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Abstract

This thesis investigates the combinatorial properties of square-tiled surfaces and stud-
ies the connections of these surfaces to the constructions of pseudo-Anosov homeomor-
phisms, and filling curves on punctured surfaces.

We begin by constructing, in every connected component of every stratum of the
moduli space of Abelian differentials, square-tiled surfaces having a single vertical and
single horizontal cylinder. We show that, for all but the hyperelliptic components, this
can be achieved in the minimum number of squares required for a square-tiled surface
in the ambient stratum. Moreover, for the hyperelliptic components, we show that
the number of squares required is strictly greater and construct surfaces realising these
bounds.

Using these surfaces, we demonstrate that pseudo-Anosov homeomorphisms opti-
mising the ratio of Teichmüller to curve graph translation length are, in a reasonable
sense, ubiquitous in the connected components of strata of Abelian differentials.

We consider the construction of filling pairs on punctured surfaces. We begin by de-
termining the minimal intersection number of a filling pair on a genus two surface with
an odd number, at least three, of punctures completing the work of Aougab-Huang and
Aougab-Taylor. We then present a further application of the single-cylinder square-
tiled surfaces constructed above by constructing filling pairs on punctured surfaces
whose algebraic and geometric intersection numbers are equal.

Finally, we extend the constructions of single-cylinder square-tiled surfaces to cer-
tain strata of the moduli space of quadratic differentials.

In Chapter 1, we give the necessary background to describe the main results of this
thesis. In Chapter 2, we prove the lemmas that are necessary for the construction of
single-cylinder square-tiled surfaces in Chapter 3. Chapter 4 contains the construction
of ratio-optimising pseudo-Anosov homeomorphisms, and the constructions of filling
pairs on punctured surfaces are given in Chapter 5. In Chapter 6, we extend the con-
structions of Chapter 3 to certain strata of quadratic differentials. Finally, in Chapter 7,
we present some remaining open questions and possible directions for future research.
Appendix A gives an alternative proof of Proposition 3.2, and Appendix B contains the
python code that realises the construction of Chapter 3.
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Chapter 1

Introduction

The Teichmüller space T (S) of a surface S is a space that, in a sense, parameterises
the hyperbolic metrics that S can carry. More specifically, it is the space of marked
hyperbolic metrics on the surface S up to isometries isotopic to the identity.

Teichmüller space is an important object in many areas of modern research. Indeed,
the quotient of Teichmüller space by the mapping class group Mod(S), the group of
symmetries of the surface S, is the moduli space of Riemann surfaces. As such, the
study of Teichmüller space has important applications in algebraic geometry. More-
over, the action of Mod(S) on Teichmüller space has played a crucial role in the study
of the mapping class group in geometric group theory. Teichmüller space is also key to
the study of certain dynamical systems. Specifically, questions about billiards in ratio-
nal polygons can be answered by studying the properties of geodesics in Teichmüller
space. The dynamical and geometric properties of Teichmüller and moduli space are
an extremely active area of modern research and important results in this field can be
found, for example, in the works of Mirzakhani and McMullen, among others. Further-
more, being intimately related to the geometry of surfaces, Teichmüller space has been
an important tool in low-dimensional topology where, for example, it features heavily
in Thurston’s classification of surface homeomorphisms and his theorems relating to
hyperbolic 3-manifolds.

Recent research has focussed on certain spaces related to Teichmüller space - namely,
the moduli spaces of Abelian and quadratic differentials. The volumes of the strata of
these spaces are important pieces of information and key objects in the determination
of these volumes are surfaces called square-tiled surfaces. The main focus of this thesis
is the construction of square-tiled surfaces of a particular combinatorial type in every
connected component of every stratum of the moduli space of Abelian differentials.
This construction is carried out in Chapter 3.

Using the connection between filling pairs of curves on surfaces and square-tiled
surfaces of the type we construct in Chapter 3, we then present applications of this

1



CHAPTER 1. INTRODUCTION 2

construction to the study of the coarse-geometry of Teichmüller space, and the study of
sets of filling curves on surfaces. This work is carried out in Chapter 4 and Chapter 5,
respectively.

In Chapter 6, we extend the constructions of single-cylinder square-tiled surfaces
given in Chapter 3 to many strata of the moduli space of quadratic differentials.

Finally, in Chapter 7, we present some open questions relating to the work carried
out in this thesis as well as some new directions for future research.

This work contains (in Chapters 2-4 and Section 5.2) results from a preprint [29] and
(in Section 5.1) paper [28] of the author.

1.1 Preliminaries

We begin by presenting the necessary background on Teichmüller space, and the mod-
uli spaces of Abelian and quadratic differentials. We include the basic definitions and
results necessary to state our main theorems in the following sections. For more details
on the mapping class group and Teichmüller space we refer the reader to the textbook of
Farb-Margalit [21], while the surveys of Forni-Matheus [22], Yoccoz [53] and Zorich [56]
contain more details on Abelian differentials and related topics.

1.1.1 Surfaces, curves and mapping class groups

In the sequel, we will let S denote a closed, connected, oriented surface. That is, S is a
compact, connected topological manifold with no boundary that locally looks like R2

with a fixed choice of orientation. Examples of such objects include spheres and tori.
We will let Sg denote a surface of genus g. As such, a surface S0 is a sphere and a surface
S1 is a torus. A surface of genus g with p punctures; that is, a surface homeomorphic to
the complement of p points in the surface Sg, will be denoted by Sg,p. If the genus and
number of punctures are clear from the context then we will omit the subscripts.

Curves on surfaces

An essential simple closed curve α on the surface S is an embedding α : S1 ↪→ S of the
circle into S whose image is not isotopic to a point or to a puncture. We use the notation
α := [α] to denote the isotopy class of the curve α. We will abuse notation by identifying
α with its image in S and, from here on, by curve we will mean an essential simple closed
curve. A curve α is non-separating if S \ α is connected, and is separating otherwise.

Given two curves α and β on the surface S, we define their geometric intersection
number to be

i(α, β) := min
γ∈β
|α ∩ γ|.
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We remark that the definition is symmetric. That is,

min
γ∈β
|α ∩ γ| = min

γ∈α
|γ ∩ β|.

We also define the geometric intersection number of two isotopy classes, α and β, to be
i(α, β) for any choice of representatives α ∈ α and β ∈ β. We will denote it by i(α, β).
We will say that two curves α and β are in minimal position if |α ∩ β| = i(α, β).

A pair of curves {α, β} in minimal position on the surface S are said to be a filling pair
if any other curve γ on the surface has to intersect at least one of α or β. Equivalently,
{α, β} are a filling pair if their complement S \ (α ∪ β) is a disjoint union of disks or
once-punctured disks.

We also define the algebraic intersection number of a pair of oriented curves α and β

on the surface S. Denoted by î(α, β), this is defined to be the signed count of the inter-
sections between the curves α and β where an intersection has sign +1 if its orientation
agrees with the orientation of S, and has sign −1 otherwise. This does not depend on
the isotopy classes of α and β and so we can speak about î(α, β). Indeed, the algebraic
intersection number extends to a well-defined symplectic form on the first homology
of S. Contrary to the geometric intersection number, the algebraic intersection number
of two curves is skew-symmetric; that is, î(α, β) = −î(β, α).

Mapping class groups

Let S = Sg be a surface of genus g and consider the group Homeo+(S) of orientation-
preserving self-homeomorphisms of the surface S. If two elements f1, f2 ∈ Homeo+(S)
are isotopic then we will write f1 ∼ f2. Isotopy of homeomorphisms is an equivalence
relation and so we can define the mapping class group Mod(S) of the surface S to be the
quotient group

Mod(S) := Homeo+(S)/ ∼ .

The isotopy class [ f ] of a homeomorphism f is called its mapping class.
Let [ f ] ∈ Mod(S). We will say that [ f ] is:

i. a periodic mapping class if there exists an integer n such that [ f ]n = [id], where id
is the identity homeomorphism;

ii. a reducible mapping class if it fixes up to isotopy a disjoint union of curves in S; or

iii. a pseudo-Anosov mapping class if it is neither periodic nor reducible.

We will extend these adjectives to a homeomorphism f , depending on the characterisa-
tion of [ f ]. In particular, it will make sense to speak about a pseudo-Anosov homeomor-
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phism. This classification of surface homeomorphisms is now known as the Nielsen-
Thurston classification.

A periodic homeomorphism of particular interest is a hyperelliptic involution of a
surface S. For example, if we consider the surface S with all of the genus aligned along
an axis, then a hyperelliptic involution of the surface can be realised by the homeomor-
phism given by a rotation by π about this axis. The quotient of the surface by action of
this involution is a sphere with 2g + 2 punctures; that is, the surface S0,2g+2.

An important example of a reducible homeomorphism is that of a Dehn twist. Con-
sider the annulus A = S1 × [0, 1] with a fixed choice of orientation, and define the
homeomorphism

TA : A→ A

(θ, t) 7→ (θ + 2πt, t).

Given a curve α in S, we can take an annular neighbourhood Aα of α and consider a
homeomorphism φ : A → Aα. We then define the Dehn twist about α to be the homeo-
morphism Tα : S→ S given by

Tα(x) =

{
φ ◦ TA ◦ φ−1(x), if x ∈ Aα

x, otherwise.

The mapping class group is finitely generated by Dehn twists around curves. In-
deed, Dehn proved that Mod(Sg) is generated by 2g(g − 1) many Dehn twists [11].
The number of Dehn twists required has since been improved by Lickorish [38] and
Humphries [27].

We now describe a special case of a construction of pseudo-Anosov homeomor-
phisms due to Thurston. Let α and β be two curves that together fill the surface S and
let Tα and Tβ be the Dehn twists around α and β, respectively. If i(α, β) ≥ 2, then the
group 〈Tα, Tβ〉 is isomorphic to a free group of rank two. Furthermore, one can show
that 〈Tα, Tβ〉 contains no periodic elements and the only reducible elements are conju-
gate to a power of one of Tα, Tβ, or TαTβ. The latter case only occurs when i(α, β) = 2.
This construction therefore gives rise to infinitely many pseudo-Anosov homeomor-
phisms. We call such a construction a Thurston construction.

The curve graph

We now define the curve graph C(S) of a surface S = Sg, for g ≥ 2. The vertices of C(S)
are isotopy classes of curves on S, and two vertices are joined by an edge if and only if
their respective isotopy classes have representatives that can be realised disjointly from
one another on S. In fact, the curve graph can be extended to a (3g− 3)-dimensional
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simplicial flag complex in which the curve graph C(S) is the 1-skeleton. This complex
was first introduced by the Harvey [24]. The curve graph, as well as the full flag com-
plex, carries a natural action of the mapping class group and, as such, has played a
crucial role in the study of the mapping class group.

We will equip C(S) with the path metric dC . That is, dC(α, β) is the length of the
shortest path between α and β, where every edge is given length one. Masur-Minsky
showed that the metric space (C(S), dC) is δ-hyperbolic [40] - a seminal work in this
field. Given a pseudo-Anosov homeomorphism f : S → S, we define the asymptotic
translation length of f on C(S) to be

`C( f ) := lim inf
n→∞

dC(α, f n(α))

n
,

for any α ∈ C0(S). It can be shown that this is finite and does not depend on the choice
of α. Moreover, from the work of Bowditch [9] and Masur-Minsky [40] it follows that
this is a positive limit.

1.1.2 Teichmüller space and moduli space

A complex atlas on the surface S is a set {ψα : Uα → Vα}α of homeomorphisms be-
tween open sets Uα ⊂ S and Vα ⊂ C, such that

⋃
α Uα = S, and every transition map

ψβ ◦ ψ−1
α : ψα(Uα ∩Uβ)→ ψβ(Uα ∩Uβ) is a biholomorphism. Two complex atlases are

equivalent if their union is also a complex atlas. A complex structure on the surface S
is an equivalence class of complex atlases. Each complex structure contains a unique
maximal atlas. A Riemann surface X of genus g is a topological surface S equipped with
a maximal complex atlas. Observe that a Riemann surface is a complex manifold of
dimension one. In other words, it is a complex curve. A map f : X → Y between two
Riemann surfaces X and Y is said to be biholomorphic if for all charts ψα : Uα → Vα on
X and φi : U′i → V′i on Y, with Uα ∩ f−1(U′i ), the map φi ◦ f ◦ ψ−1

α is biholomorphic in
the usual complex analytical sense. Two Riemann surfaces are said to be isomorphic if
there exists a biholomorphism between them.

Teichmüller space

We now fix a topological surface S of genus g. A marked Riemann surface is a pair (X, ϕ),
where X is a Riemann surface of genus g and ϕ : S → X is a homeomorphism. Two
marked Riemann surfaces (X1, ϕ1) and (X2, ϕ2) are equivalent if ϕ2 ◦ ϕ−1

1 : X1 → X2

is isotopic to an isomorphism of Riemann surfaces. The Teichmüller space T (S) of the
surface S is then defined to be the space of equivalence classes of marked Riemann
surfaces.
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For g ≥ 2, every Riemann surface X can be realised as the quotient of the hyperbolic
plane H by a subgroup Γ of Isom+(H) ∼= PSL(2, R). As such, the natural hyperbolic
metric on H descends to a hyperbolic metric on X. We can equivalently define Teich-
müller space to be the space of equivalence classes of marked hyperbolic surfaces where
two such marked hyperbolic surfaces (X1, ϕ1) and (X2, ϕ2) are equivalent if ϕ2 ◦ ϕ−1

1 is
isotopic to an isometry.

Moduli space

We can define an action Mod(S) y T (S) of the mapping class group on Teichmüller
space by setting [ f ] · [(X, ϕ)] = [(X, ϕ ◦ f−1)]. One can check that this is well-defined in
the sense that the point [(X, ϕ ◦ f−1)] does not depend on the choice of representatives
of [ f ] or [(X, ϕ)]. As such, we can define the quotient of Teichmüller space by this
action. Indeed, we define the moduli space of Riemann surfaces to be

M(S) := T (S)/ Mod(S).

For g ≥ 2, the moduli space of Riemann surfaces is a complex orbifold of dimension
3g− 3.

Teichmüller metric

Viewed as a map between tangent spaces, the derivative of a conformal map between
Riemann surfaces sends circles to circles. More generally, the derivative of a map be-
tween Riemann surfaces sends circles to ellipses. For a map f : X → Y between Rie-
mann surfaces that is smooth outside of a finite set of points, we define the dilatation of
f at a smooth point p ∈ X to be

K f (p) =
| fz(p)|+ | fz̄(p)|
| fz(p)| − | fz̄(p)| ,

which can be interpreted as the ratio of the length of the major axis to the length of the
minor axis of the ellipse that is the image under d f of the unit circle in the tangent space
to X at p. We then define the dilatation of f to be

K f = sup K f (p),

where the supremum is taken over all smooth points p ∈ X. If K f < ∞, then we say that
f is quasiconformal or, more specifically, K f -quasiconformal. If K f = 1 then f is conformal.

With this in mind, we define a function dT : T (S)× T (S) → R as follows. Given
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x = [(X, f )] and y = [(Y, g)] in T (S), we define

dT (x, y) = inf
h∼g◦ f−1

1
2

log Kh,

where the infimum is taken over all quasiconformal maps h isotopic to the change of
marking map g ◦ f−1 : X → Y. This function is well defined and defines a Finsler
metric on T (S) called the Teichmüller metric.

Given a pseudo-Anosov homeomorphism f : S→ S, we define the translation length
of f on T (S) to be

`T ( f ) := inf
x∈T (S)

dT (x, f (x)) > 0.

When viewed as a map between Riemann surfaces, it follows from Bers’ proof of the
classification of surface homeomorphisms that the translation length of f is equal to
1
2 log(K f ) [7]. Furthermore, there is a geodesic axis γ in T (S) fixed by f and along
which f acts by translations of distance `T ( f ) = 1

2 log(K f ). We remark that one can
show that the asymptotic translation length on Teichmüller space, defined analogously
to the asymptotic translation length on the curve graph, can be shown to be equal to
`T .

1.1.3 Abelian differentials

For g ≥ 1, consider the set of Abelian differentials; that is, the set of pairs (X, ω), where
X is a compact Riemann surface of genus g and ω is a non-zero holomorphic 1-form
on X, also called an Abelian differential. We then define the moduli space of Abelian
differentials Hg to be the quotient of this set by the action of the mapping class group
Mod(S), where Mod(S) acts on Riemann surfaces by precomposition with charts and
on 1-forms by pullback. We will however abuse notation and denote an equivalence
class [(X, ω)] by its representative (X, ω). We also drop the subscript g from Hg if the
genus is clear from the context.

Recall that for genus greater than or equal to two the moduli space of Riemann
surfaces has complex dimension 3g− 3, and that the space of holomorphic 1-forms on
a Riemann surface has complex dimension g. It can be shown that H is a complex
orbifold of complex dimension 4g− 3.

Translation surfaces

Let S be a topological surface of genus g. By a translation atlas on S, we will mean an atlas
of charts {ϕα : Uα → Vα}α with Uα ⊂ S, Vα ⊂ C open sets,

⋃
α Uα = S \ Σ, for a finite

set of points Σ ⊂ S, such that all transition maps ϕβ ◦ ϕ−1
α are given by translations
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z 7→ z + c. Two translation atlases are equivalent if their union is also a translation
atlas, and an equivalence class of translation atlases is called a translation structure. A
surface S equipped with a maximal translation atlas will be called a translation surface.
We claim that a translation surface is equivalent to a Riemann surface equipped with
an Abelian differential.

Given an Abelian differential ω on a Riemann surface X, let Σ denote the set of zeros
of ω. This is the finite set of points p ∈ X such that ω(p) = 0. Now let p ∈ X \ Σ and
let Up be a path connected open neighbourhood of p that does not contain any zeros of
ω. In other words, Up ∩ Σ = ∅.

We claim that ω is a closed 1-form. Indeed, for any C1 1-form σ = u dz + v dz̄, we
have dσ = (uz̄− vz) dz̄∧ dz. Since ω is holomorphic, it locally satisfies ω = f dz, where
f is a holomorphic function. Hence, we have that dω = ( fz̄ − 0) dz̄ ∧ dz = 0, since
fz̄ = 0 for a holomorphic function f . As such, we can define a coordinate function
φp : Up → C by defining

φp(x) =
∫ x

p
ω.

This is well-defined since ω is closed. Moreover, up to a modification of Up, φp is a
biholomorphism. Note that, for x ∈ Up ∩Uq, given p, q ∈ X \ Σ, we have

φq(x) =
∫ x

q
ω =

∫ x

p
ω +

∫ p

q
ω = φp(x) +

∫ p

q
ω.

Hence, we see that the transition maps satisfy φp ◦ φ−1
q (z) = z + c, for the constant

c =
∫ q

p ω ∈ C. This construction then gives us an atlas of charts on X \ Σ with tran-
sition maps being translations. The Riemann removable singularity theorem allows us
to extend this atlas to an atlas of charts on X compatible with the original Riemann
surface structure. A maximal atlas of this nature then gives rise to a translation surface
structure on the underlying topological surface.

Conversely, let S be a translation surface. This structure endows S with a Riemann
surface structure and the local pullback of the 1-form dz on C gives rise to an Abelian
differential ω on this Riemann surface. This is well-defined since d(z + c) = dz, and c
is constant for each transition map. With this correspondence in mind, H may also be
called the moduli space of translation surfaces, and we may call the pair (X, ω) a transla-
tion surface.

Given a translation surface (X, ω), the pullback of the flat metric on C gives rise
to a flat metric on X \ Σ with trivial holonomy. For genus greater than or equal to
two, by the Gauss-Bonnet theorem, the metric completion on the whole of X must have
negative curvature. Indeed, we have that each zero of ω of order k gives rise to a cone-
type singularity with cone-angle equal to (k + 1)2π. That is, in a sense, the negative
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curvature is concentrated in the finitely many points of Σ. Furthermore, away from
the zeros of ω, the pullbacks of the vector fields ∂/∂x and ∂/∂y give rise to a canonical
choice of horizontal and vertical directions.

Translation surfaces and their generalisations half-translation surfaces (introduced
in Section 6.1) arise naturally in the study of various dynamical systems such as bil-
liards in rational polygons, electron transport in Fermi surfaces, and certain self-maps
of the interval. More on these motivations can be found in the survey of Zorich [56].

Stratification ofH

By the Riemann-Roch theorem, the sum of the orders of the zeros of an Abelian differ-
ential on a Riemann surface of genus g is equal to 2g− 2 and this data can be used to
stratify H. The stratum H(k1, . . . , kn) ⊂ H, with ki ≥ 1 and ∑ ki = 2g− 2, is the subset
of H consisting of Abelian differentials with n distinct zeros of orders k1, . . . , kn. Each
stratum is an orbifold of complex dimension 2g + n− 1. When it is convenient to do
so, we may use power notation for the ki. For example, we can denote H(1, 1, 1, 1) by
H(14).

The individual strata of H may have a number of connected components and the
work of Kontsevich-Zorich completely classified these components [34, Theorems 1
and 2].

Square-tiled surfaces

A useful way to construct a translation surface is by taking a finite collection of poly-
gons in C with pairs of parallel sides of equal length identified by translations such that
the quotient of the polygons by these identifications is a closed connected oriented sur-
face. The standard way of realising the square torus as the quotient of the unit square
by identifying opposite sides by translations realises the torus as a translation surface.
More generally, if a translation surface is realised by identifying the sides (left sides to
right sides and top sides to bottom sides) of a collection of unit squares in C, then we
call such a translation surface a square-tiled surface.

A square-tiled surface is therefore a branched cover of the square torus branched
over one point, and one can also think of square-tiled surfaces as being the integral
points of the period coordinates on a stratum (a coordinate system defined by taking
the ω-periods of a relative homology basis). The period coordinates give rise to a mea-
sure on strata, called the Masur-Veech measure, which when restricted to the area one
locus of the stratum gives a finite measure. This fact was proved independetly by Ma-
sur [39] and Veech [50,51]. Since square-tiled surfaces can be thought of as lattice points,
understanding square-tiled surfaces has played a crucial role in calculating the volumes
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of strata of Abelian differentials which are important pieces of information for dynam-
ical calculations. See, for example, the works of Zorich [55] and Eskin-Okounkov [20].
Such volume calculations depend on asymptotic counts of square-tiled surfaces and
these counts can be simplified by counting square-tiled surfaces of different combina-
torial type separately.

It is natural to ask what is the minimum number of squares required to build a
square-tiled surface in a stratum Hg(k1, . . . , kn). An Euler-characteristic argument can
be used to show that a square-tiled surface in this stratum must be constructed from at
least 2g + n− 2 squares. We will make reference to this lower bound throughout the
thesis.

One important piece of combinatorial data for a square-tiled surface is the number
of maximal, flat horizontal or vertical cylinders. A cylinder is a maximal embedded
annulus in the surface, not containing any singularities in its interior. For example, the
horizontal curves intersecting the sides labelled by 0s in Figure 1.1 are the core curves of
the horizontal cylinders of the surfaces. One can also see that the surface on the left also
has two vertical cylinders while the one on the right has a single vertical cylinder. If a
square-tiled surface has a single vertical cylinder and a single horizontal cylinder then
we shall call it a 1,1-square-tiled surface. A square-tiled surface inHg(k1, . . . , kn) can have
between 1 and g + n − 1 cylinders in its horizontal or vertical directions. Therefore,
1,1-square-tiled surfaces have the simplest possible decomposition into horizontal and
vertical cylinders.

0

1 2 3

0

3 2 1

0

1 4 2 3

0

4123

×

×

Figure 1.1: Two square-tiled surfaces in H(2) with a single horizontal cylinder. The
surface on the right also has a single vertical cylinder while the one on the left has two
vertical cylinders.

The process of splitting a pair of identified sides into two and identifying them as
before adds a marked point, a zero of order zero, to the translation surface. That is,
pick a pair of sides that are identified by translation and add a vertex to the centre of
each side splitting each side into two - a left-side and a right-side. We then identify
the right-sides with each other and the left-sides with each other. The resulting surface
has zeros of the same orders but the additional vertex is now a zero of order zero - that
is, it has cone-angle 2π. If one performs this operation on a square-tiled surface then,
after setting the newly formed edges to have length 1, we obtain another square-tiled
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surface with an additional square. Observe that the surface on the right of Figure 1.1
is obtained from the surface on the left by performing such an operation on the sides
labelled 1. The added vertex is shown in red. This operation does not change the con-
nected component of the surface and we will make use of this technique when adding
squares to hyperelliptic square-tiled surfaces in Section 3.1.

There is a natural correspondence between 1,1-square-tiled surfaces and filling pairs
of curves on surfaces. The core curves of the cylinders of a 1,1-square-tiled surface form
a filling pair on the underlying surface with, up to an appropriate choice of orientation,
geometric intersection number equal algebraic intersection number. Indeed, the com-
plement of the core curves is a disjoint union of disks, one for each zero. Moreover,
since the vertical curve after leaving the top of a square can only enter the bottom of
another square, its intersections with the horizontal curve all occur with the same ori-
entation. Conversely, if we have a filling pair on a surface with geometric intersection
number equal to algebraic intersection number, then the dual complex of these curves
is a square-complex realising the surface as a square-tiled surface. The intersection
number condition guarantees that the sides of the squares are identified in the correct
manner.

Hyperellipticity

We say that a translation surface (X, ω) is hyperelliptic if there exists an isometric invo-
lution τ : X → X, known as a hyperelliptic involution, that induces a ramified double
cover π : X → S0,2g+2 from X to the (2g + 2)-times punctured sphere. Note that we
must have τ∗ω = −ω. The 2g + 2 fixed points of this involution, which map to the
punctures on the sphere, are called Weierstrass points. Kontsevich-Zorich showed that
the strata H(2g − 2) and H(g − 1, g − 1) contain connected components, denoted by
Hhyp(2g − 2) and Hhyp(g − 1, g − 1) respectively, consisting entirely of hyperelliptic
translation surfaces. These connected components will be called the hyperelliptic compo-
nents.

We note that, since τ∗ω = −ω, the zero of an Abelian differential in Hhyp(2g −
2) is fixed by the hyperelliptic involution. Similarly, the two zeros of a hyperelliptic
Abelian differential inH(g− 1, g− 1) are either fixed or mapped to one another under
the hyperelliptic involution. It follows from the discussion below that the zeros of
an Abelian differential in Hhyp(g − 1, g − 1) are symmetric; that is, mapped to one
another, under the hyperelliptic involution. We make use of these facts in the proof of
Proposition 3.2.

To motivate the definition of the components Hhyp(2g− 2) and Hhyp(g− 1, g− 1)
we will briefly introduce the notion of a quadratic differential on a surface. We di-
rect the reader to Section 6.1 for a more detailed discussion. A quadratic differential on
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a Riemann surface X is a global section of the symmetric square of the canonical line
bundle on X. In other words, a quadratic differential q on X is locally given by f (z)dz2.
Observe that the global square of an Abelian differential gives rise to a quadratic dif-
ferential on X. We denote by Q the moduli space of non-zero meromorphic quadratic
differentials on a surface of genus g that are not global squares of Abelian differentials.
We will also assume that all such differentials have at most simple poles. As such, Q is
stratified by subsets Q(k1, . . . , kn), ki ≥ 1 or ki = −1, and ∑n

i=1 ki = 4g− 4, consisting
of quadratic differentials with zeros of the prescribed orders.

There exists a natural double covering construction that takes a pair (X, q) ∈ Q to a
pair (X′, q′) where q′ is now a global square of an Abelian differential ω′. This gives a
series of maps

Q(l1, . . . , lm)→ H(k1, . . . , kn),

and it can be shown that these maps are immersions. In the following two cases

Q(2g− 3,−12g+1)→ H(2g− 2)

Q(2g− 2,−12g+2)→ H(g− 1, g− 1)

these maps give double covers of spheres. Moreover, it can be shown that in these
particular cases the dimensions of the domain stratum and the range stratum agree
and, since genus zero quadratic strata are connected and the Teichmüller geodesic flow
acts ergodically on connected components and equivariantly with respect to this map,
the images of these maps must be connected components in the image strata.

Spin structures and parity

The second invariant used to classify the connected components of a stratum is the
notion of the parity of a spin structure.

Recall that the canonical class KX of a Riemann surface X is the linear equivalence
class of divisors of 1-forms on X. A spin structure on a Riemann surface X is a choice
of half of the canonical class. That is, a spin structure is a choice of divisor class D in
the Picard group of divisor classes Pic(X), such that 2D = KX. Let Γ(X, L) denote the
space of holomorphic sections of the line bundle L corresponding to the divisor class
D. Then the parity of the spin structure D is defined to be

dim Γ(X, L) mod 2.

Given an Abelian differential ω ∈ H(2k1, . . . , 2kn) the divisor

Zω = 2k1P1 + · · ·+ 2knPn
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represents the canonical class KX. As such, we have a canonical choice of spin structure
on X given by the divisor class

Dω = [k1P1 + · · ·+ knPn].

Atiyah [6] and Mumford [45] demonstrated that the parity of a spin structure is invari-
ant under continuous deformation. As such, the parity of the canonical spin structure
given by an Abelian differential is constant on each connected component of the stra-
tum. We will say that a connected component has even or odd spin structure depending
on whether or not the parity of Dω is 0 or 1.

Recall, that an Abelian differential ω on X determines a flat metric on X with cone-
type singularities. Moreover, this metric has trivial holonomy, and away from the zeros
of ω there is a well-defined horizontal direction. We can therefore define the index,
ind(γ), of a simple closed curve γ on X, avoiding the singularities, to be the degree
of the Gauss map of γ. That is, ind(γ) is the integer such that the total change of
angle between the vector tangent to γ and the vector tangent to the horizontal direction
determined by ω is 2π · ind(γ). One can think about the index of a curve as the winding
number of the curve with respect to the horizontal unit vector field of ω.

Given ω ∈ H(2k1, . . . , 2kn), we define a function Ωω : H1(X, Z2)→ Z2 by

Ωω([γ]) = ind(γ) + 1 mod 2,

where γ is a simple closed curve, and extend to a general homology class by linearity.
We claim that this function is well-defined. Firstly, if we homotope a simple closed
curve γ across a zero of order k then ind(γ) will change by ±k but since all of our zeros
have even order this will fix ind(γ) modulo 2. One can check that for the boundary δ of
a small disk not containing a zero, we have that ind(δ) + 1 ≡ 1+ 1 ≡ 0 mod 2. For the
boundary δ of a small disk containing a zero of order k we have ind(δ) ≡ (k+ 1)+ 1 ≡ 0
mod 2 since all of our zeros are of even order. Moreover, it follows from the Poincaré-
Hopf Theorem that ind(δ) + 1 ≡ 0 mod 2 for any null-homologous simple closed
curve δ. Therefore, Ωω(0) ≡ 0 mod 2, and so Ωω is indeed well-defined.

The function Ωω can be shown to be a quadratic form on H1(X, Z2), by which we
mean

Ωω(a + b) = Ωω(a) + Ωω(b) + a · b,

where a · b denotes the standard symplectic intersection form on H1(X, Z2); that is, the
intersection form that extends the algebraic intersection number. Now given a choice
of representatives {αi, βi}

g
i=1 of a symplectic basis for H1(X, Z2), we define the Arf in-
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variant of Ωω to be

g

∑
i=1

Ωω([αi]) ·Ωω([βi]) mod 2 =
g

∑
i=1

(ind(αi) + 1)(ind(βi) + 1) mod 2.

Arf [5] proved that this number is independent of the choice of symplectic basis and
Johnson [31] showed that quadratic forms on H1(X, Z2) are in one-to-one correspon-
dence with spin structures on X. Moreover, Johnson proved that the value of the Arf
invariant of Ωω coincides with the parity of the canonical spin structure determined by
ω. We will make use of this formula when we calculate the parity of spin structures
later in the thesis.

Classification of connected components

We are now ready to state the classification result of Kontsevich-Zorich. There are a few
low genus cases that need to be dealt with separately, but the classification stabilises for
genera greater than or equal to 4.

Theorem 1.1 ( [34], Theorem 1). All connected components of strata of Abelian differentials
on Riemann surfaces of genus g ≥ 4 are described by the following list:

The stratum H(2g − 2) has three connected components: the hyperelliptic component,
Hhyp(2g − 2), and two other components: Heven(2g − 2) and Hodd(2g − 2) corresponding
to even and odd spin structures.

The stratumH(2l, 2l), l ≥ 2, has three connected components: the hyperelliptic component,
Hhyp(2l, 2l), and two other components: Heven(2l, 2l) andHodd(2l, 2l) corresponding to even
and odd spin structures.

All other strata of the form H(2l1, . . . , 2ln), li ≥ 1, have two connected components:
Heven(2l1, . . . , 2ln) andHodd(2l1, . . . , 2ln) corresponding to even and odd spin structures.

The strataH(2l− 1, 2l− 1), l ≥ 2, has two components: one of themHhyp(2l− 1, 2l− 1)
is hyperelliptic; the otherHnonhyp(2l − 1, 2l − 1) is not.

All other strata of Abelian differentials on Riemann surfaces of genus g ≥ 4 are nonempty
and connected.

For lower genera, we have the following classification.

Theorem 1.2 ( [34], Theorem 2). The moduli space of Abelian differentials on a Riemann
surface of genus g = 2 contains two strata: H(1, 1) and H(2). Each of them is connected and
coincides with its hyperelliptic component.

Each of the strata H(2, 2) and H(4) of the moduli space of Abelian differentials on a Rie-
mann surface of genus g = 3 has two connected components: the hyperelliptic one, and one
having odd spin structure. The other strata are connected for genus g = 3.
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In Chapter 3, we will see that the fact that all Abelian differentials of genus two are
hyperelliptic causes us some difficulty in our construction of 1,1-square-tiled surfaces.

The action of SL (2, R)

The group SL(2, R) has a natural action on the moduli space of Abelian differentials.
Indeed, recall that (X, ω) can be realised as a collection of polygons {Pi} in C with
sides identified by translation. We then define A · (X, ω) to be the translation surface
obtained from the collection of polygons {A(Pi)}, where A ∈ SL(2, R) acts on the
polygons by matrix multiplication on the vectors determining the sides. Observe that
this action is well defined since equal length parallel vectors are sent to equal length
parallel vectors under the action of SL(2, R).

Since a translation surface determines a complex structure on the underlying topo-
logical surface S, and given a choice of homeomorphism f : S → X, we obtain a
point in Teichmüller space. The action of SO(2, R) on an Abelian differential does
not change the point in Teichmüller space that it determines. As such, the orbit of
an Abelian differential under the action of SO(2, R)\ SL(2, R) gives an embedding of
SO(2, R)\ SL(2, R) ∼= H into T (S). We call the image of this embedding the Teichmüller
disk determined by the Abelian differential. This idea can be generalised to the orbit of a
quadratic differential and so we can also talk about the Teichmüller disk determined by
a quadratic differential. We refer the reader to the work of Herrlich-Schmithüsen [25]
for a more detailed discussion.

The Teichmüller geodesic flow mentioned above is given by the action of the diag-
onal subgroup {(

et 0
0 e−t

) ∣∣∣∣∣ t ∈ R

}
.

1.2 Single-cylinder square-tiled surfaces

It is a consequence of recent work of Delecroix-Goujard-Zograf-Zorich [14] that 1,1-
square-tiled surfaces make a non-zero contribution to the volumes of strata of Abelian
differentials, and moreover equidistribute as the number of squares tends to infinity.
Indeed, they showed that this equidistribution is true more generally for square-tiled
surfaces of fixed combinatorial type in any GL(2, R)-invariant suborbifold containing
a single square-tiled surface [14, Theorem 1.4]. By this we mean, in any finite volume
open subset U, a point chosen at random from an ε-grid in U is a square-tiled surface
having the desired combinatorics with probability that, as ε tends to zero, does not
depend on U.

Recall that a square-tiled surface in a stratum Hg(k1, . . . , kn) must have at least
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2g + n − 2 squares. Square-tiled surfaces realising this number exist in every con-
nected component. For example, one can take the square-tiled surfaces associated to
the Jenkins-Strebel permutation representatives given by Zorich [57]. It is not obvious
whether forcing a square-tiled surface to have a single horizontal and a single vertical
cylinder would require it to have more than 2g + n− 2 squares. That is, it is natural to
ask the following question.

Question 1.3. Given a connected component C of a stratum H(k1, . . . , kn), can a 1,1-square-
tiled surface in C be constructed using only 2g + n− 2 squares?

We prove that the answer to this question is yes, unless the connected component
C is a hyperelliptic component. Indeed, our main result is the following.

Theorem 1.4. Let C 6= Hhyp(2g − 2),Hhyp(g − 1, g − 1) be a connected component of a
stratumHg(k1, . . . , kn). Then there exists a 1,1,-square-tiled surface in C formed of 2g+ n− 2
squares; that is, consisting of the minimum number of squares required for a square-tiled surface
in the ambient stratum. To construct 1,1-square-tiled surfaces in the componentsHhyp(2g− 2)
and Hhyp(g− 1, g− 1) one instead requires at least 4g− 4 and 4g− 2 squares, respectively.
Moreover, there exist 1,1-square-tiled surfaces in these components realising these bounds.

The theorem demonstrates that, for all but the hyperelliptic components, 1,1-square-
tiled surfaces are exhibited in the minimum number of squares possible. For the hyper-
elliptic components, the cylinders of a 1,1-square-tiled surface are sent to themselves
under the action of the hyperelliptic involution and it is this extra symmetry that essen-
tially forces the need for additional squares.

A permutation representative, introduced in Chapter 2, is a useful way of con-
structing translation surfaces. Zorich [57] constructed permutation representatives for
every connected component of every stratum that can be used to build square-tiled
surfaces with a single horizontal cylinder. One might expect that a construction of
1,1-square-tiled surfaces could be achieved by applying a sequence of combinatorial
moves, called Rauzy moves, to the permutation representatives of Zorich in order to
obtain the desired combinatorics. However, this method is not adequate because the
complexity of Rauzy diagrams - directed graphs containing all permutation represen-
tatives that can be reached by Rauzy moves - grow in such a way as to make this ex-
tremely computationally difficult. Moreover, the hope that one would be able to easily
find such a sequence of Rauzy moves for each connected component is naive. Indeed,
the complexity of such a method is demonstrated, for example, in the case of the strata
H(2g− 5, 1, 1, 1). Here, with the permutation representatives given by Zorich, a differ-
ent sequence of Rauzy moves is required depending on the residue of 2g− 5 modulo
4; see the differing permutation representatives in Proposition 3.10. As such, it seems
unreasonable to expect to find a general proof of this nature.
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Only in the extremely rigid case of the hyperelliptic components is a proof similar
to this achieved. In fact, 1,1-square-tiled surfaces in these components are constructed
by hand by adding squares to the combinatorics given by Rauzy. A method of Margalit
relating to minimally intersecting filling pairs on the surface of genus two, referenced
in a paper of Aougab-Huang [1, Remark 2.18], is then formalised and generalised in
order to show that the number of squares achieved for these components is actually the
minimum required.

Zorich constructed his permutation representatives by finding permutation repre-
sentatives for higher dimensional strata and then collapsing zeros together to produce
representatives for lower dimensional strata. Although the single horizontal cylinder
can be preserved under this collapsing method, the effect on the vertical cylinders is
less obvious and harder to control. As such, we will not adopt a collapsing method
here.

We instead adopt an inductive method in order to build 1,1-square-tiled surfaces in
nonhyperelliptic connected components. More specifically, we show in Chapter 2 that
1,1-square-tiled surfaces in a general connected component can be constructed from 1,1-
square-tiled surfaces of lower complexity in such a way that the resulting number of
squares and the parity of any resulting spin structure can be easily controlled. We then
construct, in Chapter 3, the families of 1,1-square-tiled surfaces required to allow this
procedure to be completed. A small number of low complexity exceptional cases were
found computationally using the surface_dynamics package [13] of SageMath [49].
In Appendix B, we give the Python code that can be used with SageMath and that
has been included in the surface_dynamics package to produce the 1,1-square-tiled
surfaces given by Theorem 1.4.

1.3 Ratio-optimising pseudo-Anosovs

Consider the Teichmüller space T (S) of marked hyperbolic metrics on the surface S
equipped with the Teichmüller metric dT , and the curve graph C(S) of the surface S
equipped with the path metric dC .

The systole map
sys : T (S)→ C(S)

is a coarsely-defined map that sends a marked hyperbolic metric to the isotopy class
of the essential simple closed curve of shortest hyperbolic length. Masur-Minsky [40,
Consequence of Lemma 2.4] showed that there exists a constant K > 0, depending only
on g, and a C ≥ 0 such that dC(sys(x), sys(y)) ≤ K · dT (x, y) + C, for all x, y ∈ T (S). In
other words, the systole map is coarsely K-Lipschitz. This result was a key step in their
proof that C(S) is δ-hyperbolic.
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It is natural to ask what is the optimum Lipschitz constant, κg, defined by

κg := inf{K > 0 | ∃C ≥ 0 such that sys is coarsely K-Lipschitz}.

Gadre-Hironaka-Kent-Leininger determined that the ratio of κg to 1/ log(g) is bounded
from above and below by two positive constants [23, Theorem 1.1]. In such a case, we
use the notation κg � 1/ log(g), and say that κg is comparable to 1/ log(g). To find
an upper bound for κg, Gadre-Hironaka-Kent-Leininger gave a careful version of the
proof of Masur-Minsky that sys is coarsely Lipschitz. They then constructed pseudo-
Anosov homeomorphisms - a specific type of surface homeomorphism - for which the
ratio `C( f )/`T ( f ) � 1/ log(g), where `C( f ) and `T ( f ) are the asymptotic translation
lengths of f in C(S) and T (S), respectively. A lower bound for κg then followed by
noting that, for any pseudo-Anosov homeomorphism f , we have

κg ≥
`C( f )
`T ( f )

.

Using a Thurston construction on filling pairs, Aougab-Taylor constructed an infi-
nite family of pseudo-Anosov homeomorphisms for which τ( f ) := `T ( f )/`C( f ) was
bounded above by a function comparable to log(g) [4, Theorem 1.1]; such homeomor-
phisms are said to be ratio-optimising. More specifically, given a filling pair {α, β} on the
surface S with geometric intersection number i(α, β) � g, they used a Thurston con-
struction on {α, β} to construct pseudo-Anosov homeomorphisms for which τ( f ) ≤
log(D · i(α, β)), where D is a constant independent of g. Furthermore, they showed that
infinitely many conjugacy classes of primitive ratio-optimising pseudo-Anosov home-
omorphisms, produced as above, have their invariant axis contained in the Teichmüller
disk D(α, β) of the flat structure determined by the filling pair {α, β}. The Teichmüller
disk D(α, β) ⊂ T (S) is the Teichmüller disk of the Abelian differential given by the
filling pair {α, β}.

We can then ask the following.

Question 1.5. Can the Teichmüller disk D(α, β) be taken to be the Teichmüller disk of an
Abelian differential from any connected component of any stratum of the moduli space of Abelian
differentials?

Recall from above that the core curves of the cylinders of a 1,1-square-tiled surface,
with a minimal number of squares, form a filling pair with geometric intersection num-
ber equal to the number of squares. Hence, as a consequence of Theorem 1.4, we have
the following result.
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Theorem 1.6. Given any connected component of any stratum of Abelian differentials, there
exist infinitely many conjugacy classes of primitive ratio-optimising pseudo-Anosov homeomor-
phisms whose invariant axis is contained in the Teichmüller disk of an Abelian differential in
that connected component.

That is, in a reasonable sense, ratio-optimising pseudo-Anosov homeomorphisms
are ubiquitous in the connected components of strata of Abelian differentials. We prove
this result in Chapter 4.

1.4 Filling pairs on punctured surfaces

Let Sg,p denote the surface of genus g ≥ 0 with p ≥ 0 punctures. We define ig,p to be
the minimal geometric intersection number for a filling pair on Sg,p. The values of ig,p

were determined in almost all cases in the works of Aougab-Huang [1] and Aougab-
Taylor [3]. However, in the case of S2,p, p ≥ 3 odd, they showed only the bounds:

2g + p− 2 ≤ ig,p ≤ 2g + p− 1.

