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Abstract 

One potential limitation with distributed representation is that it is difficult to co-activate 

multiple things at the same time over the same set of processing units.  That is, a superposition 

of co-active distributed representations results in a blend pattern that is ambiguous; the so-

called superposition catastrophe.  Thus it is striking that M. M. Botvinick and D. C. Plaut 

(2006) developed a PDP model of short-term memory that recalls lists of letters based on the 

superposition of distributed letter codes.  Their finding suggests that the distributed 

representations can solve the superposition catastrophe.  However we show that the model’s 

success does not mitigate against this constraint.  Under the appropriate training conditions a 

version of their model can indeed solve (avoid) the superposition catastrophe, but only by 

learning localist as opposed to distributed representations.  Given that many cognitive systems 

need to code multiple things at the same time, the pressure to learn localist (“grandmother 

cell”) representations is widespread.  
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          PDP Networks Learn Local (Grandmother Cell) Representations in Order to Code for 

Multiple Things at the Same Time 

Neural networks can code for information in two qualitatively different ways.  Some 

models rely on localist representations, such that words, objects, faces, and lexical concepts are 

coded distinctly, with their own dedicated representations.  For example, in localist models of 

written word identification, the words dog and log are coded with distinct orthographic units, 

and a word is identified when a single unit (e.g., dog) is activated beyond some threshold (e.g., 

McClelland & Rumelhart, 1981).  Other models rely on distributed representations, such that 

the words dog and hog are coded as patterns of activation over collections of units, with each 

unit involved in coding multiple words (e.g., Seidenberg & McClelland, 1989).  In fact, various 

different types of distributed representations can be distinguished, ranging from dense 

distributed representations in which many hidden units are co-activated in response to a single 

input and each hidden unit is involved in coding many different things, to sparse distributed 

coding in which each input activates relatively few units, and each unit is involved in coding 

relatively few things (but more than one). Nevertheless all versions of distributed coding share 

one defining feature; that is, it is not possible to interpret the activation of a single unit 

unambiguously. 

The debate regarding the relative merits of localist and distributed coding has taken a 

variety of forms, including their relative biological plausibility (e.g., Bowers, 2009, 2010ab; 

Plaut & McClelland, 2010ab; Quian Quiroga & Kreiman, 2010ab), their empirical successes 

(e.g., Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; Seidenberg & Plaut, 2006), and their 

computational capacities (e.g., Botvinick & Plaut, 2009ab; Bowers, Damian, & Davis, 2009ab, 

Page, 2000; Plaut & McClelland, 2000).  In the present paper we focus on the computational 

capacity of the distributed representations typically learned in PDP models, and argue that they 

are ill suited to support the co-activation of multiple items at the same time over the same set of 

units.  That is, we claim that these distributed representations cannot overcome the 

superposition catastrophe, contrary to some recent findings that suggest otherwise (Botvinick 

& Plaut, 2006).  We argue that the functional requirement to co-activate multiple things at the 

same time provides a computational pressure to develop representations that respond highly 

selectively to inputs.  Indeed, we show that PDP models sometimes learn local (“grandmother 

cell”) representations in response to this constraint. 

Catastrophic interference 

There is already one well known computational limitation of the dense distributed 

representations often learned in PDP models; namely these representations are poor at 

supporting rapid one-trial learning, as required for episodic memory.  The problem is that each 

unit in a dense distributed representation is involved in coding many things, and as a 

consequence, learning something new impacts on pre-existing knowledge (specifically, 

knowledge coded with overlapping units and connection weights).  The greater the learning the 

greater the impact on pre-existing knowledge, and in the case of rapid one-trial learning, new 

knowledge can erase prior knowledge, a phenomenon known as catastrophic interference 

(McClosky & Cohen, 1989; Ratcliff, 1990), or the stability-plasticity dilemma (Grossberg, 

1976).   

According to McClelland, McNaughton, and O’Reilly (1995), the brain’s solution to this 

problem was to develop sparse coding in the hippocampus and related structures, with 

relatively few units active at any one point, and each unit involved in coding relatively few 

things.  These sparse codes are not considered local (each unit would be involved in coding for 

more than one thing), but nevertheless, the solution to catastrophic interference is to reduce the 

level of distribution.  In this way, large changes in connections weights (in response to new 

learning) have minimal impact on prior knowledge.  
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However, this solution is itself limited.  PDP models generalize on the basis of new inputs 

activating hidden units that are involved in coding old knowledge, and this overlap is often 

reduced when knowledge is coded sparsely.  This makes the sparse codes in the hippocampus a 

poor medium for generalizing.  For this reason, McClelland et al. (1995) argue that the brain 

relies on both dense and sparse distributed coding schemes: dense distributed representations in 

the cortex that support various forms of generalization required for perception, language, and 

semantic memory, and sparse distributed codes in the hippocampus (and related structures) for 

episodic memory.  This dual solution to fast learning and generalization is the so-called 

complementary learning systems hypothesis.   

The key claim we make here is that there is yet another computational constraint that 

undermines the use of dense distributed representations in the cortex as well.  That is, the dense 

distributed representations learned in PDP networks are not only poor at fast learning, but also 

poorly suited to the task of co-activating multiple things at the same time.  Accordingly, the 

challenge is to develop neural networks that can both generalize and co-activate multiple 

things.  We show that PDP networks that learn localist representations of letters in response to 

the superposition constraint can indeed generalize to novel words.   

The Superposition Catastrophe 

PDP models support generalization in a variety of domains (e.g., reading and semantics), 

but until recently, there have been no demonstrations that these models can co-activate multiple 

things at the same time over the same set of units.  Given that various cognitive systems 

support the co-activation of multiple items at the same time (perhaps 4 +/-1; Cowan, 2001), this 

is a striking omission.  Particularly so given that it has been claimed that distributed 

representations are ill suited for supporting this function, due to the superposition catastrophe 

(von der Malsburg, 1986).   

The superposition catastrophe refers to the observation that co-activating items in a 

distributed system leads to blend patterns that are ambiguous with regards to what produced the 

blend in the first place.  For example, consider Figure 1, adapted from Page (2000), that depicts 

distributed patterns for the names Paul, John, George, Ringo, Mick, and Keith.  The patterns 

are distributed given that each name is coded as a pattern of activation of two of four units, and 

the identity of a person cannot be determined by the activation of a single unit.  Although the 

identity of a name can be determined based on the pattern of activation over the four units, the 

coding scheme is ambiguous when more than one person is coded at the same time over the 

same units.  For example, the combination of MICK and KEITH co-activates all four units, but 

so do JOHN and GEORGE.  The tempting conclusion is that it is difficult to code for more than 

one thing at a time over a given set of processing units when relying on distributed 

representations.  By contrast, ambiguity is eliminated with localist coding schemes.  For 

example, as can be seen in Figure 2, if localist Mick and Keith units are co-active, the 

constituent patterns that produced the blend could only be Mick and Keith.  Bowers (2002) 

used the superposition catastrophe as an argument in favor of localist coding models.   

The ambiguity associated with a superposition of dense distributed representations is in 

fact worse than the example above.  In Figure 1, the ambiguity is the product of blending 

together two familiar names (e.g., Mick and Keith), but blends might just as well be produced 

by combinations of novel inputs.  If novel inputs are free to contribute to blends, then there is 

an infinity of different combinations of novel constituents that will produce the same blend.  In 

this sense the superposition catastrophe is an ill-posed problem; it is logically impossible to 

determine the constituent patterns that produced a given blend.  This would seem to rule out 

dense distributed representations as a medium for supporting cognitive processes that deal with 

more than one thing at a time (that is, most of cognition). 

Nevertheless, it is important to note that the brain faces and often solves other ill posed 

problems.  The classic example is the so-called inverse problem in vision, in which an infinite 
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number of possible shapes in the 3D world are consistent with a given 2D image projected on 

the retina.  The conclusion is not that we cannot perceive in 3D, but rather, that the visual 

system needs to adopt biases about which 3D shapes are most likely to have produced a given 

(ambiguous) 2D image on the retina.  The biases could be based on innate constraints or 

learning (Sinha & Poggio, 1996).  In a similar way, in order to overcome the superposition 

catastrophe with dense distributed representations, some sort of adaptive bias might play a role 

selecting one set of constituent patterns from an infinite possible set that could produce a given 

blend pattern.  The trick, of course, is to include a bias that selects the correct constituents. 

The Botvinick and Plaut (2006) PDP model of STM and a potential solution to the 

superposition catastrophe 

Although the superposition catastrophe has largely been ignored in the PDP literature, 

Botvinick and Plaut (2006) report a PDP model of STM that confronts this issue head on, and 

the authors show that their model can indeed learn adaptive biases that allow it to accurately 

encode, store, and recall multiple familiar items based on the superposition of dense distributed 

representations.  The model attempts to account for a standard measure of STM, namely, 

immediate serial recall.  In immediate serial recall, a participant is presented a list of items 

(e.g., letters, numbers, words, etc.), and is asked to repeat them back in the same order.  

