy(3)).
(iti) Hy = PGLE(q).2, where p > 5 and q¢ = ¢ (mod 4).
(iv) Ho = 33t3:SL3(3), where ¢ =p > 5 and ¢ = ¢ (mod 3).

Proof. By Propositions and we know that T is 2-elusive if H is a parabolic
subgroup, or a subfield subgroup, or if ¢ = + and Hy = 2Eg(qo) with ¢ = ¢3. So to complete
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the proof we need to work through the remaining cases arising in [I8, Tables 9 and 10]. Set
d=1(2,q—1).

Case 1. H is a mazimal rank subgroup.

First assume H = Nggﬁg), where H is a maximal rank subgroup. By [47, Tables 5.1,
5.2], the possibilities for H are as follows:

A1As, DsTy, A3.Symy, DyTp.Symy, Ts.W, (3)

where in the latter case, Tg is a maximal torus of G and W = PGSp,(3) is the Weyl group.
As in the proof of Proposition we are free to assume that H = Ng((Hg)U), where H is
the normalizer of a standard subsystem subgroup

H° =(T,U, : a € ®'),

and HY is a o-invariant conjugate of H. Here T is a maximal torus of G, as in the setup
of Section and ®’ is a o-invariant root subsystem of ®. As in the proof of Proposition
we use [47, Tables 5.1, 5.2] to read off the precise structure of H (also see [I8], Tables
9 and 10]) and we refer the reader to [47, p.300] for further details. We now consider each
possibility in (3)).

Case 1.1. H® is not a mazximal torus of G.

Suppose H = Ay As, in which case Hy = d.(L2(q) x L§(q)).de. For g even, we deduce that
T is 2-elusive by inspecting [41, Section 4.8]. And for ¢ odd, we first note that Hy is the
centralizer in T of an involution of type A;As and by inspecting [I1, Table 13] we see that
Hy also contains involutions of type DsT7. Therefore, T is 2-elusive for all q.

In the case H = D5T}, the subsystem @ has base {—ag, s, a4, a3,as5}, and we have
Hy = H,NT. If ¢ is odd, then Hy is the centralizer in T of an involution of type D5T1,
and by inspecting [I1, Table 13] we deduce that T" is 2-elusive. Now assume ¢ is even, so
Hy = Qjy(q) x (¢ —¢€)/e, and Hy contains the involutions

Tay (1), Tag(1)Tas(1), Tay(1)Tas(1)Tas(1).

Using MAGMA, as described in Section [2.4] we can calculate the action of these involutions
on V = Viyin and we deduce that the dimensions of the respective fixed point spaces are 21,
17 and 15. By inspecting Table [4, we conclude that these involutions are contained in the
T-classes labelled A1, A% and A‘i’, respectively, and thus T is 2-elusive. (It is also easy to see
that these involutions are conjugate by a Weyl group element to the representatives listed
in Table [4] )

Next suppose H = A3.Symyg, so ® has base {a1, a3} U {as, ag} U {—ap, a2}, and H is of
type A5(q)%, Aa(q?)A5°(q) or A5(¢?). In the latter case, we note that Hy = L5(¢%).3 has a
unique class of involutions and thus 7' is not 2-elusive. We claim that 7" is 2-elusive in the
other two cases.

Suppose ¢ is even and let ¢ be an involution in a group of type As. Then both Hy = A5(q)?
and Hy = A2(q*)A5°(q) contain conjugates of (1,1,t), (¢,t,1), and (¢,¢,t) from H® = A3.
And by inspecting [41], Section 4.9], we deduce that these elements represent the three classes
of involutions in G, whence T is 2-elusive.

Now assume ¢ is odd. From [11l Table 13] we note that Hp contains involutions of type
DsTy. And as above, Hy contains a conjugate of (1,1,t) € H®, where t € Ay is an involution.
A simple group of type Ao has a unique conjugacy class of involutions, which for the factor
corresponding to the simple roots { —ap, aa} has hq,(—1) as a representative. This is precisely
the representative of the class A As presented in Table[5], so we conclude that T is 2-elusive.

Now assume H = D4T5.Symy, in which case ®' has base {ag, ay, a3, a5} and H° is a Levi
factor. If H is of type 2Dy4(q) x (¢°> + eq + 1) then Hy has 1 + da,, classes of involutions, so
T is not 2-elusive. For the remainder, we may assume Hy = J.Syms with

J = d*.(PO5 (q) x ((a - )/d)? Je).d".
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Let w € Ng(T) be an element that corresponds to the longest element of the Weyl group
of Eg, explicitly we choose W = Wy WayWa,sWasgs, Where oy is the i-th root respect to the
specific ordering of the roots of G' used by MAGMA (see Remark .

Now under the bijection of Lemma the o-invariant conjugate HY corresponds to the
image of n € H in H' (0, H/H®), where n = 1 if ¢ = + and n = w if ¢ = —. Then in view of
Lemma it suffices to consider involutions in Hy = N@(I:Im) N (Gm)’. Moreover, every
involution in H,,, is contained in (G’m)/, so we only need to find involutions in H,,.

If ¢ is odd, then we observe that the torus T}, < H,, contains the class representatives
in Table|5| and thus 7' is 2-elusive. Now assume ¢ is even and note that we may assume w is
contained in the subgroup Wy = (wq : o € ®). We have Wy = W (see Theorem [2.23), so the
elements wq,, WayWas aNd We, Wa, Wa, are fixed by w and o since the corresponding elements
in W are centralized by the longest element. Using MAGMA to compute the respective Jordan
normal forms on £(G) (see Section and inspecting Table |4] we deduce that wq,, WasWas
and Wy, Wa,Wa, are involutions of type Ay, A? and A3, respectively. Since each of these
involutions is contained in H,,, we conclude that T is also 2-elusive when ¢ is even.

Case 1.2. H° is a maximal torus of G.

To complete the analysis of maximal rank subgroups, we may assume H = Tg.W is the
normalizer of a maximal torus. As noted in [47, Table 5.2] (also see [I8, Tables 9 and 10]),
there are two separate cases to consider. First assume Hy = ((¢ — €)%/e).W. We claim
that T is 2-elusive. As in the previous paragraph, to justify the claim it suffices to show
that H,, meets every G-class of involutions, where n = 1 if ¢ = +, and n corresponds to
the longest element of W if ¢ = —. As before, if ¢ is odd, then T,, < H,, contains the
class representatives listed in Table [5| and the claim follows. Similarly, if ¢ is even then H,,,
contains the involutions wey,, WasWas and Wa, Wa,Wae- As noted in the previous paragraph,
these elements represent the three classes of involutions in G.

Finally, suppose

Hy = (¢* + eq +1)3/e.(3'72.SLy(3)).

Since SLy(3) has a unique conjugacy class of involutions, Lemma implies that Hy also
has a unique class of involutions and thus 7" is not 2-elusive.

Case 2. The remaining cases.

By inspecting [I8, Tables 9 and 10], in order to complete the proof we may assume Hj is
one of the following:

(a)
(b) Ho =PGSpg(q), p # 2;
(c) Ho =15(q) x G2(q);

(

(e) Ho=PGL3(q).2, p > 5;
(f) Ho =3°"3:SL3(3), p > 5.

In case (f), Lemma implies that Hy has a unique class of involutions and thus T is
not 2-elusive. The same conclusion holds in (d) since Hy = Ga(gq) has 1 + d2,, classes of
involutions. In each of the remaining cases we have Hy = Nr(H,), where H is a o-stable
subgroup of G of rank at most 4.

First consider case (a). If ¢ is even then the information in [42], Table A] indicates that T
is 2-elusive, so let us assume ¢ is odd and let V be the adjoint module for G. Then V' | F; =
L(Fy)/Vimin(Fy) (see [68, Table 12.3]), so from Table[5] we deduce that dim Cy (t) = 38 for the
involutions ¢t € Hy of type A1C3, whereas dim Cy (t) = 46 for those of type By. Therefore,
T is 2-elusive.
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Next assume (b) holds, so H is of type Cy and ¢ is odd. Let {wi,...,ws} be a set of
fundamental dominant weights for H. By lifting H to the simply connected cover of G
and inspecting [68, Table 12.3], we note that Vinin 4 C1 = Vi, (w2). Then by a MAGMA
calculation over Q (see Lemma , we see that H contains involutions with fixed point
spaces of dimensions 11 and 15 on Viui,. For example, we can take the involutions A/ (—1)
and h%(—l), where o and 8 are short and long roots, respectively, in the root system of Cj.
It follows that T is 2-elusive.

Now assume we are in case (c), so H = AsGy and we write {wy,ws} and {61,082} for the
fundamental dominant weights of the two simple factors. By appealing to [41] Section 5.12],
we deduce that T' is 2-elusive when ¢ is even. Now assume ¢ is odd. Here [11, Table 18]
indicates that Hy contains involutions of type T1Ds. If V = L(G) is the adjoint module,
then [68, Table 12.3] gives

V | A2Gy = L(A2G2)/ (Va, (w1 + wa) @ Vig, (01)).

And with the aid of MAGMA (see Section we calculate that an involution x € Hy of the
form (1, s) has Jordan form (—1I49, Isg) on V', which places z in the class A; As. In particular,
T is 2-elusive.

Finally, let us turn to case (e). Here H = A5.2 with p > 5 and we will show that T is not
2-elusive by proving that every involution in H is of type A;As.

To do this, let V' = L(G) be the adjoint module and observe that
V{]Ay= £(A2)/VA2 (4w1 + w2)/VA2 (w1 + 4w2)

as in [68, Table 12.3], where {w1,ws} are fundamental dominant weights for H° = As. Now
the composition factors of V' | Ag are irreducible Weyl modules by [57, 6.6], so it follows
from [35, Lemma I1.2.14] that V' | As is completely reducible. Therefore

V] A = L(A2) ® Va, (4w + w2) & Va, (w1 + 4dwa).

