‘Regularization and variable selection via the elastic net’
Hui Zou, Trevor Hastie

Presented by: James Pope and Michal Kozlowski
Background

• Ordinary Least Squares:

\[\hat{\beta}^{OLS} = \arg \min \| y - X\beta \|^2 \]

• Two important aspects to evaluate quality of model:
 • Accuracy of prediction on future data – good generalisation
 • Interpretation of the model – simpler model often preferred
Background

Bias – Variance trade-off
Ridge Regression and LASSO

• Penalization methods to resolve this:
 • Ridge Regression – minimisation of residual sum of squares, bound on the L_2 norm

$$\hat{\beta}_{ridge} = \arg \min_{\beta} \|y - X\beta\|_2^2 + \lambda\|\beta\|_2^2$$

• Lasso – penalised least squares, imposing L_1 penalty – shrinkage and variable selection at once

$$\hat{\beta}_{lasso} = \arg \min_{\beta} \|y - X\beta\|_2^2 + \lambda\|\beta\|_1$$
Ridge Regression and LASSO
Ridge Regression and LASSO

- LASSO is limited however:
 - In the p>n case, the lasso selects at most n variables before it saturates.
 - If there is a group of highly correlated independent variables, LASSO chooses one and discards the others.
Naïve Elastic Net

• At high dimensional data, there can be variables which are highly correlated with each other – multicollinearity.

• Methods up to now failed to perform grouped selection.

• Can be thought of as a hybrid of ridge and LASSO:

\[
\hat{\beta}_{elastic} = \arg\min_{\beta} \| y - X\beta \|_2^2 + \lambda_2 \|\beta\|_2^2 + \lambda_1 \|\beta\|_1
\]
Naïve Elastic Net

If $\alpha = 1$, we have ridge

If $\alpha = 0$, we have LASSO

If $0 < \alpha < 1$ we have elastic net

In this figure $\alpha = 0.5$

\[
J(\beta) = \alpha \|\beta\|^2 + (1-\alpha) \|\beta\|_1
\]

\[
\alpha = \frac{\lambda_2}{\lambda_1 + \lambda_2}
\]
Naïve Elastic Net is insufficient

$$\hat{\beta}_{\text{elastic}} = \arg \min \| y - X\beta \|_2^2 + \lambda_2 \| \beta \|_2^2 + \lambda_1 \| \beta \|_1$$

- The Naïve EN estimator is a two-stage procedure:
 - For each fixed λ_2, we first find the ridge coefficient $\lambda_2 \| \beta \|_2^2$ and then perform LASSO shrinkage $\lambda_1 \| \beta \|_1$

- We effectively perform double shrinkage!

- Extra bias, no variance reduction...
Elastic Net with scaling correction

- Correct it, by introducing the quadratic penalty. Given augmented data \((\mathbf{y}^*, \mathbf{X}^*)\), naïve net solves the lasso problem:

\[
\hat{\beta}^* = \arg \min_{\beta^*} |\mathbf{y}^* - \mathbf{X}^* \beta^*|^2 + \frac{\lambda_1}{\sqrt{1 + \lambda_2}} |\beta^*|_1
\]

- Corrected estimates defined by:

\[
\hat{\beta} (\text{elastic net}) = \sqrt{1 + \lambda_2} \hat{\beta}^*
\]

- Naïve net can be shown to be \(\hat{\beta} (\text{naïve elastic net}) = \{1/\sqrt{1 + \lambda_2}\} \hat{\beta}^*\); thus:

\[
\hat{\beta} (\text{elastic net}) = (1 + \lambda_2) \hat{\beta} (\text{naïve elastic net})
\]

- That way, we retain the grouping effect, and perform shrinkage once!
Elastic Net

- Elastic Net estimate

L1 Norm: Sparsity inducing
L2 Norm: Weight sharing
L1 + L2 Norm: Compromise... Two parameters...
Univariate Soft Thresholding

• Consider that when $\lambda_2 = 0$, elastic net effectively becomes LASSO

• Special case of elastic net, when $\lambda_2 \to \infty$

• Elastic net applies soft thresholding on univariate coefficients.