Participants can retain 7+/-2 (or perhaps 4+/-1; Cowan, 2001) items in short-term memory for a 

few seconds.  The Botvinick and Plaut (2006) model shows a similar STM capacity, and 

captures a range of important empirical facts about STM. 

A schematic diagram of their model (taken from their article) is presented in Figure 3.  It 

includes a set of localist input and output units and an intervening set of hidden units that map 

between them.  As can be seen in the Figure, the hidden units include feedback (recurrent) 

connections to themselves, and the hidden units are bidirectionally associated with the output 

layer.  The connection weights constitute the LTM of the model, and an activation pattern 

across the units constitutes the model’s STM, with the recurrent connections ensuring that the 

activation persists in the absence of input.   

The key finding reported by the authors is that the trained model is able to code for both 

item and order information, relying on a distributed pattern of activation over the hidden units.  

For instance, if the input units that code for the letters A, D, F, Z, Q, R are activated in 

sequence, the corresponding output units can be recalled (activated) in the correct order with a 

likelihood that is similar to human performance.  The model supports the serial recall of 

multiple items based on a superposition of distributed activation patterns in the hidden layer.  

That is, each item in a to-be-remembered list produces its own distributed pattern of activation 

over the hidden units that codes for a given letter in a given position (e.g., a conjunctive code 

for A-in-position-1, B-in-position-2, etc.), and it is the combined (superimposed) activation 

pattern across all items that codes and reproduces the sequence at the output layer.  

Furthermore, the model can correctly recall many sequences that it has never been exposed to.  

For example, in Botvinick and Plaut’s (2006) first simulation the model was trained on 

approximately one million letter sequences (of various lengths), and then was tested on random 

strings of six letters.  These test sequences were almost always novel (99.3% of the time), and 

nevertheless the model succeeded ~50% of the time, which is similar to human performance 

(but see Bowers et al., 2009ab, for some types of sequences that this model cannot recall). 

The success of the model is striking, as it seems to undermine the claim that dense 

distributed representations are subject to the superposition catastrophe.  Indeed, the model 

succeeded even when noise was added to the distributed patterns. Botvinick and Plaut (2006) 

are explicit about the way their model retrieves a sequence of items based on a noisy and 

ambiguous blend pattern.  That is, the model makes a response that is most likely to be correct 

given the blend pattern’s similarities to the patterns encountered during training.  More 

specifically, they claim that their model effectively computes a Bayesian analysis in order to 
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select the most likely set of items when confronted with an ambiguous pattern of activation 

across a set of hidden units.  Just like the inverse problem in vision is solvable with the 

inclusion of innate or leaned biases, the Botvnick and Plaut (2006) model of STM suggests that 

PDP models can learn a bias that provides an adaptive solution to the superposition catastrophe.   

Two possible problems with Botvinick and Plaut’s solution to the superposition catastrophe 

model 

The success of the Botvinick and Plaut (2006) model clearly shows that PDP models can 

learn adaptive biases that help them overcome the superposition catastrophe.  However, there 

are at least two reasons to think that the solution may not work in general.  First, their model 

succeeded by decomposing the blends into the most likely sequence given its training history.  

This allows the model to retrieve novel sequences of familiar items, but it may introduce 

problems if the model was presented with an unfamiliar item.  That is, novel items are not the 

most likely output given the training history, and accordingly, the model might be expected to 

lexicalize, producing an incorrect familiar item most consistent with a given blend.  Although 

human STM is better for familiar compared to unfamiliar words (Jefferies, Frankish, & 

Lambon Ralph, 2006), we nevertheless have no difficulty in repeating a few nonwords, such as 

“blip-blap”.  The potential difficulty of coding multiple unfamiliar things with distributed 

representations was highlighted by Bowers (2002): 

Perhaps most problematic, blends are not necessarily the product of 

combining pre-trained patterns. Imagine the situation in which two words are 

co-active in a distributed phonological system. Although the blend pattern 

may be more similar to the two constituent words compared to any other 

trained word, the pattern is not more similar to many possible items (or 

possible blends). The blend pattern might have been produced by combining 

two nonwords, for example, although this possibility cannot be recovered 

from the blend. But we can co-encode two novel items: e.g., phonologically, 

as BLIP–BLAP in short-term memory… blend patterns in distributed 

systems are deeply ambiguous (p. 431) 

A second possible limitation concerns familiar items.  That is, the bias solution may only 

work when the model is trained with a small vocabulary of items (e.g., 26 letters).  Under these 

conditions, Botvinick and Plaut have shown that there is only one or two possible sequences of 

familiar items that could have produced a given blend – which allows the model to succeed 

most of the time by selecting the most probable solution.  However, if the model was trained 

with a larger set of familiar items, it is not clear that there is only one or two possible sequences 

of familiar items that could have produced the blend.  To the extent that a variety of different 

sequences of familiar items could have produced the blend, the bias solution would become 

inadequate.   

Only a small number of studies shed some insight into the conditions in which PDP 

models can address the superposition catastrophe.  Bowers et al. (2009a) developed a modified 

version of the Bovinick and Plaut (2006) STM model in which letters were coded in a 

distributed rather than localist manner.  That is, each letter was defined as a pattern of 

activation over five input and output units, and each unit contributed to the coding of five 

letters.  Accordingly, it was not possible to interpret a given input unit unambiguously.  The 

critical finding was that the model could learn to recall a series of familiar letters (taken from a 

vocabulary of 25), but it catastrophically failed when tested on lists that contains a novel letter 

(that is, a novel pattern of five activated input units).  This fits well with the hypothesis that the 

model developed a bias to recall the most likely sequence given its training history, which rules 

out lists that contain novel items.   

By contrast, Botvinick and Plaut (2009) developed a modified version of their model in 

which the first 10 units each represented a letter in the onset position of a syllable, the next 10 
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units each represented a vowel in a syllable, and the final 10 units all represented a coda of a 

syllable.  That is, the model included localist input units for letters, and coded syllables through 

the co-activation of one onset, vowel, and rhyme.  They trained the model on lists of syllables 

taken from a vocabulary of 999 syllables (out of a possible 10 x 10 x 10, or 1000 syllables).  

The first key finding was that the model succeeded on lists of familiar syllables (when trained 

and tested on up to three items).  This shows that successful performance on familiar items is 

not limited to cases in which the model was trained on a small vocabulary.  Second, and more 

strikingly, the model could also repeat sequences that included the (one) untrained syllable.  

According to Botvinick and Plaut, the failure of the Bowers et al. (2009a) model to generalize 

to novel letters reflected something idiosyncratic about the simulation rather than some intrinsic 

limitation of distributed representations.  

Similarly, Bowers et al. (2009b) developed a model that included 10, 6, and 10 units 

devoted to letters in the onset, vowel, and rhyme positions of syllables.  We found that the 

model was equally good at recalling lists of familiar and unfamiliar syllables of up to list length 

six when it was trained on 500 syllables (out of a possible 10 x 6 x 10 or 600 syllables).  That 

is, the model went from catastrophic failure on novel letters (when trained on 25 items) to 

striking success on unfamiliar syllables (when trained on 500 items).  Indeed, as noted by 

Bowers et al., the model did too well on novel syllables given that STM in humans is much 

better for words compared to nonwords. 

Do these successes undermine the significance of the superposition catastrophe?  Not 

necessarily.  It is unclear how the latter models succeeded, but one possibility is that they 

learned sparse or localist representations in order to overcome the superposition constraint.  

Such an outcome would not only highlight the limitation of dense distributed coding schemes, 

but also the adaptive value of sparse or local coding schemes when coding multiple items 

simultaneously.   

Below we report a series of simulations and analyses in an attempt to gain insight into 

these contrasting results.  To this end we systematically varied the conditions in which the 

above models failed and succeeded.  One key difference was with respect to the input coding 

schemes.  The Bowers et al. (2009a) simulation that failed with a novel letter included a 

distributed input and output coding scheme in which each unit was involved in representing 

multiple (five) letters, and where there were no phonotactic constraints (any 5 input and output 

units were free to be co-activated).  By contrast, the subsequent models that succeed with novel 

syllables included a localist input and output coding scheme, with each input and output unit 

devoted to coding a specific letter, and where syllables were phonotactically constrained (each 

syllable was composed of one onset, one rhyme, and one coda; Botvinick and Plaut, 2009; 

Bowers et al., 2009b).  Accordingly, the reliance on a localist input/output coding scheme and 

the inclusion of phonotactic constraints might play a role in supporting nonword recall.  A 

second key difference was that the Bowers et al. (2009a) model failed when it was trained from 

a small vocabulary of syllables, and subsequent models succeeded when they were trained on a 

larger vocabulary.  Accordingly, generalization to novel items may simply rely on a larger 

training set.   