If z € H\ H° is an involution, then x acts on H° = Ay as a graph automorphism (see [67,
Claim, p.314]). Thus z acts as (—I5, I3) on £(A3z), and it interchanges the two 35-dimensional
summands in the above decomposition, which means that x acts as (—1I49, I33) on V.

The connected component H° has a unique conjugacy class of involutions, represented by
x = hj(—1), where 8 is a root of As. Using MAGMA, we calculate that @ acts as (—1Is, I1)
on L(As) and as (—Ig, I17) on the other two summands. It follows that dim Cy (t) = 38 for
every involution t € H, whence every involution in H is of type A;As and we conclude that
T is not 2-elusive in case (e). This completes the proof of the proposition. O

8. THE GROUPS WITH SOCLE E7(q)

The main goal of this section is to prove Theorem [3| for the groups with socle T' = E;(q).
As before, we will divide our analysis according to whether or not H is in C or §. Recall
that T has 3 4 24, classes of involutions (see Tables [4] and [5)).

We begin by considering the groups where H is an almost simple subgroup contained in the
collection S. At the time of writing, the subgroups in S have not been fully determined, but
Craven’s recent work in [20] severely restricts the possibilities. More precisely, he proves
that H is either one of the almost simple subgroups recorded in [20, Table 1.1], all of
which are known to be maximal, or H is a putative maximal subgroup with socle La(r)
for r € {7,8,9,13} arising in part (iii) of [20, Theorem 1.1] (with the restrictions on ¢ listed
in [20, Table 1.2]). By considering each possibility in turn, we will show that 7" always
contains a derangement of order 2 (see Proposition .

Remark 8.1. Typically, we find that T is 2-elusive if H is of the form Ng(H,) and H is
a maximal rank subgroup. And as in previous cases, we will often verify this by identifying
explicit representatives in Hy for each T-class of involutions. Now if p = 2, then T = (G,)" =
G, and so it suffices to find suitable representatives in H, < Hy. However, if p is odd then
[G, : T] = 2 and so it is not sufficient to find representatives in H,. In the latter case, in
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order to verify that a given element x € H is contained in Hp, we need to check that x lifts
to an element in the simply connected cover Gy, that is fixed by o. We refer the reader to
Remark 2.19 for further details.

Proposition 8.2. Suppose T'= FE7(q), || is even and H € S. Then T is not 2-elusive.

Proof. Let S denote the socle of H and assume for now that H is one of the subgroups
recorded in [20, Table 1.1]. Just by considering the number of classes of involutions in Hy,
we see that T is 2-elusive only if Hy = M19.2 and ¢ = p = 5. Here both T and Hy have
three classes of involutions and by considering the composition factors of the adjoint module
V = L(G) restricted to S (see [55, Table 6.147]) we deduce that every involution in S has
trace 5 on V. This implies that every involution in S is of type A1 Dg (see Table . And
since there is a unique class of involutions in Hy \ S, we conclude that T" is not 2-elusive.
To complete the proof, we may assume S = Ly(r) with r € {7,8,9,13}, as in part (iii)
of 20, Theorem 1.1]. Recall that it remains an open problem to determine whether or not
G has a maximal subgroup of this form. In any case, we will prove that if such a subgroup
H does exist, then the corresponding action of 7" on G/H is not 2-elusive. As before, by
considering the number of involution classes in Hy, we deduce that T is 2-elusive only if
Hy = L(9).2 = Symg or L(9).22. Here p > 5 and Hy has three classes of involutions. As

before, let V = L(G) be the adjoint module.
Suppose p > 7. Then [20], Section 6.3] gives

V]S=10"09 @8 @8 a5 @5),

where the irreducible 8-dimensional modules 8; and 8, are interchanged by an involution
in Hy \ S (corresponding to a transposition in Symg). But the multiplicities of 8; and 8
as composition factors of V' | S are unequal, so Hy does not act on V and we have a
contradiction. We conclude that if p > 7 and H is a maximal subgroup with socle Lg(9),
then Hy has at most two conjugacy classes of involutions and so T is not 2-elusive.

Finally, let us assume p = 5. First suppose Hyp = Symg. By using MAGMA to compute
the feasible characters of Hy on V' (see Section , we deduce that every involution in Hy
has trace —8 on V. This is in fact true for all feasible characters of Hp, not just the ones
with property (P). In any case, every involution in Hy is of type A;Dg and so T is not
2-elusive. This also proves that T is not 2-elusive in the case Hy = L2(9).22, since Hy has
three conjugacy classes of involutions, and two of them are contained in Ly(9).2 = Symg. O

For the remainder of this section we may assume H € C is one of the maximal subgroups
recorded in [20, Table 4.1]. Our main result is the following.

Proposition 8.3. Suppose T' = E7(q), || is even and H € C. Then T is 2-elusive unless
Hy is one of the following:

P, (m €{2,5,7} and ¢ = 3 (mod 4)),

(L2(¢%) x ®Da(q))-3, La(q").7, L2(q) x PGLa(q) (p = 5),
PGLZ(¢).2(p = 5), *Da(q)-3 (p = 3), La(g) (two classes; p > 17, 19)

We divide the proof of Proposition [8.3] into a sequence of lemmas, recalling that we have
already proven the result when H is a parabolic or a subfield subgroup (see Propositions

and [1.1). Set d = (2,¢ — 1).

Remark 8.4. Here we take the opportunity to correct an error in the original arXiv version
of [20]. This concerns the precise structure of a 2-local maximal subgroup, which is presented
as (22 x PQ (¢).2%).3 in [20, Table 4.1]. Here g is odd and the correct structure is

"o (22 x PQd ().22).Symy  if ¢ = &1 (mod 8)
"7 (22 x PO (g).22).3 if ¢ = +3 (mod 8).
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This error originates from an inaccuracy in one of the entries in [I, Table 1] and we refer the
reader to [40] for more details.

We begin by handling the remaining maximal rank subgroups of G.

Lemma 8.5. The conclusion to Prgposition holds if H = Ng(H,) and H is a reductive
o-stable maximal rank subgroup of G.

Proof. By inspecting [47, Tables 5.1, 5.2], we see that H is one of the following types:
A1 Dg, E¢Ty.2, A7.2, AyA5.2, A3D,.Syms, AT L3(2), Tr.W. (4)

Here T7 is a maximal torus of G and W = 2 x Spg(2) is the Weyl group of G. As in the

proof of Propositions and we are free to assume that H = Ng((HY )0), where H is
the normalizer of a standard subsystem subgroup

Ao = (T,Us : a € d)
and HY is a o-invariant conjugate of H. Here T is a maximal torus of G as in the setup of
Section and @’ is a root subsystem of ®. As in the proof of Propositions [6.3| and we
refer to [47, Tables 5.1, 5.2] for the precise structure of H in each case (also see [20, Table
4.1]).

Note that the Weyl group of H° can be identified with the subgroup (s, : @ € ®’) of W.
Then H is generated by H°, together with the elements of Ng(7T') that normalize the Weyl
group of H°. In particular, H contains an element w € Ng(T') which maps to the central
involution of W. Explicitly, we have

W = Wa Way Was War Wagy Wass Was, € H, (5)

where «; denotes the i-th positive root in ® with respect to the specific ordering of the roots
of G used by MAGMA (see Remark [2.1)). Then w acts as o — —a on ®, and a computation
shows that
w® = ha2(_1)ha5(_1)ha7(_1) =1,
so w is an involution in G. We will write g for the longest root of ®.
Let n € Ng(T) be an element of H such that under the bijection of Lemma the
o-invariant conjugate HY corresponds to the image of n in H'(o, H/H®). Then in view of

Lemma for determining 2-elusivity it suffices to consider involutions in Hy = Ng(H,s )N

Gno)'.

( We) now make an observation which will be useful in the cases where n € {1,w}. A
computation with MAGMA (which can be done over Q, as described in Section shows
that the lift of w to G centralizes the lifts of ha(—1) and w, for all @ € ®. Moreover
ha(—1) and w, are both fixed by o, which leads to the following conclusion:

ha(—1), wa € (Gy) N (Guo) for all a € . (6)

Let us now consider the possibilities for H, which we listed above in . First assume
H = T7.W is the normalizer of a maximal torus of G. We claim that T is 2-elusive. Here
Hy = SW = Np(S) with S = (¢ — ¢)"/d (see [20, Table 4.1]), and we can take n = 1
ife =+ and n = w if e = —. We begin by assuming ¢ is odd. In view of @, we have
ha(=1),ws € Hy for all a € ®. Hence IA{B contains the following involutions:

hai (—1), WayWasWazs hay (—1)WayWagWar,
which are of type A1Dg, EgTh and A7, respectively (see Table . We conclude that T is
2-elusive.

Now assume ¢ is even. Here Theorem [2.23|implies that Hy = S:W is a split extension and
we may identify W with the subgroup of E7(2) generated by the set {w, : a € ®}. Then
using MAGMA (see Section , we can calculate the Jordan form of each involution class
representative in W on the adjoint module £(G) and by inspecting Tablewe conclude that
T is 2-elusive.
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We now turn to the remaining possibilities for H, dividing the analysis according to the
parity of q. To begin with, we will assume ¢ is odd.

Case 1.1. H = A Dg, q odd.

Here H = H° corresponds to a subsystem ®' with base {—ag, a2, a3, a4, as, ag, ar}. Then
Hy = H N T contains the elements hqy(—1), WayWasWar and hegg(—1)WayWasWa,, and it
is easy to check that they are conjugate to the three class representatives listed in Table
(This can also be verified by computing the dimension of each fixed point space on the
adjoint module £(G), as discussed in Section [2.4]) We conclude that 7 is 2-elusive.

Case 1.2. H = A7.2, q odd.

In this case, H° = Ay corresponds to a subsystem ® with base

{Bi,..., 07} ={—, 1, a3, 4, 5, 6, 7 }.

In addition, the element w defined in is contained in H \ H° (since the Weyl group of A7
does not contain —1), so we have a split extension H = H°:(w). Thus in this case we can
take n € {1,w} and it suffices to consider involutions in Ho=Hn (Gm)/.