In Chapter 5, we resolve this final case by proving the following result.

Theorem 1.7. Let g = 2 and p ≥ 3 be odd, then ig,p = 2g + p− 2.

To prove the existence of such filling pairs, we generalise the construction of filling
permutations given by Nieland [46, Theorem 2.1], which are themselves generalisations
of the filling permutations introduced by Aougab-Huang [1, Lemma 2.2]. We use these
to produce a minimally intersecting filling pair on S2,3, and then apply the double-
bigon inductive method used by Aougab-Taylor [3, Proof of Lemma 3.1] to extend to
all odd p ≥ 3.

For g ≥ 1, one can ask whether ig,p can be realised as the algebraic intersection
number, î(α, β), of a filling pair {α, β}. Aougab-Menasco-Neiland [2] answered this
question for the case of ig,0; that is, for minimally intersecting filling pairs on closed
surfaces. Moreover, they were interested in counting the number of mapping class
group orbits of such filling pairs. Their method involves algebraically constructing 1,1-
square-tiled surfaces with the minimum number of squares in the stratum H(2g− 2),
which they call square-tiled surfaces with connected leaves. The core curves of the
cylinders of such surfaces give rise to filling pairs with algebraic intersection number
equal to ig,0.

Let n ≥ ig,p, by a compatible decomposition of the surface Sg,p into n+ 2− 2g many 4k-
gons, we mean a decomposition of the surface into 4k-gons P1, . . . , Pn+2−2g such that, if
Pi is a 4ki-gon, then ∑(ki − 1) = 2g− 2.
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The filling pairs obtained from the cylinders of 1,1-square-tiled surfaces in any stra-
tum of Abelian differentials have algebraic intersection number equal to geometric in-
tersection number and also give rise to a decomposition of the surface into a number
of 4k-gons, with the number of polygons and the number of sides of each polygon de-
pending on the stratum of the square-tiled surface. The resulting set of 4k-gons form a
compatible decomposition of the surface. Indeed, each 4ki-gon corresponds to a zero
of the Abelian differential of order (ki − 1).

Using a simple modification of the constructions used in the proof of Theorem 1.4,
we obtain the following result.

Theorem 1.8. Let n ≥ ig,p and choose a compatible decomposition of Sg,p into n + 2− 2g
many 4k-gons, then there exists a filling pair {α, β} on the surface Sg,p with

î(α, β) = i(α, β) = n,

that gives rise to the specified polygonal decomposition of Sg,p.

This generalises the existence part of the work of Aougab-Menasco-Neiland to the
case of any intersection number on any surface Sg,p. The proof of this result is contained
in Chapter 5.

1.5 Extension to quadratic strata

Introduced in Section 6.1, pillowcase covers are a natural generalisation of square-tiled
surfaces to the setting of quadratic differentials. In this setting, the notion of cylinders
still holds and so one can discuss 1,1-pillowcase covers as the natural analogue of 1,1-
square-tiled surfaces. A pillowcase cover in the stratum Qg(k1, . . . , kn) requires at least
2g + n− 2 squares. It is then natural to ask the following question.

Question 1.9. Given a connected component C of a non-empty stratum Q(k1, . . . , kn), what
is the minimum number of squares required for a 1,1-pillowcase cover?

In Chapter 6, we prove the following theorem in answer to this question.

Theorem 1.10. For g ≥ 2, let C 6= Qhyp
g (4j + 2, 4k + 2),Qhyp

g (4j + 2, 2k − 1, 2k − 1),
or Qhyp

g (2j − 1, 2j − 1, 2k − 1, 2k − 1) be a connected component of a non-empty stratum
Qg(k1, . . . , kn) of quadratic differentials with no poles. Then there exists a 1,1-pillowcase cover
in C consisting of 2g + n− 2 squares. To construct 1,1-pillowcase covers with both core curves
being non-separating in the components Qhyp

g (4j + 2, 4k + 2),Qhyp
g (4j + 2, 2k − 1, 2k − 1)

and Qhyp
g (2j− 1, 2j− 1, 2k− 1, 2k− 1), one requires at least 4g− 4, 4g− 2, and 4g squares,

respectively. Moreover, there exist 1,1-pillowcase covers realising these bounds.
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For g = 1, let Qg(k1, . . . , kn) be a non-empty stratum of quadratic differentials with an
even number of poles, then there exists a 1,1-pillowcase cover in this stratum consisting of
2g + n− 2 squares. If insteadQg(k1, . . . , kn) is a non-empty stratum of quadratic differentials
with an odd number of poles then there exists a 1,1-pillowcase cover in this stratum with at
most 2g + n + 1 squares.

For g = 0, let Q(k1, . . . , kn,−1κ+4), for κ = ∑ ki, be a stratum of quadratic differentials.
Then there exists a 1,1-pillowcase cover in this stratum with 4κ + 2n + 2 squares.

The case of genus at least two is handled in Sections 6.3 to 6.6. For the hyperelliptic
components, we conjecture that the bounds in this theorem are minimal for all 1,1-
pillowcase covers in these components. That is, we expect that making one or both of
the core curves separating increases the number of squares required.

In genus one, we remark that there are certain strata in the case of an odd number
of poles for which the number of squares given by this theorem is not minimal. This is
also true for certain genus zero strata. The proof of the above theorem and the possible
improvements are given in Section 6.7 for genus one and Section 6.8 for genus zero.

For genus at least one, we are able to apply an inductive method similar to that used
to prove Theorem 1.4. However, the combinatorics in the quadratic case are more com-
plicated requiring a greater number of base cases with more delicate structure. Further-
more, this inductive method requires positive genus and so a new method is required
for the construction of 1,1-pillowcase covers in genus zero.



Chapter 2

Combination lemmas

The main objects of study in this thesis are the square-tiled surfaces we introduced
above. In this chapter, we discuss some associated structures that we will use through-
out this thesis. Moreover, we will prove a pair of lemmas that will be essential to the
construction of 1,1-square-tiled surfaces in Chapter 3.

2.1 Permutation representatives

An interval exchange transformation is a self map of the interval that divides the interval
into subintervals and then permutes them. Now consider the translation surface given
in Figure 2.1. The first return map to the horizontal transversal T under the upwards
vertical flow on the surface induces an interval exchange transformation on T whose
permutation is

Π =

(
0 1 2 3 4
4 3 1 2 0

)
. (2.1)

That is, under the upwards vertical flow, the interval on T lying below the side labelled
0 returns in position 4 (counting from the left and starting at 0), and so on. In general,
the interval below side i returns in position Π−1(i). For more details on the connec-
tions between translation surfaces and interval exchange transformations we direct the
reader to the survey of Yoccoz [53].

The extended Rauzy class of this permutation is a class of permutations related under
an induction method for interval exchange transformations introduced by Rauzy [47].
Another choice of transversal will give an interval exchange transformation whose per-
mutation lies in the extended Rauzy class of permutation (2.1). Conversely, any trans-
lation surface obtained as a suspension of an interval exchange transformation whose
permutation lies in the same extended Rauzy class as permutation (2.1) will lie in the
same connected component of a stratum as the translation surface in Figure 2.1. Indeed,
Veech showed that extended Rauzy classes are in one-to-one correspondence with the

22
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connected components of strata [50]. As such, any choice of permutation in an ex-
tended Rauzy class will be called a permutation representative of the stratum component
containing the associated translation surface.

0

1
2 3

4

0
1

23
4

T

Figure 2.1: The first return map to the horizontal transversal T under the vertical flow
induces an interval exchange transformation.

0

1 2 3

0

3 2 1

0

1 2 3 4

0

2134

Figure 2.2: Two square-tiled surfaces in H(2) with a single horizontal cylinder. The
surface on the right also has a single vertical cylinder while the one on the left has two
vertical cylinders.

If the first symbol of the top row of a permutation representative is equal to the last
symbol of the bottom row, then it is possible to construct a translation surface in the
associated stratum component having a single horizontal cylinder. Zorich constructed
permutation representatives of this form for every connected component of every stra-
tum of Abelian and quadratic differentials [57].

We will be interested in the construction of a square-tiled surface from such a per-
mutation representative. To do this, one takes a line of squares of length one less than
the number of symbols in the permutation representative and labels the left and right
sides of this line of squares with the first symbol in the top row and last symbol of the
bottom row, respectively. From our assumption, these symbols are the same and so
the resulting square-tiled surface will have a single horizontal cylinder. We then label
the top sides (resp. bottom sides) with the remaining symbols from the top row (resp.
bottom row). For example, the square-tiled surface on the right of Figure 2.2 is the one
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obtained by performing this construction using permutation (2.1) and we see that it
does have a single horizontal cylinder, as claimed. The surface on the left of Figure 2.2
can be obtained from the permutation(

0 1 2 3
3 2 1 0

)
. (2.2)

From here on, we will call a square-tiled surface constructed in this manner the square-
tiled surface represented by the associated permutation representative.

As briefly mentioned above, we remark that attempting to use Rauzy moves to
search the extended Rauzy classes of these permutations for permutations represent-
ing 1,1-square-tiled surfaces is not a feasible method for solving our problem. Indeed,
Delecroix showed that the cardinality of extended Rauzy classes increases in such a
way that this task would be incredibly computationally intensive [12]. Moreover, it is
unlikely that examples for different strata could be found using similar sequences of
Rauzy moves, and so a general proof of this nature would be difficult to find.

If we have a square-tiled surface with a single horizontal cylinder constructed as
above, then, assuming the 0s to be the first symbol of the top row and last symbol of the
bottom row, information concerning the vertical cylinders is contained in the permu-
tation obtained by removing the 0s from each row of the permutation representative.
Indeed, if the vertical cylinders have width one, then the number of vertical cylinders
of the surface is equal to the number of cycles of this permutation. For example, under
this modification, permutation (2.2) becomes the permutation (1, 3)(2) and indeed the
surface on the left of Figure 2.2 has two vertical cylinders. Since we are interested in
1,1-square-tiled surfaces with a minimal number of squares, we will want the vertical
cylinder to have width one, and so want this modified permutation to be a cyclic per-
mutation. Indeed, for permutation (2.1) we obtain (1, 4, 2, 3) and it can be checked that
the surface on the right of Figure 2.2 does indeed have a single vertical cylinder.

Note that adding a marked point to a side represented by label x, as described
above, corresponds to adding a label to the right of x in both rows of the permutation
representative.

2.2 Filling pair diagrams

Recall that a pair of essential simple closed curves {α, β}which are in minimal position
on the surface S – that is, i(α, β) := minγ∈[α] |γ ∩ β| = |α ∩ β| – are said to be a filling
pair if their complement is a disjoint union of disks. The core curves of the vertical
and horizontal cylinders of a 1,1-square-tiled surface form a filling pair on that surface.
Since we have an Abelian differential, all intersections occur with the same orientation.
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Moreover, each complementary region is a 4k-gon and corresponds to a zero of order
k− 1 of the associated Abelian differential.

Conversely, given a filling pair whose intersections all occur with the same orien-
tation, the dual complex of the filling pair is a square complex and we can realise the
surface as a collection of squares in the plane with sides identified by translations, in
other words, as a square-tiled surface. As above, each complementary region with 4k
sides will give rise to a zero of the Abelian differential of order k− 1.

With this correspondence in mind, we can form a ribbon graph from the vertical and
horizontal cylinders of a 1,1-square-tiled surface. We shall call the underlying oriented
combinatorial graph a filling pair diagram for the associated square-tiled surface.

We will explain this construction by means of an example. Indeed, consider the
1,1-square-tiled surface inH(4) with permutation representative(

0 1 2 3 4 5
2 5 4 1 3 0

)
. (2.3)

We first draw a horizontal line corresponding to the horizontal cylinder. Note that we
will think of the ends being identified even though we do not join them in the diagram.
We then add one vertex to the line for every square in the surface, equivalently for
every non-zero symbol in the permutation representative. We then add an edge joining
the bottom of the vertex corresponding to label x to the top of the vertex corresponding
to the label y if and only if y lies below x in the permutation obtained by removing the
0s. The concatenation of these edges represents the vertical cylinder on the surface. The
filling pair diagram associated to permutation (2.3) is shown in Figure 2.3. Note that,
given a filling pair diagram, the reverse of this process allows us to easily construct a
permutation representative.

Figure 2.3: A filling pair diagram corresponding to a square-tiled surface represented
by permutation (2.3).
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Taking a regular neighbourhood of the filling pair diagram gives a ribbon graph
with one boundary component for every complementary region of the filling pair. We
can construct the square-tiled surface by gluing a saddle with cone-angle 2kπ onto
every boundary component with 4k sides. Indeed, the ribbon graph obtained from the
filling pair diagram in Figure 2.3 has a single boundary component with 20 sides and
so we glue in a saddle with cone-angle 10π = (4 + 1)2π. As such, the square-tiled
surface will have a single zero of order 4. This agrees with the fact that the permutation
representative corresponded to a surface inH(4).

2.3 Combination lemmas

We now provide the combination lemmas that will be crucial to the construction of 1,1-
square-tiled surfaces in the next chapter. The first lemma describes how to combine two
1,1-square-tiled surfaces to produce a single 1,1-square-tiled surface of higher complex-
ity. The second lemma describes how the parity of the spin structure of a surface built
in this way depends on the parities of the spin structures of the constituent surfaces.

Before proving the first lemma we will demonstrate the construction through an
example. First, consider the permutation(

0 1 2 3 4 5
2 5 4 1 3 0

)

representing a 1,1-square-tiled surface in H(4) with the minimum number of squares.
We will describe the process of combining this surface with itself, as in Lemma 2.1
below, to produce a 1,1-square-tiled surface in H(4, 4). The key property we want for
this construction is that, on the square-tiled surface represented by this permutation,
the bottom of the first square is identified with the top of the second. This can be seen
in the permutation if the top row starts 0,1,2, and the second row starts with a 2.

We first realise two copies of this surface as in the top of Figure 2.4. We then relabel
the top and bottom sides on the second surface from 6 to 10 and identify the right side
of the first surface with the left side of the second and vice versa. This has the effect of
concatenating the horizontal cylinders of the two surfaces as can be seen on the surface
in the middle of Figure 2.4. We finally change the bottom side with label 1 to have label
6 and the bottom side with label 6 to have label 1. This has the effect of concatenating
the vertical cylinders of the two surfaces. Indeed, we obtain the surface at the bottom of
Figure 2.4 which can be seen to be a 1,1-square-tiled surface inH(4, 4). The permutation
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representative for this surface is(
0 1 2 3 4 5 6 7 8 9 10
2 5 4 6 3 7 10 9 1 8 0

)
.

The construction can easily be performed directly on the permutation representatives
and it is also easy to see what the process involves for filling pair diagrams. In the
following lemmas, we will call this process of combining surfaces cylinder concatenation.

0

1 2 3 4 5

0

31452

0

1 2 3 4 5

0

31452

0

1 2 3 4 5

31452

6 7 8 9 10

0

869107

0

1 2 3 4 5

36452

6 7 8 9 10

0

819107

Figure 2.4: Cylinder concatenation construction as in Lemma 2.1.

We observe that the zeros of the constituent surfaces were preserved and that, by
using 1,1-square-tiled surfaces with the minimal number of squares required for their
respective strata, we obtained a 1,1-square-tiled surface with the minimum number of
squares for its stratum. That this is true in general is the content of the following lemma.

Lemma 2.1. Suppose the permutations(
0 1 2 · · · · · · N
2 · · · · · · · · · · · · 0

)
,

and (
0 1 2 · · · · · · M
2 · · · · · · · · · · · · 0

)
represent 1,1-square-tiled surfaces S1 and S2 in the strataHg1(k1, . . . , kn) andHg2(l1, . . . , lm),
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respectively. We assume only that they have first rows beginning 0,1,2 and second rows begin-
ning with 2. Then the permutation(

0 1 2 · · · · · · N + M
2 · · · · · · · · · · · · 0

)
(2.4)

obtained from these permutations by the cylinder concatenation method represents a 1,1-square-
tiled surface S inHg1+g2−1(k1, . . . , kn, l1, . . . , lm). In particular, note that if N = 2g1 + n− 2
and M = 2g2 + m− 2, then N + M = 2(g1 + g2 − 1) + (n + m)− 2.

Proof. Note that the surfaces S1 and S2 can be realised as in Figure 2.5. Since the sides
labelled by 2 are diagonally opposite, we can construct the blue curves of slope 1 shown
in each surface. It can then be seen that the process of cylinder concatenation for these
surfaces is equivalent to cutting each surface open along the blue curves and gluing
the right side of the slit in each surface to the left side of the slit in the other surface.
This action concatenates the cylinders as expected and so we do indeed produce a 1,1-
square-tiled surface S. Moreover, it can be seen that the that the zeros of S are exactly
the union of the zeros of S1 and S2 and, by an Euler characteristic argument, that the
genus of S is g1 + g2− 1. That is, S lies inHg1+g2−1(k1, . . . , kn, l1, . . . , lm), as claimed.

0

1 2 · · · · · · N

0

· · ·· · ·· · ·· · ·2

0

1 2 · · · · · · M

0

· · ·· · ·· · ·· · ·2

Figure 2.5: Realisation of the surfaces S1 and S2.

Note that the surface produced by this method has the necessary form to be a con-
stituent surface; that is, the bottom of the first square is again identified with the top of
the second. As such, this process can be iterated.

We now consider how the spin structures of 1,1-square-tiled surfaces behave under
cylinder concatenation. Indeed, this is the content of the following lemma.

Lemma 2.2. Let S1 ∈ Hg1(2k1, . . . , 2kn) and S2 ∈ Hg2(2l1, . . . , 2lm) be 1,1-square-tiled
surfaces with the form necessary to apply Lemma 2.1. Further assume that S1 has spin parity ε,
and S2 has spin parity η. Let S ∈ Hg1+g2−1(2k1, . . . , 2kn, 2l1, . . . , 2lm) be the 1,1-square-tiled
surface obtained from S1 and S2 by applying Lemma 2.1, then S has spin parity

ε + η + 1 mod 2.
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.

Proof. Consider S1 and S2 as in Figure 2.5. In each surface, we can choose the core
curves of the horizontal cylinders and the blue curves of slope 1 to form symplectic
pairs {α1, β1} and {γ1, δ1}, respectively. Both curves in each pair have constant angle
with respect to the horizontal direction and so both have index 0. As such, we have

(ind(α1) + 1)(ind(β1) + 1) = 1 = (ind(γ1) + 1)(ind(δ1) + 1).

If the sets of curves {α2, β2, . . . , αg1 , βg1} and {γ2, δ2, . . . , γg2 , δg2} complete a symplectic
basis on each surface, then we must have

g1

∑
i=2

(ind(αi) + 1)(ind(βi) + 1) ≡ ε− 1 mod 2,

and
g2

∑
i=2

(ind(γi) + 1)(ind(δi) + 1) ≡ η − 1 mod 2.

In S, we can again choose the horizontal core curve and the blue curve of slope 1
to form a symplectic pair {µ, ν} satisfying (ind(µ) + 1)(ind(ν) + 1) = 1. A symplectic
basis can then be completed by further taking the union of {α2, β2, . . . , αg1 , βg1} and
{γ2, δ2, . . . , γg2 , δg2}. Each curve will have the same index on S as it did on S1 or S2,
respectively. Hence, we see that the spin parity of S is

1 + (ε− 1) + (η − 1) ≡ ε + η + 1 mod 2,

as claimed.

Returning to the example we gave above, one can check that the permutation we
combined represented a surface in Hodd(4) and that the resulting permutation repre-
sents a surface in Hodd(4, 4), as we would expect from Lemma 2.2. Constructions like
this will allow us to use a number of constituent surfaces to build 1,1-square-tiled sur-
faces in the desired connected components of general strata.
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Construction of 1,1-square-tiled surfaces

In this chapter we construct 1,1-square-tiled surfaces in every connected component of
every stratum of the moduli space of Abelian differentials using the minimum number
of squares possible and hence prove Theorem 1.4. Though all results are stated in terms
of permutation representatives, the proofs will make use of the filling pair diagrams
introduced in Section 2.2 of Chapter 2. The construction relies heavily on Lemmas 2.1
and 2.2 of the previous chapter.

Outline of proof

We begin by constructing by hand 1,1-square-tiled surfaces in the hyperelliptic compo-
nents of strata. For a non-hyperelliptic component in an arbitrary stratumH(k1, . . . , kn)

we will employ Lemmas 2.1 and 2.2. That is, for every even ki we will construct a 1,1-
square-tiled surfaces in H(ki), and for every pair of odd {ki, k j} we will construct a
1,1-square-tiled surface in H(ki, k j). Then a 1,1-square-tiled surface in H(k1, . . . , kn)

can be constructed by inductively applying Lemma 2.1 to these surfaces. Moreover, if
we can construct 1,1-square-tiled surfaces in the odd and even components of H(2k),
then by inductively applying Lemma 2.2, we can build a 1,1-square-tiled surface in the
odd and even components of H(2k1, . . . , 2kn). However, this method is complicated
by the strata H(2), and H(1, 1) for which there do not exist 1,1-square-tiled surfaces
built from the theoretical minimum number of squares. Moreover, there is no Heven(4)
component that can be used in our construction. As such, we are required to modify
the ideal method described above in such situations.

3.1 Hyperelliptic components

We begin by constructing 1,1-square-tiled surfaces in the hyperelliptic components that
realise the number of squares claimed in Theorem 1.4. Indeed, this is the content of

30
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the following proposition. We will then prove that these are the minimum number of
squares necessary for 1,1-square-tiled surfaces in the hyperelliptic components. The
fact that these numbers are strictly greater than the minimum required for square-tiled
surfaces in the ambient stratum, particularly for genus two, will cause us difficulty
in the sections that follow. Indeed, since the strata H(2) and H(1, 1) are connected
and coincide with their hyperelliptic components, we will not have 1,1-square-tiled
surfaces in these strata that can be used to build minimal 1,1-square-tiled surfaces in
higher genus strata.

Proposition 3.1. For g ≥ 2, the permutations(
0 1 2 3 4 · · · 2g− 5 2g− 4 2g− 3

4g− 4 4g− 6 4g− 5 4g− 8 4g− 7 · · · 2g 2g + 1 2g− 1

)
(

2g− 2 2g− 1 · · · 4g− 8 4g− 7 4g− 6 4g− 5 4g− 4
2g− 3 2g− 2 · · · 3 4 1 2 0

) (3.1)

and(
0 1 2 3 4 · · · 2g− 3 2g− 2 2g− 1

4g− 2 4g− 4 4g− 3 4g− 6 4g− 5 · · · 2g 2g + 1 2g− 1

)
(

2g 2g + 1 · · · 4g− 6 4g− 5 4g− 4 4g− 3 4g− 2
2g− 3 2g− 2 · · · 3 4 1 2 0

) (3.2)

represent 1,1-square-tiled surfaces inHhyp(2g− 2) andHhyp(g− 1, g− 1), respectively.

Proof. We first note that permutations (3.1) and (3.2) are produced by adding 2g − 3
and 2g− 2 marked points to the standard permutations forHhyp(2g− 2) andHhyp(g−
1, g− 1), respectively. Essentially originally due to Veech [52] and stated explicitly by
Zorich [57, Proposition 6], up to a relabelling, these are(

0 1 · · · 2g− 2 2g− 1
2g− 1 2g− 2 · · · 1 0

)
and

(
0 1 · · · 2g− 1 2g

2g 2g− 1 · · · 1 0

)
.

Indeed, in the case of Hhyp(2g− 2), one can check that we have added marked points
by splitting the sides labelled by i for 1 ≤ i ≤ g − 1, g + 1 ≤ i ≤ 2g − 2. Similarly,
for Hhyp(g− 1, g− 1) we have split the sides labelled by i for 1 ≤ i ≤ g− 1, g + 1 ≤
i ≤ 2g− 1. As such, permutations (3.1) and (3.2) do indeed representHhyp(2g− 2) and
Hhyp(g− 1, g− 1), respectively. Therefore, we need only prove that the permutations
have one vertical and one horizontal cylinder when representing a square-tiled surface.

Note that, since the first rows of the permutations begin with 0 and the second
rows end with 0, we have one horizontal cylinder in both. For permutation (3.1), the
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permutation with the 0s removed is a cycle as follows:

1→ 4g− 4→ 2→ 4g− 6→ 4→ · · · → 2g→ 2g− 2→ 2g− 1→

2g− 3→ 2g + 1→ 2g− 5→ 2g + 3→ · · · → 4g− 7→ 3→ 4g− 5→ 1.

Since every non-zero symbol in the permutation is contained in this cycle, we see that
the square-tiled surface has one vertical cylinder. Hence we do indeed have a 1,1-
square-tiled surface. Similarly, for permutation (3.2), the permutation with the 0s re-
moved is a cycle as follows:

1→ 4g− 2→ 2→ 4g− 4→ 4→ · · · → 2g− 2→ 2g→ 2g− 1→

2g + 1→ 2g− 3→ 2g + 3→ 2g− 5→ · · · → 4g− 5→ 3→ 4g− 3→ 1.

Again, since every non-zero symbol in the permutation is contained in this cycle, we see
that the square-tiled surface has one vertical cylinder and so we have a 1,1-square-tiled
surface. Hence, the proposition is proved.

Observing that the number of squares in a 1,1-square-tiled surface is equal to the
number of distinct non-zero symbols in the permutation, we observe that these surfaces
exhibit the number of squares claimed in the statement of Theorem 1.4. That is, 4g−
4 squares for Hhyp(2g − 2) and 4g − 2 squares for Hhyp(g − 1, g − 1). To finish the
proof of Theorem 1.4 for the hyperelliptic cases we must show that these are in fact the
minimum number of squares required for these components.

Proposition 3.2. A 1,1-square-tiled surface in the stratumHhyp(2g− 2) orHhyp(g− 1, g−
1) requires at least 4g− 4 or 4g− 2 squares, respectively.

Proof. We formalise and generalise a method for genus two surfaces attributed to Mar-
galit in a remark in a paper of Aougab-Huang in which they determine the minimal
geometric intersection numbers for filling pairs on closed surfaces [1, Remark 2.18].
The idea is to investigate the combinatorics of the images of the filling pair under the
quotient by the hyperelliptic involution. If there is an arc between two punctures on
the quotient sphere that is disjoint from the images of the filling pair, then this arc lifts
to a curve disjoint from the filling pair on the original surface which contradicts the fact
that the curves were filling.

Suppose that we have a 1,1-square-tiled surface (X, ω) in Hhyp(2g− 2) made from
n squares and assume n to be minimal. The core curves, α and β, of the vertical and
horizontal cylinders form a filling pair of curves on the surface with geometric inter-
section number equal to n. Every intersection occurs with the same orientation, and so
α and β are nonseparating. Since X is hyperelliptic, there exists an isometric involution



CHAPTER 3. CONSTRUCTION OF 1,1-SQUARE-TILED SURFACES 33

τ : X → X and a branched double cover π : X → S0,2g+2 of the sphere with 2g + 2
punctures. Since τ∗ω = −ω, the vertical and horizontal cylinders are sent to vertical
and horizontal cylinders, respectively. Moreover, since τ acts by isometry, the num-
ber of such cylinders is fixed. Hence, α and β are nonseparating curves fixed by the
hyperelliptic involution and so we have that π(α) and π(β) are simple arcs on S0,2g+2.

If n is odd then, since any interior intersection of the arcs π(α) and π(β) will lift
to two intersections of α and β on S, π(α) and π(β) must share a single endpoint at a
puncture on the sphere and have (n− 1)/2 interior intersections. The arcs form a graph
on the sphere with 3 + (n− 1)/2 vertices. Apart from the endpoints of the arcs which
have valency 1 or 2, each vertex has valency 4, and so we have n + 1 edges. It follows
from an Euler characteristic argument that the resulting graph has (n + 1)/2 compli-
mentary regions. As mentioned above, we must have a maximum of one puncture in
each complementary region. Three of the punctures lie at the endpoints of the arcs and
so we must have

n + 1
2
≥ 2g− 1⇒ n ≥ 4g− 3.

If n is even then, by a similar argument to that given for n odd above, π(α) and π(β)

either share both of their endpoints or have disjoint endpoints. In the former case, we
have (n− 2)/2 interior intersections. The arcs form a graph with 2+ (n− 2)/2 vertices
and n edges. Hence we have (n + 2)/2 complimentary regions. Two of the punctures
lie at the endpoints and so we must have

n + 2
2
≥ 2g⇒ n ≥ 4g− 2.

In the latter case, we have n/2 interior intersections. The arcs form a graph with 4+ n/2
vertices and n + 2 edges. Hence we have n/2 complimentary regions. Four punctures
lie at endpoints and so we must have

n
2
≥ 2g− 2⇒ n ≥ 4g− 4.

Hence we see that a 1,1-square-tiled surface in Hhyp(2g − 2) requires at least 4g − 4
squares.

Suppose now that X is a 1,1-square-tiled surface inHhyp(g− 1, g− 1) with n squares,
with n again assumed to be minimal. As above, the core curves of the cylinders, α and
β, are nonseparating curves with geometric intersection number equal to n and are
fixed by the hyperelliptic involution. Hence, we have that π(α) and π(β) are simple
arcs on S0,2g+2. Moreover, we must again have a maximum of one puncture in each
complimentary region of the arcs. However, since the zeros of ω are by definition
symmetric to one another by the hyperelliptic involution, they will correspond to a
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complementary region between π(α) and π(β) that does not contain a puncture. So, in
this case, we require one more complementary region between the arcs than we needed
for Hhyp(2g − 2). As such, we require an additional interior intersection of the arcs,
which corresponds to two additional intersections of the filling pair, and so we must
have n ≥ 4g− 2. This completes the proof of the proposition.

We direct the reader to Appendix A for an alternative proof of this proposition given
in the language of saddle connections and Weierstrass points. The details of this al-
ternative proof are relevant to questions about the SL(2, Z)-orbits of 1,1-square-tiled
surfaces inHhyp(2g− 2) that we discuss in Section 7.3.

3.2 Even order zeros

In this section we will construct 1,1-square-tiled surfaces in the odd and even compo-
nents of strata with even order zeros. That, is we construct 1,1-square-tiled surfaces
with a minimal number of squares in the odd and even components of strata of the
form H(2k1, . . . , 2kn), ki ≥ 1 and ∑ ki = 2g − 2. We do this by building base cases
in the odd and even components of the strata H(2k), k ≥ 2. These surfaces can then
be combined using the cylinder concatenation methods of Lemmas 2.1 and 2.2. We
must also deal with the fact that 1,1-square-tiled surfaces in H(2) cannot be used to
construct 1,1-square-tiled surfaces in higher genus strata. Moreover, there are no com-
ponents Heven(4) and Heven(2, 2) and so we have more work to do in order to be able
to construct 1,1-square-tiled surfaces inHeven(4, 4, . . . , 4) andHeven(2, 2, . . . , 2).

Strata of the formH(2k)

We begin by constructing 1,1-square-tiled surfaces inHodd(2k), for k ≥ 2.

Proposition 3.3. The permutations(
0 1 2 3 4 5
2 5 4 1 3 0

)
, (3.3)

and, for g ≥ 4,(
0 1 2 3 4 5 6 7 8 9 · · · 2g− 4 2g− 3 2g− 2 2g− 1
2 5 4 7 3 9 6 11 8 13 · · · 2g− 4 1 2g− 2 0

)
(3.4)

represent 1,1-square-tiled surfaces inHodd(4) andHodd(2g− 2), respectively. Moreover, these
surfaces have the minimum number of squares necessary for their respective strata.
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Proof. We will first prove that the permutations represent the claimed strata. Observe
that the filling pair in Figure 3.1 represents permutation (3.3). We observe that its ribbon
graph has one boundary component with 20 sides and so corresponds to a single zero
of order 4. That is, the permutation represents a 1,1-square-tiled surface inH(4).

Now consider the filling pair diagram in Figure 3.2 with 2g − 1 vertices. We will
modify this diagram to produce a filling pair diagram representing permutation (3.4).

We will perform a series of vertex transpositions on the filling pair diagram. These
will not change the fact that we have one vertical and one horizontal cylinder but will
change the number of boundary components and the number of sides of the bound-
ary components of the associated ribbon graph. We currently have 2g − 1 boundary
components with four sides. Our goal is to produce a filling pair diagram with a single
boundary component with 8g− 4 sides.

We first perform two transpositions on the third, fourth and fifth vertices to give
the permutation (3, 5, 4) on the vertices. Note that this gives the first 5 vertices the
combinatorics given by the filling pair diagram for H(4) in Figure 3.1. Moreover, we
now have one boundary component with 20 sides and 2g − 6 boundary components
with 4 sides. See Figure 3.3.

Figure 3.1: A filling pair diagram representing permutation (3.3).

Figure 3.2: A filling pair diagram with 2g− 1 vertices. The associated ribbon graph has
2g− 1 boundary components each with 4 sides.
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Figure 3.3: The filling pair diagram after applying permutation (3, 5, 4) on the vertices.

Observe that after this permutation the boundary components around vertices 6-9
have the combinatorics shown on the left of Figure 3.4, where different letters corre-
spond to different boundary components. We then perform a vertex transposition on
vertices 6 and 7, as shown on the right of Figure 3.4. We now have a boundary compo-
nent with 28 sides and 2g− 8 boundary components with 4 sides.

We now observe that, after the vertex transposition, the combinatorics that we had
around vertices 6-9 are repeated again around vertices 8-11. As such, we can perform
this transposition again to produce a boundary component with 36 sides and 2g− 10
boundary components with 4 sides. Moreover, these combinatorics persist and so we
can continue to repeat this transposition for the remaining g− 5 pairs of vertices ending
up with a single boundary component. Since each vertex has valency 4, there are 4g−
2 edges in the filling pair diagram. Each edge will give two sides to the boundary
component and so the boundary component will have 8g− 4 sides corresponding to a
zero of order 2g− 2, as required.

It is easy to check that this filling pair diagram represents permutation (3.4), and so
we have shown that this permutation does indeed represent a 1,1-square-tiled surface
inH(2g− 2).

→
A

A

A

B C

B C

D E

D A

A

A

A
A

A A

D E

D

Figure 3.4: The effect of a vertex transposition on the boundary components of the
ribbon graph of the filling pair diagram in Figure 3.3.



CHAPTER 3. CONSTRUCTION OF 1,1-SQUARE-TILED SURFACES 37

γ1
δ1

β1 β2 β3

α2

α3

Figure 3.5: Realisation of the filling pair diagram representing permutation (3.3).

γ1

γ4

γ3

γ5

γ2

γ4

γ3

γ5

γ1

γ2

δ1

δ1

δ3

δ3

δ4

δ4

δ2

δ2

δ5

δ5

β1

β1

β2

β2

β2

β3

α2

α3

Figure 3.6: Polygonal decomposition of the surface given by the filling pair (γ, δ).

We must now show that these 1,1-square-tiled surfaces lie in the odd components.
We will do this by calculating the spin parity of the surfaces with respect to representa-
tives corresponding to the standard homology basis.

We first prove that the surface represented by permutation (3.3) has odd spin struc-
ture and thus represents Hodd(4). We realise the filling pair diagram as the curves γ

and δ in Figure 3.5, and label the arcs of each curve between their intersections with the
labels γ1, . . . , γ5, and δ1, . . . , δ5, respectively. Note that we only show the first label of
each curve in the diagram. Next, choose the homology representatives {αi, βi}3

i=1 as in
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Figure 3.5. Recall that, as in Lemma 2.2, we choose α1 = γ and β1 to be the curve of
slope 1 with respect to the horizontal direction.

We now cut the surface open along the filling pair {γ, δ} to form the 20-gon shown
in Figure 3.6. We have also included in the figure the leaves of the vertical and hori-
zontal foliations given by the edges of the squares making up the surface. The index of
a curve can then be calculated by keeping track of the number of these lines the curve
crosses and in which direction. It is then easy to show that we have

3

∑
i=1

(ind(αi) + 1)(ind(βi) + 1) ≡ 1 mod 2,

and so the canonical spin structure on the surface has odd spin parity.

γ1
δ1

β1 β2 β3

α2

α3

β4

α4

Figure 3.7: Realisation of filling pair diagram forH(6).

The filling pair diagram given by permutation (3.4) representing H(6) can be re-
alised as in Figure 3.7. A similar calculation to that above shows that the canonical spin
structure on this surface also has odd spin parity.

From this point onwards, for every additional increase of g in permutation (3.4), the
polygonal decompositions given by the realisations of the filling pair diagrams vary
in a predictable manner. This is because the ‘final handle’ on the surface, the handle
associated to the final two vertices of the filling pair diagram, has the form of the handle
on the left of Figure 3.7; that is, the handle containing α4 and β4. The change to the
polygonal decompositions is then demonstrated by the changes between Figures 3.8
and 3.9.

We see that the standard homology representatives around the added genus, αg and
βg, both have index 1 and so contribute 0 to the calculation of the spin parity modulo 2.
Moreover, 8 sides are added to the polygon in one piece and so, since each additional
side crossed requires a rotation by π/2, the index of a curve passing these sides will
change by 2 and so the contribution to the calculation of the spin parity is changed by
0 modulo 2. Altogether, we have added 0 modulo 2 to the calculation of the spin parity
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and so, since the surface in Figure 3.7 had odd spin parity, the surface represented by
permutation (3.4) lies inHodd(2g− 2).

Note also that all permutations in the proposition represent square-tiled surfaces
with the minimum number of squares for the respective strata, namely 2g− 1. As such,
the proposition has been proved.

βg−1
αg−1 βg−1

β1

Figure 3.8: Part of the polygonal decomposition of surface of genus g − 1 given by
permutation (3.4).

αg−1 βg−1

β1

βg−1

βg
αg

βg

Figure 3.9: Part of the polygonal decomposition of surface of genus g given by permu-
tation (3.4).

Since the surfaces given by Proposition 3.3 have the desired form we can use Lem-
mas 2.1 and 2.2 to produce 1,1-square-tiled surfaces in the odd components of all strata
with even order zeros of order greater than or equal to 4.

The following proposition constructs surfaces in the even components of the strata
H(2g− 2).
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Proposition 3.4. The permutations(
0 1 2 3 4 5 6 7
2 7 6 5 3 1 4 0

)
, (3.5)

and, for g ≥ 5, (
0 1 2 3 4 5 6 7 8 9 10
2 7 6 5 3 9 4 11 8 13 10

)
(

11 · · · 2g− 4 2g− 3 2g− 2 2g− 1
15 · · · 2g− 4 1 2g− 2 0

) (3.6)

represent 1,1-square-tiled surfaces in Heven(6) and Heven(2g − 2), respectively. Moreover,
these surfaces have the minimum number of squares necessary for their respective strata.

Proof. The proof is completely analogous to the proof of Proposition 3.3. That is, one
can show that permutation (3.5) represents a 1,1-square-tiled surface in Heven(6) by
calculating directly on the polygonal decomposition given by the filling pair. Applying
the same induction used in the proof of Proposition 3.3 then shows that permutation
(3.6) represents a 1,1-square-tiled surface inHeven(2g− 2).

Handling the non-existence ofHeven(4)

We now have the first instance in which we must construct an exceptional case sep-
arately. Note that using Lemmas 2.1 and 2.2, we can use surfaces given by Propo-
sitions 3.3 and 3.4 to produce 1,1-square-tiled surfaces in the even components of all
strata with even order zeros of order greater than or equal to 4 apart from strata con-
taining only zeros of order 4. This is because there is no even component in the stratum
H(4). However, the permutation(

0 1 2 3 4 5 6 7 8 9 10
2 10 7 5 8 1 9 6 4 3 0

)

represents a 1,1-square-tiled surface in Heven(4, 4) and so we can use this to produce
1,1-square-tiled surfaces in the even components of these exceptional strata.

Handling the hyperellipticity ofH(2) and non-existence ofHeven(2, 2)

As we saw in the previous section, all surfaces in genus 2 are hyperelliptic and so 1,1-
square-tiled surfaces require more than the minimum number of squares required for a
square-tiled surface in their respective stratum. As such, we do not have a 1,1-square-
tiled surface in H(2) that can be concatenated, as in Lemmas 2.1 and 2.2, to the even
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order surfaces we have produced in the propositions above. It is therefore necessary to
produce strata containing zeros of order 2 separately. This is the content of the follow-
ing propositions.

The first proposition produces 1,1-square-tiled surfaces in Hodd(2k, 2), for k ≥ 3.
The proof is similar to the proof of Proposition 3.3.

Proposition 3.5. The permutations(
0 1 2 3 4 5 6 7 8 9 10
2 5 4 6 3 8 10 7 1 9 0

)
, (3.7)

and, for k ≥ 4,(
0 1 2 3 4 5 6 7 8 9 · · · 2k− 4 2k− 3
2 5 4 7 3 9 6 11 8 13 · · · 2k− 4 2k

)
(

2k− 2 2k− 1 2k 2k + 1 2k + 2 2k + 3 2k + 4
2k− 2 2k + 2 2k + 4 2k + 1 1 2k + 3 0

) (3.8)

represent 1,1-square-tiled surfaces inHodd(6, 2) andHodd(2k, 2), respectively. Moreover, these
surfaces have the minimum number of squares necessary for their respective strata.

Proof. We first begin by realising permutation (3.7) by the filling pair diagram in Fig-
ure 3.10.

Note that to produce this filling pair diagram we have added the 5 vertices shown
in Figure 3.11 to the right-hand side of filling pair diagram for Hodd(4) in Figure 3.1.
These additional vertices contribute another 10 edges to the diagram and so another 20
sides to the boundary components of the associated ribbon graph. It is easy to check
that there is a boundary component with 12 sides corresponding to a zero of order
2, and that the 8 remaining additional sides are added to the boundary component
that represented the zero of order 4 in the original ribbon graph. Hence, we have a
second boundary component corresponding to a zero of order 6. That is, the filling pair
diagram represents a 1,1-square-tiled surface in the stratumH(6, 2).

The argument for permutation (3.8) is similar in that we add 5 vertices in the same
way to the right-hand side of the filling pair diagram representing permutation (3.4).
These have a single zero of order 2, as above, and a second zero of order two more
than the order of the zero represented by permutation (3.4). It is easy to check that the
resulting 1,1-square-tiled surface lies in the claimed stratum.

To check that the surfaces have the claimed spin parity, we investigate the effect
that modifying the permutations of Proposition 3.3 to achieve permutations (3.7) and
(3.8) has on the associated polygonal decompositions. This effect is demonstrated in
Figure 3.12. We see that the 8 sides added to the polygon of the original surface are
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added in one piece and so, as was the case in Proposition 3.3, the index of any curve
crossing these sides is changed by 2 and so changes the calculation of the spin parity by
0 modulo 2. We also observe that the homology representatives, αg+1, αg+2, βg+1, and
βg+2, around the two additional genus all have index 1 and so together contribute 0
modulo 2 to the calculation of the spin parity. Therefore, the spin parity of the resulting
surface is the same as the spin parity of the surface we started with which in this case
is odd. That is, permutations (3.7) and (3.8) do indeed represent the odd components
of their respective strata.

Finally, observe that the minimum number of squares required for square-tiled sur-
faces in H(6, 2) and H(2k, 2) are 10 and 2k + 4, respectively. As such, the 1,1-square-
tiled surfaces we have produced have the minimum number of squares required for
their respective strata. Hence the proposition is proved.

Figure 3.10: Filling pair diagram representing permutation (3.7).

Figure 3.11: Filling pair diagram combinatorics for addingH(2).
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→

β1

β1

βg+1

βg+1

αg+1

βg+2
βg+2

αg+2

Figure 3.12: The effect on the polygonal decomposition of changing permutation (3.4)
to permutation (3.8), where the genus of the resulting surface is g + 2.

The following proposition produces 1,1-square-tiled surfaces inHeven(2k, 2), for k ≥
4.