In addition to assessing the conditions in which PDP models succeed and fail in recalling 

lists of familiar and unfamiliar items, we attempt to consider why the models succeed and fail.  

To this end we systematically analyze the hidden units of the models with localist and 

distributed input coding schemes in the various training conditions.  The key question is 

whether the models ever succeed with lists of familiar and unfamiliar items by employing 

dense distributed representations, or whether the models rely on sparse or localist codes to 

address the superposition catastrophe.   

Simulation 1a-b   
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In Simulations 1a-b we trained two models to recall lists of syllables taken from a small 

vocabulary of 26 syllables, and at test, assessed their performance on lists of familiar syllables, 

as well as on a single novel syllable.  The two models were structurally identical, with 26 input 

units, 200 hidden units, and 26 output units (same as in Botvinick and Plaut, 2006).  The key 

difference is in the way in which the syllables are coded in the input layer.  In Simulation 1a the 

input coding scheme was distributed, in that no unit could be interpreted.  Each syllable was 

simply coded by a random pattern of activation over three of 26 input and output units (much 

like Bowers et al., 2009a, where each letter was coded as a random pattern of activation over 

five units).  From now on we refer to this as the distributed input (DI) model.  In Simulation 1b, 

the syllables in the input layer were coded through the co-activation of localist letter codes 

(same as in Bowers et al., 2009b).  The first 10 input (and output) units coded for the onsets of 

syllables, the next 6 items for vowels, and the final 10 units for codas, and each syllable was 

coded as one active onset, vowel, and coda unit.  Specifically, the 26 input units, organized by 

onset, rhyme, and coda, coded for the following letters:  (b, c, d, f, g, h, j, k, l, m) (a, e, i, o, u, 

y) (n, p, q, r, s, t, v, w, x, z).  From now on we refer to this as the localist-input (LI) model.  

Given that each syllable in the LI model was defined as the co-activation of one onset, one 

rhyme, and one code unit, there were constraints on what units could be co-activated (a 

phonotactic constraint).  No such constraint applied to the DI model, where any three units 

could be co-activated.  The set of 26 syllables and the input units that they were coded with are 

listed in Table 1. 

The two models were trained on lists of syllables that varied in length from one to nine 

syllables, and lists were composed of a random selection of syllables (without replacement).  

The output of the model was determined by comparing the pattern of activation at the output 

layer with the patterns that defined the 26 familiar syllables.  The model was said to recall the 

syllable with the highest dot product. This is similar to selecting the most active letter in a 

localist-coding scheme.  This is the same procedure as in Bowers et al. (2009ab). 

After one million training trials the two models were tested on lists of six familiar 

syllables.  The DI and LI models were correct on 61.7% and 59.3% of the lists, respectively.  

Accordingly, the nature of the input patterns did not seem to impact on the models’ 

performance when tested on lists of familiar syllables taken from a small vocabulary. 

We then took the same models and tested them with novel syllables.  For the DI model 

we generated 1000 syllables by randomly activating three of the input units, and we avoided 

patterns that were already within the training set.  We then tested the model by presenting it 

with a single item to remember (rather than the standard list of six familiar items).  Recall in 

this case was determined by comparing the pattern of activation at the output layer with the 

patterns that defined the 26 familiar syllables and the pattern that defined the novel syllable.  

The DI-model performed very poorly, with an accuracy rate of only 12.1%.  When we tested 

the model on lists of two novel items, its performance dropped to under 1%.  Clearly, the 

ability of the model to code for multiple items at the same time is restricted to familiar items, as 

the memory span for novel items is approximately zero. 

Similar results were obtained for the LI-model.  The novel items constituted the entire set 

of possible syllables other than the 26 trained items.  That is, the model was tested on 574 

untrained syllables (10 x 6 x 10 possible syllables, minus 26) one at a time.  From these, 1000 

test patterns were randomly selected.  Overall performance was again quite poor, with 15.4% 

accuracy.  We then tested the model on lists of two novel items, and performance dropped to 

under 1%.  Clearly, the structure of the inputs did not impact on the models’ ability to recall 

novel items: In both cases, memory span for novel items was approximately zero. 

Simulation 2a-b    

One obvious reason why the models may have failed to generalize to novel syllables is 

that they were trained on a highly restricted set of 26 syllables.  Perhaps the limited training set 
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prevented the model from learning the necessary regularities to support generalization.  

Another possibility, however, is that the training set is adequate to support generalization, but 

during training, the models learned a bias to report only familiar items in an attempt to 

overcome the superposition catastrophe.    

In order to distinguish these two hypotheses we trained the two models on the same set of 

syllables, but during training presented them one a time.  That is, the models were trained to 

have a working memory span of one, much like a model of word naming that is trained to 

produce a single output given a single input.  In this condition the models do not need to learn a 

lexical bias in order to confront the superposition catastrophe.  Accordingly, if the poor 

generalization was the product of a learned bias, performance with novel syllables in both 

models should be excellent in Simulations 2a-b.  By contrast, if the poor generalization was the 

product of the small training set, the performance should continue to be poor. 

We trained the two models for five million trials on single syllables taken from the same 

vocabulary of syllables in Simulations 1a-b.  This provides a similar amount of training to the 

amount of training on each syllable in Simulations 1a-b when lists varied on length from one to 

nine syllables.  We then tested the models on the novel syllables taken from Simulation 1a-b.  

Performance in the two models was much better.  The DI- and LI-models achieved 90.9% and 

90.5% correct for the novel items, respectively.  Note, performance was already excellent after 

1 million training trials, with overall performance at 86.6% and 82.4%, in the two models, 

respectively. 

To summarize, the DI- and LI-models can generalize to novel items when trained on a 

small vocabulary of items one item at a time.  However, when models are trained to recall a 

series of familiar items, a task that requires the model to interpret an ambiguous superposition 

of distributed patterns, the model fails with the same unfamiliar items.  This is a manifestation 

of what we will call the generalization-superposition trade-off: Models with distributed 

representations can either generalise to new items, or they can solve the superposition 

catastrophe, but not both.  If these models need to co-activate multiple items at the same time 

over the same set of units, they develop a bias to recall only familiar items, restricting 

generalization.  

Simulation 3a-b 

Although the above simulations appear to provide evidence for the superposition trade-

off, Botvinick and Plaut (2009) and Bowers et al. (2009b) found that modified versions of the 

Botvinick and Plaut (2006) model could recall lists of familiar and unfamiliar syllables when 

they were trained on a larger set of syllables.  Accordingly, this trade-off may only be 

expressed under limited (and unnatural) conditions in which training is restricted to a small 

vocabulary. 

In Simulation 3a we took the same DI-model as in Simulation 1a and trained it to recall 

lists of items taken form a vocabulary of 300 syllables (that is, syllables defined by a random 

pattern of 3 input and output units).  An additional random set of 300 syllables constituted the 

novel syllables for testing purposes.  In Simulation 3b we took the same LI-model as in 

Simulation 1b, and trained it to recall lists of syllables taken from a vocabulary of 300 (out of a 

possible 600 syllables).  The remaining 300 syllables were defined as the novel syllables for 

testing.  

In both cases, training was carried out for five million trials on lists of familiar syllables 

(with lists varying from one to nine syllables), and at test, we assessed the models’ performance 

on 1000 lists of familiar or unfamiliar syllables, with lists varying in length from between one 

to six items.  The models’ response was defined as the syllable most similar to the output 

produced by the model (when considering the 300 familiar and the critical novel syllables), 

based on the dot-product measure.  As can be seen in Figure 4, the DI-model trained on 300 

syllables performed equally well on lists of familiar and unfamiliar letters. In addition, as can 
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be seen in Figure 5, the LI-model trained on 300 syllables performed similarly with lists of 

familiar and unfamiliar syllables (although here there was a slight advantage for the familiar 

items for the longer lists). These results are similar to Bowers et al. (2009b) where performance 

was the same for familiar and unfamiliar syllables after the LI-model was trained on 500 out of 

the possible 600 syllables.   

To summarize, the DI- and LI-models performed radically differently with the novel 

items in the different conditions.  When trained on a small vocabulary of 26 syllables they 

catastrophically failed with novel syllables (Simulations 1a-b), and when trained on 300 

familiar syllables, they recalled lists of unfamiliar syllables almost as well as familiar ones.  

Accordingly, recall of novel syllables depends on the size of the training set and not the nature 

of the input coding scheme (distributed vs. localist).   