Define ¢t = hqa,(—1) € H, which is an involution of type A;Dg. Next we choose an
involution g € H® corresponding to the longest element in the Weyl group of H°. Specifically,
we take

g = wg, (wp,wg,) -+ - (W, waa -+ wg, ),
which one can verify is an involution by direct calculation.

In view of @, we have t,w, g € (G’no)/, so we deduce that t,w, g € ﬁo. Then by computing
the actions of ¢, tgw and w on L(G), we see that they are involutions with fixed point spaces
of dimensions 69, 79 and 63, respectively. So by inspecting Table [5], we deduce that T is
2-elusive.

Case 1.3. H = A3A5.2, q odd.

Here H° = Ay As corresponds to a subsystem of ® with base {—aq, a1, ag, a4, as, ag, oz }.
As in the previous case, we have H = H°:(w), so we can take n € {1,w} and it suffices to
consider involutions in Efa =HnN (C_v’m),.

Now the elements ¢t = hy, (—1) and ¢ = wa,Wa; W, are contained in H, and moreover

t,g € f—[vo by @ Then ¢, g and tg coincide precisely with the representatives given in Table
so T is 2-elusive.

Case 1.4. H = A3D4.Symg, q odd.
First observe that
H° = A?D4 = A1DyDy < Ay Dg,

where A;Dg is the maximal rank subgroup we treated in Case 1.1. In addition, H® corre-
sponds to a subsystem of ® with base {—aq, a7, —f, ag, a3, ay, a5}, where 5 = ayg is the
longest root of the Dg factor in Ay Dg.

There are two possibilities for Hy, as recorded in [20, Table 4.1]. The first is

Hy = 2%.(L2(q)® x PQY (¢)).2%.Sym,.

In this case we can take n = 1, so I% = Hy = HNT. Then Hy contains the elements
has(—1), WayWasWa, and has (—1)Wa,Was W, from Case 1.1 and thus T is 2-elusive.

The other possibility is Hy = J.3, where J = La(¢®) x 3D4(q). Clearly, every involution
in Hy is contained in J and we note that there are three such classes. As in the other cases,
it suffices to consider involutions in Hy = H N (@m)/. Here we can choose n € N@(T) such
that n transitively permutes the three roots {—ag, a7, —3} of the A} factor and induces a
triality automorphism on the D, factor, transitively permuting the roots {aq, ag, a5 }.
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Then the unique conjugacy classes of involutions in the La(q®) and 3Dy(q) factors are
represented by the elements ¢,t' € Hy, respectively, where

t= ha7(—1)ha0(—1)h5(—1), t/ = hOéQ(_l)ha3(_1)ha5(_1)a

and the third class of involutions in Hy is represented by their product ' = #'t. But this
means that every involution in Hy lifts to an involution in the simply connected cover Gge,
and hence every involution in Hy is of type A1 Dg. So in this case, we conclude that T is not

2-elusive.
Case 1.5. H = A].L3(2), q odd.
Here the connected component H° = A7 is embedded in G via
H° = A7 = A(A})3 < A1(A2Dy) < A1 Dg < G.

In particular, H° corresponds to a subsystem with base {ag, az, a3, as,7, 3, ar}, where v =
«uiag is the longest root in the Dy factor of A%D4 < Dg, and 8 = ayg is the longest root in
the Dg factor of A;Dg. As noted in [20, Table 4.1], there are two possibilities for Hp.

If Hy = La(q").7, then Hy has a unique class of involutions and thus 7" is not 2-elusive.
The other possibility is Hy = 23.15(q)".23.L3(2), in which case Hy = H N T and it follows
that Hy contains the involutions listed in Case 1.1. Therefore, T is 2-elusive.

Case 1.6. H = EgT}.2, q odd.

To complete the proof of the lemma for ¢ odd, we may assume H = EgT7.2, so H° is a
standard Levi factor corresponding to a root system with base {ai,...,a6}. Asin Case 1.2,
we have H = H°:(w), so we can take n € {1,w} and it suffices to consider involutions in

Hy=Hn(Gns).
Set t = hq,(—1) € H®, which is an involution of type A;Dg, and define
B = Weay Wangs Wass Warss € HC,

which corresponds to the longest element of the Weyl group of Eg. As in Case 1.2, we
2.19)

have ¢, w,h € Hy. A computation (discussed also in Remark [2.19)) shows that ¢, w, hw are
involutions in Hy from classes A1 Dg, A7, Fg11, respectively. Therefore T is 2-elusive.

In order to complete the proof of the lemma, we may assume ¢ is even. Note that in this

case Gy = (ég), and thus f{vo = H,,. As above, we partition the analysis into a number of
subcases.

Case 2.1. H = A1Dg or AyA5.2, q even.

In both cases, the G-class of each unipotent element in_f_I ¢ has been determined by
Lawther, see [41], Sections 4.10, 4.12], and it follows that H° meets every G-class of in-
volutions. Since Hy meets every unipotent conjugacy class in H°, we deduce that T is
2-elusive.

Case 2.2. H = A7.2, q even.

By inspecting [41}, Section 4.1], we deduce that H° contains involutions of type Aj, A2
and (A3)?). Since Hy = PGL§(¢).2 meets every unipotent conjugacy class of H®, it follows
that Hy contains involutions in each of these classes.

As noted in Case 1.2, we have H = H°:(w). Thus we can take n € {1,w} and it suffices
to consider involutions in f[vo = H,,. We now define g € H° as in Case 1.2; by @ we have
g,w € FIB. Another computation with MAGMA (as described in Section shows that w
and gw are involutions with respective Jordan forms (2%,17) and (253,127) on £(G), so they
are in the G-classes labelled A‘l1 and (A:f)(l), respectively. Since w, gw € f%, we deduce that
T is 2-elusive.

Case 2.3. H = A3D,.Syms, q even.
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As in Case 1.4, H® corresponds to a subsystem with base {—aq, a7, —3, ag, a3, aq, as},
where (3 is the longest root in the root system of Dg. There are two p0881b111t1es for Hy.

First assume Ho = (La(g)3 x Qg (q)).Symg, in which case Hy = H,. Setting z; = z,,, we
see that Hp contains the following involutions
wr(1), wr(Vas(1), zr(Das(Das(1), zr(Vzs(Da2(1), zo()zr(Dzs(Daz(1).  (7)

By using MAGMA to calculate the Jordan form of each of these elements on the adjoint
module £(G), we deduce that the corresponding G-classes are Ay, A}, (A3)@), (43)M) and
A1, respectively, and it follows that T is 2-elusive.

Now assume Hy = (L2(¢®) x 3D4(q)).3. As in Case 1.4, it suffices to consider involutions
in HO = H,,, where n fixes oy and it acts as a 3-cycle on the sets {—ag, a7, —(3} and
{ag, as, as}. Explicitly, we can choose

N = Wagy Woryg Wayr Wazg -
Then the La(¢?) factor has a unique class of involutions, with a representative given by
t =2_ay(1)7_p(1)Ta,(1). There are two classes of involutions in 3Dy (q), with representatives
given by s = za,(1)Zay(1)2as(1) and s" = xa4(1) (see Table . We have t,s,5' € Hp, and
any involution in Hj is conjugate to ¢, s, s’, ts or ts’. By computing the respective Jordan
forms on the adjoint module £(G), we ﬁnd that the corresponding G-classes are (A3)(1),

(A3)(2) Ay, A4 and Af, respectively. Therefore, Ho does not contain any involutions of type
A% and thus T is not 2-elusive.

Case 2.4. H = A].L3(2), q even.

As in Case 1.5, H° corresponds to a subsystem with base {ag, ag, as, as,7, B, ar}, where
~ is the longest root for the Dy factor of A? 1D4 < Deg, and f is the longest root for the Dg
factor of A;Dg. If Hy = La(q)".L3(2), then HO = H, contains all the involutions in and
thus T is 2-elusive by the argument in Case 2.3. On the other hand, if Hy = Lg(q7).7 then
Hj has a unique class of involutions and thus 7" is not 2-elusive.

Case 2.5. H = EgT}.2, q even.

Finally, to complete the proof we may assume ¢ is even and H = EgT).2, which is the
normalizer of a standard Levi factor H° = EgT; with base {1, ..., ag} for the root system of
(H°) = Eg. As in Case 1.6, it suffices to consider involutions in Hy = H,, with n € {1, w}.
It follows from @ that IEIVO contains the following involutions

Weany, WayWazy WasWazWas -

By computing their action on £(G), we see that these involutions are contained in the G-
classes labelled A1, A? and (A3)?), respectively.

Next define h € H® as in Case 1.6, which corresponds to the longest element of the Weyl
group of Fg. As before, we have h,w € I;T?) and with the aid of MAGMA we can show that
w and hw are involutions with respective Jordan forms (2%3,17) and (2%3,1%7) on £(G). By
inspecting Table 4} we deduce that w and hw are in the G-classes labelled A} and (A$)™),
respectively, and this allows us to conclude that T is 2-elusive. D

To complete the proof of Proposition which in turn completes the proof of Theorem
for the groups with socle E7(q), it just remains to consider the cases where H = Ng(H,) and
H is a maximal positive-dimensional closed subgroup of G that does not contain a maximal
torus. Note that this includes the family of exotic 2-local subgroups from [13, Table 1], which
we treat separately in the following lemma.

Lemma 8.6. Suppose p is odd and H = Ng(E), where E = 22 and
Ng, (E) = (E x Inndiag(PQ{ (¢)).Syms.

Then T 1s 2-elusive.
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Proof. We begin by recalling some basic properties of E, as described in the proof of [13]
Lemma 2.15]. First, let us record the fact that the three involutions in E are all of type A7. In
addition, Cg(E) = E x Dy, where the Dy factor is of adjoint type. Since Ng_(E)/Cq (E) =
Syms acts transitively on the set of involutions in FE, it follows that £ < T and thus
Hy = N7(E) contains involutions of type A7. Since the lift of the Dy factor to Gy is also of
adjoint type, it follows that

Cr(E) = Cg, (E) = E x Inndiag(PQ{ (¢)),

(also see [40, Theorem 1.1]). We claim that Cr(E) also contains involutions of type A;Dg
and EgTh, which implies that T is 2-elusive.