Proposition 3.6. The permutations(
0 1 2 3 4 5 6 7 8 9 10 11 12
2 7 6 5 3 8 4 10 12 9 1 11 0

)
, (3.9)

and, for k ≥ 5,(
0 1 2 3 4 5 6 7 8 9 10 11 · · · 2k− 4 2k− 3
2 7 6 5 3 9 4 11 8 13 10 15 · · · 2k− 4 2k

)
(

2k− 2 2k− 1 2k 2k + 1 2k + 2 2k + 3 2k + 4
2k− 2 2k + 2 2k + 4 2k + 1 1 2k + 3 0

) (3.10)

represent 1,1-square-tiled surfaces in Heven(8, 2) and Heven(2k, 2), respectively. Moreover,
these surfaces have the minimum number of squares necessary for their respective strata.

Proof. The proof is analogous to the proof of Proposition 3.5. That is, we add the filling
pair diagram combinatorics shown in Figure 3.11 in the same way as above to the filling
pair diagrams representing the permutations of Proposition 3.4.

As above, we have a number of exceptional cases not covered by these propositions.
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These are resolved as follows. The permutation(
0 1 2 3 4 5 6
2 4 6 3 1 5 0

)

representsHodd(2, 2). The permutations(
0 1 2 3 4 5 6 7 8 9
2 8 6 9 4 1 3 5 7 0

)
and

(
0 1 2 3 4 5 6 7 8 9
2 9 8 7 6 3 5 1 4 0

)

representHodd(2, 2, 2) andHeven(2, 2, 2), respectively. The permutation(
0 1 2 3 4 5 6 7 8 9 10 11 12
2 5 4 1 12 3 10 7 11 9 6 8 0

)

representsHeven(2, 2, 2, 2). The permutations(
0 1 2 3 4 5 6 7 8
2 5 8 3 6 4 1 7 0

)
and

(
0 1 2 3 4 5 6 7 8
2 4 1 8 7 5 3 6 0

)

representHodd(4, 2) andHeven(4, 2), respectively. The permutation(
0 1 2 3 4 5 6 7 8 9 10 11
2 8 5 3 1 10 9 6 4 11 7 0

)

representsHeven(4, 2, 2). Finally, the permutation(
0 1 2 3 4 5 6 7 8 9 10
2 10 9 8 6 3 5 1 4 7 0

)

represents Heven(6, 2). Using these surfaces and the those given by the propositions
proved in this section, we can produce 1,1-square-tiled surfaces in the even and odd
components of all strata of Abelian differentials that have even order zeros. This com-
pletes the work of this section.

3.3 Odd order zeros

In this section, we will construct 1,1-square-tiled surfaces in all strata of Abelian differ-
entials with odd order zeros. More specifically, if the strata is not connected, we will
construct them in the nonhyperelliptic component. To do this, we must construct the
base cases H(2j + 1, 2k + 1). Similar to the difficulties caused by the hyperellipticity of
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H(2), we must in this section also deal with the hyperellipticity ofH(1, 1).

Strata of the formH(2j + 1, 2k + 1)

Before giving the proofs of the constructions in this section, we give examples of the
methods used in Propositions 3.7 and 3.8 below. We will see how we can use the 1,1-
square-tiled surfaces representing Hodd(4) and Hodd(6) constructed in Proposition 3.3
to construct 1,1-square-tiled surfaces inH(5, 3),H(5, 5),H(7, 3) andH(9, 3).

To construct a 1,1-square-tiled surface in H(5, 3), we begin with two copies of the
1,1-square-tiled surface inHodd(4) given by Proposition 3.3 as in the top of Figure 3.13.
We then perform cylinder concatenation on these two surfaces to obtain the 1,1-square-
tiled surface shown in the middle of Figure 3.13. Finally, we swap the square that
was the first square of the second surface - the sixth square now - with the square
to its right - now the seventh square. The resulting surface is still a 1,1-square-tiled
surface and it can be checked that this surface lies in H(5, 3). If we instead perform
this operation with the first of the two surfaces being the 1,1-square-tiled surface in
Hodd(6) given by Proposition 3.3 then it can be checked that the resulting surface lies
inH(5, 5). The investigation of the outcomes of this procedure in general is the content
of Proposition 3.7.

0

1 2 3 4 5

0

31452

0

1 2 3 4 5

0

31452

0

1 2 3 4 5

36452

6 7 8 9 10

0

819107

0

1 2 3 4 5

36452

7 6 8 9 10

0

819710

Figure 3.13: Construction of a 1,1-square-tiled surface inH(5, 3).

Alternatively, if we start with the first surface being the 1,1-square-tiled surface in
Hodd(6) and the second surface being the 1,1-square-tiled surface in Hodd(4), and after
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performing the cylinder concatenation instead swap the square that was the first square
on the second surface with the square to its left, then we obtain a 1,1-square-tiled sur-
face inH(7, 3). Performing this operation with both surfaces being the 1,1-square-tiled
surface in Hodd(6) results in a 1,1-square-tiled surface in H(9, 3). The investigation of
the outcomes of this procedure in general is the content of Proposition 3.8.

Proposition 3.7. Suppose, for j, k ≥ 1,(
0 1 2 · · · 4j− 1 4j 4j + 1
2 5 4 · · · 1 · · · 0

)
,

and (
0 1 2 · · · 4k− 1 4k 4k + 1
2 5 4 · · · 1 · · · 0

)
are, respectively, the permutation representatives forHodd(4j) andHodd(4k) given by Proposi-
tion 3.3. Then the permutation(

0 1 2 · · · 4j− 1 4j 4j + 1 4j + 3 4j + 2
2 5 4 · · · 4j + 2 · · · 4j + 6 4j + 3 4j + 5

)
(
· · · 4j + 4k 4j + 4k + 1 4j + 4k + 2
· · · 1 · · · 0

) (3.11)

representsH(2(j + k) + 1, 2(j + k)− 1). Recall that this stratum is nonempty and connected.
Moreover, if (

0 1 2 · · · 4j + 1 4j + 2 4j + 3
2 5 4 · · · 1 4j + 2 0

)
is the permutation representative forHodd(4j + 2) given by Proposition 3.3, then the permuta-
tion (

0 1 2 · · · 4j + 1 4j + 2 4j + 3 4j + 5 4j + 4
2 5 · · · · · · 4j + 4 4j + 2 4j + 8 4j + 5 4j + 7

)
(
· · · 4j + 4k + 2 4j + 4k + 3 4j + 4k + 4
· · · 1 · · · 0

) (3.12)

represents Hnonhyp(2(j + k) + 1, 2(j + k) + 1). Moreover, these surfaces have the minimum
number of squares necessary for their respective strata.

Proof. Permutations (3.11) and (3.12) are obtained by applying Lemma 2.1 to the per-
mutations representingHodd(4j) andHodd(4k), andHodd(4j + 2) andHodd(4k), respec-
tively, and then, in the permutation with the 0s removed, permuting the columns with
top entries 4j + 2 and 4j + 3, or the columns with top entries 4j + 4 and 4j + 5, respec-



CHAPTER 3. CONSTRUCTION OF 1,1-SQUARE-TILED SURFACES 47

tively, before adding the 0s back in.
A more useful way of viewing this process is to use filling pair diagrams. The filling

pair diagram of a surface produced as in Lemma 2.1 is the end to end concatenation
of the filling pair diagrams of the constituent surfaces where the edge that would have
returned to the top of vertex 1 on the filling pair diagram of the first surface is connected
to the top of what was vertex 1 on the second surface and vice versa. After this, the
column swap corresponds to a vertex transposition of the vertices that were the first
two vertices of the filling pair diagram of the second surface. We will keep track of the
boundary components of the associated ribbon graph to determine the stratum of the
resulting surface.

The boundary components of the ribbon graph associated to the filling pair diagram
of the surface obtained by Lemma 2.1 are shown in Figure 3.14. We read the diagram
as follows. The two boundary components are represented by different line types. Fol-
lowing the orientation designated by the arrows, one counts the sides of the boundary
components by starting at the outward arrow labelled by 1. We count this outgoing
side. Then we continue to the next side labelled by 1 and of the same line type. If
an incoming side has the same orientation (vertical or horizontal) as the outgoing side
with the same label, then we do no count this incoming side, otherwise we do. We
then add on the number of sides shown in brackets next to this incoming side. These
numbers can be calculated by induction on the filling pair diagrams of Proposition 3.3.
We continue to count sides until we reach the next outgoing side and repeat as above.
This continues until we return to where we started, that is, the outgoing side labelled
by 1.

(+0)

(+0) (+0) (+8k− 6) (+2)

(+0)

(+8k− 2)(+0)(+8j)(+x)

Figure 3.14: Boundary components of the ribbon graph before vertex transposition.
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(+0)

(+0) (+0) (+8k− 6) (+2)

(+0)

(+8k− 2)(+0)(+8j)(+x)

Figure 3.15: Boundary components of the ribbon graph after vertex transposition.

Note that in the diagram we have

x =

{
8j− 6, forHodd(4j),
8j + 2, forHodd(4j + 2).

}

It is then easy to see that the boundary components do give rise to zeros of the correct
orders.

The effect of the vertex transposition on the boundary components of the ribbon
graph associated to the filling pair diagram is shown in Figure 3.15. We see that we
have one boundary component with 8(j + k) + 8 sides corresponding to a zero of order
2(j + k) + 1, and a second boundary component with 8(j + k) sides corresponding to
a zero of order 2(j + k)− 1, if x = 8j− 6, or 8(j + k) + 8 sides corresponding to a zero
of order 2(j + k) + 1, if x = 8j + 2. As we have already shown that a 1,1-square-tiled
surface in the hyperelliptic component of the stratum H(g− 1, g− 1) requires strictly
more than the minimum numbers of squares. It is clear that the 1,1-square-tiled surfaces
we have produced representingH(2(j+ k) + 1, 2(j+ k) + 1) are in the nonhyperelliptic
component since these surfaces have the minimum number of squares required for
their respective strata which completes the proof of the proposition.

Choosing k = 1 in the above proposition, then choosing any j ≥ 1 and applying
the above construction using Hodd(4j) gives us 1,1-square-tiled surfaces in the strata
H(2j + 3, 2j + 1), for j ≥ 1. If instead we apply the above construction usingHodd(4j +
2) then we produce 1,1-square-tiled surfaces in the nonhyperelliptic components of the
strata H(2j + 3, 2j + 3), for j ≥ 1. The following permutation, not produced by the
above proposition, represents a 1,1-square-tiled surface inHnonhyp(3, 3)(

0 1 2 3 4 5 6 7 8
2 8 6 5 7 4 1 3 0

)
.
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Proposition 3.8. Suppose, for j, k ≥ 1,(
0 1 2 · · · 4j + 1 4j + 2 4j + 3
2 5 4 · · · 1 4j + 2 0

)
,

and (
0 1 2 · · · 4k− 1 4k 4k + 1
2 5 4 · · · 1 · · · 0

)
are, respectively, the permutation representatives for Hodd(4j + 2) and Hodd(4k) given by
Proposition 3.3. Then the permutation(

0 1 2 · · · 4j + 1 4j + 2 4j + 4 4j + 3 4j + 5
2 5 4 · · · 4j + 4 4j + 5 4j + 2 4j + 8 4j + 7

)
(
· · · 4j + 4k + 2 4j + 4k + 3 4j + 4k + 4
· · · 1 · · · 0

) (3.13)

represents H(2(2k + j) + 1, 2j + 1). Recall that this stratum is nonempty and connected.
Moreover, if (

0 1 2 · · · 4k + 1 4k + 2 4k + 3
2 5 4 · · · 1 4k + 2 0

)
is the permutation representative forHodd(4k + 2) given by Proposition 3.3, then the permuta-
tion (

0 1 2 · · · 4j + 1 4j + 2 4j + 4 4j + 3 4j + 5
2 5 4 · · · 4j + 4 4j + 5 4j + 2 4j + 8 4j + 7

)
(
· · · 4j + 4k + 4 4j + 4k + 5 4j + 4k + 6
· · · 1 4j + 4k + 5 0

) (3.14)

represents H(2(2k + j) + 3, 2j + 1). Recall that this stratum is nonempty and connected also.
Moreover, these surfaces have the minimum number of squares necessary for their respective
strata.

Proof. The proof is similar to the proof of Proposition 3.7. Indeed, permutations (3.13)
and (3.14) are obtained by applying the cylinder concatenation of Lemma 2.1 to the per-
mutations representingHodd(4j + 2) andHodd(4k), andHodd(4j + 2) andHodd(4k + 2),
respectively, and then, in the permutation with the 0s removed, permuting the columns
with top entries 4j + 3 and 4j + 4, before adding the 0s back in.
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(+8j− 2)

(+0) (+0)

(+8j + 2)

(+x)

(+8k + 2)

(+0)(+0)(+0)

(+0)

Figure 3.16: Boundary components of the ribbon graph before vertex transposition.

As above, a more useful way of viewing this process is to use filling pair diagrams.
In this case, the column swap corresponds to a vertex transposition of the vertices that
were the last vertex of the filling pair diagram of the first surface and the first vertex
of the filling pair diagram of the second. We will again keep track of the boundary
components of the associated ribbon graph.

The boundary components of the ribbon graph associated to the filling pair diagram
of the surface obtained by Lemma 2.1 are shown in Figure 3.16. We read the diagram
as in the proof of Proposition 3.7. Note that in the diagram

x =

{
8k− 2, forHodd(4k),
8k + 6, forHodd(4k + 2).

}

It is then easy to see that the boundary components do give rise to zeros of the correct
orders.

(+0) (+0)

(+8j + 2)

(+x)

(+8k + 2)

(+0)(+0)(+0)

(+0)

(+8j− 2)

Figure 3.17: Boundary components of the ribbon graph before vertex transposition.
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The effect of the vertex transposition on the boundary components of the ribbon
graph associated to the filling pair diagram is shown in Figure 3.17. We see that we
have one boundary component with 8j+ 8 sides corresponding to a zero of order 2j+ 1,
and a second boundary component with 8(2k + j) + 8 sides corresponding to a zero of
order 2(2k+ j)+ 1, if x = 8k− 2, or 8(2k+ j)+ 16 sides corresponding to a zero of order
2(2k + j) + 3, if x = 8k + 6. It is easy to check that these surfaces have the minimum
number of squares required for their respective strata which completes the proof of the
proposition.

Observe that we have

2(2k + j) + 1− (2j + 1) = 4k and 2(2k + j) + 3− (2j + 1) = 4k + 2,

and so, since we have j, k ≥ 1, the above proposition allows us to construct 1,1-square-
tiled surfaces in the strataH(2j + 1 + 2n, 2j + 1), for j ≥ 1 and n ≥ 2.

We have yet to construct 1,1-square-tiled surfaces in strata with zeros of order 1. We
first construct such surfaces in strata with a pair of odd order zeros, only one of which
is a zero of order 1.

Proposition 3.9. The permutations(
0 1 2 3 4 5 6 7 8 9 10
2 5 4 9 3 8 6 1 10 7 0

)
(3.15)

and, for k ≥ 4,(
0 1 2 3 4 5 6 7 8 9 · · · 2k− 4 2k− 3
2 5 4 7 3 9 6 11 8 13 · · · 2k− 4 2k + 3

)
(

2k− 2 2k− 1 2k 2k + 1 2k + 2 2k + 3 2k + 4
2k− 2 2k + 2 2k 1 2k + 4 2k + 1 0

) (3.16)

represent 1,1-square-tiled surfaces in H(7, 1) and H(2k + 1, 1), respectively. Moreover, these
surfaces have the minimum number of squares necessary for their respective strata.

Proof. The proof is similar to the proof of Proposition 3.5. Indeed, as before, we con-
struct permutations (3.15) and (3.16) by adding 5 vertices to the right-hand sides of
the filling pair diagrams representing permutations (3.3) and (3.4) of Proposition 3.3.
Indeed, Figure 3.18 is the filling pair diagram representing permutation (3.15).

The 5 vertices we add to the filling pair diagram add 10 edges to the diagram and 20
sides to the boundary components of the associated ribbon graph. We observe that 8 of
these sides form a single boundary component and correspond to a zero of order 1. The
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remaining 12 sides are added to the boundary component of the ribbon graph of the
original filling pair diagram. That is, we increase the order of the associated zero by 3. It
is easy to check that this is the order claimed in the statement of the proposition. Note
also that all surfaces have the minimum number of squares required for square-tiled
surfaces in their respective strata.

Figure 3.18: Filling pair diagram representing permutation (3.15)

The strataH(3, 1) andH(5, 1) are not covered by this proposition however the per-
mutations (

0 1 2 3 4 5 6
2 5 1 6 4 3 0

)
and

(
0 1 2 3 4 5 6 7 8
2 4 7 3 1 8 6 5 0

)

represent 1,1-square-tiled surfaces inH(3, 1) andH(5, 1), respectively.

Handling the hyperellipticity ofH(1, 1)

As in the previous section, the hyperellipticity of genus two again causes us difficulty.
In this case, we have no 1,1-square-tiled surface inH(1, 1) that we can use to build 1,1-
square-tiled surfaces with the minimum number of squares. Observe that 1,1-square-
tiled surfaces in the strata H(1, 1, 1, 1) and H(1, 1, 1, 1, 1, 1) are represented by the per-
mutations(

0 1 2 3 4 5 6 7 8
2 6 5 3 1 8 4 7 0

)
and

(
0 1 2 3 4 5 6 7 8 9 10 11 12
2 8 1 5 11 7 3 10 6 12 9 4 0

)
,

respectively.
Suppose now that we wish to build a 1,1-square-tiled surface in a stratum with odd

order zeros, including zeros of order 1. If we have four or more zeros of order 1, then
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we can build a 1,1-square-tiled surface from the surfaces given by the permutations
in previous paragraph and from those constructed so far in this section. Moreover,
if the stratum has one or two zeros of order 1 then we can again build a 1,1-square-
tiled surface in such a stratum from the surfaces we have constructed in this section.
This is also the case for a stratum with three zeros of order 1 and at least three other
zeros. Indeed, in all such cases the zeros of order 1 that cannot be produced using the
permutations of the previous paragraph can be paired with zeros of higher order and
so the surface can be constructed from the surfaces we have already produced in this
section.

We see then that the only strata with odd order zeros in which we cannot construct
1,1-square-tiled surfaces areH(2g− 5, 1, 1, 1), g ≥ 4. The permutations(

0 1 2 3 4 5 6 7 8 9 10
2 10 6 5 1 8 4 7 3 9 0

)
,

and (
0 1 2 3 4 5 6 7 8 9 10 11 12
2 12 9 8 1 7 3 6 10 5 4 11 0

)
,

represent 1,1-square-tiled surface in H(3, 1, 1, 1) and H(5, 1, 1, 1), respectively. The re-
maining cases are constructed in the following proposition.

As mentioned in the introduction, the permutation representatives given in Propo-
sition 3.10 below are examples demonstrating the complexity of finding 1,1-square-
tiled surfaces by using a sequence of Rauzy moves on the permutation representatives
given by Zorich. Indeed, these general forms were discovered by such a method and
the sequences of Rauzy moves required, and hence the resulting permutation represen-
tatives, differed depending on the residue of 2g− 5 modulo 4. As such, we would not
expect to be able to find a general method giving a sequence of Rauzy moves for an
arbitrary stratum.

Proposition 3.10. For k ≥ 1, the permutation(
0 1 2 3 4 5 6 7 8 · · · 4k + 3
2 4k + 10 4k + 6 4k + 5 1 4 3 6 5 · · · 4k + 2

)

(
4k + 4 4k + 5 4k + 6 4k + 7 4k + 8 4k + 9 4k + 10
4k + 1 4k + 8 4k + 4 4k + 7 4k + 3 4k + 9 0

) (3.17)

represents a 1,1-square-tiled surface in the stratumH(4k + 3, 1, 1, 1). For k ≥ 2, the permuta-
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tion(
0 1 2 3 4 5 6 7 8 · · · 4k− 1 4k
2 4k + 8 4k + 5 4k + 4 1 4 3 6 5 · · · 4k− 2 4k− 3

)

(
4k + 1 4k + 2 4k + 3 4k + 4 4k + 5 4k + 6 4k + 7 4k + 8
4k + 3 4k− 1 4k + 2 4k + 6 4k + 1 4k 4k + 7 0

)
(3.18)

represents a 1,1-square-tiled surface inH(4k+ 1, 1, 1, 1). All such surfaces achieve the minimal
number of squares for their respective strata.

Proof. We prove the proposition for permutation (3.17) above. The proof for permuta-
tion (3.18) is similar. It is easy to check that the permutation does indeed represent the
stratumH(4k + 3, 1, 1, 1). It also has a single horizontal cylinder. Removing the 0s from
permutation (3.17) gives a single cycle as follows:

1→ 2→ 4k + 10→ 4k + 9→ 4k + 3→ 4k− 1→ 4k− 5→ · · ·

→ 3→ 4k + 6→ 4k + 8→ 4k + 7→ 4k + 4→ 4k + 2→ 4k→ · · ·

→ 4→ 4k + 5→ 4k + 1→ 4k− 3→ · · · → 5→ 1.

Since we have a single cycle containing every symbol in the permutation, the surface
has a single vertical cylinder and so we do indeed have a 1,1-square-tiled surface.

Observe also that the permutations represent square-tiled surfaces with the mini-
mum number of squares necessary for their respective strata.

This proposition now completes the construction of 1,1-square-tiled surfaces in all
strata with zeros of odd order.

Figure 3.19: Filling pair diagram combinatorics for addingH(1, 1).

Since similar methods will be used in several places in Chapter 6, we describe an
alternative method of constructing 1,1-square-tiled surfaces inH(2g− 5, 1, 1, 1). In par-
ticular, we will use a method similar to that used to produce the 1,1-square-tiled sur-
faces in the proofs of Propositions 3.5 and 3.6. Indeed, one can check that if we add the
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vertices shown in Figure 3.19 to the right-hand side of the filling pair diagrams associ-
ated to the 1,1-square-tiled surfaces in H(2k + 1, 1) constructed above, then we obtain
1,1-square-tiled surfaces in H(2k + 3, 1, 1, 1). That is, we add two zeros of order 1 to
the surface at the expense of increasing the order of the zero of order 2k + 1 by two.
The reason that only the zero of order 2k + 1 is increased in order is discussed in the
considerations of adding a zero of order 2 in the following section.

3.4 General strata

In this section, we complete the proof of Theorem 1.4 by constructing 1,1-square-tiled
surfaces in general strata; that is, in strata with both even and odd order zeros. Recall
that such strata are connected.

Using the surfaces we have constructed in the previous two sections, by Lemma 2.1,
we can construct 1,1-square-tiled surfaces with the minimum number of squares in all
strata except those whose only even order zero is of order 2, or those who have only two
odd order zeros both of order 1. Again, this difficulty is caused by the hyperellipticity
of genus two surfaces.

In the former case, if we can construct 1,1-square-tiled surfaces in all strata with two
odd order zeros and a zero of order 2 then we can use the surfaces we constructed in the
previous section to complete this case. We have one exception, that beingH(2, 1, 1, 1, 1)
however a 1,1-square-tiled surface in this stratum is represented by the permutation(

0 1 2 3 4 5 6 7 8 9 10 11
2 7 11 6 3 9 5 1 8 4 10 0

)
.

In the latter case, if we can construct 1,1-square-tiled surfaces in the strata H(2k, 1, 1),
k ≥ 1, then we can use surfaces we have already constructed to complete the remaining
cases.

We will solve the latter case first because it is much simpler. This is the content of
the following proposition.

Proposition 3.11. For k ≥ 1, the permutation(
0 1 2 3 4 5 6 7 · · · 4k + 2
2 6 4 1 8 7 10 9 · · · 4k + 6

)

(
4k + 3 4k + 4 4k + 5 4k + 6 4k + 7
4k + 5 4k + 7 5 3 0

) (3.19)



CHAPTER 3. CONSTRUCTION OF 1,1-SQUARE-TILED SURFACES 56

represents a 1,1-square-tiled surface inH(4k + 2, 1, 1). For k ≥ 2, the permutation(
0 1 2 3 4 5 6 7 · · · 4k− 2 4k− 1
2 7 4 1 9 8 11 10 · · · 4k + 3 4k + 2

)

(
4k 4k + 1 4k + 2 4k + 3 4k + 4 4k + 5

4k + 5 5 4k + 4 6 3 0

) (3.20)

represents a 1,1-square-tiled surfaces in the stratum H(4k, 1, 1). Moreover, these surfaces have
the minimum number of squares necessary for their respective strata.

Proof. We prove the proposition for permutation (3.19) above. The proof for permuta-
tion (3.20) is analogous. It is easy to check that the permutation does indeed represent
the stratum H(4k + 2, 1, 1). It clearly has a single horizontal cylinder. Removing the 0s
from the permutation gives a single cycle as follows:

1→ 2→ 6→ 7→ 10→ 11→ · · ·

→ 4k + 3→ 4k + 6→ 5→ 8→ 9→ 12→ · · ·

→ 4k + 4→ 4k + 5→ 4k + 7→ 3→ 4→ 1.

Since we have a single cycle containing every symbol in the permutation, the surface
has a single vertical cylinder and so does indeed represent a 1,1-square-tiled surface.

Observe also that the permutations represent square-tiled surfaces with the mini-
mum number of squares required for their respective strata.

We note that the permutations(
0 1 2 3 4 5 6 7
2 6 4 1 7 5 3 0

)
,

and (
0 1 2 3 4 5 6 7 8 9
2 7 4 1 9 5 8 6 3 0

)
represent 1,1-square-tiled surfaces in H(2, 1, 1) and H(4, 1, 1), respectively. This solves
the latter of the exceptional cases discussed above. A final exceptional case is the stra-
tumH(2, 2, 1, 1) which is represented by the permutation(

0 1 2 3 4 5 6 7 8 9 10
2 4 9 7 3 8 5 1 10 6 0

)
.

We remark that we could have also produced 1,1-square-tiled surfaces in the strata
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considered in Proposition 3.20 by adding the combinatorics of Figure 3.19 to the filling
pair diagrams associated to the 1,1-square-tiled surfaces in Hodd(2k) that we produced
in Proposition 3.3.

To construct 1,1-square-tiled surfaces in strata with two odd order zeros and one
zero of order 2, we will revisit the technique we used in Propositions 3.5 and 3.6. That
is, the addition of the 5 vertices in Figure 3.11 to the right-hand side of the filling pair
diagram to produce the zero of order 2. However, we must proceed with more care
than we did in the proof of Proposition 3.5 as, when we add these vertices to the filling
pair diagram of a surface with two zeros, a phenomenon emerges that was not apparent
in the case when we were adding these vertices to the filling pair diagram of a surface
with a single zero. Indeed, this phenomenon explains why only the order of the zero of
order 2k + 1 increased in the method of adding the combinatorics in Figure 3.19 to the
filling pair diagrams forH(2k + 1, 1), as discussed at the end of the previous section.

Recall that when we added the 5 vertices to the filling pair diagram we added 20
sides to the boundary components of the associated ribbon graph, 12 of which formed a
single boundary component associated to the zero of order 2 and the remaining 8 were
added to the boundary component of the original ribbon graph increasing the order
of the associated zero by two. The intricacy that arises in the case of adding these 5
vertices to a filling pair diagram whose ribbon graph has two boundary components is
that the 8 sides that were added to the single boundary component before are added
only to the boundary component that ’leaves’ the right-hand side of filling pair diagram
at the bottom. This can easily be seen by observing the combinatorics of the filling pair
diagrams.

Figure 3.20: The boundary component corresponding to the zero of order 3 leaves the
filling pair diagram at the bottom.

An example of this phenomenon is shown in Figures 3.20 and 3.21. We observe
that the original filling pair diagram, shown in Figure 3.20, represents a 1,1-square-
tiled surface in H(3, 1) and that the boundary component that leaves the filling pair
diagram on the bottom at the right is the boundary component corresponding to the
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zero of order 3. We would then expect that adding the 5 vertices to the filling pair
diagram in order to add a zero of order 2 to the surface will increase the order of this
zero by two and indeed one can see that the resulting filling pair diagram, shown in
Figure 3.21, represents a 1,1-square-tiled surface inH(5, 1, 2).

Figure 3.21: In the process of adding the zero of order 2, the 8 sides have been added to
the boundary component that leaves on the bottom.

With this in mind, we need only keep track of which zero is associated to the bound-
ary component that leaves on the bottom for the surfaces that we constructed in the
previous section. It is easy to check that for the 1,1-square-tiled surfaces in the strata
H(2k + 1, 2k + 1 + 2n), for k ≥ 1 and n ≥ 2, constructed in Proposition 3.8, that
the boundary component that leaves on the bottom is the one associated to the zero
of order 2k + 1 + 2n. Hence, we can construct 1,1-square-tiled surfaces in the strata
H(2k + 1, 2k + 1 + 2n, 2), for k ≥ 1 and n ≥ 3. Using the 1,1-square-tiled surfaces
in the strata H(2k + 1, 2k + 1), k ≥ 1, constructed in (and after for H(3, 3)) Proposi-
tion 3.7, we can construct 1,1-square-tiled surfaces in the strata H(2k + 3, 2k + 1, 2),
k ≥ 1. Moreover, the 1,1-square-tiled surfaces in the strata H(2k + 1, 1), k ≥ 1, con-
structed in and after Proposition 3.9, have the boundary component that leaves on the
bottom being the one associated to the zero of order 2k + 1, and so we can construct
1,1-square-tiled surfaces in the strataH(2k + 3, 1, 2), k ≥ 1. Finally, we observe that for
the 1,1-square-tiled surfaces in the strataH(2k + 3, 2k + 1), k ≥ 1, constructed in Propo-
sition 3.7, the boundary component that leaves on the bottom is the one associated to
the zero of order 2k + 3. Hence, we can construct 1,1-square-tiled surfaces in the strata
H(2k + 5, 2k + 1, 2), k ≥ 1.

The only strata not covered thus far are H(3, 1, 2) and H(2k + 1, 2k + 1, 2), k ≥ 1.
The permutation (

0 1 2 3 4 5 6 7 8 9
2 6 8 3 7 4 1 9 5 0

)
represents a 1,1-square-tiled surface in the stratum H(3, 1, 2). Hence, we see that to
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complete the proof of Theorem 1.4 we must construct 1,1-square-tiled surfaces in the
strataH(2k + 3, 2k + 1), k ≥ 0, with the boundary component that leaves on the bottom
being the one associated to the zero of order 2k + 1. Indeed, we would then be able to
construct 1,1-square-tiled surfaces in the strata H(2k + 3, 2k + 3, 2), k ≥ 0. This is com-
pleted by the following proposition and the permutation representative that follows.

Proposition 3.12. The permutations(
0 1 2 3 4 5 6 7 8 9 10
2 6 4 10 8 3 1 9 7 5 0

)
, (3.21)

and, for k ≥ 2,(
0 1 2 3 4 5 6 7 8 9 10 11
2 6 4 10 8 3 12 9 7 5 14 11

)
(

12 13 14 · · · 4k + 3 4k + 4 4k + 5 4k + 6
16 13 18 · · · 4k + 3 1 4k + 5 0

) (3.22)

represent 1,1-square-tiled surfaces in H(5, 3) and H(2k + 3, 2k + 1), respectively, with the
boundary component that leaves the filling pair diagram on the bottom being associated to the
zeros of order 3 and 2k + 1, respectively. Moreover, these surfaces have the minimum number
of squares necessary for their respective strata.

Proof. A filling pair diagram representing permutation (3.21) is shown in Figure 3.22. It
is easy to check that it represents a 1,1-square-tiled surface in H(5, 3), and that, on the
associated ribbon graph, the boundary component that leaves on the bottom is the one
associated to zero of order 3.

Figure 3.22: Filling pair diagram representing permutation (3.21)

Moreover, we see that a filling pair diagram representing permutation (3.22) is ob-
tained from the filling pair diagram in Figure 3.22 by adding 4(k − 1) vertices. These
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vertices add 16(k− 1) sides to the boundary components of the associated ribbon graph
in such a way that 8(k− 1) sides are added to each boundary component. This corre-
sponds to increasing the orders of the associated zeros by 2(k − 1) and so the surface
will have two zeros of orders 2(k− 1) + 3 = 2k + 1 and 2(k− 1) + 5 = 2k + 3. Hence,
the surface is in H(2k + 3, 2k + 1), as claimed. It is also easy to check that after adding
these vertices, the boundary component that leaves on the bottom is the one associated
to the zero of order 2k + 1, as required. Moreover, these surfaces have the minimum
number of squares necessary for their respective strata.

Finally, for the only remaining case, we construct a 1,1-square-tiled surface in the
stratumH(3, 1) with the boundary component that leaves on the bottom being the one
associated to the zero of order 1. Indeed, one can check that the permutation(

0 1 2 3 4 5 6
2 6 5 1 4 3 0

)

represents such a surface. As such, the proof of Theorem 1.4 is complete.



Chapter 4

Ratio-optimising pseudo-Anosovs

This chapter contains the proof of Theorem 1.6. We begin by recalling some definitions
related to Teichmüller space that we gave in more detail in the introduction.

4.1 Teichmüller preliminaries

Recall that the Teichmüller space T (S) of a closed surface S of genus g ≥ 2 is the set
of equivalence classes of pairs (X, ϕ), where X is a hyperbolic surface of genus g and
ϕ : S → X is a homeomorphism. Two pairs (X1, ϕ1) and (X2, ϕ2) are equivalent if the
change of marking map ϕ2 ◦ ϕ−1

1 is isotopic to an isometry. As such, given an isotopy
class α = [α] of an essential simple closed curve α on the surface S and a point x ∈ T (S),
we can talk the length of α, `x(α), in the hyperbolic metric determined by the point x.
Teichmüller space carries a metric dT called the Teichmüller metric and we denoted
by T (S) the metric space (T (S), dT ). Given a pseudo-Anosov homeomorphism f , we
defined the translation length of f on T (S) to be `T ( f ) := 1

2 log(K f ), where K f is the
dilatation of f .

We defined the curve graph C(S) of the surface S to be a graph whose vertices are
isotopy classes of essential simple closed curves on the surface S, with two vertices
joined by an edge if and only if they can be realised disjointly on S. Assigning length
1 to each edge, we equipped C(S) with the associated path metric dC and denoted
by C(S) the metric space (C(S), dC). Given a pseudo-Anosov homeomorphism f , we
defined the asymptotic translation length of f on C(S) to be

`C( f ) := lim inf
n→∞

dC( f n(α), α)

n
,

for any α ∈ C0(S), which for a pseudo-Anosov is a strictly positive limit.
Recall that the SO(2, R)\SL(2, R)-orbit of an Abelian differential (X, ω), or quadratic

differential (X, q), gave an embedding of H into T (S). We called the image of this em-
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bedding the Teichmüller disk of the differential.

4.2 The systole map and Lipschitz constant

We now define the systole map sys : T (S) → C(S) to be the coarsely-defined map that
sends a point x ∈ T (S) to the isotopy class of the curve with shortest length in the
hyperbolic metric determined by x, known as the systole. The map is only coarsely-
defined as there can be multiple systoles on a surface, however the set of systoles of x
is a set of diameter at most two in C(S). We will abuse notation and think of sys as a
well-defined map. The study of this map played a key role in the work of Masur and
Minsky in which they proved that the curve complex is δ-hyperbolic [40]. They showed
in particular that the map is coarsely K-Lipschitz. That is, there exist K > 0 and C ≥ 0
such that

dC(sys(x), sys(y)) ≤ K · dT (x, y) + C,

for all x, y ∈ T (S).
It is natural to ask what is the optimum Lipschitz constant, κg, defined by

κg := inf{K > 0 | ∃C ≥ 0 such that sys is coarsely K-Lipschitz},

and Gadre-Hironaka-Kent-Leininger determined that the ratio of κg to 1/ log(g) is
bounded from above and below by two positive constants [23, Theorem 1.1]. Recall
that, in such a case, we use the notation κg � 1/ log(g), and say that κg is compara-
ble to 1/ log(g). To find an upper bound for κg, Gadre-Hironaka-Kent-Leininger gave
a careful version of the proof of Masur-Minsky that sys is coarsely Lipschitz. They
then constructed pseudo-Anosov homeomorphisms for which the ratio `C( f )/`T ( f ) �
1/ log(g), where `C( f ) and `T ( f ) are the asymptotic translation lengths of f in C(S)
and T (S), respectively. A lower bound for κg then followed by noting that, for any
pseudo-Anosov homeomorphism f , we have

κg ≥
`C( f )
`T ( f )

.

4.3 Constructing ratio-optimising pseudo-Anosov home-

omorphisms

Using a Thurston construction on filling pairs, Aougab-Taylor constructed a larger fam-
ily of pseudo-Anosov homeomorphisms for which τ( f ) := `T ( f )/`C( f ) was bounded
above by a function F(g) � log(g) [4, Theorem 1.1]. Such homeomorphisms are
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said to be ratio-optimising. Moreover, they proved that there exists a Teichmüller disk
D ∼= H ⊂ T (S) such that there are infinitely many conjugacy classes of primitive ratio-
optimising pseudo-Anosovs f with the invariant axis of f being contained in D. Recall
that a group element g of a group G is said to be primitive if there does not exist a h ∈ G
such that g = hk for |k| > 1.

To construct these pseudo-Anosovs, Aougab-Taylor began with a filling pair {α, β}
on the surface S. They then took high powers, independent of the genus of the surface,
of the Dehn twists about each curve and showed that the Bass-Serre tree of the free
group generated by these elements quasi-isometrically embeds in C(S) [4, Proposition
3.1]. This then allowed them to bound the asymptotic translation length `C of elements
of this group in terms of their syllable length. Recall that the syllable length of a reduced
word w = ak1bk2 · · · akl in terms of the two generators a and b is defined to be |w|s := l.
They also bounded `T in terms of the syllable length of the element and the geometric
intersection number, i(α, β), of the filling pair. From this they were able to deduce that,
for pseudo-Anosov elements of this free group,

τ( f ) ≤ log(D · i(α, β)),

where D is a constant independent of the genus of S. Ratio-optimising pseudo-Anosovs
were then constructed by using filling pairs for which i(α, β) � g.

Recall that a filling pair {α, β} on a surface S, with all intersections occurring with
the same orientation, determines an Abelian differential on that surface. We will de-
note the Teichmüller disk of this Abelian differential by D(α, β). The ratio-optimising
pseudo-Anosovs produced from this filling pair will stabilise D(α, β) and, moreover,
their invariant axis will be contained in D(α, β). Aougab-Taylor used the hyperbolicity
of C(S) and the acylindricity of the action of Mod(S) on C(S) to show that in fact there
are infinitely many conjugacy classes of primitive ratio-optimising pseudo-Anosovs
constructed from this filling pair that have this property. We remark that their theorem
deals with the general case of filling pairs that determine quadratic differentials on a
punctured surface Sg,p. Here we are specialising to the case of Abelian differentials on
closed surfaces.

4.4 Proof of Theorem 1.6

Fix g and let C be any connected component of any stratum of H. By Theorem 1.4, we
can find a 1,1-square-tiled surface in C . The core curves, α and β, of the vertical and
horizontal cylinders of this surface form a filling pair and so we can construct pseudo-
Anosovs from this filling pair using the above technique of Aougab-Taylor. For any
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such pseudo-Anosov, we have

τ( f ) ≤ log(D · i(α, β)) ≤ log(D · (4g− 2)) � log(g),

since the greatest number of squares required for a 1,1-square-tiled surface of genus
g, and so the greatest intersection number of the associated filling pair, is given by
the connected component Hhyp(g− 1, g− 1) which requires 4g− 2 squares. Hence we
have that the pseudo-Anosovs are ratio-optimising. Moreover, as above, we have in-
finitely many conjugacy classes of primitive ratio-optimising pseudo-Anosovs having
their invariant axis contained in the Teichmüller disk determined by this 1,1-square-
tiled surface. As such, we have completed the proof of Theorem 1.6.

Note that this extends the abundance result of Aougab-Taylor. That is, not only are
there infinitely many conjugacy classes of primitive ratio-optimising pseudo-Anosovs
in a Teichmüller disk of T (S) but this Teichmüller disk can be taken to be the Teich-
müller disk of an Abelian differential from any connected component of any stratum
ofH.

For a discussion of the applications of 1,1-pillowcase covers, the quadratic analogue
of 1,1-square-tiled surfaces, to the construction of ratio-optimisers we refer the reader
to Section 7.2.



Chapter 5

Filling pairs on punctured surfaces

In this chapter we present our results relating to filling pairs on punctured surfaces.
That is, we will prove Theorem 1.7 and Theorem 1.8. We arrived at the Theorem 1.7
while investigating whether one could use the generalised filling permutations intro-
duced in Subsection 5.1.1 to build 1,1-square-tiled surfaces. We discovered that these
would not be adequate for our purposes but were able to complete the determination
of the minimal geometric intersection numbers for filling pairs on punctured surfaces.
Theorem 1.8, proved in Section 5.2, arose as a natural observation of the properties of
the filling pairs given by 1,1-square-tiled surfaces.

5.1 Minimally intersecting filling pairs on the punctured

surface of genus two

Let Sg,p be an orientable surface of genus g with p punctures. Recall that a pair of
essential simple closed curves in minimal position on the surface Sg,p is a filling pair
if the complement of their union is a disjoint collection of disks and once punctured
disks. We define ig,p to be the minimal geometric intersection number of a filling pair
on the surface Sg,p. For closed surfaces, Aougab-Huang calculated the values of ig,0

in order to count the number of mapping class group orbits of minimally intersecting
filling pairs [1, Theorem 1.1]. This count then allowed them to estimate the growth rate
of the number of global minima of a topological Morse function they defined on the
moduli space of Riemann surfaces of genus g [1, Theorem 1.3].

Aougab-Taylor extended the calculations of ig,p to certain cases of p 6= 0 [3, Lemma
3.1]. This allowed them to construct geodesic rays in the curve graph realising an op-
timal intersection property [3, Theorem 1.2], answering a question of Margalit. More-
over, the filling pairs realising these values of ig,p enabled Aougab-Taylor to construct
the ratio-optimising pseudo-Anosov homeomorphisms discussed in Chapter 4.

65
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The values of ig,p determined so far can be summarised as follows.

Theorem ( [1, Section 2], [3, Lemma 3.1]). The values of ig,p are the following:

(1) If g 6= 2, 0 and p = 0, then ig,p = 2g− 1;

(2) If g 6= 2, 0 and p ≥ 1, then ig,p = 2g + p− 2;

(3) If g = 0 and p ≥ 6 is even, then ig,p = p− 2, and if p ≥ 5 is odd then ig,p = p− 1;

(4) If g = 2 and p ≤ 2, then ig,p = 4;

(5) If g = 2 and p ≥ 2 is even, then ig,p = 2g + p− 2. Otherwise, if p ≥ 3 is odd, then
2g + p− 2 ≤ ig,p ≤ 2g + p− 1.

In this section, we complete the list by demonstrating the following.

Theorem 5.1. Let g = 2 and p ≥ 3 be odd, then ig,p = 2g + p− 2.

That is, we construct filling pairs on S2,p that realise the lower bound in part (5)
of the theorem above. To prove the existence of such filling pairs, we generalise the
construction of filling permutations given by Nieland in unpublished work [46, Theo-
rem 2.1], which are themselves generalisations of the filling permutations introduced
by Aougab-Huang [1, Lemma 2.2]. We use these to produce a minimally intersecting
filling pair on S2,3, and then apply the double-bigon inductive method used by Aougab-
Taylor [3, Proof of Lemma 3.1] to extend to all odd p ≥ 3.

5.1.1 Generalised filling permutations

We will make use of a generalisation, extending the construction given by Nieland [46,
Theorem 2.1], of the filling permutations used by Aougab-Huang in their determina-
tions of ig,0 [1, Lemma 2.2]. The notation and result that follows is a simple extension
of the works of Aougab-Huang and Nieland, however our generalised construction
allows us to work with filling pairs on punctured surfaces.