How has a PDP model overcome the generalization-superposition trade-off? 

Based on the above findings it appears that the DI- and LI-models can overcome the 

generalization-superposition trade-off when trained on a large vocabulary.  However, there are 

two quite different conclusions that can be drawn from this:  a) either there are no fundamental 

constraints associated with co-activating multiple things with distributed representations, or b), 

the models abandoned dense distributed representations in favour of sparse or localist ones 

when trained on a large vocabulary of syllables, effectively avoiding (rather than solving) the 

superposition catastrophe.  Such a finding would not only highlight the computational 

limitations of distributed coding schemes, but also provide a computational argument in 

support of sparse or localist codes.  Indeed, the results would provide a computational 

explanation as to why neurons in the brain (both hippocampus and cortex) respond so sparsely 

and so selectively to inputs (Bowers, 2009). 

When considering any potential changes in the learned representations in the different 

training conditions, it is useful to consider a distinction drawn by Plaut and McClelland 

(2010a).  They argued that representations vary along two dimensions, namely, perplexity and 

sparseness.  On the perplexity dimension, the interpretability of individual units varies.  On one 

extreme, it is possible to interpret the output of a single unit unambiguously.  We would label 

this a localist (grandmother) representation. On the other extreme, each unit responds to a wide 

range of inputs, such that it is impossible to interpret the output of a given unit (the response is 

perplexing).  The sparseness dimension is conceptually distinct.  Here, the proportion of active 

units in a network varies.  On one extreme a single unit is active at a time, and at the other 

extreme, a high proportion of units are active at any point in time.   

It is possible that PDP models learn various combinations of sparseness and perplex 

representations, depending on the details of the model and the training conditions.  For 

example, in one condition a model might learn highly perplex and dense representations (so-

called dense distributed representations), and in another condition, learn interpretable and 

sparse representations (in the limit, a single localist or “grandmother” representation is active, 

and nothing else).  At the same time, another PDP model might learn sparse representations 

that are highly perplex (that is, relatively few units are active at a given time, but it is not 

possible to interpret the output of any given item).  This would constitute a distributed 

representation, but the sparseness might have some functional implications for the model’s 

performance.  Yet another model might learn interpretable but dense representations (that is, 

multiple units might all redundantly code for the same thing).  We would call these units highly 

redundant local (grandmother) representations.   

The question here is what coding schemes have been employed by the DI- and LI-models 

in order to solve the superposition-generalization trade-off.  If the models can co-activate 

multiple items and generalize to novel items employing dense distributed representations, then 

the superposition-catastrophe does not pose a fundamental constraint to theorizing.  

Analysis of LI model 
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First we carried out an analysis introduced by Berkeley, Dawson, Medler et al. (1995).  

On this analysis, a separate scatter plot for each hidden unit is constructed, with each point in a 

scatter plot corresponding to a unit’s activation in response to one input (e.g., a syllable).  All 

the relevant inputs can then be presented to the network, and the response of each hidden unit 

recorded.  Level of activation is coded along the x-axis, with a random value assigned to each 

point on the y-axis (in order to prevent points from overlapping).  This effectively provides a 

singe-cell (or in the case, a single unit) recording for each hidden unit to a large range of inputs.   

We carried out this analysis on the LI-model in four conditions: When the model was 

trained on 26 and 300 familiar syllables presented one at a time, and when the model was 

trained on 26 and 300 familiar syllables presented in lists.  We then plotted the activation of the 

hidden units in response to single syllable, with all the syllables in the vocabulary presented 

once.  Figure 6a-b presents the scatter plots of the first 30 hidden units (out of 200) when the 

model was trained on a vocabulary of 26 and 300 syllables one syllable at a time.  As is clear 

from these plots (and equally true of the remaining plots not shown in the Figure), many units 

are active in response to a given syllable, and it is not possible to interpret the output of any 

hidden unit given that each unit responded in the same way to many different syllables.  That 

this, the model has learned to repeat syllables on the basis of dense distributed representations.   

Next consider the LI-model trained on lists of syllables (a model of STM).  Figure 7a-b 

presents the scatter plots of the first 30 hidden units (out of 200) when the model was trained to 

recall lists of syllables taken from a vocabulary of 26 and 300 syllables.  As above, the scatter 

plots reflect the activation of the units to a single test syllable.  When the model was trained on 

26 syllables the model continued to rely on a dense distributed coding scheme.  However, the 

plots look very different when the model was trained on a vocabulary of 300 syllables.  That is, 

many of the units did not respond to any input, but a subset of units responded in a systematic 

manner to a subset of the syllables, as reflected in a banding pattern.    

This banding pattern was first reported by Berkeley et al. (1995), and it is often possible 

to identify what a given hidden unit codes for by considering all the inputs that contribute to a 

given band.  In the present example, consider hidden unit 64 that has a clear banding pattern.  

The inputs that produced this pattern are as follows: HUR, MYR, KIR, GAR, KYR, LAR, JAR, 

COR, CIR, CUR, LOR, KAR, K0R, MAR, CAR, BER, JUR, DUR, JER, LYR, MIR.  As is clear 

from this list, this unit responds in a systematic manner to the letter R (all 21 syllables that 

contained the letter R are found in the band, and no other syllables are). The tempting 

conclusion is that this unit is a localist representation for the letter R.   

Figure 8a-b characterizes the selectivity of all 200 hidden units when the model was 

trained to recall lists of syllables taken from the small and large vocabulary, respectively.  In 

order to fit all the data on a single figure we presented the LI-model with single letters rather 

than syllables (so that each scatter plot includes 26 rather than 300 data points), and we 

dropped the y-axis (that only plotted random scatter for the sake of distinguishing the 300 data 

points).  Furthermore, rather than labelling each letter with a dot, we presented the letters 

themselves (letters with the same level of activation are illegible, as they overlap with one 

another). 

Figure 8b provides converging evidence that hidden units are selectively responding to 

letters following training on lists of syllables taken from a large vocabulary. Indeed, most 

letters are selectively associated with one (often more) hidden units.  In some cases selective 

responding was characterized by an increased response to a given letter, and in other cases, by a 

decrease in firing.  For example, units 4 and 22 selectively responded to the letter S through 

their increased activation, and unit 28 selectively responded to S through its decreased 

activation.  In Table 2 we have provided a rough summary of how each letter induced selective 

responses in the hidden units.  We defined a unit’s response to be selective if its activation to 
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one letter was .2 different compared to all other letters, and defined a unit’s response as useful 

if its activation was consistent with only a few letters. 

It is important to note that the same set of selective units can be identified when we 

presented the LI-model with syllables (that is, we activated 3 input units at a time; Figure 7b) 

and single letters (that is, we activated 1 input unit at a time; Figure 8b).  For example, in 

Figure 7b, hidden unit 4 showed a banding pattern composed of a set of syllables containing the 

letter S, and in Figure 8b, the selectivity of this same unit can be seen by its selective response 

to the letter S (this close correspondence was found throughout).  This highlights the fact that 

the model analyzed the syllables through their component letters (rather than as complex 

holistic patterns).  If the activation of these hidden units were the product of many co-active 

input units, then we would not find the units to show the same selectivity in response to 

syllables and single letters. 

Although the model appears to have learned a number of localist representations for 

letters (e.g., unit 64 for R), it is important to note that not all letters were associated with a 

given unit so unambiguously (e.g., there is no unit selective for the letter H).  In these cases, the 

model was presumably relying on some version of distributed coding in order to code the letter.  

Still, in these cases, the level of distribution is much reduced compared to the condition in 

which the LI-model was trained on letters one at a time (Figure 9).  That is, although some 

letters were not associated with a selective unit, the identity of every letter could be highly 

constrained by considering the activation of a single unit (e.g., when unit 67 is highly active, 

the letter is either a B or K).  Accordingly, the co-activation of a relatively small number of 

these units could code for a letter.  By contrast, little information can be gathered from the 

output of a single unit when the model was trained on one syllable at a time.  The implication is 

that the superposition catastrophe poses a pressure to learn highly selective representations, but 

that selectivity is not always at the extreme level of a local (grandmother cell) representation.    

One surprising outcome of these analyses is that some units selectively responded to a 

given letter by decreasing their activation.  For example, the reduced activation of the hidden 

unit 14 corresponded with the letter V.  This raises two obvious questions: (1) How does a 

selective reduction in activation function to activate the correct output?  (2) Is this a localist 

grandmother unit for V?  With regards to the first question, the reduced activation of the hidden 

unit 14 in response to the letter V (input unit 23) presumably reflects a learned inhibitory 

connection between the input unit 23 and hidden unit 14.  If hidden unit 14 is in turn connected 

to the output unit 23 through an inhibitory connection, then turning off hidden 14 would 

facilitate the activation of output unit V (through disinhibition).  If this is the correct 

characterization of these units, then it is unclear whether or not to call them grandmother cells.  