To see this, first write E = (e, f). Here e € Cz(e)° and f € Ca(e) \ Ca(e)®, since lifts of
e and f to the simply connected cover Gy do not commute, as observed in the proof of [13]
Lemma 2.15]. Recall that Cx(e)° is of type A7. More precisely, we can identify Cx(e)® with
SLs(K)/(¢?1I3), where ¢ € K is a primitive 8th root of unity. Then the central involution
e € Ci(e)® corresponds to the image of the scalar matrix (Ig. Furthermore, we can assume
that f acts as the inverse-transpose graph automorphism on Cgx(e)°.

Let t be an involution in Cx(e)° corresponding to the diagonal matrix (—Is, Is) in SLg(K)
and note that

L(G) | A7 = £(A7)/NY(W),
where W is the natural module for A7 (see [68, Table 12.4]). Here ¢ has trace 15 on the
first summand and trace —10 on the second, so ¢ has trace 5 on £(G) and it is therefore an
involution of type A1 Dg. Now the central involution e acts as gz on L£L(A7) and as —I7p on
A*(V). Therefore, the involution et has trace 15+ 10 = 25 on £(G) and so it belongs to the
class EgT7.

Therefore, in order to prove that T is 2-elusive, it suffices to show that the subgroup
Inndiag(PS2 (q)) of Cr(E) contains an involution z that is conjugate to . But this is clear
since the D4 subgroup of Cz(F) is the image of the orthogonal subgroup SOg(K') < SLg(K).
The result now follows since z is in the class A1 Dg and the product ex is an involution of
type EgT7. O

Lemma 8.7. The conclusion to Pmposition holds if H = Ng(H,) and H is a positive-
dimensional non-mazimal rank subgroup of G.

Proof. By inspecting [20, Table 4.1], we see that the possibilities for H are as follows:
A Fy, GoC3, A1Go (p = 3), A2 (p = 5), A2.2 (p = 5), Ap (two classes; p > 17,19),  (8)

together with (22 x Dy4).Sym; for p > 3.

First assume q is even, so H = A1 F; or G2C3. As explained in [41, Section 5.12], the
G-class of each involution in H can be read off from [41, Table 38] and we quickly deduce
that T is 2-elusive. For the remainder we may assume ¢ is odd. Let V = £(G) be the adjoint
module. We will consider each possibility for H in turn (see (g)).

Suppose H = A1 Fy, in which case Hy = La(q) x Fy(q) and

VLA = (Va, (2) @ Vi, (04))/(Va, (2) ® 0)/(0 @ Vi, (61))

by [68, Table 12.4], where 0 is the trivial module and {6;,...,d4} is a set of fundamental
dominant weights for the Fy factor. Let ¢ € Hy be an involution in the Lo(gq) factor, and
let s, s" be representatives of the two classes of involutions in Fy(q). A MAGMA calculation
(which can be done over Q; see Lemma [2.3)) shows that s, ts and ts’ have respective fixed
point spaces of dimension 69, 63 and 79 on V. It follows that T is 2-elusive.

Next assume H = G5C3, so Hy = Ga(q) x PSpg(q) and

V1 GaCs = (Vi (1) ® Vg (62))/ (Vi (w2) © 0)/(0 @ Vi (261))

as recorded in [68, Table 12.4], where {wi,w2} and {d1,02,d3} are fundamental dominant
weights for the two factors of H°. Here the G2(q) factor has a unique class of involutions,
which is represented by ¢ = h/ (—1) for some root a for Go. Next let s € PSpg(g) be an
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involution which lifts to an element of order 4 in Spg(q). Here a representative is given by
s = wpy wy_, where {1, B2, 83} are the simple roots of C3 and wj is a standard Chevalley
generator of C3, as defined in Section

Working with MAGMA, we calculate that ¢, s and ts have fixed point spaces of dimensions
69, 79 and 63 on V. So once again we conclude that T is 2-elusive. The case H = A{G> is
entirely similar and the same conclusion holds.

Now suppose H = A2. Here p > 5, Hy = La(q) x PGL2(q) and [68, Table 12.4] gives

Vi A% = (VAI (6) ® VAI (4))/(VA1 (4) ® VA1 (6))/(VA1 (4) ® VA1 (2))/
(VAI (2) ® VAI (8))/(VA1 (2) ® VA1 (4))/(VA1 (2) ® O)/(O ® VAl (2))

Note that both A; factors in H are of adjoint type. We claim that H does not contain any
involutions of type EgT17 and thus T is not 2-elusive.

To see this, let t € H be an involution in the first A; factor and let s be an involution
in the second. Then every involution in H is conjugate to ¢, s or ts. Let ¢ > 0 be an even
integer and consider the Weyl module Vy, (¢) for an A; group of adjoint type. Then it is
easy to check that the dimension of the fixed point space of an involution on Vy, (c) is given
by the expression

% (c +14 (—1)0/2>

and we deduce that ¢, s and ts have respective fixed point spaces of dimensions 63, 69 and
63 on V. By inspecting Table |5| it follows that H does not contain involutions of type EgT7,
as claimed above.

For the two cases with H = A; we note that Hy = Lz(q) has a unique class of involutions
and thus T is not 2-elusive.

If H = Ay.2, then Craven notes in [20, Section 4] that H, = PGL5(q).2, and either
Hy = PGL5(q) or Hy = PGL5(q).2, without giving the precise structure in all cases. In any
case, Hy has at most two classes of involutions and thus T is not 2-elusive.

To complete the proof, we may assume H = (22 x Dy).Symg, in which case there are two
possibilities to consider (see [20, Table 4.1] and the discussion on p.16 of [20] for further
details). If Hy = 3Dy4(q).3 then Hp has a unique class of involutions and thus 7 is not
2-elusive. The other possibility was handled in Lemma [8.6] O

This completes the proof of Theorem 3| for the groups with socle T' = E7(q).

9. THE GROUPS WITH SOCLE Fj3(q)

Finally, we turn to the groups with socle T' = F3(q). As usual, we write M =C U S for
the set of core-free maximal subgroups of G and we refer the reader to Remark (g) for
a brief description of the subgroups in the C and & collections. In particular, we recall that
it remains an open problem to determine the subgroups in S, even up to isomorphism. As
noted in Section T has exactly 2 + 202, classes of involutions.

Our main result for the groups with H € C is the following. This completes the proof of
Theorem [3{1).

Proposition 9.1. Suppose T = Es(q), |Q| is even and H € C. Then T is 2-elusive unless
one of the following holds:

(i) Ho = SUs(q?).4, PGUs(¢?).4, U3(¢*)?.8, or Us(q*).8.

(i) Ho=(* £+ @+ +q+1)2.(5xSLa(5) or (®*+¢" F¢° — ¢* F¢> £ ¢+ 1).30.

(iii) p = 2 and Hy is one of Q4 (¢%).(Symg x 2), 3D4(¢?).6, (¢* £ g+ 1)1.2.(3 x Uy(2)),

(¢* — ¢® +1)%.(12 0 GL2(3)) or (¢® + 1)*.(4 0 21+4). Alts.2.

(iv) Ho = Fu(q) and p = 3.

(v) Ho =8S0s(q) and p > 5.

(vi) Hp = PGL2a(q) (three classes; p > 23,29,31).
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(vii) Hop = ASL3(5) and p # 2,5.

We divide the proof of Proposition [9.1] into several cases. In view of Propositions [3.2] and
[41] we may assume that H is not a parabolic nor a subfield subgroup. We start by dealing
with the remaining subgroups arising in part (I) of Definition [1} so H = Ng(H,) and one of
the following holds:

(a) H is a maximal torus;
(b) H is reductive of maximal rank and H° is not a maximal torus;
(c) H is not a maximal rank subgroup.

Throughout, we will write V' = L(G) for the adjoint module of G. We begin by considering
the cases where H is a maximal torus of GG, noting that the possibilities for Hy are recorded
in [47, Table 5.2].

Lemma 9.2. The conclusion to Pmposition holds if H = Ng(H,) and H is a mazimal
torus of G.

Proof. We can assume that H = Ng((Tg)o), where T is the o-stable maximal torus from
the setup of Section Let W = Ng(T)/T = 2.04 (2) be the Weyl group of G.

By Lemma the o-stable torus T corresponds to a conjugacy class " in W, and the
latter determines H up to G,-conjugacy. Let n € Ng(T') be a lift of z. By Lemmas and

for the purpose of determining the 2-elusivity of T it suffices to consider involutions in
Hy = Ng(T)no = S.F, (9)

where S = T,,, and F = Cyy(z) (see Lemma [2.22)). As noted above, the possibilities for Hy
are recorded in [47, Table 5.2].
First notice that if

S=*"+@+@+tq+1) 2 oL F - FP tq+1

then |S| is odd and F' € {5 x SL2(5), Z30} has a unique class of involutions, so Lemma
implies that T is not 2-elusive.

We now consider the remaining cases. To begin with, we will assume that ¢ is odd. By [11}
Corollary 4.4], Hy contains involutions in the Dg-class, so it remains to determine whether
or not Hy also contains A E7 involutions.

Suppose S = (q — ¢)8, in which case we can assume that n € {1,w}, where w € Ng(T)
corresponds to the central involution in the Weyl group. Since w acts on ® as o — —aq, it
follows that w centralizes ho(—1) for all a € ®. Thus S = T}, contains the representatives
ha,(—1) and ha, (—1)ha,(—1) from Table[f] In particular, T' is 2-elusive.

For ¢ odd, it remains to consider the following four possibilities for .S:

(@ +q+ 1Y (P +D% (¢* -2+ 1)~

In order to describe the element n € Ng(T) in these cases (see (9)), set h; = hq,(—1) and
wj = wg,;, where 1 <4 <8, 1< j < 240 and p; is the j-th root in ® with respect to the
specific ordering of roots used by MAGMA (see Remark .