Let {α, β} be a filling pair on the surface Sg,p and let n = i(α, β). Fix orientations for
the curves α and β and choose one of the intersection points x ∈ α∩ β. Starting at x, and
following the orientation of α, number the arcs of α between consecutive intersection
points in order to obtain the set {α1, . . . , αn}. Similarly, and possibly choosing a differ-
ent intersection point y ∈ α ∩ β, construct the set {β1, . . . , βn}. Let the set A = Aα,β be
defined by

A := {α1, β1, . . . , αn, βn, α−1
1 , β−1

1 , . . . , α−1
n , β−1

n },

and identify this set with the set {1, 2, . . . , 4n}.
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We now define a filling permutation σ = σα,β ∈ Σ4n associated to the filling pair
{α, β} as follows. Firstly, cut Sg,p along α ∪ β to form a collection of n + 2− 2g many
polygons with sides labelled by α and β. Orienting the polygons clockwise, we obtain
a labelling of the sides of the polygons by the elements of A. We now define σ in the
following way. If, going around the sides of the polygons in a clockwise direction, the
edge labelled by the jth element of A is followed by the edge labelled by the kth element
of A, then we define σ(j) = k. We see then that σ is an element of the symmetric group
Σ4n consisting of n + 2− 2g many cycles.

We will also be interested in two more elements of Σ4n that have geometric signifi-
cance. Firstly, we define the permutation Q = Qα,β by

Q = (1, 2, . . . , 4n)2n.

Observe that this permutation sends j to k if and only if the jth and kth elements of A
are the inverses of one another. Secondly, we define the permutation τ = τα,β by

τ = (1, 3, 5, . . . , 2n− 1)(2, 4, 6, . . . , 2n)(4n− 1, 4n− 3, . . . , 2n+ 1)(4n, 4n− 2, . . . , 2n+ 2).

In this case, τ corresponds to sending an arc of one of the curves to the following arc in
the same curve with the same orientation.

Note that we will say that a permutation is parity reversing if it sends odd numbers
to even numbers and even numbers to odd numbers.

The following lemma generalises the results of Aougab-Huang [1, Lemma 2.2] and
Nieland [46, Theorem 2.1], which dealt with the cases p = 0, i(α, β) = 2g− 1, and p = 0,
i(α, β) = n ≥ ig,0, respectively. This amounts to ensuring that any bigons, equivalently
2-cycles of the filling permutation, are dealt with appropriately.

Lemma 5.2. Let α and β be a filling pair on Sg,p with i(α, β) = n ≥ ig,p. Then σ = σα,β

satisfies the equation
σQσ = τ.

Conversely, a parity reversing permutation σ ∈ Σ4n consisting of n + 2− 2g cycles and no
more than p number of 2-cycles, and satisfying the above equation, defines a filling pair on Sg,p

with intersection number n.
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σ(j)th Q(σ(j))th

jth σ(Q(σ(j)))th

Figure 5.1: The filling permutation equation around a vertex.

Proof. Let j ∈ {1, 2, . . . , 4n}, then the edge labelled by the jth element of A is followed
by the edge labelled by the σ(j)th element of A. As discussed above, we then have
that Q(σ(j)) is the inverse element in A of σ(j). Finally, the edge labelled by the
σ(Q(σ(j)))th element of A is the edge following the edge labelled by the Q(σ(j))th

element of A. As can be seen in Figure 5.1, this is in fact the edge labelled by the arc
that follows the arc labelled by j in the same curve. That is, the composition has the
same action as the action of τ.

Conversely, suppose that σ ∈ Σ4n satisfies the conditions of the lemma. Since σ is
parity reversing, each of the cycles in σ is of even length. Associate to each cycle of
σ a polygon with the same number of sides. Puncture every 2-gon and then puncture
any of the remaining polygons at most once until all p punctures have been placed.
This is possible since n ≥ ig,p guarantees that n + 2− 2g ≥ p. Furthermore, since the
number of 2-cycles in σ was at most p, we do not have any unpunctured bigons that
could reduce the intersection number of the resulting curves.

Label each polygon cyclically in a clockwise direction with the elements of the as-
sociated cycle of σ. Now relabel each side with the corresponding element of A and
glue the polygons together by gluing each edge to the edge labelled with its inverse.
Since every edge occurs once with each orientation, the resulting surface is closed with
p punctures.

In the construction so far, we have n + 2− 2g faces and 2n edges, so we have V −
E + F = 2− 2g if and only if we have n equivalence classes of vertices under the gluing
of the polygons. Applying the filling permutation equation in Figure 5.1, we see that
four edges will glue together to give a single vertex. In other words, under the gluing,
the 4n vertices of the polygons form equivalences classes of size 4 and so we have n
equivalence classes under the gluing. Hence the resulting surface is Sg,p.

Finally, another application of the filling permutation equation proves that the α-
arcs and β-arcs glue to form a filling pair on Sg,p with geometric intersection number
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equal to n.

5.1.2 Filling pair construction

The filling permutations introduced in the previous section now give us a way to con-
struct filling pairs on punctured surfaces satisfying specific conditions on their inter-
section number. We now make use of this tool to construct the filling pairs we require
to prove Theorem 5.1.

.. .

α1

β1

α5

β2

β4
α3

β3

α5

β2
α4β4

α3

β5

α1

β1

α2

β3

α4

β5

α2

Figure 5.2: Polygonal decomposition of S2,3 associated to the filling permutation σ.

We begin by constructing an appropriate filling pair on the surface S2,3. We require
that the intersection number of the filling pair is equal to 2g + p − 2 = 5 and so we
must find a permutation σ ∈ Σ20 consisting of 5 + 2− 2g = 3 cycles and satisfying the
conditions of Lemma 5.2. Indeed, the permutation

σ = (1, 2, 19, 14)(3, 8, 15, 16, 9, 4, 17, 18, 5, 10, 11, 12)(6, 13, 20, 7)

satisfies the lemma, and the polygonal decomposition of S2,3 determined by the associ-
ated filling pair is shown in Figure 5.2.

We now apply the double-bigon inductive method used by Aougab-Taylor [3, Proof
of Lemma 3.1] to complete the proof of Theorem 5.1. Namely, suppose that we have
a filling pair on the surface S2,p with intersection number equal to 2g + p− 2. Choose
an intersection point of the two curves, form two bigons as in Figure 5.3, and puncture
each of these bigons. We now have a filling pair on S2,p+2 with intersection number
equal to 2g + (p + 2)− 2, as required. Since we have constructed a suitable filling pair
on S2,3, by induction, we have completed the proof of the theorem.
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.
.

Figure 5.3: Double-bigon inductive method.

We conclude with the observation that the filling pair in Figure 5.4 is a minimally
intersecting filling pair on S0,4 having intersection number equal to 2 = p− 2. As such,
the complete list of values of ig,p can be summarised as follows.

Theorem 5.3. The values of ig,p are the following:

(1) If g 6= 2, 0 and p = 0, then ig,p = 2g− 1;

(2) If g 6= 2, 0 and p ≥ 1, then ig,p = 2g + p− 2;

(3) If g = 0 and p ≥ 4, then ig,p = p− 2 if p is even, and ig,p = p− 1 if p is odd;

(4) If g = 2 and p ≤ 2, then ig,p = 4;

(5) If g = 2 and p ≥ 2, then ig,p = 2g + p− 2.

· ·

· ·

Figure 5.4: A minimally intersecting filling pair on S0,4.

We briefly discuss the reason that such methods were insufficient for our construc-
tion of 1,1-square-tiled surfaces in Chapter 3. Indeed, this would amount to solving
the permutation equation in Lemma 5.2 while simultaneously controlling the cycle
decomposition of the permutation σ and satisfying a further algebraic condition cor-
responding to the filling pair having algebraic intersection number equal to geometric
intersection number. Furthermore, it is not clear how one would be able to detect which
connected component contained the Abelian differential corresponding to the associ-
ated filling pair.
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5.2 Algebraic intersection number equal to geometric in-

tersection number

With Theorem 5.3 in mind, one can ask for g ≥ 1 whether ig,p can be realised as the alge-
braic intersection number, î(α, β), of an oriented filling pair {α, β}. Aougab-Menasco-
Nieland [2] answered this question for the case of ig,0; that is, for minimally intersecting
filling pairs on closed surfaces. Moreover, they were interested in counting the number
of mapping class group orbits of such filling pairs. Their method involved algebraically
constructing 1,1-square-tiled surfaces with the minimum number of squares in the stra-
tum H(2g− 2), which they call square-tiled surfaces with connected leaves. The core
curves of the cylinders of such surfaces give rise to filling pairs with algebraic intersec-
tion number equal to ig,0.

For n ≥ ig,p, by a compatible decomposition of the surface Sg,p into n+ 2− 2g many 4k-
gons, we mean a decomposition of the surface into 4k-gons P1, . . . , Pn+2−2g such that, if
Pi is a 4ki-gon, then ∑(ki − 1) = 2g− 2.

Observe that a filling pair on the surface Sg,p with î(α, β) = i(α, β) = n ≥ ig,p

divides the surface into a collection of n + 2− 2g many 4k-gons forming a compatible
decomposition. Conversely, given an appropriate choice of orientation, the core curves
of a 1,1-square-tiled surface with n squares and n+ 2− 2g many zeros, of orders greater
than or equal to zero, form a filling pair with î(α, β) = i(α, β) = n dividing the surface
into n + 2− 2g many 4k-gons with a zero of order k− 1 giving rise to a 4k-gon. These
4k-gons also form a compatible decomposition.

Note that the square torus can be represented by the permutation(
0 1
1 0

)

and that this permutation can be combined with a 1,1-square-tiled surface of genus g,
by cylinder concatenation as in Lemma 2.1, to produce another 1,1-square-tiled surface
of genus g. This process will add a zero of order 0 to the surface and one additional
square.

For g ≥ 2 and p ≥ 0, let n ≥ ig,p and choose a compatible decomposition of the
surface Sg,p into n + 2− 2g many 4k-gons, as described above. There will be a number,
less than or equal to 2g− 2, of these 4k-gons having k ≥ 2. Let k1, . . . , km be the list of
these k values. By Theorem 1.4, we can choose a 1,1-square-tiled surface in the stratum
H(k1 − 1, . . . , km − 1). Adding (n + 2− 2g−m) zeros of order 0 to this surface, using
the method described in the previous paragraph, and choosing orientations appropri-
ately, we will have a 1,1-square-tiled surface such that the core curves of the cylinders
form a filling pair {α, β} with î(α, β) = i(α, β) = n which, after adding p punctures to
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distinct complementary regions of the filling pair, gives rise to the specified polygonal
decomposition of Sg,p.

In the case g = 1, we need only combine, as in Lemma 2.1, the permutation for the
square torus above with itself n times and then add p punctures to the surface in distinct
complementary regions of the filling pair. This completes the proof of Theorem 1.8.



Chapter 6

Extension to quadratic strata

In this chapter, we present results in the direction of extending the work of Chapter 3
to the case of the moduli space of quadratic differentials on a Riemann surface. We will
begin in Section 6.1 by presenting the necessary background on quadratic differentials,
their moduli spaces, and the classification of connected components of strata. In Sec-
tion 6.2 we generalise Lemma 2.1 to 1,1-pillowcase covers, the analogue of 1,1-square-
tiled surfaces in this setting. We then give the construction of 1,1-pillowcase covers in
all hyperelliptic components in Section 6.3, before constructing 1,1-pillowcase covers
in all connected components of all quadratic strata of genus greater than or equal to
two having no poles. These constructions are presented in Sections 6.4 to 6.6. Finally,
in Sections 6.7 and 6.8, we construct 1,1-pillowcase covers in genus one and genus
zero, respectively. In genus zero, this is equivalent to the construction of special planar
graphs called meanders.

6.1 Quadratic differentials

Here we give an introduction to quadratic differentials, building up to the classification
given by Lanneau [36,37] of the connected components of the strata of the moduli space
of quadratic differentials on a Riemann surface. For more details we refer the reader
to the references of Strebel [48] and Masur-Tabachnikov [42], as well as the paper of
Lanneau [37] and the references therein.

6.1.1 Quadratic differentials and half-translation surfaces

A quadratic differential q on a compact Riemann surface X of genus g ≥ 0 is a global
section of the symmetric square of the canonical line bundle Ω(X). That is, in local
coordinates q is given by f (z)dz2. Note that the global square of an Abelian differential
gives rise to a quadratic differential on a Riemann surface. We define Qg to be the

73
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quotient by the action of the mapping class group of the set of pairs (X, q), where X
is a closed connected Riemann surface of genus g and q, not the global square of an
Abelian differential, is a non-zero meromorphic quadratic differential on X having at
most simple poles. We then have that the moduli space of integrable meromorphic
quadratic differentials on a Riemann surface X is a disjoint union

{ω2 |ω ∈ Hg}
⊔
Qg.

The structure of the first set is given by that of Hg, and so in this chapter we focus our
attention on Qg. We will drop the subscript g if the genus is clear from the context.

Half-translation surfaces

Let S be a topological surface of genus g. By a half-translation atlas on S, we will mean
an atlas of charts {ϕα : Uα → Vα}α with Uα ⊂ S, Vα ⊂ C open sets,

⋃
α Uα = S \ Σ,

for a finite set of points Σ ⊂ S, such that all transition maps ϕβ ◦ ϕ−1
α are given by half-

translations z 7→ ±z + c. Two half-translation atlases are equivalent if their union is also
a half-translation atlas, and an equivalence class of half-translation atlases is called a
half-translation structure. A surface S equipped with a maximal translation atlas will be
called a half-translation surface. In the literature, a half-translation surface may be called
a flat surface. We claim that a half-translation surface is equivalent to a Riemann surface
equipped with a quadratic differential.

The argument is similar to the one given for Abelian differentials and translation
surfaces in Chapter 1. Let Σ ⊂ X denote the zeros of q, and choose u ∈ X \ Σ. Then one
can define local coordinates in a neighbourhood of u by integrating

√
q. The transition

maps are then given by half-translations. Conversely, let S be a half-translation surface,
then S is endowed with a Riemann surface structure and the local pullback of dz2 on C

gives rise to a well defined quadratic differential on the Riemann surface. Indeed, note
that dz2 = d(±z + c)2.

Given a quadratic differential (X, q), the pullback of the flat metric on C gives rise
to a flat metric on X \ Σ. Each zero of q order k gives rise to a cone-type singularity of
the flat metric with cone-angle equal to (k + 2)π. The metric has holonomy in {±Id}.
Moreover, the induced Riemannian structure allows us to make sense of horizontal and
vertical directions.

Pillowcase covers

Similar to the case of translation surfaces, a half-translation surface can also be realised
by a collection of polygons in C with pairs of parallel sides of equal length identified
by half-translations such that the quotient is a closed connected oriented surface. If a
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quadratic differential can be realised in this way by identifying the sides of a collection
of unit squares, then we will call such a surface a pillowcase cover since such surfaces
can be realised as covers of the four-times punctured sphere (the pillowcase, see Fig-
ure 5.4). Pillowcase covers differ from square-tiled surfaces as top sides of squares can
be identified with top sides of squares which was prohibited in the constructions of
square-tiled surfaces. Indeed, such an identification requires a half-translation.

As we did for translation surfaces, we can also discuss cylinders inside a half-
translation surface and these will be defined as before; that is, as maximally embedded
flat annuli. If a pillowcase cover has a single vertical cylinder and a single horizontal
cylinder then we shall call it a 1,1-pillowcase cover. The core curves of the cylinders of a
1,1-pillowcase cover form a filling pair on the underlying surface. The filling pair will
not have geometric intersection number equal to algebraic intersection number (for any
choice of orientation) otherwise the quadratic differential would be the global square of
an Abelian differential. Conversely, a filling pair with geometric intersection number
not equal to algebraic intersection number will give rise to a 1,1-pillowcase cover.

We remark that the core curves of 1,1-square-tiled surfaces were forced to be non-
separating. This is because sides could only be identified by translation and so all
sides on one side of a core curve must also occur on the other side. In the case of 1,1-
pillowcase covers, the core curves need not be separating. Indeed, one, both, or neither
of the curves may be separating.

Stratification ofQ

By the Riemann-Roch theorem, we have that the sum of the orders of the zeros of a
quadratic differential on a Riemann surface of genus g is equal to 4g− 4. We define the
stratumQ(k1, . . . , kn) ⊂ Q, with ki ≥ 1 or ki = −1 and ∑n

i=1 ki = 4g− 4, to be the subset
ofQ consisting of quadratic differentials with n distinct zeros of orders k1, . . . , kn. Each
stratum is a complex orbifold of complex dimension 2g + n − 2. Masur-Smillie [41]
showed that all strata are non-empty apart fromQ(∅) andQ(1,−1) in genus one, and
Q(3, 1) and Q(4) in genus two.

The emptiness of these strata will present us with difficulty in our construction of
1,1-pillowcase covers. Indeed, we will not have 1,1-pillowcase covers in these strata
that can be used to produce 1,1-pillowcase covers in strata of higher complexity with
zeros of these orders. As such, we will have to build 1,1-pillowcase covers in such strata
separately. Furthermore, the combinatorics in the quadratic case is much more delicate
than in the Abelian case. For instance, we are dealing now with partitions of multiples
of 4 and so the number of basic cases we have to construct in the inductive method is
increased. Moreover, with the addition of poles, there are now infinitely many strata in
each genus.
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6.1.2 Classification of connected components

The classification of the connected components of strata of quadratic differentials was
completed by Lanneau [36,37], with a small correction by Chen-Möller [10]. Outside of
a small number of exceptional strata in low genus, hyperellipticity is sufficient to de-
termine the number of connected components. Indeed, the classification is as follows.

Theorem 6.1 ( [37], Theorem 1.1). Let g ≥ 5, then the strata

Q(4(g− k)− 6, 4k + 2), 0 ≤ k ≤ g− 2,
Q(2(g− k)− 3, 2(g− k)− 3, 4k + 2), 0 ≤ k ≤ g− 1, and
Q(2(g− k)− 3, 2(g− k)− 3, 2k + 1, 2k + 1), −1 ≤ k ≤ g− 2

have two connected components: one is hyperelliptic and the other is not.
All other strata are non-empty and connected.

For lower genera, we have the following.

Theorem 6.2 ( [37], Theorem 1.2; [10], Theorem 1.2). If g = 0, 1, then all strata are non-
empty and connected apart from the strata Q(∅), and Q(1,−1) which are empty.

If g = 2, Q(6,−1,−1) and Q(3, 3,−1,−1) have two connected components: one hyper-
elliptic and the other not. The strata Q(4) and Q(3, 1) are empty, and all other strata are
non-empty and connected.

If g = 3, any stratum having a hyperelliptic component has two components: one hy-
perelliptic and the other not. The strata Q(9,−1), Q(6, 3,−1), and Q(3, 3, 3,−1) have two
non-hyperelliptic connected components. All other strata are not empty and connected.

If g = 4, the strata Q(12), Q(9, 3), Q(6, 6), Q(6, 3, 3), and Q(3, 3, 3, 3) have two non-
hyperelliptic connected components. The strata Q(9, 3), Q(6, 6), Q(6, 3, 3), and Q(3, 3, 3, 3)
also have a hyperelliptic connected component. Any other stratum having a hyperelliptic con-
nected component has two components: one hyperelliptic and the other not. All other strata are
non-empty and connected.

The fact that all half-translation surfaces in the genus two strataQ(2, 1, 1) andQ(14)

are hyperelliptic will present us with difficulty in our construction of 1,1-pillowcase
covers in strata of higher complexity.

Hyperellipticity

Similar to the case for translation surfaces, we will say that a half-translation surface
(X, q) is hyperelliptic if there exists an isometric involution τ : X → X, known as a hy-
perelliptic involution, that induces a ramified double cover π : X → S0,2g+2 from X to
the (2g + 2)-times punctured sphere. The hyperelliptic components contain those hy-
perelliptic half-translations surfaces (X, q) for which there exists a quadratic differential
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q0 on the sphere such that π∗q0 = q. Similar to what we saw for translation surfaces,
there exists a double covering construction that takes a quadratic differential (X0, q0) on
the sphere and gives a quadratic differential (X, q) on a higher genus Riemann surface.
In the cases

Q(2(g− k)− 4, 2k,−12g)→ Q(4(g− k)− 6, 4k + 2)

for g ≥ 2 and 0 ≤ k ≤ g− 2,

Q(2(g− k)− 3, 2k,−12g+1)→ Q(2(g− k)− 3, 2(g− k)− 3, 4k + 2)

for g ≥ 1 and 0 ≤ k ≤ g− 1, and

Q(2(g− k)− 3, 2k + 1,−12g+2)→ Q(2(g− k)− 3, 2(g− k)− 3, 2k + 1, 2k + 1)

for g ≥ 1 and −1 ≤ k ≤ g − 2, the maps given by this construction are immersions.
Again the connectedness of genus zero strata, the equality of dimension, and the er-
godicity of the geodesic flow give that the images must be connected components. We
will denote the hyperelliptic components of such strata by Qhyp(k1, . . . , kn).

Exceptional strata

As we saw in Theorem 6.2 above, there exist a number of exceptional strata in low
genera that are not connected but for which neither of these connected components
are hyperelliptic. The non-connectedness of the strata Q(12), Q(9,−1), Q(6, 3,−1),
and Q(3, 3, 3,−1) was first observed by Zorich by a direct calculation [57, Proposi-
tion 13]. These two connected components are called the regular and irregular con-
nected components and are denoted by Qreg(k1, . . . , kn) and Qirr(k1, . . . , kn), respec-
tively. The classification of connected components given by Lanneau [37, Theorem
1.2] was then slightly corrected by Chen-Möller who observed that the strata Q(9, 3),
Q(6, 6), Q(6, 3, 3), and Q(3, 3, 3, 3) also have regular and irregular connected compo-
nents as well as a hyperelliptic connected component [10, Theorem 1.2].

6.2 Generalisation of Lemma 2.1

In this section, we introduce the notion of a generalised permutation representative.
This is an object analogous to the permutation representatives used for Abelian dif-
ferentials above. We will then generalise Lemma 2.1 which will allow us to combine
1,1-pillowcase covers in a similar way to the construction given in Chapter 3 for 1,1-
square-tiled surfaces.
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6.2.1 Generalised permutation representatives

Recall that the vertical flow on a translation surface induced an interval exchange trans-
formation on a choice of horizontal transversal (Figure 2.1). The permutation describ-
ing this interval exchange transformation was then taken to be a permutation represen-
tative for the connected component of the stratum containing the translation surface.

We can perform a similar construction on half-translation surfaces. However, since
the holonomy of a half-translation surface is non-trivial, the vertical flow induces a
linear involution (sometimes called a non-classical interval exchange transformation) on
a choice of horizontal transversal. Such a transformation permutes subintervals of
the transversal, but subintervals on the same side of the transversal can be sent to
one another with an orientation reversing flip. Linear involutions were introduce by
Danthony-Nogueira [18, 19].

Indeed, consider the vertical flow on the half-translation surface in Figure 6.1. It
induces a linear involution on the horizontal transversal T. The interval on the top side
of T below the side labelled 0 returns on the bottom side of T under the side labelled 3.
This is similar to the translation surface situation. However, the interval on the top side
of T below the left-most side labelled 1 returns (with a flip of orientation) again to the
top side of T under the right-most side labelled by 1, and something similar happens
for the sides labelled by 4. In this situation, we represent this map by the matrix(

0 1 1 2 3
3 2 4 4 0

)
.

Since this matrix has symbols that occur twice in the same row it is not a permutation
and, as such, in the literature such matrices are called generalised permutations. See the
works of Zorich [57] and Boissy-Lanneau [8] for more details.

0

1
1 2

3

0

4
4

2
3

T

Figure 6.1: The first return map to the horizontal transversal T under the vertical flow
induces a non-classical interval exchange transformation.
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Analogous to the translation surface situation, there is a theory of Rauzy moves and
Rauzy classes for generalised permutations. Indeed, by Boissy-Lanneau [8] there is a
correspondence between connected components and extended Rauzy classes of certain
generalised permutations, and we shall still call a choice of generalised permutation a
permutation representative for the connected component.

Similar to the case of square-tiled surfaces, if a permutation representative has rows
of the same length with the first symbol of the first row equal to the final symbol of the
second row then we can construct a pillowcase cover with a single horizontal cylinder.
See the half-translation surfaces in Figure 6.2. However, since a generalised permuta-
tion is not a classical permutation, we cannot resort to the cycle structure of a modified
permutation to detect vertical cylinders. Instead, we must check the combinatorics by
hand. Observe, that the surface on the right of Figure 6.2 has one vertical cylinder while
the surface on the left does not.

0

1 2 1 2 3

0

35454

0

1 2 3 4 3

0

51452

Figure 6.2: Two pillowcase covers inQ(8) with a single horizontal cylinder. The surface
on the right also has a single vertical cylinder while the one on the left has three vertical
cylinders.

Zorich constructed permutation representatives that can be used to build pillow-
case covers with a single horizontal cylinder for all connected components of quadratic
strata [57]. As was the case for Abelian differentials above, one cannot easily obtain
representatives of 1,1-pillowcase covers from these representatives as extended Rauzy
classes grow too greatly in complexity and so the hope of being able to find such repre-
sentatives by searching the Rauzy class would be naive. Indeed, there are many repre-
sentatives given by Zorich that do not have the same number of symbols in both rows
and so one would have to first perform a series of Rauzy moves to balance the rows be-
fore then searching for a single vertical cylinder. Instead, we will perform an inductive
construction similar to the one given in Chapter 3.

6.2.2 Filling pair diagrams

The notion of filling pair diagram easily generalises to the case of 1,1-pillowcase covers.
Here however, the edges leaving the top of a vertex may enter another vertex at either
the top or the bottom. Recall that for an Abelian differential the edges leaving the top
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of a vertex had to enter at the bottom of another. This is because permutation represen-
tatives for Abelian differentials are classical permutations. The method of constructing
half-translation surfaces from the ribbon graph given by the filling pair diagram is anal-
ogous. That is, one adds a saddle of cone-angle (k + 2)π to every boundary component
with 2k + 4 sides. It is also easy to produce the generalised permutation corresponding
to a given filling pair diagram and vice versa. Indeed, the filling pair diagram corre-
sponding to the permutation representative(

0 1 2 3 4 3
2 5 4 1 5 0

)
(6.1)

is shown in Figure 6.3.

Figure 6.3: A filling pair diagram corresponding to the generalised permutation (6.1).

6.2.3 Combination lemma

We now present a generalisation of Lemma 2.1 that will allow us to combine 1,1-
pillowcase covers to produce another 1,1-pillowcase cover of higher complexity. The
first thing to observe is that cylinder concatenation, as described in Section 2.3, can
be performed on 1,1-pillowcase covers of the appropriate form. The following lemma
then describes the properties of the resulting surface. In the statement, we use S as a
placeholder forH or Q, and σ as a placeholder for ω or q.

Lemma 6.3. Suppose that (X, σ) and (X′, σ′) represent 1,1-square-tiled surfaces (or 1,1-
pillowcase covers) in the strata Sg(k1, . . . , kn) and S ′g′(l1, . . . , lm), with 2g + n− 2 and 2g′ +
m− 2 squares, respectively. Further, suppose that both X and X′ have the form required to be
used in the cylinder concatenation method; that is, the bottom of the first square is glued to the
top of the second. Then the 1,1-square-tiled surface (or 1,1-pillowcase cover) obtained from these
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two surfaces by cylinder concatenation lies in the stratum

Hg+g′−1(k1, . . . , kn, l1, . . . , lm), if S = S ′ = H,

Qg+g′−1(2k1, . . . , 2kn, l1, . . . , lm), if S = H and S ′ = Q,

Qg+g′−1(k1, . . . , kn, 2l1, . . . , 2lm), if S = Q and S ′ = H, or

Qg+g′−1(k1, . . . , kn, l1, . . . , lm), if S = S ′ = Q.

Moreover, the surface consists of 2(g + g′ − 1) + (n + m)− 2 squares.

Proof. The proof is analogous to the proof of Lemma 2.1. Indeed, the only assumption
necessary for the proof of Lemma 2.1 is that the bottoms of the first squares in the
surfaces are glued to the tops of the second. The remainder of the construction has
no dependence on the manner (translation or half-translation) in which the remaining
sides are identified. Therefore, the resulting surface is equipped with either an Abelian
or quadratic differential depending on these identifications. The final two claims of the
lemma are then easily verified.

We present an example of this in Figure 6.4. The surface on the left is a 1,1-pillowcase
cover in Q(8) and the surface on the right is a 1,1-square-tiled surface in H(4). The
resulting surface is a 1,1-pillowcase cover lying in the stratum Q(8, 8), as predicted by
Lemma 6.3.

0

1 2 3 4 3

0

51452

0

1 2 3 4 5

0

31452

0

1 2 3 4 3

56452

6 7 8 9 10

0

819107
Figure 6.4: Cylinder concatenation construction as in Lemma 6.3.

6.2.4 Outline of proof

Recall the proof method used in Chapter 3. We first constructed hyperelliptic 1,1-
square-tiled surfaces by hand and then, using Lemmas 2.1 and 2.2, applied an induction
method to build 1,1-square-tiled surfaces in an arbitrary stratum. For this, we had to
construct 1,1-square-tiled surfaces in strata of the form H(2k) and H(2j + 1, 2k + 1).
Furthermore, we had to handle the hyperellipticity of the genus two strata H(2) and
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H(1, 1) by finding ways to add zeros of these orders to 1,1-square-tiled surfaces we had
already constructed.

For quadratic strata, we will proceed in a similar manner. Again, we begin by con-
structing by hand 1,1-pillowcase covers in the hyperelliptic components. For an arbi-
trary stratum Q(k1, . . . , kn) of genus at least two, we will apply an induction method
using Lemma 6.3. That is, we will build 1,1-pillowcase covers in lower genus strata that
can be combined using Lemma 6.3 to give a 1,1-pillowcase cover in Q(k1, . . . , kn). We
will only construct 1,1-pillowcase covers in quadratic strata with no poles.

In the case of Abelian differentials, it was sufficient to build 1,1-square-tiled sur-
face in strata with a single even order zero, or a pair of odd order zeros. This was
because the orders of the zeros formed a partition of 2g − 2. In the quadratic case,
the orders of the zeros form a partition of 4g − 4. As such, our induction method re-
quires us to build 1,1-pillowcase covers in strata of the form Q(4k), Q(4j + 2, 4k + 2),
Q(4j + 2, 4k + 1, 4l + 1), Q(4j + 2, 4k + 3, 4l + 3), Q(4j + 1, 4k + 1, 4l + 1, 4m + 1), and
Q(4j + 3, 4k + 3, 4l + 3, 4m + 3). Indeed, observe that such strata cannot be built from
strata of lower complexity.

Similar to the case of Abelian differentials, we will have trouble caused by the hy-
perellipticity of the genus two strata Q(2, 1, 1) and Q(1, 1, 1, 1). Moreover, the strata
Q(3, 1) and Q(4) are empty. We will therefore have to modify the induction method
above to handle such cases.

For genus one, we build 1,1-pillowcase covers in strata of the form Q(2k,−12k),
Q(k1, k2,−12k+1), Q(2k + 1,−12k+1), and Q(k1, k2,−12k+1). These can be combined
using Lemma 6.3 to build a 1,1-pillowcase cover in an arbitrary genus one stratum.

Finally, for genus zero, we are forced to develop a new inductive method. Indeed,
the conditions of Lemma 6.3 can only be satisfied if the surfaces in question have pos-
itive genus. Realising that the filling pair diagram arising from a genus zero quadratic
differential is a realisation of a special planar graph called a meander, we provide a
method for combining two meanders of a specific form in such a way that we obtain a
new meander whose complimentary regions are related to those of the meanders from
which it is built. For every genus zero stratum with a single zero of positive order, we
construct a meander that can be combined in this way and so a meander for an arbitrary
genus zero stratum can be built by inductively applying this combination method.

6.3 Hyperelliptic components

We begin by recalling the permutation representatives for hyperelliptic components
given by Lanneau [37, Section 4.1]. We will however use a variation of the notation
given by Zorich [57, Section 3.6].
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Theorem 6.4 ( [37], Section 4.1). For any pair of non-negative integer parameters r and s, the
generalised permutation(

0 A 1 2 . . . s A s + 1 . . . s + r
s + r . . . s + 1 B s . . . 2 1 B 0

)

represents a pillowcase cover with one horizontal cylinder in the hyperelliptic component. The
stratum is determined as follows.

s r Stratum
2j + 1 2k + 1 Q(4j + 2, 4k + 2)

2j + 1 2k Q(4j + 2, 2k− 1, 2k− 1)

2j 2k + 1 Q(2j− 1, 2j− 1, 4k + 2)

2j 2k Q(2j− 1, 2j− 1, 2k− 1, 2k− 1)

The sequences 1, . . . , s and s + 1, . . . , s + r are assumed to be empty if s and r are zero, respec-
tively.

In fact, one can take representatives of the form(
0 A 1 2 . . . s A s + 1 . . . s + r
s . . . 2 1 B s + r . . . s + 1 B 0

)

where the non-zero symbols in the bottom row have been cyclically permuted. As we
did for hyperelliptic Abelian differentials, we will produce representatives for hyperel-
liptic 1,1-pillowcase covers by splitting symbols in these permutation representatives.
This is the content of the following proposition.

Proposition 6.5. For any pair of non-negative integer parameters j and k, the generalised
permutation with top row

0, A, 1, 2, . . . , 4j, 4j + 1, A, 4j + 2, 4j + 3, . . . , 4j + 4k + 1, 4j + 4k + 2

and bottom row

4j, 4j + 1, . . . , 2j + 2, 2j + 3, 2j + 1, 2j− 1, 2j, . . . ,

1, 2, B, 4j + 4k + 1, 4j + 4k + 2, . . . , 4j + 2k + 3, 4j + 2k + 4,

4j + 2k + 2, 4j + 2k, 4j + 2k + 1, . . . , 4j + 2, 4j + 3, B, 0

represents a 1,1-pillowcase cover in Qhyp(4j + 2, 4k + 2). The generalised permutation with
top row

0, A, 1, 2, . . . , 4j, 4j + 1, A, 4j + 2, 4j + 3, . . . , 4j + 4k− 1, 4j + 4k
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and bottom row

4j, 4j + 1, . . . , 2j + 2, 2j + 3, 2j + 1, 2j− 1, 2j, . . . ,

1, 2, B, 4j + 4k− 1, 4j + 4k, . . . , 4j + 2k + 1, 4j + 2k + 2,

4j + 2k, 4j + 2k− 2, 4j + 2k− 1, . . . , 4j + 2, 4j + 3, B, 0

represents a 1,1-pillowcase cover inQhyp(4j + 2, 2k− 1, 2k− 1). The generalised permutation
with top row

0, A, 1, 2, . . . , 4j− 2, 4j− 1, A, 4j, 4j + 1, . . . , 4j + 4k− 1, 4j + 4k

and bottom row

4j− 2, 4j− 1, . . . , 2j, 2j + 1, 2j− 1, 2j− 3, 2j− 2, . . . ,

1, 2, B, 4j + 4k− 1, 4j + 4k, . . . , 4j + 2k + 1, 4j + 2k + 2,

4j + 2k, 4j + 2k− 2, 4j + 2k− 1, . . . , 4j, 4j + 1, B, 0

represents a 1,1-pillowcase cover in Qhyp(2j− 1, 2j− 1, 4k + 2). The generalised permutation
with top row

0, A, 1, 2, . . . , 4j− 2, 4j− 1, A, 4j, 4j + 1, . . . , 4j + 4k− 3, 4j + 4k− 2

and bottom row

4j− 2, 4j− 1, . . . , 2j, 2j + 1, 2j− 1, 2j− 3, 2j− 2, . . . ,

1, 2, B, 4j + 4k− 3, 4j + 4k− 2, . . . , 4j + 2k− 1, 4j + 2k,

4j + 2k− 2, 4j + 2k− 4, 4j + 2k− 3, . . . , 4j, 4j + 1, B, 0

represents a 1,1-pillowcase cover in Qhyp(2j− 1, 2j− 1, 2k− 1, 2k− 1).

Before presenting the proof of this proposition, we briefly describe how these per-
mutations are obtained from those discussed above by splitting a number of the sym-
bols. Indeed, the permutation for Qhyp(4j + 2, 4k + 2) is obtained by splitting all of the
non-zero symbols apart from the symbols A, B, j + 1 = s+1

2 , and 2j + k + 2 = s + r+1
2 .

The permutations for the remaining strata are obtained similarly.

Proof of Proposition 6.5. We will present the proof of the case Qhyp(4j + 2, 4k + 2). The
remaining cases follow similarly.
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From our discussion above, we see that the permutation does indeed represent the
claimed connected component. Indeed, we have only split symbols in the permutation.
It is clear that the associated pillowcase cover has one horizontal cylinder. As such, we
need only check that the associated pillowcase cover has a single vertical cylinder.

Starting in the leftmost square and travelling upwards, the cycle of symbols hit is as
follows:

A→ 4j→ 2→ 4j− 2→ 4→ · · · → 2j + 2→ 2j→ 2j + 1→ 2j− 1→

2j + 3→ 2j− 3→ · · · → 3→ 4j− 1→ 1→ 4j + 1→ B→ 4j + 4k + 2→

4j + 2→ 4j + 4k→ 4j + 4→ · · · → 4j + 2k + 4→ 4j + 2k + 2→ 4j + 2k + 3→

4j + 2k + 1→ 4j + 2k + 5→ 4j + 2k− 1→ · · · → 4j + 4k− 1→ 4j + 3→

4j + 4k + 1→ A.

We see that every symbol is contained in this cycle and so we do indeed have a single
vertical cylinder.

Recall that in contrast to the situation with 1,1-square-tiled surfaces, the core curves
of a 1,1-pillowcase cover can be non-separating (as in the Abelian case) or separat-
ing. The following proposition claims that the above permutations realise the minimal
number of squares for a hyperelliptic 1,1-pillowcase cover whose core curves are both
non-separating.

Proposition 6.6. The minimal number of squares required for a 1,1-pillowcase cover represent-
ing a hyperelliptic component whose cylinders have non-separating core curves are as follows.

Component min. num. of squares
Qhyp(4j + 2, 4k + 2) 4j + 4k + 4 = 4g− 4

Qhyp(4j + 2, 2k− 1, 2k− 1) 4j + 4k + 2 = 4g− 2

Qhyp(2j− 1, 2j− 1, 4k + 2) 4j + 4k + 2 = 4g− 2

Qhyp(2j− 1, 2j− 1, 2k− 1, 2k− 1) 4j + 4k = 4g

Proof. The proof is completely analogous to the proof of Proposition 3.2. Indeed, the
proof of Proposition 3.2 depended only on the cylinders of the surface being non-
separating curves fixed by the hyperelliptic involution. In which case, the minimum
number of squares was shown to be 4g − 4 when all of the zeros were fixed by the
involution. This is the case for the component Qhyp(4j + 2, 4k + 2). For the compo-
nent Qhyp(4j + 2, 2k − 1, 2k − 1) (resp. Qhyp(2j − 1, 2j − 1, 4k + 2)), the zeros of or-
der 2j − 1 (resp. 2k − 1) are sent to one another by the involution. As we saw in the
proof of Proposition 3.2, this situation forces an extra two squares, and so the mini-
mum number of squares for these components is 4g− 2. Similarly, for the component
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Qhyp(2j− 1, 2j− 1, 2k− 1, 2k− 1), the zeros of order 2j− 1 are sent to each other and the
zeros of order 2k − 1 are sent to each other under the hyperelliptic involution, which
forces an additional two squares and so the minimum number of squares required for
this component is 4g.

Therefore, the minimum number of squares required for a 1,1-pillowcase cover in a
hyperelliptic connected component is bounded above by 4g. Computational evidence
suggests that the number of squares required increases when one or both of the core
curves are separating. That is, we conjecture the following.

Conjecture 6.7. When they exist, the number of squares required for 1,1-pillowcase covers in
hyperelliptic components having one or both of the core curves being separating is greater than
the number of squares required when both of the core curves are non-separating.

6.4 Even order zeros

In this section, we will construct 1,1-pillowcase covers in all non-hyperelliptic compo-
nents of strata of Q having zeros of even order and no poles. That is, we will construct
them in the non-hyperelliptic components of strata of the form Q(2k1, . . . , 2kn), with
ki ≥ 1 and ∑n

i=1 ki = 2g− 2. We will do this by modifying the 1,1-square-tiled surfaces
we constructed in Chapter 3. Since quadratic strata correspond to partitions of multi-
ples of 4, the base cases we require are strata of the form Q(4k) and Q(4j + 2, 4k + 2).

Strata of the fromQ(4k)

Firstly, suppose that we have a filling pair diagram representing a 1,1-square-tiled sur-
face inH(k1, . . . , kn). If we are able to change the orientation of one of the intersections
without changing the number of and number of sides of the boundary components
then the associated 1,1-pillowcase cover will lie in the stratum Q(2k1, . . . , 2kn). In the
language of squares and not filling pair diagrams, if we are able to turn a single square
in a 1,1-square-tiled surface upside-down without changing the number of cone-points
and their cone angles, then the resulting surface will be a 1,1-pillowcase cover with
zeros of double the order.

For an explicit example, recall that the surface in Figure 6.5 is a 1,1-square-tiled
surface in H(4). Flipping (turning upside-down) the rightmost square of this surface,
one can check that the number of cone-points remains the same and the cone-angles
are fixed. The resulting 1,1-pillowcase cover lies in Q(8) and is shown in Figure 6.6.



CHAPTER 6. EXTENSION TO QUADRATIC STRATA 87

0

1 2 3 4 5

0

31452

Figure 6.5: A 1,1-square-tiled surface inH(4).

0

1 2 3 4 3

0

51452

Figure 6.6: A 1,1-pillowcase cover in Q(8).

We claim that this construction (flipping the fifth square) works for all of the 1,1,-
square-tiled surfaces lying inHodd(2k), k ≥ 2, given by Proposition 3.3.

Lemma 6.8. Flipping the fifth square of the 1,1-square-tiled surfaces given in Proposition 3.3
does not change the number of cone-points or the associated cone-angles.

Proof. We prove this by directly observing the effect of the flip on the associated fill-
ing pair diagram. This is shown in Figure 6.7. One can see that there is still only one
boundary component after the flip and so there is still only one cone-point on the sur-
face occurring with the same cone-angle.

→

Figure 6.7: Effect on the filling pair diagram of flipping the fifth square.

As such, we have proved the following proposition.



CHAPTER 6. EXTENSION TO QUADRATIC STRATA 88

Proposition 6.9. The generalised permutations(
0 1 2 3 4 3
2 5 4 1 5 0

)
, (6.2)

and, for g ≥ 4,(
0 1 2 3 4 3 6 7 8 9 · · · 2g− 4 2g− 3 2g− 2 2g− 1
2 5 4 7 5 9 6 11 8 13 · · · 2g− 4 1 2g− 2 0

)
(6.3)

represent 1,1-pillowcase covers in Q(8) and Q(4g− 4), respectively. Moreover, these surfaces
have the minimum number of squares necessary for their respective strata.

It can be checked that the permutation(
0 1 2 3 4 3 6 7
2 5 4 7 5 1 6 0

)

given by Proposition 6.9 for the stratum Q(12) lies in the component Qreg(12). The
permutation (

0 1 2 3 4 3 5 4
2 6 1 5 7 6 7 0

)
represents a 1,1-pillowcase cover in the component Qirr(12).

Strata of the formQ(4j + 2, 4k + 2)

To construct 1,1-pillowcase covers in the strataQ(4j+ 2, 4k+ 2), we will mimic the con-
structions of 1,1-square-tiled surfaces in the strataH(2j + 1, 2k + 1) given in the proofs
of Propositions 3.7 and 3.8. Indeed, one can check that the combinatorics of Figures 3.14
and 3.16 are preserved if the 1,1-square-tiled surfaces in Hodd(4j) and Hodd(4j + 2) are
replaced by the 1,1-pillowcase covers in Q(8j) and Q(8j + 4) given by Proposition 6.9.
We will describe the constructions of Propositions 3.7 and 3.8 as right-swaps and left-
swaps respectively. Indeed, in each construction the first square on the second surface
is, after the two surfaces have been combined, swapped with the square to its right or
to its left, respectively.