On the one hand, it is possible to determine the identity of the input based on the output of a 

single unit.  This sounds like a grandmother cell.  On the other hand, this unit alone cannot 

drive the model to output a letter.  For instance, selectively turning off hidden unit 14 only 

provides a “permission” for V to be output – the V output unit still needs positive inputs from 

other sources.  If a grandmother cell needs to drive behaviour by itself, then units that code for 

information through decreased activation do not satisfy the definition.  It is nevertheless an 

interesting type of selective response that may have some correspondence in the cortex given 

the prevalence of inhibitory connections in the brain.
1 

The analyses thus far have focused on the interpretability of hidden units, and they 

suggest that selective (sometimes local) codes play a causal role in the solution to the 

superposition catastrophe.  However, it is also worth considering the role (if any) that 

sparseness plays.  As noted above, perplexity and sparseness are distinct dimensions, and it is 

possible that the learned representations were also highly sparse, and that these contributed to 

the solution as well.  
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In order to assess the potential role of sparseness to the solution we plotted the activation 

of the hidden units in response to the 26 letters presented individually (as in the analyses 

depicted in Figure 8ab).  However, in Figure 10ab, each scatter plot corresponds to a single 

letter (with 26 plots in all), and each point in each plot corresponds to the activation of a 

different hidden unit (with 200 data points in all).  Once again, activation is plotted on the x-

axis, and the value on the y-axis is random in order to avoid units overwriting each other.  This, 

in contrast to the figures above, provides a depiction of how many hidden units are active in 

response to a given input, and to what extent.  In Figure 10a we have plotted the activation of 

hidden units after the model was trained to recall lists of syllables taken from the small 

vocabulary (that is, when the model did not solve the superposition catastrophe), and in Figure 

10b we plotted the corresponding activations for the model trained on the large vocabulary (that 

is, when the model did solve the superposition catastrophe). 

The key result of this analysis is that there is no obvious difference in the plots in the two 

models.  That is, the level of sparseness of the two models is similar despite the striking 

contrast we observed when we measured the selectivity of hidden units in the two models.  

Indeed, when the model was trained on the small vocabulary, 25% of the hidden units were 

activated beyond 0.1 (out of 1), whereas when the model was trained on the large vocabulary, 

29% of the hidden units were activated beyond 0.1.  That is, if anything, when the model 

learned localist representations it coded information in a less sparse format.  This clearly 

indicates that it is the selectivity, not the sparseness, of units that is required to solve the 

superposition catastrophe.  Interestingly, sparseness in the LI-model was also similar when 

trained on a small (28%) and large (31%) vocabulary of syllables one at a time. 

This analysis also highlights the importance in distinguishing the selectivity of neurons 

and the sparseness of neural coding when evaluating the neural plausibility of grandmother 

cells.  Grandmother cells are the neurobiological implementation of localist representations in 

cognitive theories, and as such, they constitute a theory of the selectivity of single neurons in 

coding for particular things (words, objects, faces, etc.).  Nevertheless, grandmother cell 

theories have often been rejected as implausible on the basis of analyses that suggest that many 

(perhaps millions) of neurons respond to a given input (e.g., Waydo, Kraskov, Quian Quiroga, 

Fried, & Koch, 2006).  However, as demonstrated here, when the LI-model learned highly 

selective representations of letters, it did not learn corresponding sparse representations.  

Indeed, the sparseness in our model (~25% of the units responding to a given input) was much 

lower than the sparseness in medial temporal lobe (<0.1% of neurons responding to an image; 

Waydo et al., 2006), and at the same time, it would be a mistake to reject our conclusion that 

the model has learned localist (grandmother cell) representations of letters.  This makes it more 

difficult to distinguish between distributed and grandmother cell theories of brain function, but 

the distinction is nevertheless important, and highlights the need to make estimates of 

selectivity rather than sparseness of neural firing in the brain (cf. Bowers, 2009, 2010ab; 

Foldiak, 2009).  

In the above analyses we characterized the activation patterns of hidden units in response 

to inputs.  That is, the analyses assessed how information is coded in STM in the LI-model in 

the various training conditions.  However, these activation patterns depend on the learned 

connection weights in the network; that is, how information is coded in long-term memory 

(LTM).  Accordingly, when the LI-model learns localist representations of letters it should be 

possible to identify corresponding connection weights that mediate the model’s performance.  

For instance, the letter Q in the network was coded by the input and output units 19, and the 

hidden unit 40.  Accordingly, it should be predicted that there are strong and interpretable 

connections between these units.  By contrast, when the LI model failed to develop localist 

representations (when trained on a small vocabulary of items), these interpretable connection 

weights should be lost. 
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In Figures 11 and 12 we depict the strength of the connection weights between input and 

hidden units and between hidden and output units when the LI-model was trained on lists of 

syllables taken from the small and large vocabulary, respectively (the Figures only include the 

connections between the input units and the first 75 hidden units).  Just as with the activation 

plots (Figure 7ab) the connection weights were only interpretable when the model was trained 

on a large vocabulary.  And these connection weights have exactly the characteristics that 

should be predicted given the selectivity of the activation (e.g., input unit 19 has a strong 

positive connection to hidden unit 40, which in turn has a strong positive connection to output 

19).  Consistent with our explanation regarding the role of the selective non-active hidden units, 

these units were connected to both input and output units through inhibitory connections (e.g., 

V is coded with input unit 23, which has an inhibitory connection to hidden unit 14, which in 

turn has an inhibitory connection to output unit 23).  Accordingly, turning off hidden unit 14 

allows output unit 23 to become active.  In Figure 12 we’ve labelled a few of the strong 

positive and negative connection weights that are devoted to coding a specific letter.   

The connection weights displayed in Figure 12 also help explain how the network can 

learn units that are selectively activated by a given letter, and at the same time, not affect the 

overall sparseness of activation.  Consider the row 40 that depicts all the connection weights 

between the input units and hidden unit 40.  It is clear that most of the links are weak, apart 

from the link to input unit 19.  This explains why hidden unit 40 selectively codes for the letter 

Q.  Next, consider column 19 that depicts the connection weights between input unit 19 and 

hidden units 1-75. Here is it clear that input 19 is also connected to a number of hidden units 

(e.g. 46), which will result in multiple hidden units responding to a given input (resulting in a 

non-sparse representation of Q).  

Analyses of the distributed network 

As with the LI-model, we first analyzed the activation of the hidden units of the DI-model 

by computing a scatter plot for each hidden unit in response to all the syllables presented one at 

a time.  Figure 13ab depicts the plots from the first 30 units when the model was trained with 

26 and 300 distributed syllables one at a time, and Figure 14ab depicts the corresponding plots 

when the model was trained on lists of syllables.  In one respect, the results are just the same as 

those of the LI model.  That is, the DI model learned dense distributed representations in all 

conditions but one, namely, when trained to recall sequences of syllables when taken from a 

large vocabulary. In this latter condition, many of the hidden units showed a banding pattern, 

again highlighting the conclusion that PDP networks need to code for information in a selective 

manner in order to address the superposition catastrophe.  Furthermore, the inputs associated 

with a band are systematically related.  For example, consider the set of syllables that are part 

of the band in unit 14 (Figure14b).  The syllables are: 1-2-4, 1-2-10, 1-2-12, 2-3-6, 2-3-12, 2-3-

14, 2-3-15, 2-4-5, 2-4-5, 2-4-15, 2-4-17, 2-5-7, 2-5-15, 2-6-8, 2-6-13, 2-7-13, 2-8-10, 2-8-16, 2-

10-20, 2-10-26, 2-11-19, 2-12-16, 2-12-17, 2-12-19, 2-12-24, 2-13-18, 2-14-26, 2-15-21, 2-16-

23, 2-16-25, 2-16-26, 2-17-23, 2-18-24, 2-19-23, 2-22-26, 2-23-24.  That is, this unit appears to 

be an “input unit 2 detector”.  As with the LI-model, banding patterns were associated with 

most input units. 

However, there is an important difference in the selective representations learned in the 

LI- and DI-models.  It was possible to unambiguously interpret many of the hidden unit in the 

LI-model because each input unit was itself associated with a letter.  For instance, the second 

input unit in the LI model codes for the letter C, and accordingly, hidden units that selectively 

respond to this input unit were described as localist representations for the letter C.  But in the 

DI-model, input unit 2 is not associated with anything meaningful.  For instance, in Table 1, 

input unit 2 in the DI coding scheme is associated with the following collection of three 

syllables:  CIT, BAR, and JAW.   These syllables were just randomly assigned to their input 

patterns, and accordingly, there is no meaningful interpretation for input unit 2.  In the same 
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way, the 36 input patterns above are associated with a random collection of syllables, and 

accordingly, input unit 2 has no interpretation (by design).  