First assume S = (¢? + 1)*. By inspecting [26], we see that Hy = S.F is a non-split
extension. Moreover, [26, Table 8] gives S = T,s With n = wewswswrwizwigwswrs and a
MAGMA computation (which can be done over Q, as explained in Section shows that
a = howows and b = wywq7 centralize n. Therefore a,b € Hy. Moreover, we can use MAGMA
to show that a? and (ab)? are involutions, with fixed point spaces on V with dimensions 120
and 136, respectively. Therefore, T is 2-elusive in this case.

In each of the remaining cases (with ¢ odd), the maximal torus S has a complement R in
Hy, with explicit generators for R presented in [26, Table 7).
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For example, suppose S = (¢?+¢+1)*, which is labelled as torus 56 in [26]. By inspecting
[26, Table 7], we can take n = wjwowswswswswizoweyg and we set R = (a, b, c), where

2
a =n"wp, b= hihjywiwswigwas, ¢= hihzhshehrhgwiwoweswiiewaewagwWs2wio

and
wo = hohshrwiwawswrwaawr wWegwWi2g.

A computation with MAGMA shows that R centralizes n, so R < Hy. In addition, we can use
MAGMA to show that a® and b have order two, with fixed point spaces on V of dimensions
120 and 136 respectively, so once again T is 2-elusive. By appealing to [26, Lemma 2.5], we
deduce that the same conclusion holds when S = (¢? — ¢ + 1)*.

For q odd, the final case S = (¢* — ¢> + 1)? is very similar (this is torus 67 in [26]). Here
we take n = wowsswswrwjwiwegwegs and R = {(a, b, c), where

a=n, b= hzhshewigwiswoowii2, ¢ = hahzhswrwagwswsry.

Then R centralizes n and we have f% = SR. Moreover, a MAGMA computation shows that
ab and ¢? are involutions with fixed point spaces on V' of dimensions 120 and 136 respectively,
so T is 2-elusive.

To complete the proof, we may assume p = 2. Here Theorem [2.23] implies that Hy = S:F'
is a split extension and we may identify F' with a subgroup of (w, : a € ®). Since the
involutions in the class labelled A; are long root elements, [44, Proposition 1.13(iii)] implies
that Hy contains such an involution if and only if F' contains a reflection in W. By inspecting
[47, Table 5.2], we see that F' contains such an element if and only if Hy = (g —)%:W, so T
is not 2-elusive in all of the remaining cases. Finally, using MAGMA one can check that the
subgroup W < Eg(2) contains a representative of every FEg(2)-class of involutions and this

allows us to conclude that T is 2-elusive when S = (q — ¢€)8. O

Lemma 9.3. The conclusion to Pmpositz'on holds if H = Ng(H,) and H is a mazimal
rank subgroup.

Proof. In view of Lemma we may assume H° is reductive and not a maximal torus. By
Theorem [2.24] we see that |Q| is odd if Hy is of type Ds(q), Di(q)? or A1(q)®, so we can
exclude these cases for the remainder of the proof. Then by inspecting [47, Table 5.1], the
possibilities for H are as follows:

A1E7, Ag.2, AsFs.2, A3.4, D3.(Syms x 2), A3.GLy(3). (10)

As before, we are free to assume that H = Ng((H g)g), where H is the normalizer of a
standard subsystem subgroup

H° =(T,U, : a € ®),

and HY is a o-invariant conjugate of H. Here T is a maximal torus of G, as in the setup of
Section and @’ is a root subsystem of ®. As usual, we will denote the longest root of ®
by Q.

Recall that the Weyl group of H° can be identified with the subgroup (s, : a € ®') of W.
Then H is generated by H°, together with the elements of Ng(T) that normalize the Weyl
group of H°. In particular, H contains an element w € Ng(T) which maps to the central
involution of W. Explicitly, we can choose

W = Way Way Was War Wayg Wary WaggWarag € H,

where «; denotes the i-th positive root in ® with respect to the specific ordering of the
roots of G = Eg used by MAGMA (see Remark . Then w acts as « — —a on ®, and a
computation shows that w? = 1, so w is an involution in G.

For later use, we note that when ¢ is odd, a computation with MAGMA shows that w has
a fixed point space of dimension 120 on V. Therefore w is an involution of type Dg (Table
5) when ¢ is odd.
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Let n € Ng(T) be an element of H such that under the bijection of Lemma the
o-invariant conjugate HY corresponds to the image of n in H'(o, H/H®). Then in view of
Lemma for determining 2-elusivity it suffices to consider involutions in Hy = H,,,.

As in the proof of Lemma [8.5] we will partition the analysis according to the parity of g.
As before, we refer to [47, Table 5.1] for the precise structure of H in each case. To begin
with, we will assume ¢ is odd, and we will consider each possibility for H in turn (see (10])).

Case 1.1. H = AE7, q odd.

Suppose H = A;FE7, in which case ® has base {a1,as,...,a7} U{—ag} and Hy = H,.
Thus Hj contains the representatives hq, (—1) and hq, (—1)ha,(—1) from Table 5, and we
conclude that T is 2-elusive in this case.

Case 1.2. H = Ag.2 or A3Fg.2, q odd.

Next suppose H = Ag.2, in which case ® has base {a1,a3,y,...,as, —ag}. Moreover
H = H°:{w), so we can take n € {1,w}. Now w centralizes ho(—1) for all & € ®, s0 ho(—1) €
Hy for all @ € ®. Thus Hy contains the representatives hay (1) and ha, (—1)ha,(—1) from
Table 5 and so T is 2-elusive.

Now assume H = Ay Fg.2, in which case ® has base {a1,...,a6} U{as, —ap}. Here we
also have H = H°:(w) and once again we conclude that T is 2-elusive.

Case 1.3. H = A2.4, q odd.

Next assume H = A2.4, in which case ® has base {a1, a3, a4, as} U{as, ar, as, —ag}. We
can choose n € {1,w,z,z~ '}, where the image of x in H/H® has order 4.

If n € {1,w}, then as in Case 1.2 it is easy to see that the representatives from Table 5| are
contained in Hy, whence T is 2-elusive. Now assume n € {z,z~'}, in which case Hy = J.4
with J = SUs(¢?) or PGU5(¢?). We will prove that every involution in Hy is of type Ds.

First we consider the types of involutions in H°® = A2. There are two conjugacy classes of
involutions in each A4 factor, with representatives given by

t1 = ha, (=1), t2 = ha,(=1)ha,(-1)
in the first factor, and
tll - hoées(_l)? t,2 - hae(_l)has(_l)

in the second factor. A computation with MAGMA shows that for ¢ = 1,2 the involution
t;t; has a fixed point space of dimension 120 on V, and thus belongs to class Dg (Table .
We conclude that the involutions in H° of the form (,t) belong to the class Dg. Now an
involution in J < Hy embeds into H® as (t,t), so it follows that every involution in J is of
type Dsg.

Next we will prove that every involution in H \ H® is of type Dg. To this end, note that
w € H\ H®, so all involutions in H\ H° are contained in H°w. Since w acts on ® as o — —a,
the action of w on both Ay factors of H° = A% is via the standard inverse-transpose graph
automorphism. Hence it follows from [30, Lemma 4.4.6] that there is a unique H-class of
involutions in H°w. Since w is an involution of type Dg, it follows that every involution in
H\ H° is of type Dg. Consequently, the involutions in Hy\ J are of type Dg, so we conclude
that every involution in Hy is of type Dg, and T is not 2-elusive.

Case 1.4. H = D3.(Syms x 2), q odd.

In this case ®' has base {as, a4, a2, a5} U{ar, as, 8, —ap}, where —f is the longest root
in the Dg root subsystem with base {ao, as, ..., as, —ag}. Explicitly we have 5 = agr.

Here Hy is of type D4(q)?, Di(q?), 3D4s(q)? or 3Dy(¢?). As noted in the proof of [47,
Lemma 2.5], the image of n in H/H° = Symg x 2 is either the central involution, or it has
order 1, 3 or 6. In other words, the image of n is contained in the unique cyclic subgroup of
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order 6 in Syms x 2. A computation shows that the image of

g = Wagy Wagg Wag Wagy Warzo Warss

in the Weyl group of Eg has order 6 and it normalizes the Weyl group of H°. Another
computation shows that g is also an element of order 6 in G. Hence g € H and H°.6 = H°:(g),
so we can assume that n € (g). In particular, n centralizes g and thus g € I% = H,,.

A computation with MAGMA shows that ¢* has a fixed point space of dimension 136 onV,
so g2 is an involution of type A; E7. Moreover g centralizes t = ha,(—1)hq,(—1), so t € Hy.
Yet another computation shows that ¢ is an involution of type Dg. So we conclude that T is
2-elusive in every case.

Case 1.5. H = A3.GLy(3), q odd.

In this case ®' has base {1, as} U {as, a5} U {—agg, az} U {asg, —ap}, where agg is the
longest root in a root subsystem of type Eg. By the proof of [47, Lemma 2.5], the image
of nin H/H® = GL(3) is contained in a cyclic subgroup of order 8. Thus we can take
n € {1,w,2? z}, where the image of z has order 8 in GLy(3). Then Hy is contained in
He(z).

If n € {1,w}, then as in Case 1.2, the representatives from Table |5 are contained in ]EIVO,
and so T is 2-elusive. Now assume n € {x? 2}, in which case Hy = J.8 and J = Us(q?)? or
J = Us(q*). We will prove that every involution in Hy is of type Ds.

To this end, let ¢ € E) be an involution. If t € H®, then up to conjugacy, ¢t embeds in H°
as the image of (z, 2, z,2), (z,2,1,1) or (1,1, 2, 2), where z is an involution in As (note that
(2,2,2,2) is the only possibility when J = Us(g?)). In any case, representatives in H° for
these involutions are given by

i3 = haz(_l)has(_l)'

A computation with MAGMA shows that ¢, t9, t3 all have a fixed point space of dimension
120 on V, and so they are all of type Ds.