• UST ignores the dependence between predictors, and treats them as independent variables.

• Used for significance analysis of microarrays (Tusher, 2001)

• Elastic net bridges the gap between the LASSO and UST.
LARS-EN – Elastic Net Computation

• First proposed as LARS by Efron et al., 2004, expanded in this paper
• Resembles forward stepwise regression.
• The solution path is piecewise linear.
• Given a fixed λ_2, we can solve the entire ENet solution path!
 • At step k, update Cholesky factorisation of $X_{A_{k-1}}^TX_{A_{k-1}} + \lambda_2I$
 • Record the non-zero coefficients at each LARS-EN step

• Not necessary to run it all the way to the end for $p>>n$!
(early stopping)
Summary on Elastic Net

• Ridge regression fails to choose any variables. Either all or none.

• LASSO solves this, but disregards clusters of highly correlated data. It favours a single variable.

• Elastic net is a good compromise between the two.
Elastic Net Evaluation

• Study: Prostate Cancer Data
• Simulation A: To evaluate prediction performance (Lasso)
• Simulation B: To evaluate feature selection and grouping performance
• Study: Leukaemia Data (p>>n)
Study: Prostate Cancer Data

• Eight clinical measures as predictors
 1. Cancer volume
 2. Prostate weight
 3. Age
 4. Benign prostatic hyperplasia
 5. Seminal vesicle invasion
 6. Capsular penetration
 7. Gleason score
 8. Gleason score 4/5

• The response is the prostate-specific antigen (l- PSA)

• Data divided into training (67 observations) and test (30 observations)
 • Compared methods OLS, Ridge, Lasso, Naïve Elastic Net, Elastic Net
 • Used tenfold CV on training to determine model tuning parameters.
Study: Methods Prediction Compared

- For $\lambda = 1000$, this essentially becomes UST (Why 1000?)
 - (previously $\beta_{\hat{\text{hat}}}(\infty)$, i.e. where $\lambda_2 \rightarrow \infty$)
- Elastic Net dominates Lasso, Lasso hurt by high correlation (e.g. 7, and 8)

<table>
<thead>
<tr>
<th>Method</th>
<th>Parameter(s)</th>
<th>Test mean-squared error</th>
<th>Variables selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLS</td>
<td></td>
<td>0.586 (0.184)</td>
<td>All</td>
</tr>
<tr>
<td>Ridge regression</td>
<td>$\lambda = 1$</td>
<td>0.566 (0.188)</td>
<td>All</td>
</tr>
<tr>
<td>Lasso</td>
<td>$s = 0.39$</td>
<td>0.499 (0.161)</td>
<td>(1,2,4,5,8)</td>
</tr>
<tr>
<td>Naïve elastic net</td>
<td>$\lambda = 1$, $s = 1$</td>
<td>0.566 (0.188)</td>
<td>All</td>
</tr>
<tr>
<td>Elastic net</td>
<td>$\lambda = 1000$, $s = 0.26$</td>
<td>0.381 (0.105)</td>
<td>(1,2,5,6,8)</td>
</tr>
</tbody>
</table>
Simulation A

• Purpose to show that elastic net dominates lasso.
 • Prediction accuracy
 • Variable selection

• Simulate using model:

\[y = X \beta + \sigma \varepsilon, \; \varepsilon \sim N(0,1) \]

• Four Examples (first three from Lasso), training / validation / test

1. 50 data sets, 20/20/200, 8 predictors $\beta = \{3,1.5,0,0,2,0,0,0\}$, $\sigma = 3$
 Pairwise correlation between x_i and x_j corr(i,j)=$0.5^{|i-j|}$