We next assessed the sparseness of the DI-model (as opposed to the selectivity of 

individual units) when it was trained to recall lists of items taken from a small and large 

vocabulary.  As above, we presented the networks with a single letter and measured the level of 

activation of all the hidden units.  Just as with the LI-model, the level of sparseness was similar 

in the two training conditions, with 28% and 31% of the hidden units activated beyond 0.1, 

respectively.  So once again, the superposition catastrophe was solved by learning selective 

rather than sparse representations of the inputs.  

The implication seems to be that the DI-model has solved the superposition catastrophe 

by learning representations that are selective but at the same time, uninterpretable.  What type 

of representation is this?  In one sense the learned representations appear to be localist – the 

hidden units often respond in selective and predictable ways (e.g., hidden unit 14 is only on in 

response to input unit 1).  However, in another sense, the representations appear to be 

distributed, as the individual hidden units are themselves perplexing (hidden unit 14 is 

associated with a random pattern of syllables).  As detailed below, the problem in 

characterizing this type of representation is that we have not made enough distinctions 

regarding the types of representations that PDP models can learn.  That is, it is not enough to 

categorize representations along the dimensions of sparseness and perplexity.  Another 

dimension, sometimes called “explicitness”, needs to be considered as well (cf. Foldiak, 2009).  

An explicit representation maps onto meaningful categories in the world, whereas implicit 

representations do not.  On our view, the DI-model has in fact learned “implicit local” 

representations, whereas the LI-model has learnt “explicit local” representations.  On this 

account, in order to solve the superposition catastrophe it is necessary to learn local (or highly 

selective) representations, but explicitness is irrelevant.  This argument is described in detail 

below. 

General Discussion 

PDP theories of cognition are associated with a fundamental claim; namely, knowledge is 

coded in a distributed rather than a localist format.  Indeed, it is commonly argued that the 

brain relies on two different types of distributed representations, namely, sparse distributed 

representations in the hippocampus, and dense distributed representations in the cortex.  This 

so-called complementary learning system hypothesis was advanced based on contrasting 

computational limitations of sparse and dense distributed representations.  That is, sparse 

representations can learn fast, but are poor at generalizing, and dense distributed 

representations can generalize but cannot learn quickly without erasing previous knowledge 

(dense distributed representations suffer from catastrophic interference). 

The present set of simulations highlight another computational constraint; namely, dense 

distributed representations cannot support the co-activation of multiple things at the same time 

(due to the superposition catastrophe).  The problem is that co-active things (e.g., words) in a 

dense distributed coding scheme produce blend patterns that are ambiguous.  In order to 

overcome this ambiguity, highly selective representations need to be learned, and strikingly, 

this is exactly what is learned in LI- and DI-models of STM. Indeed, the models often learned 

localist representations of letters.  Note, this same computational constraint applies to 

perceptual, semantic, and language systems given that they all support the co-activation of 

knowledge (cf. Cowan, 2001).  Accordingly, we conclude that the cortex needs to learn highly 

selective representations in order to solve the superposition constraint, much like the 

hippocampus needs to learn sparse representations in order to address catastrophic interference.  

This helps explain why neurons in cortex do in fact respond so selectively to high-level 

perceptual categories, such as objects and faces (cf. Bowers, 2009). 

Summary of findings 
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These conclusions are supported by a series of simulations in which we employed two 

different versions of the Botvinick and Plaut (2006) model of STM: One version that included a 

distributed input coding scheme (the so-called DI-model), another with a localist coding 

scheme (the so-called LI-model).  In both models we identified two manifestations of the 

superposition catastrophe.   

First, when the DI- and LI-models were trained to recall a series of syllables taken from a 

small vocabulary (26 syllables), the models catastrophically failed in recalling single novel 

syllables (Simulations 1a-b).  In both cases, STM for novel items was ~ 0 items (also see 

Bowers et al., 2009ab).  This failure was not due to the small training set, as the two models 

succeed with novel syllables when they were trained to recall one syllable at a time rather than 

lists of syllables (Simulations 2ab).  That is, the DI- and LI-models could either recall a single 

novel syllable (generalization), or recall multiple familiar syllables (solve the superposition 

constraint), but not both. We labelled this the generalization-superposition trade-off. 

The cause of this trade-off was in fact identified by Botvinick and Plaut (2006).  That is, 

they noted that a superposition of distributed patterns can often be decomposed into the correct 

set of constituent patterns by adopting a bias; namely, recalling the sequence of trained patterns 

that most likely produced the ambiguous blend.  Just like the inverse problem in vision is 

solvable with the inclusion of innate or leaned biases, the DI- and LI-models learned a bias that 

provided a (partial) solution to the superposition catastrophe.  However, Botvinick and Plaut 

did not consider the down side of this solution, namely, that the bias prevents the model from 

recalling novel items.  A sequence that includes a novel syllable is not the most likely solution 

to the blend, so the model selects the most plausible (but incorrect) sequence of familiar items.   

The second manifestation of the trade-off is observed with familiar items.  That is, when 

the DI- and LI-models were trained on a larger vocabulary, the bias to retrieve only familiar 

syllables was no longer sufficient to support good performance with familiar items, as there are 

too many possible sequences of the familiar patterns that will produce a given blend.  Under 

these conditions, the models gave up on dense distributed coding (the source of the problem), 

and instead, learned representations that responded highly selectively to inputs.  Indeed, the LI-

model appeared to learn some localist representations, with single units devoted to a specific 

letter (e.g., unit 64 coding for the letter R).  The behavioural manifestation of this selective 

responding was dramatic: Performance of the LI- and DI-models went from catastrophic failure 

with novel syllables to striking success (with performance the same for lists of familiar and 

unfamiliar syllables).   

Although both the DI- and LI-models solved the superposition catastrophe, there are 

interesting differences between the models.  We turn to these differences next. 

Comparing the DI and LI-models 

The LI- and DI-models solved the superposition catastrophe by learning localist 

representations in the hidden layer that respond highly selectively to inputs, but nevertheless, 

the representations in the two models are quite dissimilar.  That is, in the LI-model, the hidden 

units were often interpretable in a semantically meaningful fashion (e.g., hidden unit 4 codes 

for an S), whereas the hidden units in the DI-model did not correspond to anything meaningful 

in the world (they were associated with random collections of syllables).  Accordingly, the 

hidden units in the DI-model shared some key characteristics with localist representations (they 

are selective) and with distributed representations (they do not represent anything meaningful). 

When considering how to best characterize these two types of representations, it is 

important to realize that the interpretability of single hidden units in the DI- and LI-models has 

nothing to do with the models themselves.  Indeed, these two sets of representations can be 

exactly the same, and at the same time, differ in how we interpret them.  To see this, consider 

the following thought experiment.  Imagine that we trained the DI-model with the same set of 

300 syllable patterns as used in the LI-model (that is, the inputs follow the same phonotactic 
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constraints of the LI-model, with one active unit from the first 10 units, one active unit from the 

next 6, and one active unit from the final 10 units).  The only difference is that we randomly 

reassign the input patterns and the syllable names in the DI-model.  For instance, in the LI-

model, the letters B, C, A, I, O, Q, and R were coded by the input units  1, 2, 11, 13, 14, 19, and 

20 (localist letter units), and accordingly, the syllables BAQ, BIQ, and COR were defined by 

the co-activation of units {1, 11, 19}, {1, 13, 19}, and {2, 14, 20}, respectively.  In this way, 

similar syllables names are coded with overlapping units (syllables BAR and BIQ are coded by 

two overlapping letter units).  In the thought experiment, we assign these same patterns to 

syllable names randomly, so now BAQ might be coded by {2, 14, 20}, BIQ by {1, 11, 19}, and 

COR by {1, 13, 19}.  Admittedly this is an odd coding scheme in which similar syllable names 

are often coded by unrelated patterns (e.g., BAQ and BIQ are unrelated in the input layer), and 

dissimilar syllable names can be coded by similar patterns (e.g., BIQ and COR overlap in two 

out of three input units).  But the critical point for present purposes is that the LI- and the DI-

models include the same set of syllable names and syllable patterns, but the DI-model includes 

a distributed input coding scheme given that it is not possible to interpret any unit in isolation 

(e.g., unit 1 is involved in coding many unrelated syllables). 