Suppose then that ¢t € H \ H°, in which case t € H°w. As in Case 1.3, it follows from
[30, Lemma 4.4.6] that ¢ must be H-conjugate to w. Since w is an involution of type Dg, we
conclude that every involution in Hy is of type Dg, and T is not 2-elusive.

To complete the proof, we may assume ¢ is even.
Case 2.1. H = A1E;, Ag.2 or AyFg.2, q even.

_ In each of these cases, we can use [4I] to show that H° contains a representative of each
G-class of involutions, whence T is 2-elusive.

Case 2.2. H = A2.4 or D?.(Symy x 2), q even.

First assume H = A%.4. As above, by inspecting [41] we see that H° contains a represen-
tative of each G-class of involutions and this immediately implies that 7" is 2-elusive when
Hy is of type L§(q)%. On the other hand, if Hy = SUs(¢?).4 or PGUs(¢?).4, then Hy only
has three classes of involutions, so T is not 2-elusive.

Now suppose H = D3.(Syms x 2). If Hy = Q4 (¢%).(Symg x 2) or 3D4(¢?).6, then [44]
Proposition 1.13] implies that Hy does not contain any A;-type involutions, so 7' is not
2-elusive. Now assume Hy = QF (¢)%.(Symg x 2) or 3D4(q)?.6. There are two classes of
involutions in 3Dy4(q), which embed in the algebraic group D, as involutions of type as or c4
(in terms of the notation in [2]). So in both cases, by considering the natural embedding of
Hy in D%, we deduce that Hy contains involutions of the form

(aQ?l)a (a27a2)7 (0471)7 (64704)7
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which embed in Dg < G as involutions of type as, a4, ¢4 and cg. With respect to Lawther’s
notation for involution classes in Dg (see [41], Table 8]), these elements are contained in the
respective Dg-classes Ay, 241, A1 + Dy and 3A; + Dy. Then by inspecting [41) Section 4.13]
we deduce that the corresponding G-classes are Ay, A%, A3 and A}, respectively, and thus
T is 2-elusive.

Case 2.5. H = A3.G1y(3), q even.

First assume Hy = Us(¢®)*.8 or Us(¢*).8. In view of [44, Proposition 1.13] and the
embedding of Hy in H, it is easy to see that Hy does not contain any Aj-type involutions
and thus 7T is not 2-elusive. Now assume Hj is of type L§(¢)*. We may embed

H° = AQ(A%) < Ay By < G

and we note that the maximal rank subgroup Ag’ < Fjg contains a representative of all three
involution classes in Fg. Then by considering the embedding of AsEg in G (see [41], Section
4.15]) we deduce that H° contains a representative of all four G-classes of involutions. This
implies that T is 2-elusive and the proof of the lemma is complete. Il

Lemma 9.4. The conclusion to Pmposition holds if H = Ng(H,) and H is a positive-
dimensional non-mazimal rank subgroup of G.

Proof. According to [49, Theorem 1], the possibilities for H are as follows:

GoFy, A1G2.2(p>3), Fy(p=3), A1A2.2(p > 5),

11
By (p = 5), A1 (3 classes; p > 23,29,31), A; x Symg (p = 7). ()

Note that we have included the special case (H,p) = (Fjy,3) described in [22], which was
incorrectly omitted in [49].

We now consider each possibility for H in and we will begin by assuming H° = A;. If
H = A; then Hy = PGLy(q) and T is not 2-elusive since H has a unique class of involutions.
So we may assume H = A; x Symg, in which case Hy = PGLa(q) x Sym; and p > 7. We
claim that T is 2-elusive.

To see this, first note that the Syms factor contains involutions of type A;E7 (see [11]
Lemma 5.6]). Let z € PGLa(q) < Hy be the image of (—1;,I;) € GL2(q). Then as explained
in the proof of [T, Lemma 5.6], we can embed z in a maximal rank subgroup J = A2 of G,
where z = 2129 and each z; € Ay acts as (—I2, I3) on the natural module for A4. Now

V 1 J=L(A3)/(UL @ A2(Us))/(A2(Uy) @ U3)/(A*(U1)* @ Us)/(Uy @ A%(Us)*)

where Uy and Uz are the natural modules for the two A4 factors of J (see [68, Table 12.5]).
We calculate that z has a 24-dimensional 1-eigenspace on each summand, so dim Cy (z) = 120
and therefore z is a Dg-type involution. This justifies the claim.

Now suppose H = Bs, so Hy = SO5(q), p > 5 and [68, Table 12.5] gives

V | By = VB, (3w1 + 2w2) / VB, (6w2)/ VB, (2w2).

The involutions in Hy are of type (—1I4, 1) and (—Is, I3), which we can write as i} (—1) and
wy, with respect to a set of simple roots {1, f2} for By. A calculation with MAGMA (see
Section shows that both involutions have trace —8 on V. Therefore, every involution in
Hy is of type Dg and thus T is not 2-elusive.

Next assume H = A1 A45.2, so p > 5. By inspecting [L1, Table 18], we see that Hy contains
involutions of type A;E7. Let t = (z,1) € La(q) x L§(¢) < Hp be an involution. Now z has
trace (—1)¢ on the Weyl module V4, (2¢) and so by considering the restriction of V' to H°
(see [68] Table 12.5]) we calculate that dim Cy/(¢t) = 120 and thus ¢ is an involution of type
Ds.

The case H = A1G2.2 is very similar. Here p > 3 and the socle of Hy is either La(q) x
G2(q)? or La(q) x Ga(q?). By [11], Table 18], Hy contains involutions of type A1 FE7. Let t be
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an involution in the La(q) factor of soc(Hp). Then by considering the restriction of V to H®
we calculate that dim Cy (t) = 120 and thus T is 2-elusive.

Next suppose that H = G2 F}y, so Hy = Ga(q) x F4(q). If p = 2 then the information in [41]
Table 38] immediately implies that 7" is 2-elusive, so let us assume p > 3. By inspecting [11]
Table 18], we see that Hy contains involutions of type A1 E7. Let t be a By-type involution
in the Fy(q) factor and note that ¢ has trace —6 and 20 on the respective Weyl modules
VE, (04) and Vg, (61). From [68, Table 12.5] we see that

VI GaFy = L(G2Fy)/(Va, (w1) @ VR, (64))/(Va, (w2) ® 0)/(0 @ VE,(61))

and this allows us to deduce that dim Cy/ () = 120. Therefore, ¢ is an involution of type Dg
and we conclude that 7' is 2-elusive.

To complete the proof, it remains to consider the special case arising in [22], where H = F)
and p = 3. Let t1,t2 € Hy = Fy(q) be representatives of the two Hy-classes of involutions as
in Table say t1 = hjy (—1) and to = hj (—1), where Cp(t1) :_A103 and Cj(t2) = Bs. In
[22, Section 3], expressions for the generators xj (c), hjs (c) of H are presented in terms of
the generators for G, namely

t1 = hj, (=1) = hay(=1)hag (—1),
lo = h,ﬁ4(_1) = hal(_1)has(_1)hfx4(_1)ha5(_1)ha7(_1)'

With the aid of MAGMA (see Section [2.4)), we can use these expressions to show that both
t1 and to have trace —8 on V. Therefore, every involution in Hy is of type Dg and thus T is
not 2-elusive. O

In order to complete the proof of Proposition 9.1} it just remains to consider the groups
where H is either an exotic local subgroup or the Borovik subgroup.

Lemma 9.5. The conclusion to Proposition [9.1] holds if H is an ezotic local subgroup.

Proof. The exotic local subgroups were classified in [13], and from [I3] Theorem 1] we see
that there are two possibilities:

(a) Ho =5°SL3(5), p # 2,5 and q € {p,p*};
(b) Hy=25T1015(2) and g =p > 3.

If Hy = 53.SL3(5), then p # 2,5 and it follows from [13, Lemma 5.2] that Hy is isomorphic
to the affine group ASL3(5). This implies that Hy has a unique class of involutions and thus
T is not 2-elusive.

Now assume Hy = 25710.L5(2). Here Hy = Np(E), where E = 25 is elementary abelian,
and we inspect the proof of [I3, Lemma 2.17]. As explained in “Part A” of the proof, every
involution in F is of type Dg. And in “Part B” we see that E is centralized by an element
e1 € T (in the notation of [I3]), which is of type A1 E7. Therefore, T is 2-elusive. O

Lemma 9.6. Suppose T = Eg(q), p > 7 and Hy = (Alts x Symg).2 is the Borovik subgroup.
Then T s 2-elusive.

Proof. We will refer to Borovik’s original paper [4] for various properties of this subgroup.
Write Hy = (L1 X L2.2).2, where Ly = Alts and Ly = Altg. By [4, Lemma 6.8], every
involution in L; and Ls is of type Dsg.

In order to establish the existence of involutions in the A E7; class, let z € L1 be an element
of order 3 and set J = C(2). Following [4, p.177], we have J = Ag and Ly acts irreducibly
on the natural module U for J = Ag. Therefore, Ly.2 = Symg also acts irreducibly on U and
from the character table of Symg we deduce that a transposition x € L9.2 acts as (—I, I3)
on U. Finally, we observe that

VL J=L(J)/AU)/A(U)
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(see [68, Table 12.5], noting that A5 should be Ag in the case labelled 62) and we calculate
that = has trace 8 on each summand. Therefore, z has trace 24 on V and we conclude that
x is an involution of type A FEr. O

To complete the proof of Theorem [3| we may assume 7' = Fg(q) and H € S, in which case
H is almost simple with socle S. Recall that Lie(p) denotes the set of simple groups of Lie
type defined over a field of characteristic p.