For j, k ≥ 1, consider a 1,1-pillowcase cover X1 in Q(8j) given by Proposition 6.9,
and a 1,1-square-tiled surface X2 in Hodd(4k), given by Proposition 3.3. One can then
check that the 1,1-pillowcase cover obtained from these two by the right-swap method
of Proposition 3.7 lies in Q(4(j + k) + 2, 4(j + k)− 2). If instead X1 is a 1,1-pillowcase
cover inQ(8j+ 4) given by Proposition 6.9, then the 1,1-pillowcase cover obtained from
X1 and X2 by the right-swap method of Proposition 3.7 lies in Q(4(j + k) + 2, 4(j +



CHAPTER 6. EXTENSION TO QUADRATIC STRATA 89

k) + 2). Moreover, these surfaces have the minimum number of squares necessary
for their respective strata. Hence, we can construct 1,1-pillowcase covers in the strata
Q(4j + 6, 4j + 2) and Q(4j + 6, 4j + 6), for j ≥ 1.

Now instead, for j, k ≥ 1, consider a 1,1-pillowcase cover X1 in Q(8j + 4) given
by Proposition 6.9, and a 1,1-square-tiled surface X2 in Hodd(4k), given by Proposi-
tion 3.3. We then have that the 1,1-pillowcase cover obtained from these two by the
left-swap method of Proposition 3.8 lies inQ(4(2k+ j)+ 2, 4j+ 2). If instead X2 is a 1,1-
square-tiled surface in Hodd(4k + 2) given by Proposition 3.3, then the 1,1-pillowcase
cover obtained from X1 and X2 by the left-swap method of Proposition 3.8 lies in
Q(4(2k+ j)+ 6, 4j+ 2). Moreover, these surfaces have the minimum number of squares
necessary for their respective strata. Hence, we can construct 1,1-pillowcase covers in
the strata Q(4j + 2 + 4n, 4j + 2), for j ≥ 1 and n ≥ 2.

The smallest of the two zeros in the strata constructed above is strictly greater than
2 and so we do not yet have 1,1-pillowcase covers in strata of the form Q(4k + 2, 2). To
deal with these cases, we have the following.

Proposition 6.10. The permutations(
0 1 2 3 4 3 6 7 8 9 10
2 5 4 9 5 8 6 1 10 7 0

)
(6.4)

and, for k ≥ 4,(
0 1 2 3 4 3 6 7 8 9 · · · 2k− 4 2k− 3
2 5 4 7 5 9 6 11 8 13 · · · 2k− 4 2k + 3

)
(

2k− 2 2k− 1 2k 2k + 1 2k + 2 2k + 3 2k + 4
2k− 2 2k + 2 2k 1 2k + 4 2k + 1 0

) (6.5)

represent 1,1-pillowcase covers in Q(14, 2) and Q(4k + 2, 2), respectively. Moreover, these
surfaces have the minimum number of squares necessary for their respective strata.

Proof. We observe that when flipping the fifth square in the 1,1-square-tiled surfaces
lying in the strata H(2k + 1, 1), k ≥ 3, given by Proposition 3.9, the number of sides of
the boundary components are not changed. As such, the resulting 1,1-pillowcase covers
lie in the strata Q(4k + 2, 2), for k ≥ 3 and are represented by the above permutations.

From the above, we are missing 1,1-pillowcase covers in the strataQ(6, 2),Q(10, 2),
Q(6, 6) and Q(2, 2). The permutation(

0 1 2 3 1 4 5
2 6 4 3 5 6 0

)
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represents a 1,1-pillowcase cover in the stratum Q(6, 2) with the boundary component
corresponding to the zero of order 6 leaving the right on the bottom.

The permutation (
0 1 2 3 4 3 5 4 6
2 7 6 8 1 7 5 8 0

)
represents a 1,1-pillowcase cover in the stratumQ(10, 2) with the boundary component
corresponding to the zero of order 10 leaving the right on the bottom.

The permutation (
0 1 2 1 3
2 4 3 4 0

)
represents a 1,1-pillowcase cover in the stratumQ(2, 2). We give this permutation here
despite having constructed a representative for Q(2, 2) in the previous section because
this permutation has the appropriate form to be used in the cylinder concatenation
method.

The permutations(
0 1 2 3 4 5 3 6 7
2 7 8 5 6 4 1 8 0

)
and

(
0 1 2 3 4 5 6 7 3
2 7 1 6 4 8 5 8 0

)

represent Qreg(6, 6) and Qirr(6, 6), respectively.
Observe that all of the 1,1-pillowcase covers in the strata Q(4j + 2, 4k + 2) that

we have produced in this section lie in the nonhyperelliptic components. Indeed, we
demonstrated in Section 6.3 that 1,1-pillowcase covers with non-separating core curves
in the hyperelliptic components require at least 4g − 4 squares which is strictly more
than the number exhibited by those constructed in this section.

Handling the emptiness ofQ(4)

Recall that the stratum Q(4) is empty. In particular, there is no 1,1-pillowcase cover that
we can use to build 1,1-pillowcase covers in strata with zeros of order 4. We can use
the same technique that we did to construct 1,1-square-tiled surfaces in Abelian strata
with zeros of order 2. Recall that we did this by adding the combinatorics shown in
Figure 6.8 to the right-hand side of the filling pair diagram. In the process, this added
8 sides to the boundary component that left the filling pair diagram on the bottom
which, in the case of Abelian strata, added two to the order of the associated zero. In
the quadratic case, this will add a zero of order 4 to the surface and add 4 to the order
of the zero associated to the boundary component leaving the bottom of the filling pair
diagram.
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Figure 6.8: Filling pair diagram combinatorics for adding Q(4).

We first have the following proposition.

Proposition 6.11. The permutations(
0 1 2 3 4 3 6 7 8 9 10
2 5 4 6 5 8 10 7 1 9 0

)
, (6.6)

and, for k ≥ 4,(
0 1 2 3 4 3 6 7 8 9 · · · 2k− 4 2k− 3
2 5 4 7 5 9 6 11 8 13 · · · 2k− 4 2k

)
(

2k− 2 2k− 1 2k 2k + 1 2k + 2 2k + 3 2k + 4
2k− 2 2k + 2 2k + 4 2k + 1 1 2k + 3 0

) (6.7)

represent 1,1-pillowcase covers inQ(12, 4) andQ(4k, 4), respectively. Moreover, these surfaces
have the minimum number of squares necessary for their respective strata.

Proof. The proof is similar to the proof of Proposition 3.5 but makes use of the permu-
tations given by Proposition 6.23 and the combinatorics from Figure 6.8.

The missing strata Q(4, 4) and Q(8, 4) are represented by the permutations(
0 1 2 3 4 1 5
2 6 4 6 5 3 0

)
and

(
0 1 2 3 4 5 6 7 5
2 7 1 8 3 8 4 6 0

)
,

respectively.
Similar to the argument given for the strata H(2j + 1, 2k + 1, 2) in Section 3.4, we

now consider which zeros are associated to the boundary components of the filling pair
diagrams of the 1,1-pillowcase covers we constructed in the strata Q(4j + 2, 4k + 2).

One can check that for the 1,1-pillowcase covers in the strata Q(4j + 2, 4j + 2 + 4n),
for j ≥ 1 and n ≥ 2, the boundary component that leaves on the bottom is the one as-
sociated to the zero of order 4j + 2 + 4n. Hence, we can construct 1,1-pillowcase covers
in the strata Q(4j + 2, 4j + 2 + 4n, 4), for j ≥ 1 and n ≥ 3. Using the 1,1-pillowcase
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covers in the strata Q(4j + 2, 4j + 2), j ≥ 1, we can construct 1,1-pillowcase covers in
the strata Q(4j + 6, 4j + 2, 4), j ≥ 1. Moreover, the 1,1-pillowcase covers in the strata
Q(4j + 2, 2), j ≥ 1, have the boundary component that leaves on the bottom being the
one associated to the zero of order 4j+ 2, and so we can construct 1,1-pillowcase covers
in the strata Q(4j + 6, 2, 4), j ≥ 1. Finally, we observe that for the 1,1-pillowcase covers
in the strataQ(4j+ 6, 4j+ 2), j ≥ 1, the boundary component that leaves on the bottom
is the one associated to the zero of order 4j + 6. Hence, we can construct 1,1-pillowcase
covers in the strata Q(4j + 10, 4j + 2, 4), j ≥ 1.

We are missing the strata Q(4j + 2, 4j + 2, 4) for j ≥ 0. For j ≥ 2, we have the
following.

Proposition 6.12. The permutations(
0 1 2 3 4 5 3 7 8 9 10
2 6 4 10 8 6 1 9 7 5 0

)
, (6.8)

and, for k ≥ 2,(
0 1 2 3 4 5 3 7 8 9 10 11
2 6 4 10 8 6 12 9 7 5 14 11

)
(

12 13 14 · · · 4k + 3 4k + 4 4k + 5 4k + 6
16 13 18 · · · 4k + 3 1 4k + 5 0

) (6.9)

represent 1,1-pillowcase covers inQ(10, 6) andQ(4k+ 6, 4k+ 2), respectively, with the bound-
ary component that leaves the filling pair diagram on the bottom being associated to the zeros of
order 6 and 4k + 2, respectively. Moreover, these surfaces have the minimum number of squares
necessary for their respective strata.

Proof. The proof is analogous to the proof of Proposition 3.12. Indeed, one can check
that we have flipped the sixth square of the 1,1-square-tiled surfaces constructed in
Proposition 3.12 and that this does not change the number of sides of the boundary
components or which boundary component left the filling pair diagram on the bottom.

Using these permutations, we can therefore construct 1,1-pillowcase covers in the
strata Q(4j + 2, 4j + 2, 4), for j ≥ 2. The permutations(

0 1 2 3 4 1 3 5
2 6 7 6 5 4 7 0

)
and

(
0 1 2 3 4 5 6 7 8 4 9 3
2 10 1 6 8 9 11 10 11 5 7 0

)

represent 1,1-pillowcase covers in the strata Q(2, 2, 4) and Q(6, 6, 4), respectively.
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Finally, the permutation(
0 1 2 3 4 5 6 4 7 8
2 9 7 1 9 5 8 6 3 0

)

represents a 1,1-pillowcase cover in Q(4, 4, 4), and this completes the work of this sec-
tion.

6.5 Odd order zeros

In this section we construct 1,1-pillowcase covers in every connected component of
every quadratic stratum having zeros of odd order and no poles. Since strata corre-
spond to partitions of multiples of 4, the base cases we require are strata of the form
Q(4j + 1, 4k + 3), Q(4j + 1, 4k + 1, 4l + 1, 4m + 1) and Q(4j + 3, 4k + 3, 4l + 3, 4m + 3).

Strata of the formQ(4j + 1, 4k + 3)

We begin by constructing 1,1-pillowcase covers in the strata Q(4j + 1, 4k + 3). For a
large number of cases, this is carried out in the following proposition which makes
further use of the technique of flipping squares that we introduced in the previous
section.

Proposition 6.13. Let j, k ≥ 1.
Let X1 be a 1,1-square-tiled surface in the stratum H(2(j + k) + 1, 2(j + k)− 1) given by

Proposition 3.7. Then flipping the third and fourth squares of X1 gives a 1,1-pillowcase cover
in the stratum Q(4(j + k) + 3, 4(j + k)− 3), while flipping the third, fourth and fifth squares
gives a 1,1-pillowcase cover in the stratum Q(4(j + k) + 1, 4(j + k)− 1).

Let X2 be a 1,1-square-tiled surface in the stratum H(2(j + k) + 1, 2(j + k) + 1) given by
Proposition 3.7. Then flipping the third and fourth, or third, fourth and fifth squares of X2 gives
a 1,1-pillowcase cover in the stratum Q(4(j + k) + 3, 4(j + k) + 1).

Let X3 be a 1,1-square-tiled surface in the stratum H(2j + 1 + 4k, 2j + 1) given by Propo-
sition 3.8. Then flipping the third and fourth squares of X3 gives a 1,1-pillowcase cover in
the stratum Q(4j + 1 + 8k, 4j + 3), while flipping the third, fourth and fifth squares gives a
1,1-pillowcase cover in the stratum Q(4j + 3 + 8k, 4j + 1).

Let X4 be a 1,1-square-tiled surface in the stratumH(2j + 1 + 4k + 2, 2j + 1) given by the
Proposition 3.8. Then flipping the third and fourth squares of X4 gives a 1,1-pillowcase cover
in the stratum Q(4j + 5 + 8k, 4j + 3), while flipping the third, fourth and fifth squares gives a
1,1-pillowcase cover in the stratum Q(4j + 7 + 8k, 4j + 1).

All of the 1,1-pillowcase covers produced have the minimal number of squares required for a
1,1-pillowcase cover in their respective strata.
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Proof. We give the proof for the case of flipping the third and fourth squares of the
surface X1. The other cases can be proved similarly.

We begin by observing that the combinatorics of the filling pair diagram around the
third and fourth vertices are as shown in Figure 6.9. This diagram is read in the same
way as the diagrams used in the proofs of Propositions 3.7 and 3.8.

(+8(j + k)− 4)(+8(j + k)− 4)

(+8(j + k)− 2)

(+4)

(+0)(+0)

(+0)

Figure 6.9: Combinatorics around vertices 3 and 4 before they are flipped.

After flipping these squares, the combinatorics of the filling pair diagram around
the third and fourth vertices are as shown in Figure 6.10. We have one boundary com-
ponent with 8(j + k) − 2 sides corresponding to a zero of order 4(j + k) − 3, and a
second boundary component with 8(j + k) + 10 sides corresponding to a zero of order
4(j + k) + 3. That is, the resulting 1,1-pillowcase cover lies in the stratum Q(4(j + k) +
3, 4(j + k)− 3) as claimed.

(+8(j + k)− 4)(+8(j + k)− 4)

(+8(j + k)− 2)

(+4)

(+0)(+0)

(+0)

Figure 6.10: Combinatorics around vertices 3 and 4 after they are flipped.

Fixing k = 1 in the cases of X1 and X2, we can produce 1,1-pillowcase covers in the
strata Q(4j + 7, 4j + 1), Q(4j + 5, 4j + 3), and Q(4(j + 1) + 3, 4(j + 1) + 1), for j ≥ 1.
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We are however missing the stratum Q(7, 5) for which the permutation(
0 1 2 3 4 5 1 6 7
2 8 6 3 7 5 8 4 0

)

represents a 1,1-pillowcase cover.
We also remark that for the surfaces X1, X3, and X4, after the flips we have the

boundary component leaving the filling pair diagram on the bottom being the one as-
sociated to the zero of larger order. For X2, flipping the third and fourth squares gives
the boundary component leaving the filling pair diagram on the bottom being the one
associated to the zero of order 4(j + k) + 1, while flipping the third, fourth and fifth
squares gives the boundary component leaving the filling pair diagram on the bottom
being the one associated to the zero of order 4(j + k) + 3.

For strata Q(4k + 1, 3), k ≥ 3, we have the following.

Proposition 6.14. The permutations(
0 1 2 3 1 3 4
2 5 6 4 5 6 0

)
, (6.10)

and, for k ≥ 1,(
0 1 2 3 8 3 4 7 8 9 10
2 5 6 4 5 6 10 7 12 9 14

)
(

11 12 · · · 2k + 3 2k + 4 2k + 5 2k + 6
11 16 · · · 2k + 3 1 2k + 5 0

) (6.11)

represent 1,1-pillowcase covers in Q(5, 3) and Q(4k + 5, 3), respectively. Moreover, these sur-
faces have the minimum number of squares required for their respective strata.

Proof. The proof is similar to the proof of Proposition 3.3. That is, we start with the
filling pair diagram associated to permutation 6.10 and modify it as in Proposition 3.3
to increase the zero of order 5 as required.

The permutation representative given for Q(9, 3) in the above proposition repre-
sents Qreg(9, 3). The permutation(

0 1 2 3 4 5 6 3 6
2 7 1 8 7 5 8 4 0

)

represents a 1,1-pillowcase cover in Qirr(9, 3), respectively.
In the following proposition, proved analogously, we construct 1,1-pillowcase cov-

ers in the strata Q(4k + 3, 1) for k ≥ 1. Recall that the stratum Q(3, 1) is empty.
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Proposition 6.15. The permutations(
0 1 2 3 4 5 3
2 6 5 1 4 6 0

)
, (6.12)

and, for k ≥ 1,(
0 1 2 3 4 5 3 7 8 9 10
2 6 5 8 4 6 10 7 12 9 14

)
(

11 12 · · · 2k + 3 2k + 4 2k + 5 2k + 6
11 16 · · · 2k + 3 1 2k + 5 0

) (6.13)

represent 1,1-pillowcase covers in Q(7, 1) and Q(4k + 7, 1), respectively. Moreover, these sur-
faces have the minimum number of squares required for their respective strata.

Strata of the formQ(k1, k2, k3, k4), ki ≡ 1 mod 4 or ki ≡ 3 mod 4

We now construct 1,1-pillowcase covers in strata of the form Q(4j + 1, 4k + 1, 4l +
1, 4m+ 1) andQ(4j+ 3, 4k+ 3, 4l + 3, 4m+ 3). This is the most delicate construction we
have considered so far. Indeed, we require the ability to increase the orders of any one
of the four zeros of the surface. We will achieve this by arranging particular combina-
torics within the filling pair diagrams that can be modified to leave only local changes.
We first observe the effects of the following ways of modifying filling pair diagrams.

The first allows us to take a zero of order k to a zero of order k + 4j for j ≥ 2 and
is demonstrated in Figure 6.11. The boundary component corresponding to the zero of
order k is shown in red.

→


x

x
x x x x x x x x x x

(j− 2) repetitions

Figure 6.11: Filling pair diagram modification taking a zero of order k to a zero of order
k + 4j.

Indeed, one can show that 8j sides are added to the boundary component under this
operation. The combinatorics of the second and third right-most vertices are repeated
(j− 2) times. That is, the combinatorics explicitly demonstrated in Figure 6.11 is that
of j = 3.
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The second method allows us to take two zeros of orders k1 and k2 to zeros of orders
k1 + 4 and k2 + 4 and is demonstrated in Figure 6.12. The boundary components of the
two zeros are shown in solid red and dashed blue, respectively.

→

Figure 6.12: Filling pair diagram modification taking two zeros of orders k1 and k2 to
zeros of order k1 + 4 and k2 + 4.

One can check that 8 sides are added to each of the boundary components.
We use these modifications in the following propositions.

Proposition 6.16. By applying the filling pair diagram modifications of Figures 6.11 and 6.12
to the filling pair diagrams associated to the permutations(

0 1 2 3 4 5 6 7 1 6 8
2 5 4 9 10 7 9 3 8 10 0

)
(6.14)

for Q(3, 3, 3, 3), and (
0 1 2 3 4 5 6 7 8 9 10 1 8
2 10 11 5 11 7 9 12 4 6 12 3 0

)
(6.15)

forQ(7, 3, 3, 3), we can construct 1,1-pillowcase covers in all strata of the formQ(4j + 3, 4k +
3, 4l + 3, 4m + 3), for j, k, l, m ≥ 0.

By applying the filling pair diagram modifications of Figures 6.11 and 6.12 to the filling pair
diagrams associated to the permutations(

0 1 2 3 4 5 6 7 8 9 4 10 5 6 11
2 12 7 13 8 1 11 3 13 10 14 12 9 14 0

)
(6.16)

for Q(5, 5, 5, 5), and(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 9
2 16 8 15 14 5 16 7 13 12 6 11 10 3 1 4 0

)
(6.17)

forQ(9, 5, 5, 5), we can construct 1,1-pillowcase covers in all strata of the formQ(4j + 1, 4k +
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1, 4l + 1, 4m + 1), for j, k, l, m ≥ 1.

Proof. One can check that the boundary component for each zero of order 3 or of order
5 in the filling pair diagrams associated to the above permutations has the combina-
torics shown on the left of Figure 6.11. Moreover, one can check that the boundary
components for the zeros in the filling pair diagrams associated to permutations (6.14)
and (6.16) can be paired up so that each pair has the combinatorics shown on the left of
Figure 6.12. It can also be checked that two of the boundary components associated to
zeros of order 3 and of order 5 in the filling pair diagrams associated to permutations
(6.15) and (6.17), respectively, have the combinatorics shown on the left of Figure 6.12.
We can therefore perform the modifications demonstrated in Figures 6.11 and 6.12.

Applying these modifications to the filling pair diagrams associated to permuta-
tions (6.14) and (6.16), we can produce 1,1-pillowcase covers in Q(4j + 3, 4k + 3, 4l +
3, 4m + 3), Q(4j + 5, 4k + 5, 4l + 5, 4m + 5), Q(4j + 3, 4k + 3, 7, 7) and Q(4j + 5, 4k +
5, 9, 9), for j, k, l, m 6= 1, and in Q(7, 7, 7, 7) and Q(9, 9, 9, 9).

Applying these modifications to the filling pair diagrams associated to the permu-
tations (6.15) and (6.17), we can produce 1,1-pillowcase covers in Q(4j + 3, 4k + 3, 4l +
3, 7), Q(4j + 5, 4k + 5, 4l + 5, 9), Q(4j + 3, 7, 7, 7) and Q(4j + 5, 9, 9, 9), for j, k, l 6= 1.
This completes the proof of the proposition.

The permutation representative given for Q(3, 3, 3, 3) in the proposition above rep-
resents a 1,1-pillowcase cover in Qreg(3, 3, 3, 3), while the permutation(

0 1 2 3 4 5 6 7 8 9 7
2 10 4 8 1 10 6 9 5 3 0

)

represents a 1,1-pillowcase cover in Qirr(3, 3, 3, 3).

Proposition 6.17. By applying the filling pair diagram modifications of Figures 6.11 and 6.12
to the filling pair diagrams associated to the permutations(

0 1 2 3 4 5 6 3 7
2 7 8 6 4 1 5 8 0

)
(6.18)

for Q(5, 1, 1, 1), (
0 1 2 3 4 5 1 6 3 7 8
2 9 10 5 8 6 4 7 9 10 0

)
(6.19)

for Q(5, 5, 1, 1), and (
0 1 2 3 4 5 6 4 7 8 9 10 8
2 11 7 10 9 12 1 6 11 3 5 12 0

)
(6.20)
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for Q(9, 5, 1, 1), we can construct 1,1-pillowcase covers in strata of the form Q(4j + 1, 1, 1, 1)
for j ≥ 1, Q(4j + 1, 4k + 1, 1, 1) for j, k ≥ 1, and Q(4j + 1, 4k + 1, 4l + 1, 1) for j, k, l ≥ 1.

Proof. The proof is analogous to the proof of Proposition 6.16.

Handling the emptiness ofQ(3, 1) and the hyperellipticity ofQ(1, 1, 1, 1)

Recall that the stratum Q(3, 1) is empty and that the minimum number of squares re-
quired for a 1,1-pillowcase cover in Q(1, 1, 1, 1) with non-separating core curves was
4g = 8 which is strictly greater than the theoretical minimum of 2g + n− 2 = 6. We
must therefore describe how to build strata with odd order zeros that should be built
from these strata.

First let us suppose that we wish to construct 1,1-pillowcase covers in strata of the
form Q(4j + 1, 4k + 3, 3, 1). If j, k ≥ 1, then we can construct such surfaces by concate-
nating 1,1-pillowcase covers fromQ(4j + 1, 3) andQ(4k + 3, 1) which we have already
constructed.

The permutations (
0 1 2 3 4 5 6 7 5
2 8 4 1 6 3 8 7 0

)
and (

0 1 2 3 4 3 5 6 7 8 9
2 5 7 10 9 8 10 1 4 6 0

)
represent 1,1-pillowcase covers in the stratum Q(3, 3, 1, 1), and Q(7, 3, 1, 1), respec-
tively. For strata of the form Q(7 + 4j, 3, 1, 1), j ≥ 1, one can concatenate the com-
binatorics shown in Figure 6.13 with the filling pair diagrams associated to the 1,1-
pillowcase covers in the strata Q(7 + 4(j− 1), 1) constructed above.

Figure 6.13: Filling pair diagram combinatorics for adding Q(3, 1).
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The permutation (
0 1 2 3 4 5 6 7 8 5 9
2 10 4 8 6 3 1 7 9 10 0

)

represents a 1,1-pillowcase cover in the stratum Q(5, 3, 3, 1). We can construct 1,1-
pillowcase covers in strata of the form Q(5 + 4k, 3, 3, 1), k ≥ 1, by concatenating the
combinatorics in Figure 6.13 with the filling pair diagrams associated to 1,1-pillowcase
covers in the strata Q(5 + 4(k− 1), 3) constructed above.

The permutation(
0 1 2 3 4 5 6 7 8 9 10 3 8
2 11 5 12 7 1 11 9 6 12 10 4 0

)

represents a 1,1-pillowcase cover in Q(33, 13).

Figure 6.14: Filling pair diagram combinatorics for adding Q(1, 1, 1, 1).

For j, k ≥ 1, we can construct a 1,1-pillowcase cover in Q(4j + 1, 4k + 3, 14) by con-
catenating 1,1-pillowcase covers from Q(4j + 1, 1, 1, 1) and Q(4k + 3, 1). The permuta-
tions (

0 1 2 3 4 5 6 1 4 7 5
2 8 9 10 8 3 7 6 9 10 0

)
,

(
0 1 2 3 4 5 6 7 8 3 9 5 10
2 9 6 11 10 12 8 4 7 12 1 11 0

)
,

and (
0 1 2 3 4 5 6 7 8 3 9 5 10
2 9 6 11 12 8 1 10 4 11 7 12 0

)
represent 1,1-pillowcase covers in Q(3, 15), Q(7, 15), and Q(5, 3, 14), respectively. For,
j, k ≥ 1, we can construct 1,1-pillowcase covers in the strataQ(4j + 5, 3, 14) andQ(4k +
7, 15) by concatenating the combinatorics shown in Figure 6.14 to the filling pair dia-
grams associated to the 1,1-pillowcase covers in Q(4(j − 1) + 5, 3) and Q(4(k − 1) +
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7, 1), respectively.
The permutations(

0 1 2 3 4 5 6 7 8 9 10 4 5 10 11
2 12 9 11 13 7 14 6 13 1 3 14 8 12 0

)

and (
0 1 2 3 4 5 6 4 7 8 9 10 5 6 10 11 12
2 13 9 11 14 15 8 13 3 7 15 16 1 14 12 16 0

)
represent 1,1-pillowcase covers in Q(32, 16) and Q(3, 19), respectively.

We now consider how to add Q(3, 1) and Q(1, 1, 1, 1) to strata of the form Q(4j +
1, 4k + 1, 4l + 1, 4m + 1) and Q(4j + 3, 4k + 3, 4l + 3, 4m + 3).

For j, k, l, m ≥ 0, we can construct 1,1-pillowcase covers in Q(4j + 5, 4k + 5, 4l +
1, 4m + 1, 3, 1) by concatenating 1,1-pillowcase covers from Q(4j + 5, 4l + 1, 4m + 1, 1)
and Q(4k + 5, 3). We have already constructed 1,1-pillowcase covers in strata of the
form Q(4j + 5, 3, 14), j ≥ 0.

For j ≥ 1 and k, l, m ≥ 0, we can construct 1,1-pillowcase covers in Q(4j + 3, 4k +
3, 4l + 3, 4m+ 3, 3, 1) by concatenating 1,1-pillowcase covers from the strataQ(4j+ 3, 1)
and Q(3, 4k + 3, 4l + 3, 4m + 3). The permutation(

0 1 2 3 4 5 6 7 5 8 9 10 11 10 12
2 13 14 9 4 1 6 14 11 13 3 12 8 7 0

)

represents a 1,1-pillowcase cover in Q(35, 1).
For j, k, l, m ≥ 0, we can construct a 1,1-pillowcase cover in the stratum Q(4j +

5, 4k + 5, 4l + 1, 4m + 1, 14) by concatenating 1,1-pillowcase covers from Q(4k + 5, 4l +
1, 4m + 1, 1) and Q(4j + 5, 1, 1, 1). The permutation(

0 1 2 3 4 5 6 7 8 9 6 10 11 7 9
2 12 13 11 8 1 10 13 14 5 4 14 12 3 0

)

represents a 1,1-pillowcase cover inQ(5, 17). For j ≥ 1, we can construct 1,1-pillowcase
covers inQ(4j + 5, 17) by concatenating the combinatorics in Figure6.14 with the filling
pair diagrams associated to 1,1-pillowcase covers in Q(4(j − 1) + 5, 1, 1, 1) which we
have already constructed. The permutations(

0 1 2 3 4 5 3 6 7 8 9 10 7
2 6 1 11 10 8 12 5 4 12 9 11 0

)



CHAPTER 6. EXTENSION TO QUADRATIC STRATA 102

and (
0 1 2 3 4 5 6 3 7 8 9 10 11 8 12 9 11 13 14
2 7 12 10 13 15 16 5 17 1 18 15 14 17 6 4 16 18 0

)

represents 1,1-pillowcase covers in Q(18) and Q(112), respectively.
For j, k, l, m ≥ 0, we can construct 1,1-pillowcase covers in Q(4j + 3, 4k + 3, 4l +

3, 4m + 3, 14) by concatenating 1,1-pillowcase cover from Q(4j + 3, 1), Q(4k + 3, 1),
Q(4l + 3, 1), and Q(4m + 3, 1). We must make use of the permutations constructed
above if any of j, k, l or m are equal to zero.

6.6 General strata

In this section, we will construct 1,1-pillowcase covers in strata having both even and
odd order zeros and no poles.

Strata of the formQ(4j + 2, 4k + 1, 4l + 1) andQ(4j + 2, 4k + 3, 4l + 3)

We will begin by constructing 1,1-pillowcase covers in strata of the formQ(4j + 2, 4k +
1, 4l + 1) and Q(4j + 2, 4k + 3, 4l + 3). We will make use of the filling pair diagram
modifications considered in Figures 6.11 and 6.12 of the previous section.

Proposition 6.18. By applying the filling pair diagram modifications of Figures 6.11 and 6.12
to the filling pair diagrams associated to the permutations(

0 1 2 3 4 5 3 6
2 6 5 7 1 7 4 0

)
(6.21)

for Q(2, 5, 1), (
0 1 2 3 4 5 1 4 6 7
2 8 6 5 8 9 7 9 3 0

)
(6.22)

for Q(2, 5, 5), (
0 1 2 3 4 5 6 3
2 6 4 7 1 7 5 0

)
(6.23)

for Q(6, 1, 1), and (
0 1 2 3 4 5 4 6 7 8
2 8 7 5 3 6 9 1 9 0

)
(6.24)

for Q(6, 5, 1), we can construct 1,1-pillowcase covers in all strata of the form Q(4j + 2, 4k +
1, 4l + 1), for j, k, l ≥ 0, with (j, k, l) 6= (0, 0, 0).
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By applying the filling pair diagram modifications of Figures 6.11 and 6.12 to the filling pair
diagrams associated to the permutations(

0 1 2 3 4 5 6 4
2 5 7 1 6 3 7 0

)
(6.25)

for Q(2, 3, 3), (
0 1 2 3 4 5 6 7 8 4
2 8 7 3 9 1 6 5 9 0

)
(6.26)

for Q(2, 7, 3), (
0 1 2 3 4 5 6 4 7 8
2 9 1 9 6 8 7 5 3 0

)
(6.27)

for Q(6, 3, 3), (
0 1 2 3 4 5 6 3 7 8 9 10
2 11 5 11 1 8 7 10 9 4 6 0

)
(6.28)

for Q(6, 7, 3), and(
0 1 2 3 4 5 6 7 3 8 9 10 11 12
2 12 4 6 13 5 13 9 11 10 8 1 7 0

)
(6.29)

for Q(10, 7, 3), we can construct 1,1-pillowcase covers in all strata of the form Q(4j + 2, 4k +
3, 4l + 3), for j, k, l ≥ 0.

Proof. The proof is analogous to the proof of Proposition 6.16 in that the boundary
components associated to the zeros of odd order in the filling pair diagrams associated
to the above permutations have the combinatorics shown in the left of Figures 6.11
and 6.12 and so can be modified as in these figures to produce the desired strata.

The permutation representative given for Q(6, 3, 3) in the proposition above repre-
sents a 1,1-pillowcase cover in Qreg(6, 3, 3), while the permutation(

0 1 2 3 4 3 5 6 7 8
2 8 6 9 1 4 7 5 9 0

)

represents a 1,1-pillowcase cover in Qirr(6, 3, 3).

Handling the emptiness of Q(4) and Q(3, 1), and the hyperellipticity of Q(2, 1, 1)
andQ(1, 1, 1, 1)

As in the previous two sections, we must now deal with fact that Q(4) and Q(3, 1) are
empty, and that 1,1-pillowcase covers in Q(2, 1, 1) and Q(1, 1, 1, 1) require more than
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the theoretical minimum number of squares.

Figure 6.15: Filling pair diagram combinatorics for adding Q(2, 1, 1).

We begin by constructing 1,1-pillowcase covers in strata Q(4j, 3, 1), Q(4j, 1, 1, 1, 1),
and Q(4j, 2, 1, 1), and in strata Q(4j + 2, 4k + 2, 3, 1), Q(4j + 2, 4k + 2, 1, 1, 1, 1), and
Q(4j + 2, 4k + 2, 2, 1, 1). In Section 6.4, we discussed how to add a zero of order 4 to
the 1,1-pillowcase covers we had already built in that section by adding the combi-
natorics shown in Figure 6.8 to the associated filling pair diagrams. Performing the
same construction with the combinatorics given in Figures 6.13, 6.14, and 6.15, will
give 1,1-pillowcase covers in all of the above strata apart fromQ(4, 3, 1),Q(4, 1, 1, 1, 1),
Q(4, 2, 1, 1), Q(8, 3, 1), Q(8, 1, 1, 1, 1), Q(8, 2, 1, 1), Q(2, 2, 3, 1), Q(22, 14), Q(23, 12),
Q(6, 6, 3, 1), Q(6, 6, 1, 1, 1, 1), and Q(6, 6, 2, 1, 1). The permutations(

0 1 2 3 4 5 3 6
2 6 5 7 1 4 7 0

)
,

(
0 1 2 3 4 5 6 7 8 6
2 9 5 1 8 7 4 9 3 0

)
,

(
0 1 2 3 4 5 6 7 5
2 8 1 7 6 4 8 3 0

)
,

(
0 1 2 3 4 5 6 4 7 8
2 9 8 3 7 5 9 1 6 0

)
,

(
0 1 2 3 4 5 6 4 7 5 6 8
2 8 9 10 3 7 11 9 1 10 11 0

)
,

(
0 1 2 3 4 5 6 7 3 8 9
2 8 10 1 10 9 4 7 6 5 0

)
,
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0 1 2 3 4 5 6 7 4
2 6 8 1 7 5 3 8 0

)
,

(
0 1 2 3 4 5 6 7 8 9 7
2 10 9 8 10 3 6 1 5 4 0

)
,

(
0 1 2 3 4 5 6 7 5 8
2 7 9 1 4 8 9 6 3 0

)
,

(
0 1 2 3 4 5 1 6 7 5 8 9 10
2 9 4 8 6 11 7 10 12 11 12 3 0

)
,

(
0 1 2 3 4 5 6 7 8 9 10 11 4 12 9
2 13 7 14 11 5 13 3 8 1 12 6 10 14 0

)
,

and (
0 1 2 3 4 3 5 6 7 8 9 10 8 11
2 12 6 13 7 11 13 10 9 1 12 5 4 0

)
respectively represent 1,1-pillowcase covers in Q(4, 3, 1), Q(4, 1, 1, 1, 1), Q(4, 2, 1, 1),
Q(8, 3, 1), Q(8, 1, 1, 1, 1), Q(8, 2, 1, 1), Q(2, 2, 3, 1), Q(22, 14), Q(23, 12), Q(6, 6, 3, 1),
Q(6, 6, 1, 1, 1, 1), and Q(6, 6, 2, 1, 1). We also require the permutations(

0 1 2 3 4 5 6 3 7 8 7
2 9 10 5 9 1 6 8 4 10 0

)
,

(
0 1 2 3 4 3 5 4 6 7 8 9
2 5 6 8 10 7 10 9 11 1 11 0

)
,

(
0 1 2 3 4 5 6 7 5 8 9 10 9
2 11 4 8 3 11 1 12 7 6 12 10 0

)
,

(
0 1 2 3 4 5 6 7 8 9 10 5 11 12 13 8
2 14 7 1 4 11 15 10 6 14 3 13 9 15 12 0

)
,

and (
0 1 2 3 4 5 6 7 8 5 7 9
2 10 4 8 6 1 3 10 11 9 11 0

)
respectively representing 1,1-pillowcase covers in the strata Q(42, 3, 1), Q(4, 32, 12),
Q(42, 14), Q(4, 18), and Q(42, 2, 12).

We now consider constructing 1,1-pillowcase covers in strata of the form Q(4j +
1, 4k + 3, 4). By checking which zero is associated to the boundary component that
leaves the bottom of the filling pair diagrams for the 1,1-pillowcase covers in Q(4j +
1, 4k + 3) constructed in Section 6.5, and by adding a zero of order 4 to these surfaces
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using the combinatorics of Figure 6.8, we are able to construct 1,1-pillowcase covers in
the strata Q(4j + 1, 4k + 3, 4) apart from Q(7, 1, 4), Q(5, 3, 4), Q(7, 5, 4), and Q(9, 7, 4)
which are represented by the permutations(

0 1 2 3 4 5 6 7 6 8
2 9 8 9 3 7 5 1 4 0

)
,

(
0 1 2 3 4 5 6 4 7 8
2 8 5 7 9 1 3 6 9 0

)
,

(
0 1 2 3 4 5 3 6 7 5 8 6
2 9 8 9 10 4 7 11 1 11 10 0

)
,

and (
0 1 2 3 4 5 6 4 6 7 8 9 10 11
2 12 5 13 7 9 1 11 13 10 3 12 8 0

)
,

respectively.
For j, k ≥ 1, we can construct 1,1-pillowcase covers in Q(4j + 1, 4k + 3, 2, 1, 1) by

concatenating 1,1-pillowcase covers from Q(4k + 3, 1) and Q(2, 4j + 1, 1). For j ≥ 1,
we can construct 1,1-pillowcase covers in Q(4j + 7, 2, 13) and Q(4j + 5, 3, 2, 12) by con-
catenating the combinatorics in Figure 6.15 with the filling pair diagrams associated to
1,1-pillowcase covers in Q(4(j− 1) + 7, 1) and Q(4(j− 1) + 5, 1). The permutations(

0 1 2 3 4 5 6 7 5 8
2 9 1 6 4 8 9 3 7 0

)
,

(
0 1 2 3 4 5 6 7 8 9 4 10
2 11 8 7 11 1 3 10 6 9 5 0

)
,

and (
0 1 2 3 4 5 6 7 8 9 10 7
2 5 11 9 8 11 6 4 3 1 10 0

)
represent 1,1-pillowcase covers inQ(3, 2, 13),Q(7, 2, 13), andQ(5, 3, 2, 12), respectively.
We also require the permutation(

0 1 2 3 4 5 6 7 8 9 10 8 5 11
2 7 6 12 1 13 4 11 12 3 13 10 9 0

)

representing a 1,1-pillowcase cover in Q(32, 2, 14).
We now construct 1,1-pillowcase covers in strata of the form Q(4j + 3, 4k + 3, 4l +

3, 4m + 3, 4), Q(4j + 1, 4k + 1, 4l + 1, 4m + 1, 4), Q(4j + 3, 4k + 3, 4l + 3, 4m + 3, 2, 1, 1),
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and Q(4j + 1, 4k + 1, 4l + 1, 4m + 1, 2, 1, 1).
The permutations(

0 1 2 3 4 5 6 7 8 1 9 10 11 8
2 10 12 9 13 7 12 4 13 3 11 6 5 0

)
,

(
0 1 2 3 4 5 6 7 8 7 9 8 10 11 6 12
2 10 4 13 12 5 14 11 15 13 1 3 14 15 9 0

)
,

(
0 1 2 3 4 5 6 7 8 9 10 11 3 12 8 10 13 14
2 15 11 5 12 14 16 9 1 15 17 13 16 17 6 4 7 0

)
,

and(
0 1 2 3 4 5 3 6 7 8 9 10 11 9 12 13 14 5 12 6
2 15 13 15 16 17 8 18 1 17 19 16 18 7 11 4 14 10 19 0

)

respectively represent 1,1-pillowcase covers in the strata Q(3, 3, 3, 3, 4), Q(7, 3, 3, 3, 4),
Q(5, 5, 5, 5, 4), and Q(9, 5, 5, 5, 4) that have the form necessary to be modified as in
Proposition 6.16 to produce 1,1-pillowcase covers in strata of the form Q(4j + 3, 4k +
3, 4l + 3, 4m + 3, 4) and Q(4j + 5, 4k + 5, 4l + 5, 4m + 5, 4), for j, k, l, m ≥ 0.

The permutation (
0 1 2 3 4 5 6 7 4 8 9 6
2 10 9 11 7 5 3 8 10 1 11 0

)

represents Q(5, 1, 1, 1, 4) and can be modified as in Proposition 6.17 to produce a 1,1-
pillowcase cover in Q(5, 5, 5, 1, 4). The permutation(

0 1 2 3 4 5 6 7 8 9 7 10 11 12
2 11 5 12 13 3 8 13 1 4 6 10 9 0

)

represents a 1,1-pillowcase cover in Q(5, 5, 1, 1, 4) and can be modified to produce
1,1-pillowcase covers in strata of the form Q(4j + 5, 4k + 5, 1, 1, 4), j, k ≥ 2, and in
Q(9, 9, 1, 1, 4). All remaining strata of the form Q(4j + 1, 4k + 1, 4l + 1, 4m + 1, 4) con-
taining zeros of order 1 can be constructed by concatenating the combinatorics of Fig-
ure 6.8 with the filling pair diagrams for 1,1-pillowcase covers that we have already
constructed in the previous section.

To produce 1,1-pillowcase covers in Q(4j + 3, 4k + 3, 4l + 3, 4m + 3, 2, 1, 1) we can
concatenate 1,1-pillowcase covers from Q(4j + 3, 4k + 3, 1, 1) and Q(2, 4l + 3, 4m + 3).
Similarly, for j, k ≥ 1 and l, m ≥ 0, we can construct 1,1-pillowcase covers in Q(4j +
1, 4k + 1, 4l + 1, 4m + 1, 2, 1, 1) by concatenating 1,1-pillowcase covers from the strata
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Q(4j+ 1, 4l + 1, 4m+ 1, 1) andQ(2, 4k+ 1, 1). For strata of the formQ(4j+ 5, 13, 2, 1, 1),
with j ≥ 1, one can concatenate the combinatorics from Figure 6.15 with the filling
pair diagrams associated to 1,1-pillowcase covers in Q(4(j − 1) + 5, 1, 1, 1), while the
permutation (

0 1 2 3 4 5 6 4 7 8 9 10 8 11
2 11 12 10 9 13 6 5 13 12 1 3 7 0

)

represents a 1,1-pillowcase cover in Q(5, 13, 2, 1, 1).
Finally, we consider how to add a single zero of order 4, zeros of order 3 and 1, four

zeros of order 1, or a zero of order two and two zeros of order 1 to strata of the form
Q(4j + 2, 4k + 1, 4l + 1) and Q(4j + 2, 4k + 3, 4l + 3).