How will the two models compare?  The answer is straightforward: They will perform in 

exactly the same way, and they will learn exactly the same internal representations, as they are 

the same model.  We don’t even need to run the two simulations, as they both are trained on the 

same set of input patterns in the same number of times.  So, the conclusion that one model 

learns localist and one model learns distributed representations is not actually a claim about 

differences in the model, but rather, a claim about how the model relates to the world (in this 

case, the mappings between the input units and the letter names). 
2
 

This insight raises a new possibility regarding the conditions in which models succeed or 

fail to address the superposition catastrophe. That is, the solution to the superposition 

catastrophe may still rely on learning highly selective and interpretable hidden units, but 

interpretable from the perspective of the model, not the modeller.  Indeed, from the model’s 

point of view, the hidden units in the LI- and DI-model are equally interpretable.  For example, 

in both cases, input unit 1 might selectively activate hidden unit 2, which in turn selectively 

activates output unit 1.  As long as the model learns one-to-one mappings between input and 

hidden units, and a corresponding one-to-one mapping between hidden and output units (or at 

least highly selective mappings), then the superposition catastrophe is avoided.    

These considerations suggest that Plaut and McClelland’s (2010) description of the 

different types of representations that are learnable in PDP networks needs to be amended.  

They argued that representations can vary along two dimensions, sparsity (the proportion of 

units that are active by a given input) and perplexity (the number of different things in the 

world that a single unit represents).  But this categorization does not capture the representations 

learned in the DI-model in which the single units are perplex with respect to the observer, but 

transparent with respect to the model.  In order to capture all the relevant types of possible 

representations in neural networks, the dimension “explicitness” needs to be added (cf. Foldiak, 

2009).  Explicitness refers to the nature of the mapping between representations in a model and 

meaningful categories in the world.  In an explicit local representation, a representation is local 

to the model (e.g., hidden unit 4 is selectively active in response to input unit 1 being active) 

and an observer can interpret units meaningfully because the model learns to map units to 

meaningful categories in the world (as in the LI-model), whereas in an implicit local 

representation, a representation is local to the model (e.g., hidden unit 4 is selectively active in 

response to input unit 1 being active), but an observer cannot interpret units meaningfully 

because the model has learned mappings between units and meaningless categories in the 

world.  On this view, in order to overcome the superposition catastrophe, models rely on 

learning either explicit or implicit local (or highly selective) codes.   
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But what type of local code is used by the brain?  It is relevant to note that explicit local 

codes were learned when the input units were related to meaningful things in the world (e.g., 

input unit 1 in the LI model responded to the letter B), and implicit local codes were learned 

when the input units were not associated with meaningful categories (e.g., input unit 1 in the 

DI-model responded to a collection of unrelated syllables).  That is, in both models, the 

explicitness of the hidden units mirrored the explicitness of the input units.  Indeed, it is hard to 

see how hidden units could develop explicit representations based on inputs from implicit units.  

Thus it is relevant to note that single neurons in primary perceptual systems respond to 

semantically meaningful categories in the world.  For example, simple cells in primary visual 

cortex selectively respond to lines at a given orientation in a given position in space (and not 

some arbitrary unrelated set of line orientations).  If high level representations in the brain 

inherit the explicitness of their inputs, then high-level local representations should be explicit, 

not implicit.  And indeed, one of the striking findings in single cell neurophysiology is that 

neurons in high-level visual systems also respond highly selectively to meaningful categories in 

the world (cf., Bowers, 2009).   

One noteworthy property of the learned explicit localist (grandmother) representations in 

the LI-modal is that they corresponded to letters rather than syllables.  There was no evidence 

that an individual unit was involved in coding a complete syllable, for instance.  Why is this?  

In our view, the models learned localist representations for letters because the input-output 

mappings were entirely systematic, and under these conditions, mappings between individual 

input-output units were sufficient to solve the superposition catastrophe.  However, these same 

representations may not suffice if the input-output mappings were more arbitrary.  We suspect 

that the joint requirement to perform arbitrary mappings (e.g., mappings between phonology 

and semantics) while coding multiple things at the same time would result in conditions in 

which localist word (or syllable) representations result.  

In sum, the superposition catastrophe provides a computational pressure to learn highly 

selective (perhaps local) representations.  Furthermore, given that low-level perceptual systems 

code for information in an explicit fashion, there are good reasons to assume that the brain 

learns explicit local representations.  In addition, it is worth noting there are physiological 

constraints that provide a strong pressure to learn sparse representations.  That is, the metabolic 

cost of firing neurons is high. Lennie (2003) estimated that these costs restrict the activation of 

neurons in cortex to about 1% of neurons concurrently (compared to the ~20% of hidden units 

that are active in response to an input in the present models).  Together, these computational 

and physiological constraints may produce highly selective and highly sparse representations of 

meaningful things in the world.   

Generalization in the LI- and DI- models  

It is often argued that PDP models with dense and sparse distributed representations are 

good and poor at generalizing, respectively.  This is the logic of the complementary learning 

systems hypothesis according to which generalization is mediated by networks in the cortex, 

and episodic memory is mediated by networks in the hippocampus (McClelland et al., 1995).  

However, it is interesting to note that generalization in the current simulations did not follow 

this prediction.  That is, the level of sparseness in the LI- and DI-models were similar when 

they were trained to recall a series of syllables taken from a small and large vocabulary of 

syllables, but generalization to novel syllables was much better in the latter case. 

Why did the networks trained on a large vocabulary generalize so much better?  As noted 

above, the improved performances cannot be attributed to a general principle that networks 

generalize better when trained on more items: The LI- and DI-models generalized just fine 

when trained on a small vocabulary of syllables as long as they were trained to recall one 

syllable at a time (Simulations 2ab).  Rather, the good generalization was a product of the DI- 
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and the LI-networks learning highly selective and localist representations of letters when 

trained on a large vocabulary.   

To appreciate the relevance of local coding, it is important to note that generalization in 

PDP (or any network) relies on the extent to which new and old items share overlapping 

representations.  In the absence of any additional constraints, the overlap between two patterns 

will be greater for dense compared to sparse representations (just by chance).  This presumably 

is why dense distributed representations in PDP networks tend to generalize better.  However, 

the local representations learned in the LI- and DI-models ensure that similar things (from the 

model’s point of view) are coded with overlapping representations.  For example, in the DI-

model, the network learned to selectively map between input unit 3, hidden unit 34, and output 

unit 3.  Accordingly, any novel input that activates input unit 3 will overlap strongly with pre-

existing knowledge (regardless of the sparseness of the model).  An obvious demonstration that 

local but sparse coding schemes can generalize comes from models of word (and nonword) 

naming.  The DRC model of Coltheart et al. (2001) relies on local coding of letters and words, 

and level of sparseness in the model is extremely high (more so than here).  Nevertheless it 

generalizes well to novel items.  Accordingly, there is no conflict in learning selective (even 

sparse) representations in response to the superposition catastrophe, and at the same time, 

maintaining the capacity to generalize.   All that is required is a hierarchy of local codes, such 

that similar inputs activate overlapping units. 

That said, not all forms of local coding are equally adept at generalization.  For example, 

there are computational reasons to prefer explicit as opposed to implicit local codes for the sake 

of generalization.  As noted by Hummel (2000) local representations that represent meaningful 

categories in the world can generalize over these meaningful categories.  He gives the example 

of a network learning to categorize colored shapes, with shape irrelevant but free to vary.  So 

the task might be to put all red shapes in category A.  If the network learns to represent color 

with one unit and shape with another, then the model can learn a mapping from the A-unit to a 

category-A unit.  But if the model learns a localist representation that codes a random 

collection of things in the world (e.g., red, square, and green), then generalization is 

problematic.  That is, strengthening the link between this unit and the A-category would not 

only increase the likelihood of categorizing a new red object as a member of category A, but 

also of categorizing squares in the same way.   

To take a more relevant example, imagine that the LI- and DI-models were trained on a 

set of syllables that activated unit 1 relatively infrequently.  This constitutes a coherent set of 

syllables in the LI-model (the set of syllables that start with the letter B), but constitute a 

random set of unrelated syllables in the DI model.  In the LI-model this would result in a 

systematic reduction in performance on the set of syllables starting with a B (compared to other 

syllables; cf. Bowers et al., 2009), and an impairment on an idiosyncratic collection of syllables 

in the DI-model (those that happen to include input unit 1).  Furthermore, in the case of the LI-

model, additional training on a subset of syllables starting with a B would selectively improve 

performance on all syllables starting with a B.  In the case of the DI-model, training on one 

syllable that includes the unit 1 will improve performance on all syllables that include input 

unit 1, even those that are phonologically unrelated (e.g., training on BAR would improve 

performance on DIZ if both syllables include input syllable 1). The former but not the latter 

type of generalization seems more plausible. 