We begin by considering the groups with S ¢ Lie(p). Recall from Remark[2.16{g) that S is
one of the following (it remains an open problem to determine the precise list of possibilities
for S):

(a) S=Altg (p#5), Alty (p #2), M11 (p=3,11), J3 (p =2) or Th (p = 3);
(b) S = La(q) with ¢’ € {7,8,11,13,16,17, 19, 25,29, 31,32, 41,49, 61}; or
(c) S =L3(3), L3(5), La(5), Us(3), Us(2), PSp,(5), 2B2(8), 2B2(32), 3D4(2) or 2F4(2)".

Proposition 9.7. Suppose T' = FE3(q), || is even and H € S with socle S & Lie(p). Then
T is 2-elusive only if one of the following holds:

(i) Hop = Symg, Altg.2 =2 PGL2(9) or Altg.22, with p # 2,5.
(ii) Ho = PGLa(r) with (r,p) = (7,3), (11,5) or (13,7).
(iii) Ho = L3(3).2 and p = 13.

Proof. We will divide the proof into a number of separate cases, according to the socle S.

As usual, let V = £L(G) be the adjoint module.
Case 1. S = Alt,, n > 5.

First assume S = Alt, is an alternating group. It is not known whether or not 7' has
a maximal subgroup with socle S, but the main theorem of [21I] tells us that this can only
happen if S = Altg and p # 5, or if S = Alt; and p > 3. Then by considering the number of
conjugacy classes of involutions in Hy, it follows that 7" is 2-elusive only if

(a) Hy € {Symg, PGL2(9), Altg.22} and p # 2, 5; or
(b) Hy = Sym; and p > 3.

The possibilities in (a) are recorded in part (i) of the proposition. As a comment, we
observe that computations with MAGMA show that for all the groups listed in (a), there
are several feasible characters with property (P) such that Hj intersects every T-class of
involutions, and also several such that every involution Hy belongs to the same T-class. So
this case remains inconclusive.

Now assume Hy = Symy, so G =T and H = Sym;. Then by inspecting [21, Theorem 4],
we see that the composition factors of V' | S are as follows:

15%,13%,10°, (10%)3, 110 p=3

354, 154,10, 10%, 82, 62 p=>5

353,21,14,,142,107, 5% or
354,142,106, 5
354,154,142 10, 10* p>11.

p=7T

Using the computational approach described in Section we can work with Litterick’s
MAGMA code in [56] to find all the feasible characters of Sym; on V. As a consequence, we
find that if p & {3, 7}, then Sym; does not have a feasible character that is consistent with
the composition factors of V' | S given above.

Finally, for p € {3,7} we claim that every involution in Hy is of type Dg and thus T is
not 2-elusive. Suppose p = 3. Using MAGMA, we find that the only feasible character of
Hy = Sym,, which is consistent with V' | .S, has composition factors

20°,153, 154, 134,137, 15, 17,
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Here V' | S has property (P) and the composition factors of V' | S are described in the row
labelled 1) in [55, Table 6.250]. In any case, with these composition factors every involution
in Hy has trace —8 on V' and the claim follows. Similarly, if p = 7 then there are only three
feasible characters of Hy = Sym; that are consistent with V' | .S, namely

353,142,108, 5,
352, 35p, 21y, 14, 14¢, 144,102,103, 54, 55
352,352,142,104,102, 52, 52.

brYar

Here the respective composition factors of V' | S are as in entries 3), 2), 3) of [55, Table
6.248]. Once again, for each possibility we calculate that every involution in Hj is of type
Dg and the proof of the claim is complete.

Case 2. S is a sporadic group.

Here the possibilities for S can be read off from [51, Table 10.2] and by applying [55]
Theorem 8] we deduce that S = M;j; (with p = 3 or 11), Th (p = 3) or J3 (p = 2). In the
first two cases, H = Hy = S has a unique class of involutions and thus 7' is not 2-elusive.
The same conclusion holds when S = J3 and p = 2 since Hy has at most two classes of
involutions, whereas T has four.

Case 3. S is a group of Lie type.

By inspecting [51, Tables 10.3, 10.4] and [55, Theorem 8] we see that S is one of the
following:

(a) S =Lo(q') with ¢ € {7,8,11,13,16,17, 19,25, 29, 31,32, 41,49, 61};
(b) S = L3(3>7 L3(5), U3(3> (p - 2,7), U4(2)7 3D4(2)7 2F4(2>/ (p =3), 232(8)7 L4(5)
(p=2), PSpy(5) (p=2) or 2B2(32) (p = 5).
Note that in (a) we have excluded the case ¢’ =9, since La(9) = Altg.

Case 3(a). S =La(q).

We begin by considering the groups in (a). In each case, any almost simple group with
socle S has at most 3 classes of involutions, so we can assume that p is odd. In addition, we
may assume Hy # S since S has a unique class of involutions. In particular, if ¢ is a prime,
then Hy = PGLo(q’) is the only possibility. Note that if ¢’ € {8,32} then Hj has a unique
class of involutions, so 1" is not 2-elusive in these cases. For the remainder, we may assume
q #8,32.

To handle the remaining cases, we proceed as in Case 1, using Litterick [56] to analyze
feasible characters with the aid of MAGMA, as discussed in Section [2.7] Recall the definition
of property (P) (see Definition and recall that Hy € S only if there exists a feasible
character of Hy on V' | Hy with property (P). For the remainder of the proof, we will refer
to such a character as a compatible feasible character.

First assume ¢’ is a prime, in which case we may assume Hy = PGLa(q’). If we take
q € {17,29,41,61}, then one can check that Hy has no compatible feasible characters. Now
assume ¢ € {7,11,13,19,31}. In these cases, we have used MAGMA to determine all the
compatible feasible characters (see Example and by computing traces we deduce that
T is 2-elusive only if (Ho, p) is one of the following:

(PGLy(7),3), (PGLy(11),5), (PGL4(13),7),

which correspond to the cases listed in part (ii) of the proposition. Therefore, to complete
our analysis of the groups with S = La(¢’), we may assume ¢’ € {16,25,49}. In each case,
we claim that 7" is not 2-elusive.

Suppose ¢’ = 16, in which case Hy = Lg(16).2 or Hy = Aut(S) = PI'Ly(16) = L2(16).4.
Using MAGMA to calculate all the feasible characters of Ly(16).2 on V', we deduce that every
involution in Ly (16).2 has trace —8 on V. Since every involution in Aut(S) is contained in
L5(16).2, we conclude that T is not 2-elusive when ¢’ = 16.
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Next assume ¢’ = 25. Once again we claim that every involution in Hy is of type Ds.
Since every involution in Aut(.S) is contained in PGLy(25) or PXLy(25), we may assume that
Hy = 5.2 is one of these two groups. For Hy = PX15(25) we find that Hy has a compatible
feasible character if and only if p = 13, in which case every involution in Hy has trace —8
on V and the claim follows. And a very similar argument gives the same conclusion when
Hy = PGLy(25) (here Hy has compatible feasible characters for all p > 3 with p # 5).

Finally, suppose ¢’ = 49. As in the previous case, we may assume Hy = PGL3(49) or
P¥L2(49), and with the aid of MAGMA we can show that Hjy does not admit a compatible
feasible character.

Case 3(b). The remaining Lie type groups.

To complete the proof of the proposition, we may assume S is one of the groups in (b).
Just by considering the number of classes of involutions in Hy we see that T is 2-elusive only
if S =U4(2) (p=5),3D4(2) or 2F4(2) (p = 3), or if Hy is one of the following:

L3(3).2 (p 2 5), L3(5)2 (p =2 3), Us(3)-2 (p=7),

L4(5).2* (p = 2), La(5).Ds (p = 2), PSpy(5).2 (p = 2).

We now need to consider each of these possibilities in turn.

First assume Hy = L3(3).2 and p > 5, noting that Hy has two classes of involutions. If
p # 13, then p does not divide |Hp|. Computing the feasible characters of Hy with MAGMA
shows that every feasible character of Hy on V has a trivial composition factor, and so there
are no compatible feasible characters in this case (see Lemma [2.26). However, the same
approach is inconclusive for p = 13. Indeed, there are four feasible characters and we find
that T is 2-elusive with respect to exactly three of them.

Now suppose Hy = U3(3).2 and p = 7. Here we use MAGMA to determine the list of
compatible feasible characters and in each case we find that every involution in Hy is of type
Dg. Hence, T is not 2-elusive. We can also eliminate the case Hy = L3(5).2 with p > 3 since
Hj does not admit a compatible feasible character.

Next assume S = Uy(2) and p > 5. If Hy = S, then by examining the feasible characters
labelled (P) in [55), Tables 6.334, 6.335], and by inspecting the Brauer character table of Hy
(see [34, pp.60-62]), we conclude that every involution in Hy has trace —8 on V. Therefore
T is not 2-elusive when Hy = S. Now assume Hy = Uy(2).2. Here we determine that H
has a unique compatible feasible character and by calculating traces we conclude once again
that T is not 2-elusive.

For S = 3D4(2) we first note that Aut(S) = S.3 and so every involution in Hy is contained
in S. Now S has two classes of involutions, and by inspecting the compatible feasible
characters in [55, Tables 6.343, 6.344], we deduce that every involution in Hy is of type Dsg.
Therefore, T is not 2-elusive in this case.

Next suppose S = 2F4(2) with p = 3, noting that every involution in Hp is contained
in S. For Hy = Aut(S) = 5.2 we use MAGMA to show that Hp has no compatible feasible
characters, so we must have Hy = S. By inspecting [55, Table 6.347] we deduce that every
compatible feasible character of Hy corresponds to an embedding with the property that
V' | Hp has composition factors 124, and 124, (note that the label (P) has been incorrectly
omitted in the first row of [55, Table 6.347]). Then both classes of involutions in Hy have
trace —8 on V' and thus T is not 2-elusive.