We will begin by constructing 1,1-pillowcase covers in Q(4j + 2, 4k + 1, 4j + 1, 4)
and Q(4j + 2, 4k + 3, 4l + 3, 4). Indeed, the permutations(

0 1 2 3 4 5 6 7 8 9 6
2 4 8 3 9 7 5 10 1 10 0

)
,

(
0 1 2 3 4 5 6 3 7 8 6 4 8
2 9 10 11 1 12 9 10 11 7 12 5 0

)
,

(
0 1 2 3 4 5 6 7 1 7 8
2 9 4 10 6 8 9 5 10 3 0

)
,

and (
0 1 2 3 4 5 3 6 7 8 9 10 5
2 6 4 11 7 9 8 10 11 12 1 12 0

)
respectively represent 1,1-pillowcase covers inQ(2, 5, 1, 4),Q(2, 5, 5, 4),Q(6, 1, 1, 4) and
Q(6, 5, 1, 4) that can be modified as in Proposition 6.18 to produce 1,1-pillowcase cov-
ers in the strata Q(4j + 2, 4k + 1, 4l + 1). Note that we have already produced a 1,1-
pillowcase cover in Q(2, 1, 1, 4). Similarly, the permutations(

0 1 2 3 4 5 6 7 6 8 9
2 5 1 9 8 4 10 7 10 3 0

)
,

(
0 1 2 3 4 5 6 7 8 9 10 6
2 11 1 9 5 12 4 12 11 10 8 7 0

)
,

(
0 1 2 3 4 5 6 7 8 7 9 5 6
2 10 11 10 11 3 8 4 9 12 1 12 0

)
,
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0 1 2 3 4 5 6 7 8 9 4 10 11 7 11
2 5 10 3 12 13 14 13 8 14 9 1 12 6 0

)
,

and (
0 1 2 3 4 5 6 7 8 9 10 11 10 3 12 11 13
2 7 5 14 15 1 15 16 13 4 9 6 12 16 8 14 0

)
respectively represent 1,1-pillowcase covers in Q(2, 3, 3, 4), Q(2, 7, 3, 4), Q(6, 3, 3, 4),
Q(6, 7, 3, 4) and Q(10, 7, 3, 4) that can be modified as in Proposition 6.18 to produce
1,1-pillowcase covers in Q(4j + 2, 4k + 3, 4l + 3, 4).

For j, k ≥ 1, we can produce 1,1-pillowcase covers in the strata Q(4j + 6, 1, 1, 3, 1)
and Q(2, 4k + 5, 1, 3, 1) by adding the combinatorics of Figure 6.13 to the filling pair
diagrams associated to 1,1-pillowcase covers inQ(4(j− 1)+ 6, 1, 1) andQ(2, 4(k− 1)+
5, 1), respectively. For k, l ≥ 1 we can construct 1,1-pillowcase covers inQ(2, 4k+ 1, 4l +
1, 3, 1) by concatenating 1,1-pillowcase covers fromQ(2, 4k + 1, 1) andQ(3, 4l + 1). For
j, k ≥ 0 and l ≥ 1, we can construct 1,1-pillowcase covers inQ(4j+ 6, 4k+ 1, 4l + 1, 3, 1)
by concatenating 1,1-pillowcase covers from Q(4j + 6, 4k + 1, 1) and Q(3, 4l + 1). The
permutations (

0 1 2 3 4 5 6 4 7 8 9 10
2 6 5 8 11 10 11 9 1 3 7 0

)
and (

0 1 2 3 4 5 3 6 7 8 9 10
2 6 1 9 8 5 4 11 7 10 11 0

)
represent 1,1-pillowcase covers in Q(6, 1, 1, 3, 1) and Q(2, 5, 1, 3, 1), respectively. Recall
that we have already constructed a 1,1-pillowcase cover in Q(2, 1, 1, 3, 1).

For j ≥ 1, we can construct 1,1-pillowcase covers in Q(4j + 6, 3, 3, 3, 1) by adding
the combinatorics of Figure 6.13 to the filling pair diagrams associated to 1,1-pillowcase
covers in Q(4(j− 1) + 6, 3, 3). For j, k ≥ 0 and l ≥ 1, we can construct 1,1-pillowcase
covers in strata of the formQ(4j+ 2, 4k + 3, 4l + 3, 3, 1) by concatenating 1,1-pillowcase
covers from Q(4j + 2, 4k + 3, 3) and Q(4l + 3, 1). The permutations(

0 1 2 3 4 5 6 7 8 9 4 10
2 11 6 5 9 7 1 10 8 11 3 0

)

and (
0 1 2 3 4 5 6 7 8 5 9 10 11 4
2 9 1 3 10 12 13 12 8 6 13 7 11 0

)
represent 1,1-pillowcase covers in Q(2, 3, 3, 3, 1) and Q(6, 3, 3, 3, 1), respectively.

Similarly, for j, k ≥ 1, we can construct 1,1-pillowcase covers in Q(4j + 6, 16) and
(2, 4k + 5, 15) by adding the combinatorics of Figure 6.14 to the filling pair diagrams
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associated to 1,1-pillowcase covers inQ(4(j− 1) + 6, 1, 1) andQ(2, 4(k− 1) + 5, 1). For
k, l ≥ 1 we can construct 1,1-pillowcase covers in Q(2, 4k + 1, 4l + 1, 14) by concatenat-
ing 1,1-pillowcase covers from Q(2, 4k + 1, 1) and Q(4l + 1, 1, 1, 1). For j, k ≥ 0 and
l ≥ 1, we can construct 1,1-pillowcase covers in Q(4j + 6, 4k + 1, 4l + 1, 14) by con-
catenating 1,1-pillowcases covers from Q(4j + 6, 4k + 1, 1) and Q(4l + 1, 1, 1, 1). The
permutations (

0 1 2 3 4 5 6 7 8 9 10 4 11 8
2 12 6 13 10 5 12 3 7 1 11 9 13 0

)

and (
0 1 2 3 4 5 6 7 8 7 9 10 5 11
2 12 13 1 12 3 10 6 9 4 11 13 8 0

)
represent 1,1-pillowcase covers inQ(6, 16) andQ(2, 5, 15), respectively. We also require
the permutations (

0 1 2 3 4 5 6 7 4 8 5 7
2 9 10 11 9 3 8 6 1 10 11 0

)
and (

0 1 2 3 4 5 6 7 8 9 10 3 11 12 13 9 14 12
2 11 1 7 15 16 5 17 15 8 14 13 10 4 16 17 6 0

)

respectively representing Q(2, 16) and Q(2, 110).
For k ≥ 1 and l ≥ 0, we can construct 1,1-pillowcase covers Q(2, 4k + 3, 4l + 3, 14)

by adding the combinatorics in Figure 6.14 to the filling pair diagrams associated to
1,1-pillowcase covers in Q(2, 4(k− 1) + 3, 4l + 3). For j, k, l ≥ 0, we can construct 1,1-
pillowcase covers inQ(4j + 6, 4k + 3, 4l + 3, 14) by concatenating 1,1-pillowcase covers
from Q(4j + 6, 1, 1) and Q(4k + 3, 4l + 3, 1, 1). The permutations(

0 1 2 3 4 5 6 7 8 9 10 6 9 11
2 5 10 7 12 3 13 1 8 11 13 4 12 0

)

and (
0 1 2 3 4 5 6 7 8 9 10 11 6 12 13 12 5 11
2 14 13 7 9 15 16 15 10 1 4 14 3 8 17 16 17 0

)

represent 1,1-pillowcase covers in Q(2, 3, 3, 14) and Q(2, 7, 7, 14), respectively.
Finally, 1,1-pillowcase covers in Q(4j + 2, 4k + 1, 4l + 1, 2, 1, 1) and Q(4j + 2, 4k +

3, 4l + 3, 2, 1, 1) can be constructed by concatenating a 1,1-pillowcase cover fromQ(4j+
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2, 2) with one from Q(4k + 1, 4l + 1, 1, 1) or Q(4k + 3, 4l + 3, 1, 1), respectively.
This completes the work of this section and allows us to construct 1,1-pillowcase

covers in all connected components of all strata of quadratic differentials in genus at
least two and with no poles.

6.7 Genus one

In this section, we construct 1,1-pillowcase covers in every non-empty stratum of genus
one half-translation surfaces. We begin by constructing 1,1-pillowcase covers in strata
that have an even number of poles. Recall that the stratum Q(∅) is empty. This does
not present us with a problem as we would not have needed to use a 1,1-pillowcase
cover in this stratum to construct 1,1-pillowcase covers of higher complexity. For an
even, strictly greater than zero, number of poles we have the following.

Proposition 6.19. For n ≥ 2 even and k ≥ 1 odd, the permutations(
0 1 2 4 4 6 · · · n n 1
2 3 3 5 5 7 · · · n + 1 n + 1 0

)
(6.30)

and (
0 1 2 4 4 6 · · · k + 1 k + 3
2 3 3 5 5 7 · · · k + 2 k + 3

)
(

k + 4 k + 4 k + 6 · · · n + 1 n + 1 1
k + 5 k + 5 k + 7 · · · n + 2 n + 2 0

) (6.31)

represent 1,1-pillowcase covers in Q(n,−1n) and Q(n − k, k,−1n), respectively. Moreover,
these surfaces have the minimum number of squares required for their respective strata.

Proof. It is easy to check that the permutations represent 1,1-pillowcase covers in the
claimed strata and have the minimum number of squares required.

Using these surfaces, we can construct 1,1-pillowcase covers in any stratum of the
form Q(k1, . . . , kn,−1κ), where ki ≥ 1 and κ = ∑ ki is even.

When the number of poles is odd however, the situation is less straightforward.
Indeed, as the following proposition demonstrates, there exist strata for which the
theoretical minimum number of squares required for a 1,1-pillowcase cover cannot be
achieved. Further still, for the first time we witness the phenomenon of having the min-
imum number of squares required for a 1,1-pillowcase cover to have the form necessary
to be used in the cylinder concatenation method being different to the minimum num-
ber required for an arbitrary 1,1-pillowcase cover. These behaviours arise in certain
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strata because the necessary poles cannot be arranged on the surface without giving
rise to either another pole or another zero.

Recall that the theoretical minimum number of squares for a genus one stratum
Q(k1, . . . , kn,−12k+1) is 2g + (n + 2k + 1)− 2 = n + 2k + 1. We have the following.

Proposition 6.20. The minimum number of squares required for a 1,1-pillowcase cover in the
strata Q(2k + 1,−12k+1) and Q(k + 1, k,−12k+1) is 2k + 3 and 2k + 4, respectively. Both of
these values are greater than the theoretical minimum for each stratum.

Moreover, the minimum number of squares required for a 1,1-pillowcase cover that has
the appropriate form to be used in the cylinder concatenation method in the strata Q(2k +

1,−12k+1) and Q(k1, k2,−12k+1) is 2k + 5 and 2k + 4, respectively.

Proof. The theoretical minimum number of squares for Q(2k + 1,−12k+1) is 2k + 2.
Consider a line of 2k+ 2 squares forming a single horizontal cylinder. We require 2k+ 1
poles k + 1 of which must lie on one side of the horizontal cylinder, say the top, and k
must lie on the other. The top side must therefore consist of k + 1 pairs of symbols, each
pair giving rise to a pole. There must therefore be k pairs of symbols on the bottom side
giving rise to the k remaining poles. To achieve a single vertical cylinder we must place
these k symbols in a row offset by one from the symbols on the top side. However,
this forces the two remaining symbols on the bottom side to be adjacent creating an
additional pole. As such, the minimum number of squares must be at least 2k + 3. The
permutations (

0 1 2 2 3 1
3 4 5 5 4 0

)
and, for k ≥ 2,(

0 1 2 2 3 4 4 · · · k + 2 k + 2 1
3 k + 3 k + 4 k + 4 k + 3 k + 5 k + 5 · · · 2k + 3 2k + 3 0

)

represent 1,1-pillowcase cover in Q(3,−13) and Q(2k + 1,−12k+1), respectively. These
permutations realise 2k + 3 squares.

The theoretical minimum number of squares for Q(k1, k2,−12k+1) is 2k + 3. As
above, consider 2k + 3 squares forming a single horizontal cylinder. We must have
k + 1 poles on one side, say the top, and k poles on the bottom. As such, there must be
k + 1 pairs of symbols on the top side forming the k + 1 poles and one spare symbol.
One can then check that the order of the zero lying on the top of the surface has order
at least k + 2. As such, we cannot produce a 1,1-pillowcase cover in Q(k + 1, k,−12k+1)
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with 2k + 3 squares. For j ≥ 1 and n ≥ 0, the permutation(
0 1 2 3 3 4

j + 4 + n j + 5 + n j + 5 + n j + 6 + n j + 6 + n j + 7 + n

)
(
· · · j + 2 j + 2 j + 3 j + 3 j + 4
· · · 2j + 5 + n 2j + 5 + n j + 4 + n 2 2j + 6 + n

)
(

j + 4 j + 5 · · · j + 3 + n j + 3 + n 1
2j + 6 + n 2j + 7 + n · · · 2j + 2n + 5 2j + 2n + 5 0

)

represents a 1,1-pillowcase cover in Q(j, j + 3 + 2n,−12j+2n+3). These permutations
realise 2k + 3 squares for 1,1-pillowcase covers in strata of the form Q(k1, k2,−12k+1)

apart from Q(k + 1, k,−12k+1).
Suppose now that we want to construct a 1,1-pillowcase cover that can be used in

the cylinder concatenation method. Consider a row of 2k + 3 squares. The labels on the
top side must start with the symbols 1 and 2, and the first symbol on the bottom must
be a 2. The remaining 2k + 2 symbols on the bottom must be pairs of symbols forming
k + 1 poles. It is easy to check that there is no way to place k pairs of symbols forming k
poles on the top row in such a way that achieves a single vertical cylinder without also
forming an additional pole. So we must need at least 2k + 4 squares. For j, n ≥ 0, the
permutations(

0 1 2 3 3 4
2 2j + 5 + n 2j + 5 + n 2j + 6 + n 2j + 6 + n 2j + 7 + n

)
(
· · · j + 1 j + 2 j + 2 j + 3 j + 3
· · · 3j + 4 + n j + 4 3j + 5 + n 3j + 6 + n 3j + 6 + n

)
(

j + 4 j + 5 · · · 2j + 4 + n 2j + 4 + n 1
3j + 5 + n 3j + 7 + n · · · 4j + 2n + 6 4j + 2n + 6 0

)

and (
0 1 2 3 3 4
2 2j + 6 + n 2j + 6 + n 2j + 7 + n 2j + 7 + n 2j + 8 + n

)
(
· · · j + 2 j + 3 j + 4 j + 5 j + 5
· · · 3j + 6 + n 3j + 7 + n 3j + 7 + n j + 3 3j + 8 + n

)
(

j + 4 j + 6 · · · 2j + 5 + n 2j + 5 + n 1
3j + 8 + n 3j + 9 + n · · · 4j + 2n + 8 4j + 2n + 8 0

)

represent 1,1-pillowcase covers in Q(2j + 1, 2j + 2 + 2n,−14j+2n+3) and Q(2j + 2, 2j +
3 + 2n,−14j+2n+5), respectively. These have the form necessary to be used in the cylin-



CHAPTER 6. EXTENSION TO QUADRATIC STRATA 114

der concatenation method. Note that the stratumQ(k + 1, k,−12k+1) is included in this
list.

A similar argument can be used to show that there is no way to achieve a 1,1-
pillowcase cover inQ(2k + 1,−12k+1) using 2k + 4 squares that has the form necessary
to be used in the cylinder concatenation method. The permutations(

0 1 2 3 3 1 4 4
2 5 6 7 7 6 5 0

)

and, for k ≥ 2,(
0 1 2 3 3 4 4 · · ·
2 k + 4 k + 4 k + 5 k + 5 k + 6 k + 6 · · ·

)
(

k k + 1 k + 1 k + 2 k + 2 1 k + 3 k + 3
2k + 2 2k + 3 2k + 4 2k + 5 2k + 5 2k + 4 2k + 3 0

)

represent 1,1-pillowcase covers inQ(3,−13) andQ(2k+ 1,−12k+1), respectively. These
have the form to be used in the cylinder concatenation method and this completes the
proof.

Suppose now that we wish to construct a 1,1-pillowcase cover in a genus one stra-
tum with an odd number of poles. If the stratum has one or two zeros, then this is
covered by the proposition above. If we have at least three zeros then we can proceed
as follows. If there is at least one zero of even order, then begin with a 1,1-pillowcase
cover given by the proposition above in the stratum containing this even order zero and
one zero of odd order from the remaining zeros. We can then concatenate this surface
with a 1,1-pillowcase cover from the stratum containing the remaining zeros (which is
a stratum with an even number of poles). The resulting 1,1-pillowcase cover will lie in
the desired stratum and will have one more than the theoretical minimum number of
squares. If all of the zeros are of odd order then we instead proceed as follows. If there
exists at least one zero of order at least 3, then we concatenate the 1,1-pillowcase cover
given by the above proposition representing the stratum containing a single zero of this
order with a 1,1-pillowcase cover representing the stratum with the remaining zeros.
This surface will have three more than the theoretical minimum number of squares. If
all of the zeros are of order 1 and there are at least five zeros, then we can concatenate
the permutation (

0 1 2 3 4 4 5 6 6 7 1
2 8 9 9 10 10 8 3 5 7 0

)
representing Q(15,−15) with a 1,1-pillowcase cover in Q(12k,−12k), for the appropri-
ate k. The resulting 1,1-pillowcase cover achieves the theoretical minimum number of
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squares. If there are only three zeros then we use the permutation(
0 1 1 2 2 3 3
4 5 6 4 5 6 0

)

representing a 1,1-pillowcase cover in Q(13,−13). We remark that there is not a 1,1-
pillowcase cover in Q(13,−13) with six squares that can be used in the cylinder con-
catenation method.

We have therefore demonstrated that there exist 1,1-pillowcase covers in all non-
empty genus one strata requiring at most three more than the theoretical minimum
number of squares.

6.8 Genus zero

In this section, we describe a method for constructing 1,1-pillowcase covers in genus
zero strata. We remark that this requires an approach distinct from the cylinder con-
catenation method used above. Indeed, the condition that the surfaces involved in the
cylinder concatenation method must have the bottom of the first square identified with
the top of the second forces the surfaces involved to have non-zero genus. As such, we
describe a different technique for combining genus zero 1,1-pillowcase covers.

We first observe that a filling pair diagram for a genus zero 1,1,-pillowcase cover is
an example of a special type of planar graph called a meander. Examples are shown in
Figure 6.16. These objects have been well studied in a variety of settings – including in
physics where there are connections to polymer chain folding and Feynman diagrams
– and their enumeration has proven to be a particularly challenging problem. We refer
the reader to the works of Lando-Zvonkin [35], Di Francesco-Golinelli-Guitter [16, 17],
and Jensen [30] for more details. The enumeration of meanders was applied to the
calculation of the volumes of genus zero quadratic strata by Delecroix-Goujard-Zograf-
Zorich [15].

Figure 6.16: Two meanders representing Q(1,−15).
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Using the terminology of Delecroix-Goujard-Zograf-Zorich [15], we will say that a
meander has a maximal arc if the top (or bottom) of the first vertex is joined to the top
(or bottom) of the final vertex. For example, the meander on the right of Figure 6.16 has
a maximal arc while the meander on the left does not.

We now describe the combination method we will use for genus zero 1,1-pillowcase
covers. Indeed, suppose that we have a meander containing two adjacent bigons as
shown in Figure 6.17. Furthermore, suppose that we have a second meander which
has a maximal arc with a bigon at one end of this arc as shown in Figure 6.18. Then
observe that we can add the maximal arc meander into the bigon configuration in
the first meander in such a way that we lose two bigons in each meander but pre-
serve all of the remaining combinatorics. Specifically, we remove the bigons A and A′

from each meander, then join the blue vertices to each other and the red vertices sim-
ilarly while including the remainder of the second meander into bigon B of the first.
As we mentioned above, in this process we lose two bigons from each meander but
the remaining combinatorics are preserved. That is, if the first meander represents a
1,1-pillowcase cover in Q(k1, . . . , kn,−1κ+4) and the second a 1,1-pillowcase cover in
Q(l1, . . . , lm,−1λ+4), then the resulting meander represents a 1,1-pillowcase cover in
Q(k1, . . . , kn, l1, . . . , lm,−1κ+λ+4), where κ = ∑ ki and λ = ∑ li.

A

B

Figure 6.17: Adjacent bigon configuration.

A′

Figure 6.18: Maximal arc and bigon configuration.

For example, observe that the meander on the right of Figure 6.16 representing
Q(1,−15) has adjacent bigons at its centre and also has the maximal arc and bigon
configuration. If we perform this construction with both meanders being this meander
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(one copy being reflected across the horizontal), then we obtain the meander in Fig-
ure 6.19 representing Q(1, 1,−16). The first copy is shown in blue and the second in
red. The dashed bigons are those removed from each meander during the construc-
tion. That is, the blue dashed bigon represents the bigon A and the red dashed bigon
represents the bigon A′. The region that was bigon B is also labelled.

B

Figure 6.19: A meander representing Q(1, 1,−16).

With this construction in mind, we will construct 1,1-pillowcase covers in the strata
Q(k,−1k+4), for k ≥ 1, that contain adjacent bigons, and a maximal arc and bigon.

Proposition 6.21. For k ≥ 1, the permutations(
0 1 2 3 4 5 6 7 8 9 · · ·

4k + 1 4k + 1 4k + 2 4k + 3 4k + 3 4k + 2 4k + 4 4k + 5 4k + 5 4k + 4 · · ·

)
(

4k− 6 4k− 5 4k− 4 4k− 3 4k− 2 4k− 1 4k 4k 4k− 1 4k− 2 · · ·
6k− 2 6k− 1 6k− 1 6k− 2 6k 6k 6k + 1 6k + 2 6k + 2 6k + 1 · · ·

)
(

13 12 11 10 9 8 7 6 5 4 3 2 1
8k− 5 8k− 4 8k− 4 8k− 5 8k− 3 8k− 2 8k− 2 8k− 3 8k− 1 8k 8k 8k− 1 0

)

and(
0 1 2 3 4 5 6 7 · · ·

4k + 3 4k + 4 4k + 4 4k + 3 4k + 5 4k + 6 4k + 6 4k + 5 · · ·

)
(

4k− 4 4k− 3 4k− 2 4k− 1 4k 4k + 1 4k + 2 4k + 2 4k + 1 4k · · ·
6k + 1 6k + 2 6k + 2 6k + 1 6k + 3 6k + 3 6k + 4 6k + 5 6k + 5 6k + 4 · · ·

)
(

7 6 5 4 3 2 1
8k + 2 8k + 3 8k + 3 8k + 2 8k + 4 8k + 4 0

)
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represent 1,1-pillowcase covers inQ(2k− 1,−12k+3) andQ(2k,−12k+4), respectively. More-
over, the associated meanders have the combinatorics shown in Figures 6.17 and 6.18.

Proof. We begin with the meander shown in Figure 6.20 representing a 1,1-pillowcase
cover in Q(1,−15). Then the 1,1-pillowcase covers in all successive strata are achieved
by repeating the folding method that takes the meander in Figure 6.20 to the meander
shown in Figure 6.21 representing a 1,1-pillowcase cover inQ(2,−16). One can see that
at their centre they have adjacent bigons as in Figure 6.17 and also have the maximal
arc and bigon structure of Figure 6.18.

Figure 6.20: A meander representing Q(1,−15).

Figure 6.21: A meander representing Q(2,−16).

The final claim of the proposition means that these meanders have the ability to be
combined in the method described above. As such, we have the following result.

Corollary 6.22. Let Q(k1, . . . , kn,−1κ+4), for κ = ∑ ki, be a genus zero stratum. Then there
exists a 1,1-pillowcase cover in this stratum with 4κ + 2n + 2 squares.

We remark that this construction is certainly not minimal in the number of squares.
Indeed, the following proposition and corollary demonstrate that for certain strata this
construction is far from the minimal possible.
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Proposition 6.23. Let k ≥ 2 be even. The minimum number of squares required for a 1,1-
pillowcase cover in the stratum Q( k

2 , k
2 ,−1k+4) is k + 4.

Let k ≥ 1 be odd. The minimum number of squares required for a 1,1-pillowcase cover in the
stratum Q( k+1

2 , k−1
2 ,−1k+4), and the strata Q( k+1

2 , k−3
2 , 1,−1k+4),Q( k+1

2 , k−5
2 , 2,−1k+4),

. . . ,Q( k+1
2 , d k−1

4 e, b
k−1

4 c,−1k+4) is k + 7.

Proof. For k ≥ 2, the meander shown in Figure 6.22 maximises the number of bigons
for k + 4 intersections. Since it represents a 1,1-pillowcase cover in Q( k

2 , k
2 ,−1k+4), we

must have that the minimum number of squares required for a 1,1-pillowcase cover in
Q( k

2 , k
2 ,−1k+4) is k + 4.

For k ≥ 1 odd, we have just seen that the maximum number of bigons that can
be produced from k + 5 intersections is k + 5. If we want to produce fewer than this
number of bigons from k + 5 intersections we are forced to lose at least two bigons.
Hence, the next highest number of bigons we can produce is k + 3 which is less than we
require and so k + 5 intersections are not sufficient. The meander with k + 7 crossings
in Figure 6.23 represents a 1,1-pillowcase cover in Q( k+1

2 , k−1
2 ,−1k+4). The remaining

strata are then represented by the 1,1-pillowcase covers associated to the meanders
obtained from the one in Figure 6.23 by consecutively moving the second bigon from
the left one step further to the right.

Figure 6.22: A meander representing Q( k
2 , k

2 ,−1k+4).

Figure 6.23: A meander representing Q( k+1
2 , k−1

2 ,−1k+4).
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Observe that the meanders in the above proof for the stratum Q( k
2 , k

2 ,−1k+4) con-
tained no regions with four boundary components - that is, no zeros of order zero -
and they also have the form to be combined as described above. As such, we have the
following corollary.

Corollary 6.24. The minimum number of squares required for a 1,1-pillowcase cover in the
stratum Q(k2

1, . . . , k2
n,−1κ+4), where ki ≥ 1 are not necessarily distinct and κ = 2 ∑ ki, is

κ + 2n + 2.

We finish this section with a brief discussion of how much work may be left to re-
alise the minimum number of squares in each genus zero stratum. We first remark that
computational evidence leads us to conjecture that the number of squares achieved by
Proposition 6.21 for the stratum Q(k,−1k+4) is indeed minimal. Moreover, we observe
that the meanders in Proposition 6.23 for k odd can be combined to improve upon the
bounds in Corollary 6.22 for certain strata. However, there are examples for which this
construction is still not minimal. As such, further investigation is required to deter-
mine the minimum number of squares required for each stratum. We expect there to
be a connection between how ’symmetric’ the orders of the zeros are and the number
of squares required for a 1,1-pillowcase cover, where by symmetric we mean how well
can the zeros be arranged into pairs of the same order. Indeed, Corollary 6.24 realises
the case where all zeros can be paired in this manner and, in a sense, the case of Propo-
sition 6.21 having only one zero is the furthest from this. A geometric motivation for
this conjecture is the fact that the curves in a meander are separating curves on the
sphere and so the boundary component corresponding to a given zero can only lie on
one side of the horizontal curve. In the case of Corollary 6.24, equal order zeros placed
on opposite sides of the horizontal curve are able to be produced simultaneously.



Chapter 7

Conclusion

In this short chapter, we discuss directions for future research and present some open
questions.

7.1 Remaining quadratic strata

The next natural step in continuing the work of Chapter 6 is to begin adding poles to
strata. If we wished to add poles to the strata of genus greater than or equal to two,
then we have essentially two ways of doing this. Either the poles we add are ’cancelled
out’ by also adding zeros to the surface of appropriate orders, or poles are added and
the ’cancelling’ is achieved by increasing the orders of existing zeros.

The former case is equivalent to combining the surface by cylinder concatenation
with a 1,1-pillowcase cover from an appropriate genus one stratum. However, as we
saw in Section 6.7, there exist strata in genus one who do not have 1,1-pillowcase covers
in the minimum number of squares. As such, we will be required to find a new way of
adding poles and zeros of this type.

The latter case will be more combinatorially challenging. Indeed, it is equivalent to
adding bigons to the filling pair diagram in such a way that only a specified subset of
the original complementary regions are changed in the process. As such, this process
will be more delicate than the constructions considered so far.

As discussed above, determining the minimum number of squares for genus zero
1,1-pillowcase covers still requires much work. A natural question to ask is the follow-
ing.

Question 7.1. Do the constructions of genus zero 1,1-pillowcase covers in Chapter 6 have
applications to the enumeration of meanders?

Finally, for genus at least one, finding the minimum number of squares required for
1,1-pillowcase covers in a given connected component of a stratum with both of the

121
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core curves being separating curves, if such a surface is possible, is still open.

Question 7.2. Given a connected component C of a stratum Q(k1, . . . , kn), does there exist a
1,1-pillowcase cover in C with both of the core curves being separating curves? If so, what is
the minimum number of squares required to construct such a 1,1-pillowcase cover?

Observe that the method of cylinder concatenation we have used in this thesis re-
quires the filling curves to both be non-separating. As such, an entirely new method
must be developed here.

7.2 Ratio-optimisers

We already have an extension of our Theorem 1.6 to the quadratic strata we produced
in Chapter 6. In particular, for genus at least two, since the greatest number of squares
required for a connected component of a stratum was the 4g squares required for
Qhyp(2j− 1, 2j− 1, 2k− 1, 2k− 1), we see that we have the following.

Theorem 7.3. Given any connected component of any non-empty stratum of quadratic differ-
entials with no poles and genus at least two, there exist infinitely many conjugacy classes of
primitive ratio-optimising pseudo-Anosov homeomorphisms whose invariant axis is contained
in the Teichmüller disk of a quadratic differential in that connected component.

The discussion above about realising 1,1-pillowcase covers whose core curves are
both separating also has interesting applications in the direction of ratio-optimisers.
Let Γ = π1(S) and let Γi be the ith term of its lower central series. So Γ1 = Γ and,
for i ≥ 1, Γi+1 = [Γ, Γi]. The action of Mod(S) on Γ preserves Γi and so there is a well-
defined action of Mod(S) on Γ/Γi. Johnson [32] defined a filtration of the mapping class
group, now called the Johnson filtration, where the ith term of the filtration denoted by
I i(S) is the kernel of the action of Mod(S) on Γ/Γi+1. In particular, I0(S) = Mod(S),
I1(S) = I(S) is the well-studied Torelli group, and I2(S) = K(S) is the Johnson kernel.
The textbook of Farb-Margalit [21, Chapter 6] contains more details on this filtration.
Aougab-Taylor [4, Theorem 1.2] demonstrated that ratio-optimisers built from filling
pairs where both curves are separating can lie arbitrarily deep in the Johnson filtration.
As such, we have the following question.

Question 7.4. Given a connected component C of a non-empty stratum Q(k1, . . . , kn). Do
there exist ratio-optimising pseudo-Anosov homeomorphisms stabilising the Teichmüller disk of
a quadratic differential q ∈ C , and lying arbitrarily deep in the Johnson filtration?
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7.3 Orbits of 1,1-square-tiled surfaces

Here we discuss some questions in a different direction from the main problems of this
thesis. In particular, we will be concerned with the SL(2, Z)-orbits of 1,1-square-tiled
surfaces.

SL (2, Z)-orbits inHhyp(2)

A square-tiled surface is said to be primitive if it is not a proper branched cover of
another square-tiled surface other than the square-torus.

Recall that the group SL(2, R) acts on translation surfaces by acting directly on the
polygons in the plane. The subgroup SL(2, Z) sends primitive square-tiled surfaces
to primitive square-tiled surfaces and so in particular it makes sense to discuss the
SL(2, Z)-orbit of a primitive square-tiled surface as a collection of square-tiled surfaces.
Furthermore, the action preserves the number of squares.

In the case of Hhyp(2), the SL(2, Z)-orbits of primitive square-tiled surfaces were
classified in the works of Hubert-Lelièvre [26] and McMullen [44]. They showed that
for n = 3 squares there is a single SL(2, Z)-orbit, and for n ≥ 4 there is one SL(2, Z)-
orbit if n is even, and two SL(2, Z)-orbits if n is odd. In the case of n ≥ 5 odd, the two
orbits are called the A- and B-orbits.

We briefly recall an algebraic way of describing square-tiled surfaces. Firstly, num-
ber each square in the surface from 1 to n. We then define two elements h and v of the
symmetric group Σn as follows. The image of i under the element h is the number of
the square that is glued to the right of the square numbered i. The image of i under the
element v is the number of the square that is glued to the top of the square numbered
i. The square-tiled surface is then represented by the pair (h, v) up to simultaneous
conjugation of h and v. For example, the surface in Figure 7.1, is represented by the
pair (h, v), where h = (1, 2, 3) and v = (1, 3)(2). We refer the reader to the thesis of
Zmiaikou [54] for more details on this representation of square-tiled surfaces.

__
|| ||| ||||

__

|||| ||| ||
1 2 3

Figure 7.1: A square-tiled surface represented by h = (1, 2, 3) and v = (1, 3)(2).

To give a connection to the permutation representatives used in this thesis, suppose
that we have a permutation representative

Π =

(
0 1 2 · · · n
· · · · · · · · · · · · 0

)
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giving rise to a square-tiled surface with one horizontal cylinder. If we label the squares
as above – that is, 1 to n form left to right – then we obtain h = (1, 2, . . . , n) and v is
given by the inverse of the permutation obtained from Π by removing the 0s from the
top and bottom rows. Indeed, for the surface in Figure 7.1, we can take

Π =

(
0 1 2 3
3 2 1 0

)

and we obtain

v =

(
1 2 3
3 2 1

)−1

= (1, 3)(2).

Zmiaikou showed that for n odd, the two SL(2, Z)-orbits can be determined by the
group generated by h and v, called the monodromy group of the square-tiled surface.
In particular, the A-orbits correspond to this group being the full symmetric group Σn,
while the B-orbits correspond to this group being the alternating group An.

Since a 1,1-square-tiled surface inHhyp(2) will have h and v both being n-cycles, we
see that 1,1-square-tiled surfaces must lie in the B-orbit for n ≥ 5 odd.

HLK-invariants

A square-tiled surface is said to be reduced if its lattice of periods is equal to Z⊕ iZ. In
other words, reduced square-tiled surfaces are square-tiled surfaces that do not cover a
square-torus of area greater than one with one branch point.

Consider now a reduced square-tiled surface (X, ω) in Hhyp(2g − 2). Following
the work of Kani [33] and Hubert-Lelièvre [26] in genus two, and Matheus-Möller-
Yoccoz [43] in genus three, it is natural to partition the fixed points of the hyperelliptic
involution as follows. Recall that X is a branched cover of the square torus T2, p : X →
T2. The fixed points of the hyperelliptic involution τ on X are sent by p to the fixed
points on T2 of the map z 7→ −z. These fixed points are (0, 0), (1

2 , 0), (0, 1
2), and (1

2 , 1
2).

The aim is to define an SL(2, Z)-invariant of (X, ω). First note that the action of
SL(2, Z) on T2 fixes the point (0, 0) and permutes the points (1

2 , 0), (0, 1
2), and (1

2 , 1
2),

acting by the symmetric group Σ3. As such, the HLK-invariant of (X, ω) denoted by
`(X, ω) is defined to be the tuple (l0, {l1, l2, l3}), where the number l0 is the number of
fixed points of τ distinct from the zero that lie above (0, 0), and the numbers l1, l2, and
l3, are the number of fixed points of τ lying above the points (1

2 , 0), (0, 1
2), and (1

2 , 1
2),

respectively. This is an unordered set as these points can be permuted by the action of
SL(2, Z), however we will write them in decreasing order

From the alternative proof of Proposition 3.2 in Appendix A, we can see that a re-
duced 1,1-square-tiled surface inHhyp(2g− 2) has HLK-invariant (2g− 3, {2, 2, 0}) if n
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is even, or (2g− 2, {1, 1, 1}) if n is odd.
In the case ofHhyp(4), it is a conjecture of Delecroix-Lelièvre [43, Conjecture 6.8] that

for strictly greater than 8 squares the HLK-invariant is a strong SL(2, Z)-invariant. This
would then imply that all reduced 1,1-square-tiled surfaces inHhyp(4) are contained in
the same SL(2, Z)-orbit. It is natural to ask the following question.

Question 7.5. Are all reduced 1,1-square-tiled surfaces inHhyp(2g− 2) contained in the same
SL(2, Z)-orbit?



Appendix A

Alternative proof of Proposition 3.2

Here we will give an alternative proof of Proposition 3.2.

Saddle connections and Weierstrass points

A saddle connection on a translation surface is a flat geodesic segment whose endpoints
are cone-points and whose interior contains no cone-points. For example, the three
horizontal saddle connections on the surface in Figure A.1 are shown in red, blue and
green.

0

1 2 3

0

3 2 1

� � � �

� � � �

×

×

×

×

×

×
× ××

Figure A.1: The saddle connections and Weierstrass points of a square-tiled surface in
Hhyp(2).

For a hyperelliptic translation surface with one horizontal cylinder as shown in Fig-
ure A.1, the saddle connections on the top of the cylinder lie in a cyclically reversed
order on the bottom of the cylinder, and are sent to themselves with the reverse orien-
tation by the hyperelliptic involution on the surface. As such, each horizontal saddle
connection has a Weierstrass point at its centre. Similarly, when the surface is realised
as above, the vertical saddle connection corresponding to the left and right sides con-
tains a Weierstrass point at its centre. The remaining Weierstrass points correspond
to the centre of the polygon that is the union of the squares and, only in the case of
Hhyp(2g− 2), the zero of the Abelian differential. See for example the surface in Fig-
ure A.1. The Weierstrass points are shown as crosses apart from the zero which is
denoted by a square. More generally, every horizontal saddle connection will have a
Weierstrass point at its centre and there will be a further two Weierstrass points in the
interior of the horizontal cylinder which will lie on the core curve.
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Proof of Proposition 3.2

We will now present an alternative proof of Proposition 3.2. First consider a 1,1-square-
tiled surface (X, ω) in Hhyp(2g − 2). The horizontal cylinder of X is flipped by the
hyperelliptic involution and so the horizontal saddle connections above the horizontal
cylinder lie in a cyclically reversed order on the bottom. As above, each of the hori-
zontal saddle connections will have a Weierstrass point at its centre. For a square-tiled
surface with one horizontal cylinder inHhyp(2g− 2), there are 2g− 1 horizontal saddle
connections.

The core curve of the vertical cylinder of X passes through the center of the top side
of every square. As discussed above for the horizontal cylinder, the vertical cylinder
will also contain two Weierstrass points in its interior. Therefore, there can be at most
two horizontal saddle connections of odd length. Indeed, the Weierstrass point at the
centre of these saddle connections will lie at the centre of the top side of a square, and
hence lie on the core curve of the vertical cylinder.

If there are no horizontal saddle connections of odd length, then every one of the
2g− 1 horizontal saddle connections has even length at least two and so the minimum
number of squares is 4g− 2. In this case, the surface is not reduced.

If there is one horizontal saddle connection of odd length, then this saddle con-
nection has length at least one and the remaining 2g − 2 horizontal saddle connec-
tions have even length at least two. Therefore, the minimum number of squares is
1× 1 + (2g − 2) × 2 = 4g − 3. In this case, the second Weierstrass point on the core
curve of the vertical cylinder must lie in the centre of a square. Hence it lies on the core
curve of the horizontal cylinder. Since there are already two Weierstrass points on the
core curve of the vertical cylinder, the second Weierstrass point on the core curve of the
horizontal cylinder must lie at the centre of a vertical saddle connection.

If there are two horizontal saddle connections of odd length, then these saddle con-
nections have length at least one and the remaining 2g− 3 horizontal saddle connec-
tions have even length at least two. Therefore, the minimum number of squares is
2 × 1 + (2g − 3) × 2 = 4g − 4. The Weierstrass points at the centre of the horizon-
tal saddle connections of odd length are the two Weierstrass points lying on the core
curve of the vertical cylinder. The two Weierstrass points lying on the core curve of the
horizontal cylinder therefore lie at the centres of two vertical saddle connections.

We have shown that the minimum number of squares required for a 1,1-square-
tiled surface in Hhyp(2g− 2) is 4g− 4. A similar argument on the 2g horizontal saddle
connections of a 1,1-square-tiled surface in Hhyp(g− 1, g− 1) gives that the minimum
number of squares required in this case is 4g− 2.
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Python code

The code below realises the construction of 1,1-square-tiled surfaces given by Theo-
rem 1.4. It has been submitted to and included in the surface_dynamics python
package [13] for use with the open source SageMath mathematical software [49].

All of the methods that are not included in the Abelian stratum classes make use of
the following surface_dynamics methods.

1 from surface_dynamics.interval_exchanges.constructors import GeneralizedPermutation

2 from surface_dynamics.flat_surfaces.abelian_strata import AbelianStratum

Cylinder check

The reader will notice that the following method is called throughout the examples
included within each method below. It checks whether a permutation representative
represents a 1,1-square-tiled surface.

1 def cylinder_check(perm):

2 r"""

3 Checks for a single vertical cylinder and a single horizontal cylinder.

4

5 INPUT::

6

7 - ‘‘perm‘‘ - a permutation representative of an Abelian stratum

8

9 EXAMPLES::

10

11 sage: from surface_dynamics import *
12 sage: from surface_dynamics.flat_surfaces.single_cylinder import cylinder_check

13

14 sage: C = AbelianStratum(4)

15 sage: perm_1 = C.permutation_representative()

16 sage: perm_1

17 0 1 2 3 4 5

18 3 2 5 4 1 0

19 sage: cylinder_check(perm_1)

20 False

21 sage: perm_2 = C.single_cylinder_representative()

22 sage: perm_2

128



APPENDIX B. PYTHON CODE 129

23 0 1 2 3 4 5

24 2 5 4 1 3 0

25 sage: cylinder_check(perm_2)

26 True

27 sage: perm_3 = iet.GeneralizedPermutation(’a b’, ’b a’)

28 sage: perm_3

29 a b

30 b a

31 sage: cylinder_check(perm_3)

32 True

33 sage: perm_4 = iet.GeneralizedPermutation([0,3,2,1],[1,3,2,0])

34 sage: perm_4

35 0 3 2 1

36 1 3 2 0

37 sage: cylinder_check(perm_4)

38 True

39 sage: perm_5 = iet.GeneralizedPermutation(’1 2 3 4’, ’4 3 1 2’)

40 sage: cylinder_check(perm_5)

41 False

42 sage: perm_6 = iet.GeneralizedPermutation(’A B C D’, ’B C D A’)

43 sage: cylinder_check(perm_6)

44 True

45

46 """

47 from sage.combinat.permutation import Permutation

48 from surface_dynamics.flat_surfaces.origamis.origami import Origami

49

50 if len(perm[0]) != len(perm[1]) or perm[0][0] != perm[1][-1]:

51 return False

52 else:

53 alph = perm.alphabet()

54 perm.alphabet(len(perm[0]))

55 u = Permutation(perm[1][:-1]).inverse()

56 r = tuple(range(1,len(perm[0])))

57 O = Origami(r,u)

58 RO = O.vertical_twist().horizontal_twist(-1).vertical_twist()

59 if RO.num_cylinders() == 1:

60 perm.alphabet(alph)

61 return True

62 else:

63 perm.alphabet(alph)

64 return False

Cylinder Concatenation

The following method realises the cylinder concatenation procedure of Lemma 2.1.
1 def cylinder_concatenation(perm_1, perm_2, alphabet=None):

2 r"""

3 Combines two single cylinder permutation representatives.

4

5 Combines two single cylinder permutation representatives of connected components

6 of Abelian strata to produce another single cylinder representative of a

7 different stratum.

8

9 Such a method was described by Jeffreys [Jef19].

10



APPENDIX B. PYTHON CODE 130

11 INPUT:

12

13 - ‘‘perm_1‘‘, ‘‘perm_2‘‘ - two single cylinder permutation representatives.