2. Same as 1, except $\beta = \{0.85,0.85,...,0.85\}$

3. 50 data sets, 100/100/400, 40 predictors, $\beta = \{10x0,10x2,10x0,10x2\}$, $\sigma = 15$
 Pairwise correlation between x_i and x_j corr(i,j)=0.5
Simulation A: Example 4

• Example specifically designed to show grouping selection
 4. 50 data sets, 50/50/400 observations
 40 predictors $\beta = \{15 \times 3, 25 \times 0\}$, $\sigma = 15$
 $x_i = Z_1 + \text{noise}, \ i = 1, \ldots, 5$
 $x_i = Z_2 + \text{noise}, \ i = 6, \ldots, 10$
 $x_i = Z_3 + \text{noise}, \ i = 11, \ldots, 15$
 $x_i = \text{noise}, \ i = 16, \ldots, 40$

• In this model there are three important groups
 • Ideally would select 15 features and reject 25 noise features
Simulation A: Results

- Elastic net dominates Lasso (under collinearity).
- But in some cases worse than Ridge or Naïve!

Table 2. Median mean-squared errors for the simulated examples and four methods based on 50 replications†

<table>
<thead>
<tr>
<th>Method</th>
<th>Example 1</th>
<th>Example 2</th>
<th>Example 3</th>
<th>Example 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lasso</td>
<td>3.06 (0.31)</td>
<td>3.87 (0.38)</td>
<td>65.0 (2.82)</td>
<td>46.6 (3.96)</td>
</tr>
<tr>
<td>Elastic net</td>
<td>2.51 (0.29)</td>
<td>3.16 (0.27)</td>
<td>56.6 (1.75)</td>
<td>34.5 (1.64)</td>
</tr>
<tr>
<td>Ridge regression</td>
<td>4.49 (0.46)</td>
<td>2.84 (0.27)</td>
<td>39.5 (1.80)</td>
<td>64.5 (4.78)</td>
</tr>
<tr>
<td>Naïve elastic net</td>
<td>5.70 (0.41)</td>
<td>2.73 (0.23)</td>
<td>41.0 (2.13)</td>
<td>45.9 (3.72)</td>
</tr>
</tbody>
</table>

†The numbers in parentheses are the corresponding standard errors (of the medians) estimated by using the bootstrap with \(B = 500 \) resamplings on the 50 mean-squared errors.
Simulation A (Fig.4): Error Distribution

- Paper does not comment, elastic net lots of outliers
Simulation A: Results Sparse Solutions

• Elastic net selects more features than Lasso due to grouping/correlation
 • Example 4 is close to optimal

<table>
<thead>
<tr>
<th>Method</th>
<th>Example 1</th>
<th>Example 2</th>
<th>Example 3</th>
<th>Example 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lasso</td>
<td>5</td>
<td>6</td>
<td>24</td>
<td>11</td>
</tr>
<tr>
<td>Elastic net</td>
<td>6</td>
<td>7</td>
<td>27</td>
<td>16</td>
</tr>
</tbody>
</table>

Non-zero β: 3 3 20 15
Simulation B: Grouping Selection (Lasso)

• Given two independent variable Z_1, and Z_2, the response variable y

\[
Y \sim N(Z_1 + 0.1 Z_2, 1)
\]

• Create X from two groups (note that x_2 and x_5 are negated)

\[
\begin{align*}
 x_1 &= Z_1 + \text{noise} \\
 x_2 &= -Z_1 + \text{noise} \\
 x_3 &= Z_1 + \text{noise} \\
 x_4 &= Z_2 + \text{noise} \\
 x_5 &= -Z_2 + \text{noise} \\
 x_6 &= Z_2 + \text{noise}
\end{align*}
\]

• Within group correlation roughly 1
• Between group correlation roughly 0
• Important variates are the Z_1-group, how well do EN and Lasso perform?
Simulation B: EN vs Lasso Solution Paths

- Recall good grouping will set coefficients to similar values.
- Lasso very unstable.
- Elastic Net selects same (absolute) coefficient for the Z_1-group

![Graph showing Lasso and Elastic Net solution paths](image-url)
Great, so far elastic net dominates Lasso (prediction and feature selection). What about feature selection when $p >> n$ (e.g. $p = 10000$ and $n = 100$)?