There are also limitations with the explicit localist representations learned in the LI-

model.  For instance, Bowers et al. (2009b) found that the LI-model trained on a large 

vocabulary of items failed to recall syllables that included the letter R if the model was not 

trained with these syllables in a given position.  For example, if the model was trained on the 

syllable BAR in positions 2-9 in a list, but not in position 1, the model would selectively fail on 

lists that included BAR in position 1 (assuming no other syllable with an R was trained in 
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position 1).  As a consequence, the model could recall the sequence BAR-COR but not COR-

BAR, which also seems unnatural.  What may be needed in order to generalize in a human-like 

way are explicit localist representations that are also context independent (so-called symbolic 

representations).  That is, the same localist representation should be involved in coding letters 

or syllables in whatever position in a list, and these representations can be recruited to encode 

the syllable in any position.  Most models of STM have exactly this property (e.g., Burgess & 

Hitch, 1999; Grossberg, 1978; Page & Norris, 1998), and they do not suffer the generalization 

constraints of the Botvinick and Plaut model (cf., Bowers et al., 2009ab, but see Botvinick and 

Plaut, 2009ab).   

The contrast between explicit local representations that are context independent 

(symbolic) and context dependent (non-symbolic) has been studied extensively in other 

domains, including written word identification (e.g., Davis, 1999; Grainger, Granier, Farioli, 

Van Assche, & van Heuven, 2006) and semantics (Hummel & Holyoak, 1998; St. John & 

McClelland, 1990), and the key issue in each case is the relative ability of these models to 

generalize.  Whatever the merits of symbolic and non-symbolic representations, the current 

findings provide a computational reason to take seriously the hypothesis that the brain learns 

local (grandmother) representations of meaningful things in the world.  As noted by Hummel 

(2000), this is a first step in learning symbolic models of cognition. 

Summary  

The current simulations highlight a computational pressure to learn highly selective, 

perhaps local representations of letters (and meaningful categories more generally).  Just as 

sparse representations are better at learning quickly without suffering catastrophic interference, 

highly selective representations are better at coding multiple things at the same time.  Critically, 

these representations also supported generalization, highlighting the fact that generalization is 

not restricted to dense distributed coding schemes often learned in PDP networks.   

It is important to emphasize that all PDP models prior to Botvinick and Plaut (2006) 

activated only one thing at a time over a common set of processing units (no previous model 

confronted the superposition catastrophe).  The current simulations highlight not only how the 

learned representations in PDP networks are fundamentally restructured in the context of 

encoding multiple things at the same time (dense distributed representations were replaced with 

highly selective, and sometimes local representations), but also, that this restructured 

knowledge impacts on the performance of a model (e.g., generalization to novel syllables often 

depended on learning localist representations of letters).  Given that most cognitive and 

perceptual systems co-activate multiple things (e.g., Cowan, 2001), this raises concerns 

regarding existing PDP models in all domains. 
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Footnotes 
1
The possibility that units (neurons) code for information selectively through the absence 

of firing raises some conceptual and practical difficulties in any search for grandmother cells in 

the brain.  Imagine that a researcher has identified a single neuron that responds selectively to a 

given face (amongst thousands of faces), and further, activating this single neuron induces a 

percept to that face.  This might appear to be evidence for a grandmother cell representation.  

But the current observation raises the possibility that in addition to this neuron being active, 

some other inhibitory neuron also selective to this face must be inactive.  If the perception of 

the face requires the coordinated response of these two selective neurons, then the recording 

from the activated neuron is misleading. That is, even though the neuron is perfectly selective 

for this and only this face, the identification does not rely on this neuron alone.      
2  

Note, this input coding scheme is uncharacteristic of the coding schemes employed in 

PDP models.  Indeed, most PDP models include localist and interpretable input units.  

Nevertheless, the distributed coding scheme used in the DI model (and in the thought 

experiment) serves to highlight the consequences of including input units that cannot be 

interpreted.   
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Table 1 

The small vocabulary of 26 syllables, and their input coding in the LI and DI model. 

 

26 Syllables LI-input units DI-input units 

BYX 1, 16, 25 1, 20, 22 

CIT 2, 13, 22 2, 6, 8 

DIN 3, 13, 17 3, 18, 24 

FUN 4, 15, 17 4, 7, 15 

GAS 5, 11, 21 5, 16, 17 

HAP 6, 11, 18 5, 6, 24 

JUR 7, 15, 19 7, 14, 17 

KIX 8, 13, 25 1, 8, 25 

LER 9, 12, 20 5, 9, 21 

MIQ 10, 13, 19 9, 10, 19 

BAR 1, 11, 20 2, 11, 21 

JEP 7, 12, 18 1, 12, 26 

DIW 3, 13, 24 13, 18, 25 

KOT 8, 14, 22 6, 11, 14 

MUW 10, 15, 24 3, 15, 23 

CYV 2, 16, 23 9, 13, 16 

CAN 2, 11, 17 11, 12, 17 

LEP 9, 12, 18 10, 18, 22 

FAQ 4, 11, 19 8, 15, 19 

MYR 10, 16, 20 3, 20, 23 

FOS 4, 14, 21 13, 20, 21 

HUT 6, 15, 22 3, 19, 22 

BYV 1, 16, 23 14, 16, 23 

JAW 7, 11, 24 2, 24, 26 

LEX 9, 12, 25 4, 7, 25 

DOZ 3, 14, 26 10, 12, 26 
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Table 2 

Hidden units that selectively respond to single letters in the LI model. 

 

 

Letter Hidden unit(s) 

selectively off 

Hidden unit(s) 

selectively on 

Some other highly 

informative hidden 

units 

A  124  

B   67, 139 

C   119 

D   119 

E 83 144  

F   66 

G   139 

H  157 181 

I 10   

J 37   

K   67 

L  158 181 

M    

N  103, 127 195 

O 62  121, 153 

P 123  149 

Q  40 149 

R  64  

S 28 4, 22  

T  82  

U 56   

V 14 159 196 

W  95  

X  147 130 

Y 160 164 121 

Z   130 
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Figure Captions 

 

Figure 1. Distributed patterns for the names Paul, John, George, Ringo, Mick, and 

Keith. 

Figure 2. Localist patterns for the names Paul, John, George, Ringo, Mick, and Keith. 

Figure 3. Diagram of the Botvinck and Plaut (2006) recurrent PDP model of immediate 

serial recall.  The model includes a set of 27 input and output units (one for each letter of the 

alphabet plus a unit in the input layer that cues recall, and a unit in the output layer that codes 

end of list) plus a set of 200 hidden units.  Arrows indicate connections between and within 

layers. 

Figure 4. Performance of the DI model trained on 300 words presented in lists, tested 

on familiar (word) and novel (nonword) items in lists varying from one to six. 

Figure 5. Performance of the LI model trained on 300 words presented in lists, tested 

on familiar (word) and novel (nonword) items in lists varying from one to six. 

Figure 6. LI model: Hidden units 1-30 (out of 200) when trained on 26 (top panel) or 

300 (bottom panel) syllables one at a time. Within each scatterplot, each dot represents the 

unit’s response to a particular syllable.  

Figure 7. LI model: Hidden units 1-30 (out of 200) when trained on 26 (top panel) or 

300 (bottom panel) syllables, with list length varying from 1-9. Within each scatterplot, each 

dot represents the unit’s response to a particular syllable.  

Figure 8. LI model: Hidden units 1-200 when trained on 26 (top panel) or 300 (bottom 

panel) syllables, with list length varying from 1-9, and tested on single letters.  

Figure 9.  LI model: Hidden units 1-200 when trained on 300 input patterns one at a 

time, and tested on single letters. 

 

Figure 10. LI model: Hidden unit activations as a function of a single letter input when 

trained on 26 (top panel) or 300 (bottom panel) syllables with list length varying from 1-9. 

Within each scatterplot, each dot represents a hidden unit’s response to a particular letter.  

Figure 11. LI model trained on 26 syllables presented in lists: Connection weights 

between 26 input and 75 of the 200 hidden units; and connection weights between these 

hidden units and 26 output units. Bright squares represent large positive weight values, dark 

squares represent large negative values, and gray squares represent intermediate values.  

Figure 12. . LI model trained on 300 syllables presented in lists: Connection weights 

between 26 input and 75 of the 200 hidden units; and connection weights between these 

hidden units and 26 output units. Bright squares represent large positive weight values, dark 

squares represent large negative values, and gray squares represent intermediate values.  

Figure 13: DI model: Hidden units 1-30 (out of 200) when trained on 26 (top panel) or 

300 (bottom panel) training patterns, with list length 1. Within each scatterplot, each dot 

represents the unit’s response to a particular input pattern.  

Figure 14. DI model: Hidden units 1-30 (out of 200) when trained on 26 (top panel) or 

300 (bottom panel) training patterns, with list length varying from 1-9. Within each 

scatterplot, each dot represents the unit’s response to a particular input pattern.  
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