14

15 - ‘‘alphabet‘‘ - alphabet or ‘‘None‘‘ (defaut: ‘‘None‘‘):

16 whether you want to specify an alphabet for your representative.

17

18 EXAMPLES::

19

20 sage: from surface_dynamics import *
21 sage: from surface_dynamics.flat_surfaces.single_cylinder import *
22

23 We first take two single cylinder permutation representatives for the odd

24 components of H_3(4)^odd and H_4(6)^odd.

25

26 sage: perm_1 = AbelianStratum(4).odd_component().single_cylinder_representative()

27 sage: perm_1

28 0 1 2 3 4 5

29 2 5 4 1 3 0

30 sage: perm_1.stratum_component() == AbelianStratum(4).odd_component()

31 True

32 sage: cylinder_check(perm_1)

33 True

34 sage: perm_2 = AbelianStratum(6).odd_component().single_cylinder_representative()

35 sage: perm_2

36 0 1 2 3 4 5 6 7

37 2 5 4 7 3 1 6 0

38 sage: perm_2.stratum_component() == AbelianStratum(6).odd_component()

39 True

40 sage: cylinder_check(perm_2)

41 True

42

43 We check that the cylinder_concatenation of these permutations produces

44 a single cylinder permutation representative of the connected component

45 H_6(6,4)^odd.

46

47 sage: perm_3 = cylinder_concatenation(perm_1,perm_2)

48 sage: perm_3

49 0 1 2 3 4 5 6 7 8 9 10 11 12

50 2 5 4 6 3 7 10 9 12 8 1 11 0

51 sage: perm_3.stratum_component() == AbelianStratum(6,4).odd_component()

52 True

53 sage: cylinder_check(perm_3)

54 True

55

56 We now instead take the cylinder_concatenation of perm_1 with a single cylinder

57 permutation representative of the connected component H_4(6)^even. We see

58 that the resulting permutation is a single cylinder permutation representative

59 of the connected component H_6(6,4)^even.

60

61 sage: perm_4 = AbelianStratum(6).even_component().single_cylinder_representative()

62 sage: perm_5 = cylinder_concatenation(perm_1,perm_4,Alphabet(name=’lower’))

63 sage: perm_4

64 0 1 2 3 4 5 6 7

65 2 7 6 5 3 1 4 0

66 sage: perm_4.stratum_component() == AbelianStratum(6).even_component()

67 True

68 sage: cylinder_check(perm_4)
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69 True

70 sage: perm_5

71 a b c d e f g h i j k l m

72 c f e g d h m l k i b j a

73 sage: perm_5.stratum_component() == AbelianStratum(6,4).even_component()

74 True

75 sage: cylinder_check(perm_5)

76 True

77

78 """

79 from sage.combinat.words.alphabet import Alphabet

80 from sage.rings.semirings.non_negative_integer_semiring import NN

81

82 alph = Alphabet(NN)

83 perm_1.alphabet(alph)

84 perm_2.alphabet(alph)

85 length_1 = len(perm_1[0])-1

86 length_2 = len(perm_2[0])-1

87 top_row = [i for i in range(length_1+length_2+1)]

88 bot_row1 = perm_1[1][:-1]

89 bot_row2 = perm_2[1][:-1]

90 for i in range(length_1):

91 if bot_row1[i] == 1:

92 bot_row1[i] += length_1

93 for j in range(length_2):

94 if not bot_row2[j] == 1:

95 bot_row2[j] += length_1

96 bot_row = bot_row1 + bot_row2 + [0]

97 perm = GeneralizedPermutation(top_row,bot_row)

98 if not alphabet == None:

99 perm.alphabet(alphabet)

100 return perm

Hyperelliptic components

The following method was added to the Abelian stratum hyperelliptic component class
(HypAbelianStratumComponent) of the surface_dynamics package. It produces
the permutation representatives given by Proposition 3.1. The error messages are re-
quired because SageMath recognises zeros of order zero. That is, since the 1,1-square-
tiled surfaces we produced inHhyp(2g− 2) andHhyp(g− 1, g− 1) respectively required
2g− 3 and 2g− 2 additional squares than the theoretical minimum, in SageMath they
instead lie in the strataHhyp(2g− 2, 02g−3) andHhyp(g− 1, g− 1, 02g−2), respectively.

1 def single_cylinder_representative(self, alphabet=None):

2 r"""

3 Returns a single cylinder permutation representative.

4

5 Returns a permutation representative of a square-tiled surface in this

6 component having a single vertical cylinder and a single horizontal cylinder.

7

8 Such representatives were constructed for every stratum of Abelian

9 differentials by Jeffreys [Jef19].

10

11 INPUT::
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12

13 - ‘‘alphabet‘‘ - alphabet or ‘‘None‘‘ (defaut: ‘‘None‘‘):

14 whether you want to specify an alphabet for your representative.

15

16 EXAMPLES::

17

18 sage: from surface_dynamics import *
19 sage: from surface_dynamics.flat_surfaces.single_cylinder import cylinder_check

20

21 sage: cc = AbelianStratum(2,0).hyperelliptic_component()

22 sage: p = cc.single_cylinder_representative(alphabet=Alphabet(name=’upper’))

23 sage: p

24 A B C D E

25 E D B C A

26 sage: p.stratum_component() == cc

27 True

28 sage: cylinder_check(p)

29 True

30 sage: cc = AbelianStratum({3:2,0:6}).hyperelliptic_component()

31 sage: p = cc.single_cylinder_representative()

32 sage: p

33 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

34 14 12 13 10 11 8 9 7 5 6 3 4 1 2 0

35 sage: p.stratum_component() == cc

36 True

37 sage: cylinder_check(p)

38 True

39 sage: cc = AbelianStratum(2).hyperelliptic_component()

40 sage: cc.single_cylinder_representative()

41 Traceback (most recent call last):

42 ...

43 ValueError: no 1,1-square-tiled surfaces in this connected component try again with

H_2(2, 0)^hyp

44 sage: cc = AbelianStratum({3:2,0:5}).hyperelliptic_component()

45 sage: cc.single_cylinder_representative()

46 Traceback (most recent call last):

47 ...

48 ValueError: no 1,1-square-tiled surfaces in this connected component try again with

H_4(3^2, 0^6)^hyp

49 """

50 stratum = self.stratum()

51 genus = stratum.genus()

52 nb_fk_zeros = stratum.nb_fake_zeros()

53 nb_real_zeros = stratum.nb_zeros()-nb_fk_zeros

54 add_fk_zeros = nb_fk_zeros - 2*genus+4-nb_real_zeros

55

56 from surface_dynamics.interval_exchanges.constructors import GeneralizedPermutation

57 from surface_dynamics.flat_surfaces.single_cylinder import cylinder_concatenation

58

59 if nb_real_zeros == 1 and add_fk_zeros < 0:

60 raise ValueError("no 1,1-square-tiled surfaces in this connected component try

again with %s^hyp" %(str(AbelianStratum({2*genus-2:1,0:2*genus-3}))))

61 elif nb_real_zeros == 2 and add_fk_zeros < 0:

62 raise ValueError("no 1,1-square-tiled surfaces in this connected component try

again with %s^hyp" %(str(AbelianStratum({genus-1:2,0:2*genus-2}))))

63 elif nb_real_zeros == 0:

64 fk_zeros_perm = GeneralizedPermutation([0],[0])

65 mk_pt_perm = GeneralizedPermutation([0,1],[1,0])
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66 for i in range(nb_fk_zeros):

67 fk_zeros_perm = cylinder_concatenation(fk_zeros_perm,mk_pt_perm)

68 if not alphabet == None:

69 fk_zeros_perm.alphabet(alphabet)

70 return fk_zeros_perm

71 else:

72 top_row = [i for i in range(0,4*genus-3+2*(nb_real_zeros-1)+add_fk_zeros)]

73 bot_row = [4*genus-4+2*(nb_real_zeros-1)+add_fk_zeros]

74 for i in range(4*genus-6+2*(nb_real_zeros-1)+add_fk_zeros,2*genus-2+add_fk_zeros,-2

):

75 bot_row = bot_row + [i,i+1]

76 bot_row = bot_row + [2*genus-1+i for i in range(add_fk_zeros+1)]

77 for i in range(2*genus-3,-1,-2):

78 bot_row = bot_row + [i,i+1]

79 bot_row = bot_row + [0]

80 perm = GeneralizedPermutation(top_row,bot_row)

81 if not alphabet == None:

82 perm.alphabet(alphabet)

83 return perm

Odd components

The following method was added to the Abelian stratum odd component class
(OddAbelianStratumComponent) of the surface_dynamics package.

1 def single_cylinder_representative(self, alphabet=None):

2 r"""

3 Returns a single cylinder permutation representative.

4

5 Returns a permutation representative of a square-tiled surface in this

6 component having a single vertical cylinder and a single horizontal cylinder.

7

8 Such representatives were constructed for every stratum of Abelian

9 differentials by Jeffreys [Jef19].

10

11 INPUT::

12

13 - ‘‘alphabet‘‘ - alphabet or ‘‘None‘‘ (defaut: ‘‘None‘‘):

14 whether you want to specify an alphabet for your representative.

15

16 EXAMPLES::

17

18 sage: from surface_dynamics import *
19 sage: from surface_dynamics.flat_surfaces.single_cylinder import cylinder_check

20

21 sage: cc = AbelianStratum(4).odd_component()

22 sage: p = cc.single_cylinder_representative(alphabet=Alphabet(name=’upper’))

23 sage: p

24 A B C D E F

25 C F E B D A

26 sage: p.stratum_component() == cc

27 True

28 sage: cylinder_check(p)

29 True

30 sage: cc = AbelianStratum(6,2).odd_component()

31 sage: p = cc.single_cylinder_representative()

32 sage: p
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33 0 1 2 3 4 5 6 7 8 9 10

34 2 5 4 6 3 8 10 7 1 9 0

35 sage: p.stratum_component() == cc

36 True

37 sage: cylinder_check(p)

38 True

39

40 """

41 from surface_dynamics.flat_surfaces.single_cylinder import cylinder_concatenation

42 from surface_dynamics.flat_surfaces.single_cylinder import no_two_odd

43 from surface_dynamics.flat_surfaces.single_cylinder import one_two_odd

44 from surface_dynamics.flat_surfaces.single_cylinder import even_twos_odd

45 from surface_dynamics.flat_surfaces.single_cylinder import odd_twos_odd

46 from surface_dynamics.interval_exchanges.constructors import GeneralizedPermutation

47

48 zeros = self.stratum().zeros()

49 real_zeros = [z for z in zeros if z != 0]

50

51 fk_zeros_perm = GeneralizedPermutation([0],[0])

52 mk_pt_perm = GeneralizedPermutation([0,1],[1,0])

53 for i in range(self.stratum().nb_fake_zeros()):

54 fk_zeros_perm = cylinder_concatenation(fk_zeros_perm,mk_pt_perm)

55

56 two_count = real_zeros.count(2)

57 if two_count == 0:

58 perm = cylinder_concatenation(fk_zeros_perm,no_two_odd(real_zeros))

59 elif two_count == 1 :

60 perm = cylinder_concatenation(fk_zeros_perm,one_two_odd(real_zeros))

61 elif two_count >= 2 and two_count%2 == 0:

62 perm = cylinder_concatenation(fk_zeros_perm,even_twos_odd(real_zeros,two_count))

63 else:

64 perm = cylinder_concatenation(fk_zeros_perm,odd_twos_odd(real_zeros,two_count))

65

66 if not alphabet == None:

67 perm.alphabet(alphabet)

68 return perm

It makes use of the following method which produces the permutation representa-
tives given by Proposition 3.3.

1 def even_zero_odd(num):

2 r"""

3 Returns a single cylinder permutation representative.

4

5 Returns a permutation representative of a square-tiled surface having

6 a single vertical cylinder and a single horizontal cylinder in the odd

7 component of the Abelian stratum with a single zero of the given order.

8

9 Such representatives were constructed for every stratum of Abelian

10 differentials by Jeffreys [Jef19].

11

12 INPUT::

13

14 - ‘‘num‘‘ - an even integer at least four.

15

16 EXAMPLES::

17

18 sage: from surface_dynamics import *
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19 sage: from surface_dynamics.flat_surfaces.single_cylinder import *
20

21 sage: perm = even_zero_odd(4)

22 sage: perm

23 0 1 2 3 4 5

24 2 5 4 1 3 0

25 sage: perm.stratum_component() == AbelianStratum(4).odd_component()

26 True

27 sage: cylinder_check(perm)

28 True

29 sage: perm = even_zero_odd(6)

30 sage: perm

31 0 1 2 3 4 5 6 7

32 2 5 4 7 3 1 6 0

33 sage: perm.stratum_component() == AbelianStratum(6).odd_component()

34 True

35 sage: cylinder_check(perm)

36 True

37

38 """

39 genus = (num+2)//2

40 if genus == 3:

41 top_row = [0,1,2,3,4,5]

42 bot_row = [2,5,4,1,3,0]

43 return GeneralizedPermutation(top_row,bot_row)

44 else:

45 top_row = [i for i in range(2*genus)]

46 bot_row = [2,5,4,7,3]

47 for i in range(9,2*genus+1,2):

48 bot_row += [i,i-3]

49 bot_row += [1,2*genus-2,0]

50 return GeneralizedPermutation(top_row,bot_row)

These are then concatenated in the following method.
1 def no_two_odd(real_zeros):

2 r"""

3 Returns a single cylinder permutation representative.

4

5 Returns a permutation representative of a square-tiled surface having a single

6 vertical cylinder and a single horizontal cylinder in the odd component of an

7 Abelian stratum having no zeros of order two.

8

9 Such representatives were constructed for every stratum of Abelian

10 differentials by Jeffreys [Jef19].

11

12 INPUT::

13

14 - ‘‘real_zeros‘‘ - a list of even positive integers none of which

15 are equal to two.

16

17 EXAMPLES::

18

19 sage: from surface_dynamics import *
20 sage: from surface_dynamics.flat_surfaces.single_cylinder import *
21

22 sage: perm = no_two_odd([6,4])

23 sage: perm

24 0 1 2 3 4 5 6 7 8 9 10 11 12
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25 2 5 4 7 3 8 6 9 12 11 1 10 0

26 sage: perm.stratum_component() == AbelianStratum(6,4).odd_component()

27 True

28 sage: cylinder_check(perm)

29 True

30

31 """

32 perm = even_zero_odd(real_zeros[0])

33 if len(real_zeros) == 1:

34 return perm

35 else:

36 for i in range(1,len(real_zeros)):

37 perm = cylinder_concatenation(perm,even_zero_odd(real_zeros[i]))

38 return perm

The difficulties of adding zeros of order two are then dealt with by the following
methods. They carry out the constructions discussed in and after Proposition 3.5.

1 def one_two_odd(real_zeros):

2 r"""

3 Returns a single cylinder permutation representative.

4

5 Returns a permutation representative of a square-tiled surface having a single

6 vertical cylinder and a single horizontal cylinder in the odd component of an

7 Abelian stratum having one zero of order two.

8

9 Such representatives were constructed for every stratum of Abelian

10 differentials by Jeffreys [Jef19].

11

12 INPUT::

13

14 - ‘‘real_zeros‘‘ - a list of even positive integers one of which is equal to two.

15

16 EXAMPLES::

17

18 sage: from surface_dynamics import *
19 sage: from surface_dynamics.flat_surfaces.single_cylinder import *
20

21 sage: perm = one_two_odd([4,2])

22 sage: perm

23 0 1 2 3 4 5 6 7 8

24 2 5 8 3 6 4 1 7 0

25 sage: perm.stratum_component() == AbelianStratum(4,2).odd_component()

26 True

27 sage: cylinder_check(perm)

28 True

29 sage: perm = one_two_odd([8,6,2])

30 sage: perm

31 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

32 2 5 4 7 3 8 6 10 12 9 13 11 14 17 16 19 15 1 18 0

33 sage: perm.stratum_component() == AbelianStratum(8,6,2).odd_component()

34 True

35 sage: cylinder_check(perm)

36 True

37

38 """

39 real_zeros.remove(2)

40 if set(real_zeros) == {4}:
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41 perm = GeneralizedPermutation([0,1,2,3,4,5,6,7,8],[2,5,8,3,6,4,1,7,0])

42 if len(real_zeros) == 1:

43 return perm

44 else:

45 return cylinder_concatenation(perm,no_two_odd(real_zeros[1:]))

46 else:

47 perm_1 = even_zero_odd(real_zeros[0]-2)

48 length_1 = len(perm_1[0])-1

49 top_row_1 = perm_1[0]

50 bot_row_1 = perm_1[1][:-1]

51

52 for i in range(length_1):

53 if bot_row_1[i] == 1:

54 bot_row_1[i] += length_1

55

56 top_row_2 = [i+length_1 for i in range(1,6)]

57 bot_row_2 = [3+length_1,5+length_1,2+length_1,1,4+length_1,0]

58 top_row = top_row_1 + top_row_2

59 bot_row = bot_row_1 + bot_row_2

60 perm = GeneralizedPermutation(top_row,bot_row)

61

62 if len(real_zeros) == 1:

63 return perm

64 else:

65 return cylinder_concatenation(perm,no_two_odd(real_zeros[1:]))

66

67 def even_twos_odd(real_zeros,two_count):

68 r"""

69 Returns a single cylinder permutation representative.

70

71 Returns a permutation representative of a square-tiled surface having a single

72 vertical cylinder and a single horizontal cylinder in the odd component of an

73 Abelian stratum having an even, at least two, number of zeros of order two.

74

75 Such representatives were constructed for every stratum of Abelian

76 differentials by Jeffreys [Jef19].

77

78 INPUT::

79

80 - ‘‘real_zeros‘‘ - a list of even positive integers an even number of which

81 are equal to two.

82

83 - ‘‘two_count‘‘ - a positive integer equal to the number of twos in ‘‘real_zeros‘‘.

84

85 EXAMPLES::

86

87 sage: from surface_dynamics import *
88 sage: from surface_dynamics.flat_surfaces.single_cylinder import *
89

90 sage: perm = even_twos_odd([2,2],2)

91 sage: perm

92 0 1 2 3 4 5 6

93 2 4 6 3 1 5 0

94 sage: perm.stratum_component() == AbelianStratum(2,2).odd_component()

95 True

96 sage: cylinder_check(perm)

97 True

98 sage: perm = even_twos_odd([4,2,2,2,2],4)
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99 sage: perm

100 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

101 2 4 6 3 7 5 8 10 12 9 13 11 14 17 16 1 15 0

102 sage: perm.stratum_component() == AbelianStratum({4:1,2:4}).odd_component()

103 True

104 sage: cylinder_check(perm)

105 True

106

107 """

108 for i in range(two_count):

109 real_zeros.remove(2)

110

111 odd_2_2 = GeneralizedPermutation([0,1,2,3,4,5,6],[2,4,6,3,1,5,0])

112 twos_perm = odd_2_2

113

114 for i in range((two_count-2)//2):

115 twos_perm = cylinder_concatenation(twos_perm,odd_2_2)

116

117 if len(real_zeros) == 0:

118 return twos_perm

119 else:

120 return cylinder_concatenation(twos_perm,no_two_odd(real_zeros))

121

122 def odd_twos_odd(real_zeros,two_count):

123 r"""

124 Returns a single cylinder permutation representative.

125

126 Returns a permutation representative of a square-tiled surface having a single

127 vertical cylinder and a single horizontal cylinder in the odd component of an

128 Abelian stratum having an odd, at least three, number of zeros of order two.

129

130 Such representatives were constructed for every stratum of Abelian

131 differentials by Jeffreys [Jef19].

132

133 INPUT::

134

135 - ‘‘real_zeros‘‘ - a list of even positive integers an odd number of which

136 are equal to two.

137

138 - ‘‘two_count‘‘ - a positive integer equal to the number of twos in ‘‘real_zeros‘‘.

139

140 EXAMPLES::

141

142 sage: from surface_dynamics import *
143 sage: from surface_dynamics.flat_surfaces.single_cylinder import *
144

145 sage: perm = odd_twos_odd([2,2,2],3)

146 sage: perm

147 0 1 2 3 4 5 6 7 8 9

148 2 8 6 9 4 1 3 5 7 0

149 sage: perm.stratum_component() == AbelianStratum(2,2,2).odd_component()

150 True

151 sage: cylinder_check(perm)

152 True

153 sage: perm = odd_twos_odd([4,2,2,2,2,2],5)

154 sage: perm

155 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

156 2 8 6 9 4 10 3 5 7 11 13 15 12 16 14 17 20 19 1 18 0
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157 sage: perm.stratum_component() == AbelianStratum({4:1,2:5}).odd_component()

158 True

159 sage: cylinder_check(perm)

160 True

161

162 """

163 for i in range(two_count):

164 real_zeros.remove(2)

165

166 odd_2_2 = GeneralizedPermutation([0,1,2,3,4,5,6],[2,4,6,3,1,5,0])

167

168 odd_2_2_2 = GeneralizedPermutation([0,1,2,3,4,5,6,7,8,9],[2,8,6,9,4,1,3,5,7,0])

169

170 twos_perm = odd_2_2_2

171

172 for i in range((two_count-3)//2):

173 twos_perm = cylinder_concatenation(twos_perm,odd_2_2)

174

175 if len(real_zeros) == 0:

176 return twos_perm

177 else:

178 return cylinder_concatenation(twos_perm,no_two_odd(real_zeros))

Even components

The following method was added to the Abelian stratum even component class
(EvenAbelianStratumComponent) of the surface_dynamics package.

1 def single_cylinder_representative(self, alphabet=None):

2 r"""

3 Returns a single cylinder permutation representative.

4

5 Returns a permutation representative of a square-tiled surface in this

6 component having a single vertical cylinder and a single horizontal cylinder.

7

8 Such representatives were constructed for every stratum of Abelian

9 differentials by Jeffreys [Jef19].

10

11 INPUT::

12

13 - ‘‘alphabet‘‘ - alphabet or ‘‘None‘‘ (defaut: ‘‘None‘‘):

14 whether you want to specify an alphabet for your representative.

15

16 EXAMPLES::

17

18 sage: from surface_dynamics import *
19 sage: from surface_dynamics.flat_surfaces.single_cylinder import cylinder_check

20

21 sage: cc = AbelianStratum(6).even_component()

22 sage: p = cc.single_cylinder_representative(alphabet=Alphabet(name=’lower’))

23 sage: p

24 a b c d e f g h

25 c h g f d b e a

26 sage: p.stratum_component() == cc

27 True

28 sage: cylinder_check(p)

29 True
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30 sage: cc = AbelianStratum(4,4).even_component()

31 sage: p = cc.single_cylinder_representative()

32 sage: p

33 0 1 2 3 4 5 6 7 8 9 10

34 2 10 7 5 8 1 9 6 4 3 0

35 sage: p.stratum_component() == cc

36 True

37 sage: cylinder_check(p)

38 True

39

40 """

41 from surface_dynamics.flat_surfaces.single_cylinder import cylinder_concatenation

42 from surface_dynamics.flat_surfaces.single_cylinder import no_two_even

43 from surface_dynamics.flat_surfaces.single_cylinder import one_two_even

44 from surface_dynamics.flat_surfaces.single_cylinder import two_twos_even

45 from surface_dynamics.flat_surfaces.single_cylinder import even_twos_even

46 from surface_dynamics.flat_surfaces.single_cylinder import odd_twos_even

47 from surface_dynamics.interval_exchanges.constructors import GeneralizedPermutation

48

49 zeros = self.stratum().zeros()

50 real_zeros = [z for z in zeros if z != 0]

51

52 fk_zeros_perm = GeneralizedPermutation([0],[0])

53 mk_pt_perm = GeneralizedPermutation([0,1],[1,0])

54 for i in range(self.stratum().nb_fake_zeros()):

55 fk_zeros_perm = cylinder_concatenation(fk_zeros_perm,mk_pt_perm)

56

57 two_count = real_zeros.count(2)

58 if two_count == 0:

59 perm = cylinder_concatenation(fk_zeros_perm,no_two_even(real_zeros))

60 elif two_count == 1:

61 perm = cylinder_concatenation(fk_zeros_perm,one_two_even(real_zeros))

62 elif two_count == 2:

63 perm = cylinder_concatenation(fk_zeros_perm,two_twos_even(real_zeros))

64 elif two_count > 2 and two_count%2 == 0:

65 perm = cylinder_concatenation(fk_zeros_perm,even_twos_even(real_zeros,two_count))

66 else:

67 perm = cylinder_concatenation(fk_zeros_perm,odd_twos_even(real_zeros,two_count))

68

69 if not alphabet == None:

70 perm.alphabet(alphabet)

71 return perm

It makes use of the following method which produces the permutation representa-
tives given by Proposition 3.4.

1 def even_zero_even(num):

2 r"""

3 Returns a single cylinder permutation representative.

4

5 Returns a permutation representative of a square-tiled surface having

6 a single vertical cylinder and a single horizontal cylinder in the even

7 component of the Abelian stratum with a single zero of the given order.

8

9 Such representatives were constructed for every stratum of Abelian

10 differentials by Jeffreys [Jef19].

11

12 INPUT::
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13

14 - ‘‘num‘‘ - an even integer at least six.

15

16 EXAMPLES::

17

18 sage: from surface_dynamics import *
19 sage: from surface_dynamics.flat_surfaces.single_cylinder import *
20

21 sage: perm = even_zero_even(6)

22 sage: perm

23 0 1 2 3 4 5 6 7

24 2 7 6 5 3 1 4 0

25 sage: perm.stratum_component() == AbelianStratum(6).even_component()

26 True

27 sage: cylinder_check(perm)

28 True

29 sage: perm = even_zero_even(8)

30 sage: perm

31 0 1 2 3 4 5 6 7 8 9

32 2 7 6 5 3 9 4 1 8 0

33 sage: perm.stratum_component() == AbelianStratum(8).even_component()

34 True

35 sage: cylinder_check(perm)

36 True

37

38 """

39 genus = (num+2)//2

40 if genus == 4:

41 top_row = [0,1,2,3,4,5,6,7]

42 bot_row = [2,7,6,5,3,1,4,0]

43 return GeneralizedPermutation(top_row,bot_row)

44 else:

45 top_row = [i for i in range(2*genus)]

46 bot_row = [2,7,6,5,3,9,4]

47 for i in range(11,2*genus+1,2):

48 bot_row = bot_row + [i,i-3]

49 bot_row = bot_row + [1,2*genus-2,0]

50 return GeneralizedPermutation(top_row,bot_row)

These are then concatenated in the following method. Note that this method must
deal with the issues causes by the non-existence of an even component in the stratum
H(4).

1 def no_two_even(real_zeros):

2 r"""

3 Returns a single cylinder permutation representative.

4

5 Returns a permutation representative of a square-tiled surface having a single

6 vertical cylinder and a single horizontal cylinder in the even component of

7 an Abelian stratum having no zeros of order two.

8

9 Such representatives were constructed for every stratum of Abelian

10 differentials by Jeffreys [Jef19].

11

12 INPUT::

13

14 - ‘‘real_zeros‘‘ - a list of even positive integers none of which

15 are equal to two.
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16

17 EXAMPLES::

18

19 sage: from surface_dynamics import *
20 sage: from surface_dynamics.flat_surfaces.single_cylinder import *
21

22 sage: perm = no_two_even([4,4])

23 sage: perm

24 0 1 2 3 4 5 6 7 8 9 10

25 2 10 7 5 8 1 9 6 4 3 0

26 sage: perm.stratum_component() == AbelianStratum(4,4).even_component()

27 True

28 sage: cylinder_check(perm)

29 True

30 sage: perm = no_two_even([6,4])

31 sage: perm

32 0 1 2 3 4 5 6 7 8 9 10 11 12

33 2 7 6 5 3 8 4 9 12 11 1 10 0

34 sage: perm.stratum_component() == AbelianStratum(6,4).even_component()

35 True

36

37 """

38 if set(real_zeros) == {4}:

39 four_count = real_zeros.count(4)

40 even_4_4 = GeneralizedPermutation([0,1,2,3,4,5,6,7,8,9,10],[2,10,7,5,8,1,9,6,4,3,0])

41 real_zeros.remove(4)

42 real_zeros.remove(4)

43

44 if real_zeros != []:

45 odd_perm = AbelianStratum(real_zeros).odd_component().

single_cylinder_representative()

46 return cylinder_concatenation(even_4_4,odd_perm)

47 else:

48 return even_4_4

49 else:

50 perm = even_zero_even(real_zeros[0])

51 if len(real_zeros) == 1:

52 return perm

53 else:

54 odd_perm = AbelianStratum(real_zeros[1:]).odd_component().

single_cylinder_representative()

55 return cylinder_concatenation(perm,odd_perm)

Similar to the above, the difficulties of adding zeros of order two are then dealt
with by the following methods. They carry out the constructions discussed in and after
Proposition 3.6.

1 def one_two_even(real_zeros):

2 r"""

3 Returns a single cylinder permutation representative.

4

5 Returns a permutation representative of a square-tiled surface having a single

6 vertical cylinder and a single horizontal cylinder in the even component of

7 an Abelian stratum having one zero of order two.

8

9 Such representatives were constructed for every stratum of Abelian

10 differentials by Jeffreys [Jef19].

11
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12 INPUT::

13

14 - ‘‘real_zeros‘‘ - a list of even positive integers one of which is equal to two.

15

16 EXAMPLES::

17

18 sage: from surface_dynamics import *
19 sage: from surface_dynamics.flat_surfaces.single_cylinder import *
20

21 sage: perm = one_two_even([4,2])

22 sage: perm

23 0 1 2 3 4 5 6 7 8

24 2 4 1 8 7 5 3 6 0

25 sage: perm.stratum_component() == AbelianStratum(4,2).even_component()

26 True

27 sage: cylinder_check(perm)

28 True

29 sage: perm = one_two_even([6,2])

30 sage: perm

31 0 1 2 3 4 5 6 7 8 9 10

32 2 10 9 8 6 3 5 1 4 7 0

33 sage: perm.stratum_component() == AbelianStratum(6,2).even_component()

34 True

35 sage: cylinder_check(perm)

36 True

37 sage: perm = one_two_even([8,6,2])

38 sage: perm

39 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

40 2 7 6 5 3 8 4 10 12 9 13 11 14 17 16 19 15 1 18 0

41 sage: perm.stratum_component() == AbelianStratum(8,6,2).even_component()

42 True

43 sage: cylinder_check(perm)

44 True

45

46 """

47 if real_zeros == [6,2]:

48 top_row = [0,1,2,3,4,5,6,7,8,9,10]

49 bot_row = [2,10,9,8,6,3,5,1,4,7,0]

50 return GeneralizedPermutation(top_row,bot_row)

51 elif real_zeros == [4,2]:

52 top_row = [0,1,2,3,4,5,6,7,8]

53 bot_row = [2,4,1,8,7,5,3,6,0]

54 return GeneralizedPermutation(top_row,bot_row)

55 else:

56 real_zeros.remove(2)

57 if set(real_zeros) == {4}:

58 perm = GeneralizedPermutation([0,1,2,3,4,5,6,7,8],[2,4,1,8,7,5,3,6,0])

59 odd_perm = AbelianStratum(real_zeros[1:]).odd_component().

single_cylinder_representative()

60 return cylinder_concatenation(perm,odd_perm)

61 elif set(real_zeros) == {6} or set(real_zeros) == {6,4}:

62 perm = GeneralizedPermutation([0,1,2,3,4,5,6,7,8,9,10],[2,10,9,8,6,3,5,1,4,7,0])

63 odd_perm = AbelianStratum(real_zeros[1:]).odd_component().

single_cylinder_representative()

64 return cylinder_concatenation(perm,odd_perm)

65 else:

66 perm_1 = even_zero_even(real_zeros[0]-2)

67 length_1 = len(perm_1[0])-1
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68 top_row_1 = perm_1[0]

69 bot_row_1 = perm_1[1][:-1]

70 for i in range(length_1):

71 if bot_row_1[i] == 1:

72 bot_row_1[i] += length_1

73 top_row_2 = [i+length_1 for i in range(1,6)]

74 bot_row_2 = [3+length_1,5+length_1,2+length_1,1,4+length_1,0]

75 top_row = top_row_1 + top_row_2

76 bot_row = bot_row_1 + bot_row_2

77 perm = GeneralizedPermutation(top_row,bot_row)

78 if len(real_zeros) == 1:

79 return perm

80 else:

81 odd_perm = AbelianStratum(real_zeros[1:]).odd_component().

single_cylinder_representative()

82 return cylinder_concatenation(perm,odd_perm)

83

84 def two_twos_even(real_zeros):

85 r"""

86 Returns a single cylinder permutation representative.

87

88 Returns a permutation representative of a square-tiled surface having a single

89 vertical cylinder and a single horizontal cylinder in the even component of

90 an Abelian stratum having two zeros of order two.

91

92 Such representatives were constructed for every stratum of Abelian

93 differentials by Jeffreys [Jef19].

94

95 INPUT::

96

97 - ‘‘real_zeros‘‘ - a list of even positive integers two of which are equal to two.

98

99 EXAMPLES::

100

101 sage: from surface_dynamics import *
102 sage: from surface_dynamics.flat_surfaces.single_cylinder import *
103

104 sage: perm = two_twos_even([4,2,2])

105 sage: perm

106 0 1 2 3 4 5 6 7 8 9 10 11

107 2 8 5 3 1 10 9 6 4 11 7 0

108 sage: perm.stratum_component() == AbelianStratum(4,2,2).even_component()

109 True

110 sage: cylinder_check(perm)

111 True

112 sage: perm = two_twos_even([6,2,2])

113 sage: perm

114 0 1 2 3 4 5 6 7 8 9 10 11 12 13

115 2 7 6 5 3 8 4 9 11 13 10 1 12 0

116 sage: perm.stratum_component() == AbelianStratum(6,2,2).even_component()

117 True

118 sage: cylinder_check(perm)

119 True

120

121 """

122 real_zeros.remove(2)

123 real_zeros.remove(2)

124 if set(real_zeros) == {4}:
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125 perm = GeneralizedPermutation([0,1,2,3,4,5,6,7,8,9,10,11],[2,8,5,3,1,10,9,6,4,11,7,0])

126 if len(real_zeros) == 1:

127 return perm

128 else:

129 odd_perm = AbelianStratum(real_zeros[1:]).odd_component().

single_cylinder_representative()

130 return cylinder_concatenation(perm,odd_perm)

131 else:

132 odd_2_2 = GeneralizedPermutation([0,1,2,3,4,5,6],[2,4,6,3,1,5,0])

133 perm = cylinder_concatenation(even_zero_even(real_zeros[0]),odd_2_2)

134 if len(real_zeros) == 1:

135 return perm

136 else:

137 odd_perm = AbelianStratum(real_zeros[1:]).odd_component().

single_cylinder_representative()

138 return cylinder_concatenation(perm,odd_perm)

139

140 def even_twos_even(real_zeros,two_count):

141 r"""

142 Returns a single cylinder permutation representative.

143

144 Returns a permutation representative of a square-tiled surface having a single

145 vertical cylinder and a single horizontal cylinder in the even component of

146 an Abelian stratum having an even, at least four, number of zeros of order two.

147

148 Such representatives were constructed for every stratum of Abelian

149 differentials by Jeffreys [Jef19].

150

151 INPUT::

152

153 - ‘‘real_zeros‘‘ - a list of even positive integers an even number of which

154 are equal to two.

155

156 - ‘‘two_count‘‘ - a positive integer equal to the number of twos in ‘‘real_zeros‘‘.

157

158 EXAMPLES::

159

160 sage: from surface_dynamics import *
161 sage: from surface_dynamics.flat_surfaces.single_cylinder import *
162

163 sage: perm = even_twos_even([2,2,2,2],4)

164 sage: perm

165 0 1 2 3 4 5 6 7 8 9 10 11 12

166 2 5 4 1 12 3 10 7 11 9 6 8 0

167 sage: perm.stratum_component() == AbelianStratum(2,2,2,2).even_component()

168 True

169 sage: cylinder_check(perm)

170 True

171 sage: perm = even_twos_even([4,2,2,2,2,2,2],6)

172 sage: perm

173 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

174 2 5 4 13 12 3 10 7 11 9 6 8 14 16 18 15 19 17 20 23 22 1 21 0

175 sage: perm.stratum_component() == AbelianStratum({4:1,2:6}).even_component()

176 True

177 sage: cylinder_check(perm)

178 True

179

180 """
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181 for i in range(two_count):

182 real_zeros.remove(2)

183 odd_2_2 = GeneralizedPermutation([0,1,2,3,4,5,6],[2,4,6,3,1,5,0])

184 even_2_2_2_2 = GeneralizedPermutation([0,1,2,3,4,5,6,7,8,9,10,11,12],[2,5,4,1,12,3,10,7,11,

9,6,8,0])

185 twos_perm = even_2_2_2_2

186 for i in range((two_count-4)//2):

187 twos_perm = cylinder_concatenation(twos_perm,odd_2_2)

188 if len(real_zeros) == 0:

189 return twos_perm

190 else:

191 odd_perm = AbelianStratum(real_zeros).odd_component().single_cylinder_representative()

192 return cylinder_concatenation(twos_perm,odd_perm)

193

194 def odd_twos_even(real_zeros,two_count):

195 r"""

196 Returns a single cylinder permutation representative.

197

198 Returns a permutation representative of a square-tiled surface having a single

199 vertical cylinder and a single horizontal cylinder in the even component of

200 an Abelian stratum having an odd, at least three, number of zeros of order two.

201

202 Such representatives were constructed for every stratum of Abelian

203 differentials by Jeffreys [Jef19].

204

205 INPUT::

206

207 - ‘‘real_zeros‘‘ - a list of even positive integers an even number of which

208 are equal to two.

209

210 - ‘‘two_count‘‘ - a positive integer equal to the number of twos in ‘‘real_zeros‘‘.

211

212 EXAMPLES::

213

214 sage: from surface_dynamics import *
215 sage: from surface_dynamics.flat_surfaces.single_cylinder import *
216

217 sage: perm = odd_twos_even([2,2,2],3)

218 sage: perm

219 0 1 2 3 4 5 6 7 8 9

220 2 9 8 7 6 3 5 1 4 0

221 sage: perm.stratum_component() == AbelianStratum(2,2,2).even_component()

222 True

223 sage: cylinder_check(perm)

224 True

225 sage: perm = odd_twos_even([4,2,2,2,2,2],5)

226 sage: perm

227 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

228 2 9 8 7 6 3 5 10 4 11 13 15 12 16 14 17 20 19 1 18 0

229 sage: perm.stratum_component() == AbelianStratum({4:1,2:5}).even_component()

230 True

231 sage: cylinder_check(perm)

232 True

233

234 """

235 for i in range(two_count):

236 real_zeros.remove(2)

237 odd_2_2 = GeneralizedPermutation([0,1,2,3,4,5,6],[2,4,6,3,1,5,0])
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238 even_2_2_2 = GeneralizedPermutation([0,1,2,3,4,5,6,7,8,9],[2,9,8,7,6,3,5,1,4,0])

239 twos_perm = even_2_2_2

240 for i in range((two_count-3)//2):

241 twos_perm = cylinder_concatenation(twos_perm,odd_2_2)

242 if len(real_zeros) == 0:

243 return twos_perm

244 else:

245 odd_perm = AbelianStratum(real_zeros).odd_component().single_cylinder_representative()

246 return cylinder_concatenation(twos_perm,odd_perm)

General components

The following method was added to the Abelian stratum general component class
(AbelianStratumComponent) of the surface_dynamics package.

1 def single_cylinder_representative(self, alphabet=None):

2 r"""

3 Returns a single cylinder permutation representative.

4

5 Returns a permutation representative of a square-tiled surface in this

6 component having a single vertical cylinder and a single horizontal cylinder.

7

8 Such representatives were constructed for every stratum of Abelian

9 differentials by Jeffreys [Jef19].

10

11 INPUT::

12

13 - ‘‘alphabet‘‘ - alphabet or ‘‘None‘‘ (defaut: ‘‘None‘‘):

14 whether you want to specify an alphabet for your representative.

15

16 EXAMPLES::

17

18 sage: from surface_dynamics import *
19 sage: from surface_dynamics.flat_surfaces.single_cylinder import cylinder_check

20

21 sage: cc = AbelianStratum(1,1,1,1).unique_component()

22 sage: p = cc.single_cylinder_representative()

23 sage: p

24 0 1 2 3 4 5 6 7 8

25 2 6 5 3 1 8 4 7 0

26 sage: p.stratum_component() == cc

27 True

28 sage: cylinder_check(p)

29 True

30 sage: cc = AbelianStratum(2,1,1).unique_component()

31 sage: p = cc.single_cylinder_representative()

32 sage: p

33 0 1 2 3 4 5 6 7

34 2 6 4 1 7 5 3 0

35 sage: p.stratum_component() == cc

36 True

37 sage: cylinder_check(p)

38 True

39 sage: cc = AbelianStratum(3,3).non_hyperelliptic_component()

40 sage: p = cc.single_cylinder_representative(alphabet=Alphabet(name=’lower’))

41 sage: p

42 a b c d e f g h i
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43 c i g f h e b d a

44 sage: p.stratum_component() == cc

45 True

46 sage: cylinder_check(p)

47 True

48

49 """

50 from surface_dynamics.flat_surfaces.single_cylinder import cylinder_concatenation

51 from surface_dynamics.flat_surfaces.single_cylinder import only_even_2

52 from surface_dynamics.flat_surfaces.single_cylinder import only_odds_11

53 from surface_dynamics.flat_surfaces.single_cylinder import odd_zeros_one_one

54 from surface_dynamics.interval_exchanges.constructors import GeneralizedPermutation

55

56 zeros = self.stratum().zeros()

57 real_zeros = [z for z in zeros if z != 0]

58 odd_zeros = [z for z in real_zeros if z%2 == 1]

59 even_zeros = [z for z in real_zeros if z%2 == 0]

60

61 fk_zeros_perm = GeneralizedPermutation([0],[0])

62 mk_pt_perm = GeneralizedPermutation([0,1],[1,0])

63 for i in range(self.stratum().nb_fake_zeros()):

64 fk_zeros_perm = cylinder_concatenation(fk_zeros_perm,mk_pt_perm)

65

66 if even_zeros == [2]:

67 perm = only_even_2(odd_zeros)

68 elif odd_zeros == [1,1]:

69 perm = only_odds_11(even_zeros)

70 else:

71 if even_zeros != []:

72 even_perm = AbelianStratum(even_zeros).odd_component().

single_cylinder_representative()

73 else:

74 even_perm = GeneralizedPermutation([0],[0])

75 odd_perm = odd_zeros_one_one(odd_zeros)

76 perm = cylinder_concatenation(even_perm,odd_perm)

77

78 perm = cylinder_concatenation(fk_zeros_perm,perm)

79

80 if not alphabet == None:

81 perm.alphabet(alphabet)

82

83 return perm

Recall that there are difficulties in the general case when the only even order zero
has order two, or when the only odd order zeros both have order one.

1 def only_even_2(odd_zeros):

2 r"""

3 Returns a single cylinder permutation representative.

4

5 Returns a permutation representative of a square-tiled surface having a single

6 vertical cylinder and a single horizontal cylinder in the Abelian stratum

7 having zeros of the given odd orders and a single zero of order two.

8

9 Such representatives were constructed for every stratum of Abelian

10 differentials by Jeffreys [Jef19].

11

12 INPUT::
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13

14 - ‘‘odd_zeros‘‘ - an even length list of odd positive integers.