When $p >> n$, good classification method should have:

A. Gene selection built into the procedure

B. Not be limited to the fact at $p >> n$ (Lasso is limited to selecting n)

C. Genes sharing same biological pathway (correlated?), should group into model

Current methods arbitrarily select one of the related gene predictors.
Microarray Classification and Gene Selection
Other Methods

• Lasso:
 • Good at A (built in selection)
 • Fails B (handle p>>n) and C (grouped selection)

• Support Vector Machine (Guyon et al., 2002) and Penalized Logistic Regression (Zhu and Hastie, 2004) fail at C.
 • Use either univariate ranking or recursive feature elimination
• Leukaemia data 7192 genes and 72 samples.
 • Training set 38 samples, of which 27 are Type 1 and 11 are Type 2
 • Test set 34
• Goal: Construct rule to predict $y = 0-1$ response (Type1=0, Type2=1)
• Pre-screening to select 1000 genes from 7192 before elastic net
 • Used t-statistic to make “computation more manageable”
 • Authors claim does not affect results (NEED TO UNDERSTAND MORE)
• Used ten-fold CV to select tuning parameters.
Leukaemia Classification

- Early stopping strategy $k = 200$ (iterations). Less computational cost (?)

- Full path (i.e. when using s as fraction of L_1-norm to know when to stop).

$$\lambda = 0.01$$
Leukaemia Classification Summary

- Elastic net selects more than n predictors (training set determines n).
- Lasso would only be able to select a maximum of 38 genes.

Table 4. Summary of the leukaemia classification results

<table>
<thead>
<tr>
<th>Method</th>
<th>Tenfold CV error</th>
<th>Test error</th>
<th>Number of genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Golub</td>
<td>3/38</td>
<td>4/34</td>
<td>50</td>
</tr>
<tr>
<td>Support vector machine–recursive feature elimination</td>
<td>2/38</td>
<td>1/34</td>
<td>31</td>
</tr>
<tr>
<td>Penalized logistic regression–recursive feature elimination</td>
<td>2/38</td>
<td>1/34</td>
<td>26</td>
</tr>
<tr>
<td>Nearest shrunken centroids</td>
<td>2/38</td>
<td>2/34</td>
<td>21</td>
</tr>
<tr>
<td>Elastic net</td>
<td>3/38</td>
<td>0/34</td>
<td>45</td>
</tr>
</tbody>
</table>
Leukaemia/Gene: Solution Paths

• Not clear that the 45 selected genes are properly grouped, though some coefficients seem to converge.
• No evidence that better than Golub (or others) “...best classification and internal gene selection”.

Number of Genes Selected

k=82
45 Selected
Discussion

• Elastic appears to be better than Lasso for prediction and feature selection.

• Other issues are unclear.
 • Elastic net is better than or comparable to Ridge Regression for predictions.
 • Elastic net is better at grouping than other grouping methods (sans Lasso).
References

• Hui Zou and Trevor Hastie, ‘Regularization and variable selection via the elastic net’, 2005
• Derek Kane, ‘Data Science - Part XII - Ridge Regression, LASSO, and Elastic Nets’, 2015
• Vivian S. Zhang, ‘Ridge regression, lasso and elastic net’, 2014
• http://www.ds100.org/sp17/assets/notebooks/linear_regression/Regularization.html
• https://stats.stackexchange.com/questions/123205/relation-between-the-tuning-parameter-lambda-parameter-estimates-beta-i-a
• https://codingstartups.com/practical-machine-learning-ridge-regression-vs-lasso/
• https://datascience.stackexchange.com/questions/361/when-is-a-model-underfitted