Next assume S = L4(5) and p = 2. First observe that Hy has at most 3 classes of
involutions, unless Hy = S.22 or Hy = Aut(S) = S.Dg. In particular, we may assume Hy
contains J = 5.2, which is the extension isomorphic to the unique subgroup of index 2 in
PGL4(5). In addition, S acts irreducibly on V' (see [55, Table 6.329]), so the same must be
true for Hy and J = S.2. As discussed in Example 2:33] every 248-dimensional irreducible
K[J]-module W can be constructed with MAGMA. In this way, we find that there is an
involution z € J with dim Cy () = 124. But since there is no such involution in T, it



54 TIMOTHY C. BURNESS AND MIKKO KORHONEN

w dim Cw(t1) dim Cw(tg) dim Cyy (t3) dim Cw(t4)

1 1 1 1 1
24 12 16 12 12
40 26 24 22 20
64 38 36 32 34

1044 65 60 55 54
104y, 52 56 56 52

TABLE 11. The case T = Es(q), p = 2, soc(H) = PSp,(5)

follows that J does not embed into 7. We conclude that T is not 2-elusive if S = L4(5) and
p=2.

Finally, let us assume S = PSp,(5) and p = 2. Since S has only two classes of involutions,
we may assume Hy = Aut(S) = 5.2, in which case Hy has four such classes, with represen-
tatives ¢, ta,ts3 and t4 such that |Cp,(t;)| = 31200, 28800, 1440 and 960 for i = 1,2,3 and
4, respectively. We calculate that Hy has 6 absolutely irreducible modules of dimension at
most 248 in characteristic p = 2. In Table we record dim Cyy (t;) for each such module
W and each involution ;.

Using MAGMA to compute the feasible characters of Hy, we see that there are two possi-
bilities for the composition factors of V' | Hy, namely

1042,40 and 64,40% 247,15,

(As noted in Remark (iii) on p.316 of [60], if ¢ = 2 then V' | Hy has composition factors
1042,40.) If we write Uy, ..., Uy for the composition factors in each case, then we can read
off dim Cy;, (t;) from Table 11 and the trivial bound

k
dim Cy (t;) <) _ dim Cy; (1)
j=1

implies that dim Cy (¢;) < 156 for all . This means that Hy does not contain any A;-type
involutions (since dim Cy (y) = 190 for each involution y in the class A;) and thus 7" is not
2-elusive. g

Finally, in order to complete the proof of Theorem (3| we may assume T = Fg(q) and
H € S is an almost simple subgroup with socle S € Lie(p).

Proposition 9.8. Suppose T = Es(q), || is even, and H € S with socle S € Lie(p).
Then T is 2-elusive only if S = La(qo), where p is odd and qo is a power of p in the range
7 < qo < 2621.

Proof. As discussed in Remark [2.16(g), it remains an open problem to determine the max-
imal subgroups of this form (even up to isomorphism). However, there has been significant
progress towards this goal and at the time of writing, the possibilities for S are as follows:

(a) S =La(go) with 7 < qo < (2,¢—1)-1312; or
(b) S =15(3), L§(4), Us3(8), U4(2) or 2By(8).

Let us also note that there is not a single known example of a maximal subgroup H € S of
this form.

First assume S = La(qo), where qo = p® < (2,¢ — 1) - 1312. If p = 2 then ¢o < 2!Y and
it is easy to check that Hy has at most three conjugacy classes of involutions, hence T is
not 2-elusive. Now assume p is odd, so we have 7 < gg < 2621 as in the statement of the
proposition (note that there is no maximal subgroup H € S with socle La(5) = Alts by [21]
Theorem 2]). Of course, if Hy = S then Hj has a unique class of involutions and 7T is not
2-elusive. So we may assume Hy # S has at least two classes of involutions (for example, we
could have Hy = PGL32(qp)) but we have not been able to rule out any of these possibilities.
One of the main obstacles here is the very large number of possibilities for the composition
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factors of V' | Hy, which typically leads to a situation where there exists a compatible feasible
character for which there are involutions x,y € Hg with respective traces —8 and 24 on V.
So to resolve this situation, we would essentially have to rule out the existence of such a
maximal subgroup, which seems to be a very difficult problem. There is important ongoing
work of Craven [16] in this direction, but there is still a lot more to do.

To complete the proof, let us turn to the cases in (b). If S = L§(3) then T is 2-elusive
only if Hy = 5.2, in which case both T and Hy have two classes of involutions. Similarly, if
p = 2 then we may assume Hy = L3(4).22, L3(4).D12 or Uy(2).2.

Suppose Hy = Lj3(3).2 and note that the 3-modular Brauer character table of Hy is
available in GAP [27]. By inspecting [I7, Proposition 8.1(2)] we deduce that the set of
composition factors of V | Hy is one of the following:

(30°,12,78,63,11%), (303,123, 719,67, 119, (30%,27,12,7%,6*,1%)

noting that Hy has two irreducible modules over Fs of dimension 7, and also two of dimen-
sion 27. For each possibility, by inspecting the Brauer character table, we deduce that the
involutions in S have trace —8 on V, so they are of type Dg. However, if z € Hp \ S is
an involution, then the trace of x on V is neither —8 nor 24, no matter which modules of
dimension 7 or 27 we choose. This means that Hy = S is the only possibility and so T is not
2-elusive in this case.

A very similar argument applies when Hy = Us(3).2. Here [17, Proposition 8.2(1)] implies
that the set of composition factors of V | Hy is one of the following:

(30%,123,7%,6°,1%), (30%, 27,122, 75,65, 1°).
Then by inspecting the 3-modular Brauer character table of Hy we deduce that the invo-
lutions in S are of type Dg, but the trace of an involution in Hy \ S is incompatible with
containment in 7. So as above, this case can be discarded.

Finally, let us assume p = 2 and Hy = L3(4).2%, L3(4).D12 or U4(2).2. Suppose Hy =
U4(2).2, in which case Hy has four conjugacy classes of involutions. The 2-modular Brauer
character table of Hy is available in GAP and by applying [17, Proposition 7.2] we deduce
that V' | Hyp has composition factors

40, 14,87, 6%, 1°.
Let « € Hy be an involution. We can use MAGMA to compute dim Cy; (z) for each composi-
tion factor V; of V' | Hy and by summing these dimensions we deduce that dim Cy (z) < 158
for every involution z € Hg. So this implies that Hg does not contain any involutions in the
T-class A1 and thus T is not 2-elusive.

An entirely similar argument, applying [17, Proposition 8.1], shows that the same conclu-
sion holds when Hy = L3(4).2% or L3(4).D12 (in fact, we find that dim Cy (x) < 144 for every
involution in # € Hy, so there are no A; or A? involutions in Hp). O

This completes the proof of Theorem 3

10. THE TABLES

In this final section we present Tables [A] [B] and [C] from Theorem [3] Note that in Table
with T = Fy(q) and p = 2, we write “graphs” to indicate that H is maximal only if G
contains a graph (or graph-field) automorphism of 7'
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T Hy Conditions
2F4(q)" 3172:Dg, 13:6 q=2,G=T2
PGUs(q).2, SUs(q)-2, (g + 1)%:GL2(3) qg=>8
(¢? £ v2¢3 + ¢+ 2q + 1):12 q>8
3Da(q) (¢* —g®>+1)4, (¢®> £ q+1)2.SL2(3) p=2
PGL5(q) p=2,q>4,q=c¢e(mod 3)
Fi(q)  3Da(q)3 p>3
PGL2(q) p>13
G2(q) p="7
ASL3(3) g=p=5
2Fy(qo0) ¢=a2, 90 =2%a>1o0dd
(SL5(q) o SL5(q))-e-2 p=2e=(3,qg—¢)
Sp4(q?)-2 p =2, graphs
(¢ +eq + 1)2.(3 x SL2(3)) p =2, graphs, ¢ > 4 if e = —
(¢* — q% +1).12, (¢? + 1)2.(SL2(3):4) p = 2, graphs, ¢ > 4

E5(q)  L5(¢%)-3, Ga(q), (®Da(q) x (¢*> +eq+1)/e).3
(¢* +eq+1)3/e.(3172.5L2(3))

PGL? (9)-2 p =5, q=c(mod 4)

33+3:SL3(3) g=p>=5,q=c¢(mod 3)
E7(q) P, Ps, Pr q = 3 (mod 4)

(L2(¢®) x 3D4(q)).3, La(q").7

La(q) x PGL2(q), PGLZE (¢).2 p=5

3D4(q).3 p>3

La(q) 2 classes; p > 17,19

Es(q)  SUs(¢?)4, PGUs(¢?).4, Us(¢?)?.8, Us(q*).8
(¢* £ % +¢® +q+1)2.(5 x SLa(5))
(®+qd"F¢° —q¢* Fq® £q+1).30
Qf (¢?)-(Symg x 2), °Da(q?)6, (¢* + ¢+ 1)1.2.(3 x Us(2)) p=2
(¢* — ¢ +1)2.(12 0 GL2(3)), (g% + 1)*.(4 0 21 T4). Altg.2 p=2

(¢ — g+ 1)*.2.3 x Us(2)) p=2q>4

Fa(q) p=3

SOs5(q) p=5

PGL2(q) 3 classes; p > 23,29, 31
ASL3(5) p#2,5

TABLE A. The pairs (T, Ho) in Theorem [3|i): H € C, T is not 2-elusive

T Hy Conditions
Ga(q)"  J2 g=4
J1 qg=11

Us(3)2 qg=p25
L2(13) qg=p==£1,43,£4 (mod 13), or

q=p% p#2and p==£2,45 46 (mod 13)
L2(8) g=p=+£1(mod?9), or

q=p3 p#2and p==£2 44 (mod 9)

2Fy(q)! Altg.22 ¢=2,G=T

Fy(q) L4(3)22 ¢=2
3D4(2).3 q=p=3

Eg(q)  2F4(2) g=p=c(mod4),G=T
Q7(3) (e,9) = (—,2),G=T.2
Figp (,9)=(=2)

TABLE B. The pairs (T, Hy) in Theorem [3{ii): H € S, T is 2-elusive
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Hy Conditions

Symg, Altg.2 = PGL2(9), Altg.22 p #2,5

PGLa(r) (r,p) = (7,3), (11,5), (13,7)
L3(3).2 p=13

TABLE C. The subgroups Hy in Theorem [3[(iii): T = Eg(q), H € S
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