15

16 EXAMPLES::

17

18 sage: from surface_dynamics import *
19 sage: from surface_dynamics.flat_surfaces.single_cylinder import *
20

21 sage: perm = only_even_2([1,1])

22 sage: perm

23 0 1 2 3 4 5 6 7

24 2 6 4 1 7 5 3 0

25 sage: perm.stratum_component() == AbelianStratum(2,1,1).unique_component()

26 True

27 sage: cylinder_check(perm)

28 True

29 sage: perm = only_even_2([1,1,1,1,1,1])

30 sage: perm

31 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

32 2 6 4 8 7 5 3 9 13 12 10 1 15 11 14 0

33 sage: perm.stratum_component() == AbelianStratum({2:1,1:6}).unique_component()

34 True

35 sage: cylinder_check(perm)

36 True

37 sage: perm = only_even_2([1,1,1,1])

38 sage: perm

39 0 1 2 3 4 5 6 7 8 9 10 11

40 2 7 11 6 3 9 5 1 8 4 10 0

41 sage: perm.stratum_component() == AbelianStratum(2,1,1,1,1).unique_component()

42 True

43 sage: cylinder_check(perm)

44 True

45 sage: perm = only_even_2([1,1,1,1,1,1,1,1])

46 sage: perm

47 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

48 2 7 11 6 3 9 5 12 8 4 10 13 17 16 14 1 19 15 18 0

49 sage: perm.stratum_component() == AbelianStratum({2:1,1:8}).unique_component()

50 True

51 sage: cylinder_check(perm)

52 True

53 sage: perm = only_even_2([3,3,1,1])

54 sage: perm

55 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

56 2 6 4 8 7 5 3 9 15 13 12 14 11 1 10 0

57 sage: perm.stratum_component() == AbelianStratum(3,3,2,1,1).unique_component()

58 True

59 sage: cylinder_check(perm)

60 True

61 sage: perm = only_even_2([3,1,1,1])

62 sage: perm

63 0 1 2 3 4 5 6 7 8 9 10 11 12 13

64 2 6 4 8 7 5 3 9 12 1 13 11 10 0

65 sage: perm.stratum_component() == AbelianStratum(3,2,1,1,1).unique_component()

66 True

67 sage: cylinder_check(perm)

68 True

69 sage: perm = only_even_2([5,3,3,3])

70 sage: perm
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71 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

72 2 8 6 5 7 4 9 3 11 13 10 14 12 15 21 19 18 20 17 1 16 0

73 sage: perm.stratum_component() == AbelianStratum(5,3,3,3,2).unique_component()

74 True

75 sage: cylinder_check(perm)

76 True

77

78 """

79 if odd_zeros.count(1) == len(odd_zeros) and odd_zeros.count(1) % 4 == 2:

80 perm = GeneralizedPermutation([0,1,2,3,4,5,6,7],[2,6,4,1,7,5,3,0])

81 if len(odd_zeros) == 2:

82 return perm

83 else:

84 odd_zeros.remove(1)

85 odd_zeros.remove(1)

86 one_count = odd_zeros.count(1)

87 return cylinder_concatenation(perm,even_ones_odds(odd_zeros,one_count))

88 elif odd_zeros.count(1) == len(odd_zeros) and odd_zeros.count(1) % 4 == 0:

89 perm = GeneralizedPermutation([0,1,2,3,4,5,6,7,8,9,10,11],[2,7,11,6,3,9,5,1,8,4,10,0])

90 if len(odd_zeros) == 4:

91 return perm

92 else:

93 odd_zeros.remove(1)

94 odd_zeros.remove(1)

95 odd_zeros.remove(1)

96 odd_zeros.remove(1)

97 one_count = odd_zeros.count(1)

98 return cylinder_concatenation(perm,even_ones_odds(odd_zeros,one_count))

99 elif odd_zeros.count(1) == 2 and len(odd_zeros) == 4 :

100 perm = GeneralizedPermutation([0,1,2,3,4,5,6,7],[2,6,4,1,7,5,3,0])

101 return cylinder_concatenation(perm,no_ones_odds(odd_zeros[:2]))

102 else:

103 if len(odd_zeros) == 4 and odd_zeros.count(1) == 3:

104 perm = GeneralizedPermutation([0,1,2,3,4,5,6,7],[2,6,4,1,7,5,3,0])

105 return cylinder_concatenation(perm,one_one_odds([odd_zeros[0],1]))

106 else:

107 pair_zeros = odd_zeros[:2]

108 odd_zeros = odd_zeros[2:]

109 dif = abs(pair_zeros[0]-pair_zeros[1])

110 if 1 in pair_zeros:

111 if pair_zeros == [3,1]:

112 perm = GeneralizedPermutation([0,1,2,3,4,5,6,7,8,9],[2,6,8,3,7,4,1,9,5,0])

113 if len(odd_zeros) == 0:

114 return perm

115 else:

116 one_count = odd_zeros.count(1)

117 return cylinder_concatenation(perm,even_ones_odds(odd_zeros,one_count))

118 else:

119 perm_1 = one_one_odds([pair_zeros[0]-2,1])

120 length_1 = len(perm_1[0])-1

121 top_row_1 = perm_1[0]

122 bot_row_1 = perm_1[1][:-1]

123 for i in range(length_1):

124 if bot_row_1[i] == 1:

125 bot_row_1[i] += length_1

126 top_row_2 = [i+length_1 for i in range(1,6)]

127 bot_row_2 = [3+length_1,5+length_1,2+length_1,1,4+length_1,0]

128 top_row = top_row_1 + top_row_2
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129 bot_row = bot_row_1 + bot_row_2

130 perm = GeneralizedPermutation(top_row,bot_row)

131 if len(odd_zeros) == 0:

132 return perm

133 else:

134 one_count = odd_zeros.count(1)

135 return cylinder_concatenation(perm,even_ones_odds(odd_zeros,one_count))

136 elif dif > 0:

137 pair_zeros[0] += -2

138 perm_1 = no_ones_odds(pair_zeros)

139 length_1 = len(perm_1[0])-1

140 top_row_1 = perm_1[0]

141 bot_row_1 = perm_1[1][:-1]

142 for i in range(length_1):

143 if bot_row_1[i] == 1:

144 bot_row_1[i] += length_1

145 top_row_2 = [i+length_1 for i in range(1,6)]

146 bot_row_2 = [3+length_1,5+length_1,2+length_1,1,4+length_1,0]

147 top_row = top_row_1 + top_row_2

148 bot_row = bot_row_1 + bot_row_2

149 perm = GeneralizedPermutation(top_row,bot_row)

150 if len(odd_zeros) == 0:

151 return perm

152 else:

153 perm_odd = odd_zeros_one_one(odd_zeros)

154 return cylinder_concatenation(perm,perm_odd)

155 else:

156 pair_zeros[1] += -2

157 perm_1 = min_on_bot(pair_zeros)

158 length_1 = len(perm_1[0])-1

159 top_row_1 = perm_1[0]

160 bot_row_1 = perm_1[1][:-1]

161 for i in range(length_1):

162 if bot_row_1[i] == 1:

163 bot_row_1[i] += length_1

164 top_row_2 = [i+length_1 for i in range(1,6)]

165 bot_row_2 = [3+length_1,5+length_1,2+length_1,1,4+length_1,0]

166 top_row = top_row_1 + top_row_2

167 bot_row = bot_row_1 + bot_row_2

168 perm = GeneralizedPermutation(top_row,bot_row)

169 if len(odd_zeros) == 0:

170 return perm

171 else:

172 odd_perm = odd_zeros_one_one(odd_zeros)

173 return cylinder_concatenation(perm,odd_perm)

174

175 def only_odds_11(even_zeros):

176 r"""

177 Returns a single cylinder permutation representative.

178

179

180 Returns a permutation representative of a square-tiled surface having a single

181 vertical cylinder and a single horizontal cylinder in the Abelian stratum

182 having zeros of the given even orders and two zeros of order one.

183

184 Such representatives were constructed for every stratum of Abelian

185 differentials by Jeffreys [Jef19].

186
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187 INPUT::

188

189 - ‘‘even_zeros‘‘ - a list of even positive integers.

190

191 EXAMPLES::

192

193 sage: from surface_dynamics import *
194 sage: from surface_dynamics.flat_surfaces.single_cylinder import *
195

196 sage: perm = only_odds_11([2])

197 sage: perm

198 0 1 2 3 4 5 6 7

199 2 6 4 1 7 5 3 0

200 sage: perm.stratum_component() == AbelianStratum(2,1,1).unique_component()

201 True

202 sage: cylinder_check(perm)

203 True

204 sage: perm = only_odds_11([2,2])

205 sage: perm

206 0 1 2 3 4 5 6 7 8 9 10

207 2 4 9 7 3 8 5 1 10 6 0

208 sage: perm.stratum_component() == AbelianStratum(2,2,1,1).unique_component()

209 True

210 sage: cylinder_check(perm)

211 True

212 sage: perm = only_odds_11([4,2])

213 sage: perm

214 0 1 2 3 4 5 6 7 8 9 10 11 12

215 2 6 4 8 7 5 3 9 12 11 1 10 0

216 sage: perm.stratum_component() == AbelianStratum(4,2,1,1).unique_component()

217 True

218 sage: cylinder_check(perm)

219 True

220 sage: perm = only_odds_11([6])

221 sage: perm

222 0 1 2 3 4 5 6 7 8 9 10 11

223 2 6 4 1 8 7 10 9 11 5 3 0

224 sage: perm.stratum_component() == AbelianStratum(6,1,1).unique_component()

225 True

226 sage: cylinder_check(perm)

227 True

228 sage: perm = only_odds_11([4,4])

229 sage: perm

230 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

231 2 7 4 10 9 5 8 6 3 11 14 13 1 12 0

232 sage: perm.stratum_component() == AbelianStratum(4,4,1,1).unique_component()

233 True

234 sage: cylinder_check(perm)

235 True

236 sage: perm = only_odds_11([8,6])

237 sage: perm

238 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

239 2 7 4 14 9 8 11 10 13 5 12 6 3 15 18 17 20 16 1 19 0

240 sage: perm.stratum_component() == AbelianStratum(8,6,1,1).unique_component()

241 True

242 sage: cylinder_check(perm)

243 True

244
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245 """

246 if set(even_zeros) == {2} and len(even_zeros) % 2 == 1:

247 perm = GeneralizedPermutation([0,1,2,3,4,5,6,7],[2,6,4,1,7,5,3,0])

248 if len(even_zeros) == 1:

249 return perm

250 else:

251 even_zeros.remove(2)

252 even_perm = AbelianStratum(even_zeros).odd_component().

single_cylinder_representative()

253 return cylinder_concatenation(perm,even_perm)

254 elif set(even_zeros) == {2} and len(even_zeros) % 2 == 0:

255 perm = GeneralizedPermutation([0,1,2,3,4,5,6,7,8,9,10],[2,4,9,7,3,8,5,1,10,6,0])

256 if len(even_zeros) == 2:

257 return perm

258 else:

259 even_zeros.remove(2)

260 even_zeros.remove(2)

261 even_perm = AbelianStratum(even_zeros).odd_component().

single_cylinder_representative()

262 return cylinder_concatenation(perm,even_perm)

263 elif even_zeros.count(2) == 1 and len(even_zeros) == 2:

264 perm = GeneralizedPermutation([0,1,2,3,4,5,6,7],[2,6,4,1,7,5,3,0])

265 even_perm = AbelianStratum(even_zeros[0]).odd_component().

single_cylinder_representative()

266 return cylinder_concatenation(perm,even_perm)

267 else:

268 num = even_zeros[0]

269 if num % 4 == 2:

270 top_row = [i for i in range(num+6)]

271 bot_row = [2,6,4,1]

272 for i in range(8,num+6,2):

273 bot_row += [i,i-1]

274 bot_row += [num+5,5,3,0]

275 perm = GeneralizedPermutation(top_row,bot_row)

276 if len(even_zeros) == 1:

277 return perm

278 else:

279 even_perm = AbelianStratum(even_zeros[1:]).odd_component().

single_cylinder_representative()

280 return cylinder_concatenation(perm,even_perm)

281 else:

282 if num == 4:

283 perm = GeneralizedPermutation([0,1,2,3,4,5,6,7,8,9],[2,7,4,1,9,5,8,6,3,0])

284 else:

285 top_row = [i for i in range(num+6)]

286 bot_row = [2,7,4,1]

287 for i in range(9,num+5,2):

288 bot_row += [i,i-1]

289 bot_row += [num+5,5,num+4,6,3,0]

290 perm = GeneralizedPermutation(top_row,bot_row)

291 if len(even_zeros) == 1:

292 return perm

293 else:

294 even_perm = AbelianStratum(even_zeros[1:]).odd_component().

single_cylinder_representative()

295 return cylinder_concatenation(perm,even_perm)

The case of one even order zero having order two requires the following method
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which realises Proposition 3.12.
1 def min_on_bot(zero_pair):

2 r"""

3 Returns a single cylinder permutation representative.

4

5 Returns a permutation representative of a square-tiled surface having a single

6 vertical cylinder and a single horizontal cylinder in the Abelian stratum

7 having a pair of zeros of the given odd orders which differ by two.

8

9 The permutations have a particular form required for the construction

10 of other representatives.

11

12 Such representatives were constructed by Jeffreys [Jef19].

13

14 INPUT::

15

16 - ‘‘zero_pair‘‘ - a list of two odd positive integers at least one and

17 differing by two.

18

19 EXAMPLES::

20

21 sage: from surface_dynamics import *
22 sage: from surface_dynamics.flat_surfaces.single_cylinder import *
23

24 sage: perm = min_on_bot([3,1])

25 sage: perm

26 0 1 2 3 4 5 6

27 2 6 5 1 4 3 0

28 sage: perm.stratum_component() == AbelianStratum(3,1).unique_component()

29 True

30 sage: cylinder_check(perm)

31 True

32 sage: perm = min_on_bot([5,3])

33 sage: perm

34 0 1 2 3 4 5 6 7 8 9 10

35 2 6 4 10 8 3 1 9 7 5 0

36 sage: perm.stratum_component() == AbelianStratum(5,3).unique_component()

37 True

38 sage: cylinder_check(perm)

39 True

40 sage: perm = min_on_bot([7,5])

41 sage: perm

42 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

43 2 6 4 10 8 3 12 9 7 5 14 11 1 13 0

44 sage: perm.stratum_component() == AbelianStratum(7,5).unique_component()

45 True

46 sage: cylinder_check(perm)

47 True

48

49 """

50 if zero_pair == [3,1]:

51 return GeneralizedPermutation([0,1,2,3,4,5,6],[2,6,5,1,4,3,0])

52 elif zero_pair == [5,3]:

53 return GeneralizedPermutation([0,1,2,3,4,5,6,7,8,9,10],[2,6,4,10,8,3,1,9,7,5,0])

54 else:

55 num = max(zero_pair)

56 top_row = [i for i in range(2*num+1)]

57 bot_row = [2,6,4,10,8,3,12,9,7,5]
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58 for i in range(14,2*num+2,2):

59 bot_row = bot_row + [i,i-3]

60 bot_row = bot_row + [1,2*num-1,0]

61 return GeneralizedPermutation(top_row,bot_row)

The construction of permutation representatives of strata with only odd order zeros
is carried out by the following method.

1 def odd_zeros_one_one(odd_zeros):

2 r"""

3 Returns a single cylinder permutation representative.

4

5 Returns a permutation representative of a square-tiled surface having a single

6 vertical cylinder and a single horizontal cylinder in an Abelian stratum

7 having odd order zeros of the given orders.

8

9 Such representatives were constructed for every stratum of Abelian

10 differentials by Jeffreys [Jef19].

11

12 INPUT::

13

14 - ‘‘odd_zeros‘‘ - an even length list of odd positive integers.

15

16 EXAMPLES::

17

18 sage: from surface_dynamics import *
19 sage: from surface_dynamics.flat_surfaces.single_cylinder import *
20

21 sage: perm = odd_zeros_one_one([5,5])

22 sage: perm

23 0 1 2 3 4 5 6 7 8 9 10 11 12

24 2 5 4 7 3 9 6 12 8 11 1 10 0

25 sage: perm.stratum_component() == AbelianStratum(5,5).non_hyperelliptic_component()

26 True

27 sage: cylinder_check(perm)

28 True

29 sage: perm = odd_zeros_one_one([5,1])

30 sage: perm

31 0 1 2 3 4 5 6 7 8

32 2 4 7 3 1 8 6 5 0

33 sage: perm.stratum_component() == AbelianStratum(5,1).unique_component()

34 True

35 sage: cylinder_check(perm)

36 True

37 sage: perm = odd_zeros_one_one([5,3,1,1])

38 sage: perm

39 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

40 2 4 7 3 9 8 6 5 10 13 1 14 12 11 0

41 sage: perm.stratum_component() == AbelianStratum(5,3,1,1).unique_component()

42 True

43 sage: cylinder_check(perm)

44 True

45 sage: perm = odd_zeros_one_one([5,1,1,1])

46 sage: perm

47 0 1 2 3 4 5 6 7 8 9 10 11 12

48 2 12 9 8 1 7 3 6 10 5 4 11 0

49 sage: perm.stratum_component() == AbelianStratum(5,1,1,1).unique_component()

50 True
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51 sage: cylinder_check(perm)

52 True

53 sage: perm = odd_zeros_one_one([5,3,1,1,1,1])

54 sage: perm

55 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

56 2 6 5 3 9 8 4 7 10 13 12 15 11 18 14 17 1 16 0

57 sage: perm.stratum_component() == AbelianStratum(5,3,1,1,1,1).unique_component()

58 True

59 sage: cylinder_check(perm)

60 True

61 sage: perm = odd_zeros_one_one([5,1,1,1,1,1])

62 sage: perm

63 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

64 2 4 7 3 9 8 6 5 10 14 13 11 1 16 12 15 0

65 sage: perm.stratum_component() == AbelianStratum(5,1,1,1,1,1).unique_component()

66 True

67 sage: cylinder_check(perm)

68 True

69

70 """

71 one_count = odd_zeros.count(1)

72 if one_count == 0:

73 return no_ones_odds(odd_zeros)

74 elif one_count == 1:

75 return one_one_odds(odd_zeros)

76 elif one_count == 2:

77 return two_ones_odds(odd_zeros)

78 elif one_count == 3:

79 return three_ones_odds(odd_zeros)

80 elif one_count >= 4 and one_count % 2 == 0:

81 return even_ones_odds(odd_zeros,one_count)

82 else:

83 return odd_ones_odds(odd_zeros,one_count)

Different methods are called depending on the number of zeros of order one. The
following method is called if there are no zeros of order one.

1 def no_ones_odds(odd_zeros):

2 r"""

3 Returns a single cylinder permutation representative.

4

5 Returns a permutation representative of a square-tiled surface having a single

6 vertical cylinder and a single horizontal cylinder in an Abelian stratum with odd

7 order zeros and no zeros of order 1.

8

9 Such representatives were constructed for every stratum of Abelian

10 differentials by Jeffreys [Jef19].

11

12 INPUT::

13

14 - ‘‘odd_zeros‘‘ - an even length list of odd positive integers none of which

15 are equal to one.

16

17 EXAMPLES::

18

19 sage: from surface_dynamics import *
20 sage: from surface_dynamics.flat_surfaces.single_cylinder import *
21
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22 sage: perm = no_ones_odds([7,3])

23 sage: perm

24 0 1 2 3 4 5 6 7 8 9 10 11 12

25 2 5 4 8 3 7 9 6 12 11 1 10 0

26 sage: perm.stratum_component() == AbelianStratum(7,3).unique_component()

27 True

28 sage: cylinder_check(perm)

29 True

30 sage: perm = no_ones_odds([5,3,3,3])

31 sage: perm

32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

33 2 5 4 7 3 10 6 9 11 8 12 18 16 15 17 14 1 13 0

34 sage: perm.stratum_component() == AbelianStratum(5,3,3,3).unique_component()

35 True

36 sage: cylinder_check(perm)

37 True

38

39 """

40 if len(odd_zeros) == 2 and abs(odd_zeros[0]-odd_zeros[1]) <= 2:

41 return odds_right_swap(odd_zeros)

42 elif len(odd_zeros) == 2 and abs(odd_zeros[0]-odd_zeros[1]) > 2:

43 return odds_left_swap(odd_zeros)

44 else:

45 perm = no_ones_odds(odd_zeros[:2])

46 for i in range(2,len(odd_zeros),2):

47 perm = cylinder_concatenation(perm,no_ones_odds(odd_zeros[i:i+2]))

48 return perm

This method makes use of the following methods which carry out the constructions
of Propositions 3.7 and 3.8, respectively.

1 def odds_right_swap(zero_pair):

2 r"""

3 Returns a single cylinder permutation representative.

4

5 Returns a permutation representative of a square-tiled surface having a single

6 vertical cylinder and a single horizontal cylinder in the Abelian stratum

7 having a pair of zeros of the given odd orders.

8

9 Performs a column swap on another permutation to achieve this.

10

11 Such a method was described by Jeffreys [Jef19].

12

13 INPUT::

14

15 - ‘‘zero_pair‘‘ - a list of two odd positive integers at least three and

16 differing by zero or two.

17

18 EXAMPLES::

19

20 sage: from surface_dynamics import *
21 sage: from surface_dynamics.flat_surfaces.single_cylinder import *
22

23 sage: perm = odds_right_swap([3,3])

24 sage: perm

25 0 1 2 3 4 5 6 7 8

26 2 8 6 5 7 4 1 3 0

27 sage: perm.stratum_component() == AbelianStratum(3,3).non_hyperelliptic_component()
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28 True

29 sage: cylinder_check(perm)

30 True

31 sage: perm = odds_right_swap([5,5])

32 sage: perm

33 0 1 2 3 4 5 6 7 8 9 10 11 12

34 2 5 4 7 3 9 6 12 8 11 1 10 0

35 sage: perm.stratum_component() == AbelianStratum(5,5).non_hyperelliptic_component()

36 True

37 sage: cylinder_check(perm)

38 True

39 sage: perm = odds_right_swap([5,3])

40 sage: perm

41 0 1 2 3 4 5 6 7 8 9 10

42 2 5 4 7 3 10 6 9 1 8 0

43 sage: perm.stratum_component() == AbelianStratum(5,3).unique_component()

44 True

45 sage: cylinder_check(perm)

46 True

47

48 """

49 if zero_pair == [3,3]:

50 return GeneralizedPermutation([0,1,2,3,4,5,6,7,8],[2,8,6,5,7,4,1,3,0])

51 else:

52 dif = abs(zero_pair[0]-zero_pair[1])

53 if dif == 0:

54 j = (min(zero_pair)-3)//2

55 else:

56 j = (min(zero_pair)-1)//2

57 perm_1 = AbelianStratum(4*j+2-dif).odd_component().single_cylinder_representative()

58 perm_2 = AbelianStratum(4).odd_component().single_cylinder_representative()

59 perm = cylinder_concatenation(perm_1,perm_2)

60 top_row = perm[0][1:]

61 bot_row = perm[1][:-1]

62 top_row = top_row[:-5]+[top_row[-4],top_row[-5]]+top_row[-3:]

63 bot_row = bot_row[:-5]+[bot_row[-4],bot_row[-5]]+bot_row[-3:]

64 top_row = [0]+top_row

65 bot_row = bot_row+[0]

66 perm_3 = GeneralizedPermutation(top_row,bot_row)

67 perm_3.alphabet(len(perm_3[0]))

68 return perm_3

69

70 def odds_left_swap(zero_pair):

71 r"""

72 Returns a single cylinder permutation representative.

73

74 Returns a permutation representative of a square-tiled surface having a single

75 vertical cylinder and a single horizontal cylinder in the Abelian stratum

76 having a pair of zeros of the given odd orders.

77

78 Performs a column swap on another permutation to achieve this.

79

80 Such a method was described by Jeffreys [Jef19].

81

82 INPUT::

83

84 - ‘‘zero_pair‘‘ - a list of two odd positive integers at least three and

85 differing by at least four.
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86

87 EXAMPLES::

88

89 sage: from surface_dynamics import *
90 sage: from surface_dynamics.flat_surfaces.single_cylinder import *
91

92 sage: perm = odds_left_swap([7,3])

93 sage: perm

94 0 1 2 3 4 5 6 7 8 9 10 11 12

95 2 5 4 8 3 7 9 6 12 11 1 10 0

96 sage: perm.stratum_component() == AbelianStratum(7,3).unique_component()

97 True

98 sage: cylinder_check(perm)

99 True

100 sage: perm = odds_left_swap([11,5])

101 sage: perm

102 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

103 2 5 4 7 3 9 6 12 8 11 13 10 16 15 18 14 1 17 0

104 sage: perm.stratum_component() == AbelianStratum(11,5).unique_component()

105 True

106 sage: cylinder_check(perm)

107 True

108

109 """

110 dif = abs(zero_pair[0]-zero_pair[1])

111 j = (min(zero_pair)-1)//2

112 perm_1 = AbelianStratum(4*j+2).odd_component().single_cylinder_representative()

113 perm_2 = AbelianStratum(dif).odd_component().single_cylinder_representative()

114 perm = cylinder_concatenation(perm_1,perm_2)

115 swap_point = len(perm_2[0])-1

116 top_row = perm[0][1:]

117 bot_row = perm[1][:-1]

118 top_row = top_row[:-(swap_point+1)]+[top_row[-(swap_point)],top_row[-(swap_point+1)]]+

top_row[-(swap_point-1):]

119 bot_row = bot_row[:-(swap_point+1)]+[bot_row[-(swap_point)],bot_row[-(swap_point+1)]]+

bot_row[-(swap_point-1):]

120 top_row = [0]+top_row

121 bot_row = bot_row+[0]

122 perm_3 = GeneralizedPermutation(top_row,bot_row)

123 perm_3.alphabet(len(perm_3[0]))

124 return perm_3

The remaining cases are dealt with by the following methods which construct the
permutation representatives given in and after Propositions 3.9 and 3.10.

1 def one_one_odds(odd_zeros):

2 r"""

3 Returns a single cylinder permutation representative.

4

5 Returns a permutation representative of a square-tiled surface having a single

6 vertical cylinder and a single horizontal cylinder in an Abelian stratum with odd

7 order zeros and one zero of order 1.

8

9 Such representatives were constructed for every stratum of Abelian

10 differentials by Jeffreys [Jef19].

11

12 INPUT::

13



APPENDIX B. PYTHON CODE 160

14 - ‘‘odd_zeros‘‘ - an even length list of odd positive integers one of which

15 is equal to one.

16

17 EXAMPLES::

18

19 sage: from surface_dynamics import *
20 sage: from surface_dynamics.flat_surfaces.single_cylinder import *
21

22 sage: perm = one_one_odds([3,1])

23 sage: perm

24 0 1 2 3 4 5 6

25 2 5 1 6 4 3 0

26 sage: perm.stratum_component() == AbelianStratum(3,1).unique_component()

27 True

28 sage: cylinder_check(perm)

29 True

30 sage: perm = one_one_odds([5,1])

31 sage: perm

32 0 1 2 3 4 5 6 7 8

33 2 4 7 3 1 8 6 5 0

34 sage: perm.stratum_component() == AbelianStratum(5,1).unique_component()

35 True

36 sage: cylinder_check(perm)

37 True

38 sage: perm = one_one_odds([7,3,3,1])

39 sage: perm

40 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

41 2 5 4 9 3 8 6 11 10 7 12 18 16 15 17 14 1 13 0

42 sage: perm.stratum_component() == AbelianStratum(7,3,3,1).unique_component()

43 True

44 sage: cylinder_check(perm)

45 True

46

47 """

48 num = odd_zeros[0]

49 if num == 3:

50 perm = GeneralizedPermutation([0,1,2,3,4,5,6],[2,5,1,6,4,3,0])

51 odd_zeros.remove(1)

52 if len(odd_zeros) == 1:

53 return perm

54 else:

55 return cylinder_concatenation(perm,no_ones_odds(odd_zeros[1:]))

56 elif num == 5:

57 perm = GeneralizedPermutation([0,1,2,3,4,5,6,7,8],[2,4,7,3,1,8,6,5,0])

58 odd_zeros.remove(1)

59 if len(odd_zeros) == 1:

60 return perm

61 else:

62 return cylinder_concatenation(perm,no_ones_odds(odd_zeros[1:]))

63 else:

64 odd_zeros.remove(1)

65 perm_1 = AbelianStratum(num-3).odd_component().single_cylinder_representative()

66 length_1 = len(perm_1[0])-1

67 top_row_1 = perm_1[0]

68 bot_row_1 = perm_1[1][:-1]

69 for i in range(length_1):

70 if bot_row_1[i] == 1:

71 bot_row_1[i] = 4+length_1
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72 top_row_2 = [i+length_1 for i in range(1,6)]

73 bot_row_2 = [3+length_1,1+length_1,1,5+length_1,2+length_1,0]

74 top_row = top_row_1 + top_row_2

75 bot_row = bot_row_1 + bot_row_2

76 perm = GeneralizedPermutation(top_row,bot_row)

77 if len(odd_zeros) == 1:

78 return perm

79 else:

80 return cylinder_concatenation(perm,no_ones_odds(odd_zeros[1:]))

81

82 def two_ones_odds(odd_zeros):

83 r"""

84 Returns a single cylinder permutation representative.

85

86 Returns a permutation representative of a square-tiled surface having a single

87 vertical cylinder and a single horizontal cylinder in an Abelian stratum with odd

88 order zeros and two zeros of order 1.

89

90 Such representatives were constructed for every stratum of Abelian

91 differentials by Jeffreys [Jef19].

92

93 INPUT::

94

95 - ‘‘odd_zeros‘‘ - an even length list of odd positive integers two of which

96 are equal to one.

97

98 EXAMPLES::

99

100 sage: from surface_dynamics import *
101 sage: from surface_dynamics.flat_surfaces.single_cylinder import *
102

103 sage: perm = two_ones_odds([3,3,1,1])

104 sage: perm

105 0 1 2 3 4 5 6 7 8 9 10 11 12

106 2 5 7 6 4 3 8 11 1 12 10 9 0

107 sage: perm.stratum_component() == AbelianStratum(3,3,1,1).unique_component()

108 True

109 sage: cylinder_check(perm)

110 True

111 sage: perm = two_ones_odds([5,5,3,3,1,1])

112 sage: perm

113 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

114 2 4 7 3 9 8 6 5 10 12 15 11 17 16 14 13 18 24 22 21 23 20 1 19 0

115 sage: perm.stratum_component() == AbelianStratum(5,5,3,3,1,1).unique_component()

116 True

117 sage: cylinder_check(perm)

118 True

119

120 """

121 odd_zeros.remove(1)

122 odd_zeros.remove(1)

123 perm = cylinder_concatenation(one_one_odds([odd_zeros[0],1]),one_one_odds([odd_zeros[1],1])

)

124 if len(odd_zeros) == 2:

125 return perm

126 else:

127 return cylinder_concatenation(perm,no_ones_odds(odd_zeros[2:]))

128
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129 def three_ones_odds(odd_zeros):

130 r"""

131 Returns a single cylinder permutation representative.

132

133 Returns a permutation representative of a square-tiled surface having a single

134 vertical cylinder and a single horizontal cylinder in an Abelian stratum with odd

135 order zeros and three zeros of order 1.

136

137 Such representatives were constructed for every stratum of Abelian

138 differentials by Jeffreys [Jef19].

139

140 INPUT::

141

142 - ‘‘odd_zeros‘‘ - an even length list of odd positive integers three of which

143 are equal to one.

144

145 EXAMPLES::

146

147 sage: from surface_dynamics import *
148 sage: from surface_dynamics.flat_surfaces.single_cylinder import *
149

150 sage: perm = three_ones_odds([3,1,1,1])

151 sage: perm

152 0 1 2 3 4 5 6 7 8 9 10

153 2 10 6 5 1 8 4 7 3 9 0

154 sage: perm.stratum_component() == AbelianStratum(3,1,1,1).unique_component()

155 True

156 sage: cylinder_check(perm)

157 True

158 sage: perm = three_ones_odds([5,1,1,1])

159 sage: perm

160 0 1 2 3 4 5 6 7 8 9 10 11 12

161 2 12 9 8 1 7 3 6 10 5 4 11 0

162 sage: perm.stratum_component() == AbelianStratum(5,1,1,1).unique_component()

163 True

164 sage: cylinder_check(perm)

165 True

166 sage: perm = three_ones_odds([7,1,1,1])

167 sage: perm

168 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

169 2 14 10 9 1 4 3 6 5 12 8 11 7 13 0

170 sage: perm.stratum_component() == AbelianStratum(7,1,1,1).unique_component()

171 True

172 sage: cylinder_check(perm)

173 True

174 sage: perm = three_ones_odds([9,1,1,1])

175 sage: perm

176 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

177 2 16 13 12 1 4 3 6 5 11 7 10 14 9 8 15 0

178 sage: perm = three_ones_odds([3,3,3,1,1,1])

179 sage: perm

180 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

181 2 5 7 6 4 3 8 11 13 12 10 9 14 17 1 18 16 15 0

182 sage: perm.stratum_component() == AbelianStratum(3,3,3,1,1,1).unique_component()

183 True

184 sage: cylinder_check(perm)

185 True

186
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187 """

188 if len(odd_zeros) > 4:

189 num = odd_zeros[0]

190 odd_zeros.remove(1)

191 odd_zeros.remove(num)

192 perm = one_one_odds([num,1])

193 return cylinder_concatenation(perm,two_ones_odds(odd_zeros))

194 else:

195 num = odd_zeros[0]

196 res_4 = num % 4

197 if num == 3:

198 return GeneralizedPermutation([0,1,2,3,4,5,6,7,8,9,10],[2,10,6,5,1,8,4,7,3,9,0])

199 elif num == 5:

200 return GeneralizedPermutation([0,1,2,3,4,5,6,7,8,9,10,11,12],[2,12,9,8,1,7,3,6,10,5

,4,11,0])

201 elif res_4 == 3:

202 top_row = [i for i in range(num+8)]

203 bot_row = [2,num+7,num+3,num+2,1]

204 for i in range(4,num+1,2):

205 bot_row += [i,i-1]

206 bot_row += [num+5,num+1,num+4,num,num+6,0]

207 return GeneralizedPermutation(top_row,bot_row)

208 else:

209 top_row = [i for i in range(num+8)]

210 bot_row = [2,num+7,num+4,num+3,1]

211 for i in range(4,num-1,2):

212 bot_row += [i,i-1]

213 bot_row += [num+2,num-2,num+1,num+5,num,num-1,num+6,0]

214 return GeneralizedPermutation(top_row,bot_row)

215

216 def even_ones_odds(odd_zeros,one_count):

217 r"""

218 Returns a single cylinder permutation representative.

219

220 Returns a permutation representative of a square-tiled surface having a single

221 vertical cylinder and a single horizontal cylinder in an Abelian stratum with odd

222 order zeros and an even, at least four, number of zeros of order 1.

223

224 Such representatives were constructed for every stratum of Abelian

225 differentials by Jeffreys [Jef19].

226

227 INPUT::

228

229 - ‘‘odd_zeros‘‘ - an even length list of odd positive integers an even number of which

230 are equal to one.

231

232 - ‘‘one_count‘‘ - a positive integer equal to the number of ones in ‘‘real_zeros‘‘.

233

234 EXAMPLES::

235

236 sage: from surface_dynamics import *
237 sage: from surface_dynamics.flat_surfaces.single_cylinder import *
238

239 sage: perm = even_ones_odds([1,1,1,1],4)

240 sage: perm

241 0 1 2 3 4 5 6 7 8

242 2 6 5 3 1 8 4 7 0

243 sage: perm.stratum_component() == AbelianStratum(1,1,1,1).unique_component()
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244 True

245 sage: cylinder_check(perm)

246 True

247 sage: perm = even_ones_odds([1,1,1,1,1,1],6)

248 sage: perm

249 0 1 2 3 4 5 6 7 8 9 10 11 12

250 2 8 1 5 11 7 3 10 6 12 9 4 0

251 sage: perm.stratum_component() == AbelianStratum(1,1,1,1,1,1).unique_component()

252 True

253 sage: cylinder_check(perm)

254 True

255 sage: perm = even_ones_odds([5,3,1,1,1,1],4)

256 sage: perm

257 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

258 2 6 5 3 9 8 4 7 10 13 12 15 11 18 14 17 1 16 0

259 sage: perm.stratum_component() == AbelianStratum(5,3,1,1,1,1).unique_component()

260 True

261 sage: cylinder_check(perm)

262 True

263 sage: perm = even_ones_odds([3,3,1,1,1,1,1,1],6)

264 sage: perm

265 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

266 2 8 13 5 11 7 3 10 6 12 9 4 14 20 18 17 19 16 1 15 0

267 sage: perm.stratum_component() == AbelianStratum(3,3,1,1,1,1,1,1).unique_component()

268 True

269 sage: cylinder_check(perm)

270 True

271

272 """

273 for i in range(one_count):

274 odd_zeros.remove(1)

275 four_ones = GeneralizedPermutation([0,1,2,3,4,5,6,7,8],[2,6,5,3,1,8,4,7,0])

276 six_ones = GeneralizedPermutation([0,1,2,3,4,5,6,7,8,9,10,11,12],[2,8,1,5,11,7,3,10,6,12,9,

4,0])

277 if one_count % 4 == 0:

278 perm = four_ones

279 for i in range((one_count-4)//4):

280 perm = cylinder_concatenation(perm,four_ones)

281 else:

282 perm = six_ones

283 for i in range((one_count-6)//4):

284 perm = cylinder_concatenation(perm,four_ones)

285 if len(odd_zeros) == 0:

286 return perm

287 else:

288 return cylinder_concatenation(perm,no_ones_odds(odd_zeros))

289

290 def odd_ones_odds(odd_zeros,one_count):

291 r"""

292 Returns a single cylinder permutation representative.

293

294 Returns a permutation representative of a square-tiled surface having a single

295 vertical cylinder and a single horizontal cylinder in an Abelian stratum with odd

296 order zeros and an odd, at least five, number of zeros of order 1.

297

298 Such representatives were constructed for every stratum of Abelian

299 differentials by Jeffreys [Jef19].

300
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301 INPUT::

302

303 - ‘‘odd_zeros‘‘ - an even length list of odd positive integers an odd number of which

304 are equal to one.

305

306 - ‘‘one_count‘‘ - a positive integer equal to the number of ones in ‘‘real_zeros‘‘.

307

308 EXAMPLES::

309

310 sage: from surface_dynamics import *
311 sage: from surface_dynamics.flat_surfaces.single_cylinder import *
312

313 sage: perm = odd_ones_odds([5,1,1,1,1,1],5)

314 sage: perm

315 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

316 2 4 7 3 9 8 6 5 10 14 13 11 1 16 12 15 0

317 sage: perm.stratum_component() == AbelianStratum(5,1,1,1,1,1).unique_component()

318 True

319 sage: cylinder_check(perm)

320 True

321 sage: perm = odd_ones_odds([3,1,1,1,1,1,1,1],7)

322 sage: perm

323 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

324 2 5 7 6 4 3 8 14 1 11 17 13 9 16 12 18 15 10 0

325 sage: perm.stratum_component() == AbelianStratum(3,1,1,1,1,1,1,1).unique_component()

326 True

327 sage: cylinder_check(perm)

328 True

329

330 """

331 for i in range(one_count-1):

332 odd_zeros.remove(1)

333 even_ones = [1 for i in range(one_count-1)]

334 return cylinder_concatenation(one_one_odds(odd_zeros),even_ones_odds(even_ones,one_count-1)

)

Origami method

The following method returns the 1,1-square-tiled surface permutation representative
as an origami; that is, as a pair of permutations in the symmetric group on the number
of squares.

1 def single_cylinder_origami(self):

2 r"""

3 Returns an origami associated to a single cylinder permutation representative.

4

5 Returns an origami in this connected component having a single vertical

6 cylinder and a single horizontal cylinder.

7

8 Examples::

9

10 sage: from surface_dynamics import *
11

12 sage: cc = AbelianStratum(4).odd_component()

13 sage: O = cc.single_cylinder_origami()

14 sage: O
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15 (1,2,3,4,5)

16 (1,4,3,5,2)

17 sage: O.stratum_component() == cc

18 True

19 sage: cc = AbelianStratum(5,3).unique_component()

20 sage: O = cc.single_cylinder_origami()

21 sage: O

22 (1,2,3,4,5,6,7,8,9,10)

23 (1,9,8,10,6,7,4,3,5,2)

24 sage: O.stratum_component() == cc

25 True

26 sage: cc = AbelianStratum(4,2).even_component()

27 sage: O = cc.single_cylinder_origami()

28 sage: O

29 (1,2,3,4,5,6,7,8)

30 (1,3,7,5,6,8,4,2)

31 sage: O.stratum_component() == cc

32 True

33

34 """

35 from surface_dynamics.flat_surfaces.origamis.origami import Origami

36

37 perm = self.single_cylinder_representative()

38 t0 = tuple([i for i in range(1,len(perm[0]))])

39 t1 = [1]

40 for i in range(len(perm[1])-2):

41 ind = perm[1].index(t1[i])

42 t1.append(ind+1)

43 t1 = tuple(t1)

44 return Origami(t0,t1)

Stratum methods

The following methods can be called on an Abelian Stratum.
1 def single_cylinder_representative(self, alphabet=None):

2 r"""

3 Returns a single cylinder permutation representative.

4

5 Returns a permutation representative of a square-tiled surface in this

6 component having a single vertical cylinder and a single horizontal cylinder.

7

8 Such representatives were constructed for every stratum of Abelian

9 differentials by Jeffreys [Jef19].

10

11 INPUT::

12

13 - ‘‘alphabet‘‘ - alphabet or ‘‘None‘‘ (defaut: ‘‘None‘‘):

14 whether you want to specify an alphabet for your representative.

15

16 EXAMPLES::

17

18 sage: from surface_dynamics import *
19 sage: from surface_dynamics.flat_surfaces.single_cylinder import cylinder_check

20

21 sage: C = AbelianStratum(2,0)

22 sage: p = C.single_cylinder_representative()
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23 sage: p

24 0 1 2 3 4

25 4 3 1 2 0

26 sage: p.stratum() == C

27 True

28 sage: cylinder_check(p)

29 True

30 sage: C = AbelianStratum(3,1)

31 sage: p = C.single_cylinder_representative(alphabet=Alphabet(name=’lower’))

32 sage: p

33 a b c d e f g

34 c f b g e d a

35 sage: p.stratum() == C

36 True

37 sage: cylinder_check(p)

38 True

39 sage: C = AbelianStratum(2)

40 sage: C.single_cylinder_representative()

41 Traceback (most recent call last):

42 ...

43 ValueError: no 1,1-square-tiled surfaces in this stratum try again with H_2(2, 0)

44 sage: C = AbelianStratum(1,1)

45 sage: C.single_cylinder_representative()

46 Traceback (most recent call last):

47 ...

48 ValueError: no 1,1-square-tiled surfaces in this stratum try again with H_2(1^2,

0^2)

49 """

50 genus = self.genus()

51 nb_real_zeros = self.nb_zeros()-self.nb_fake_zeros()

52

53 if genus == 2 and nb_real_zeros == 1 and self.nb_fake_zeros() < 1:

54 raise ValueError("no 1,1-square-tiled surfaces in this stratum try again with H_2

(2, 0)")

55 elif genus == 2 and nb_real_zeros == 2 and self.nb_fake_zeros() < 2:

56 raise ValueError("no 1,1-square-tiled surfaces in this stratum try again with H_2

(1^2, 0^2)")

57 else:

58 return self.one_component().single_cylinder_representative(alphabet)

59

60 def single_cylinder_origami(self):

61 r"""

62 Returns an origami associated to a single cylinder permutation representative.

63

64 Returns an origami in this connected component having a single vertical

65 cylinder and a single horizontal cylinder.

66

67 Examples::

68

69 sage: from surface_dynamics import *
70

71 sage: C = AbelianStratum(4)

72 sage: O = C.single_cylinder_origami()

73 sage: O

74 (1,2,3,4,5)

75 (1,4,3,5,2)

76 sage: O.stratum() == AbelianStratum(4)

77 True
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78 sage: C = AbelianStratum(2,0)

79 sage: O = C.single_cylinder_origami()

80 sage: O

81 (1,2,3,4)

82 (1,3,2,4)

83 sage: O.stratum() == AbelianStratum(2)

84 True

85

86 """

87 return self.one_component().single_cylinder_origami()
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