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LUKE JEFFREYS, CARLOS MATHEUS, AND CARLOS GUSTAVO MOREIRA

ABSTRACT. Let L and M denote the Lagrange and Markov spectra, respectively.
Itis known that L C M and that M \ L # @. In this work, we exhibit new gaps of L
and M using two methods. First, we derive such gaps by describing a new portion
of M\ L near to 3.938: this region (together with three other candidates) was found
by investigating the pictures of L recently produced by V. Delecroix and the last
two authors with the aid of an algorithm explained in one of the appendices to
this paper. As a by-product, we also get the largest known elements of M \ L and
we improve upon a lower bound on the Hausdorff dimension of M \ L obtained
by the last two authors together with M. Pollicott and P. Vytnova (heuristically,
we get a new lower bound of 0.593 on the dimension of M \ L). Secondly, we
use a renormalisation idea and a thickness criterion (reminiscent from the third
author’s PhD thesis) to detect infinitely many maximal gaps of M accumulating
to Freiman’s gap preceding the so-called Hall’s ray [4.52782956616...,00) C L.

1. INTRODUCTION

The classical theory of Diophantine approximation is concerned with how well
irrational numbers can be approximated by rational numbers. Given a positive
real number a we define its best constant of Diophantine approximation to be

1
L(w) := limsup ———.
paes 19030~ p)
In a sense, L(«) is the largest constant so that the inequality
p 1
a——| <
gl L{a)g?

has infinitely many solutions p,q € IN, g # 0. The Lagrange spectrum is defined to
be the set

L:={L(x) | « € R\ Q}.

Perron [Pe21] proved that if we have the continued fraction expansion

o = [ag;ay,az,...] :=ap+

+ 1
a
1 a2+%

then we have

L(a) = limsup ([an; a1, ..,a0] + [0;ap41, an2, .. .])-
n—o0
As such, we are also able to define the Lagrange spectrum in terms of the bi-infinite

shift space X := {1,2,3,...}%. More specifically, for (4;);cz € & we define
Mo((ai)iez) == [ag;a_1,a_p,...] +[0;a1,a,.. ],
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and, forj € Z,

Ai((a)iez) = Ao(0? ((a7)icz)) = Ao((aix))icz),
where 0 : ¥ — X is the left-shift sending (4;);cz to (a;11)icz. We can now define
the Lagrange spectrum to be

L:= {limsup A;(a) | a € Z}.

]
Similarly, given (a;);cz € ¥ we define
m((ai)iez) = sup An((4i)icz)-
nez
Then the Markov spectrum is defined to be the set

M:={m(a) | a € L}.

In the sequel, we will write a sequence (4;);cz as the string ...a_sa_jajaqay ...
where the asterisk denotes the Oth position. We will also use an overline to de-
note periodicity so that, for example, the sequence a; = (i mod 3) + 1 is denoted
1%23 = ...1231231*23123123.... This notation should be clear from the context
as we will mostly restrict to the subshift {1,2, 3,4}Z so, in particular, all 4; will be
single digits.

Markov [Ma79, Ma80] first studied the spectra L and M around 1880. It is
known that L € M C R* with LN (0,3) = M N (0,3) an explicit discrete set.
In 1975, Freiman [Fr75] showed that [p,00) C L C M, and (v,u) N M = & with
v, € M, where

v = Ag(323444313134*313121133313121) = 4.52782953841 . ..

and

u = Aog(121313223443211313121) = 4.52782956616.. . ..
The ray [p, o) is known as Hall’s ray after earlier work of Hall [Ha47] (see also
the intermediate results of Freiman-Judin [F]66], Hall [Ha71], Freiman [Fr73] and
Schecker [Sc77]).
Freiman [Fr68] also showed that M\ L # @. In fact, the second and third
authors together with M. Pollicott and P. Vytnova [MMPV22] recently proved that
the Hausdorff dimension HD(M \ L) of M \ L satisfies

0537152 < HD(M \ L) < 0.796445.

We direct the reader to the survey [MM21] and the textbooks of Cusick-Flahive [CF89]
and Lima-Matheus-Moreira-Romafia [L+20] for more details on these spectra.

1.1. A new portion of M \ L. Our first result finds a new portion of M \ L and
gives an improved lower bound for its Hausdorff dimension.

Theorem 1.1. The intersection of M \ L with the interval (3.938,3.939) is non-empty.
The largest known element of M \ L is

m(12331113311321231133311121211333*11121211333) = 3.938776241989784909... .

Remark 1.2. Our proof of this result yields that the local dimension of M \ L near 3.938
coincides with the dimension of a dynamically defined Cantor set which is richer than
the Cantor set () considered in [MMPV22, §4.6.5]. In particular, this improves the
lower bound on HD(M \ L) and, in fact, a heuristic computation (based on the so-called
Jenkinson—Pollicott method) indicates that HD(M \ L) > 0.593: see the next section.
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The proof of this result is contained in Section 2. We also, in Appendix A, give
some additional newly discovered portions of M \ L. We do not give the proof of
these claims as they do not lead to significantly better estimates of the Hausdorff
dimension of M \ L.

1.2. New maximal gaps of M. Our second result concerns maximal gaps in the
Markov spectrum M. Recall that Freiman proved that the gap (v, ) is a maxi-
mal gap of M. We find infinitely many new maximal gaps of M accumulating to
Freiman’s gap. Specifically, we prove the following.

Theorem 1.3. There is a sequence (ay, Br) of maximal gaps of M such that 1131 oy =
n—oo
a5 P =
In Section 3, we give a proof of Freiman’s result that (v, i) is a maximal gap
since the contributing lemmas are used in Section 4 in which we prove Theorem 1.3
via a renormalisation idea (leading to a sort of “recurrence on scales”) and a thick-
ness criterion in the spirit of the discussion of [M096].

1.3. Computational assistance in the investigations of M \ L. The candidate se-
quence giving rise to elements of M \ L analysed in Section 2 and those discussed
in the appendix were discovered with the assistance of a computer search. The
code was essentially running the arguments we will give in Section 2 which are
themselves similar to those given in previous work of the second and third au-
thors concerning elements of M \ L near to 3.7096 [MM?20].

We now describe the ideas behind the computer search. Firstly, for a candidate
finite sequence a4 we determine the Markov value of the periodic sequence s = a
determined by a. We then consider modifications of this sequence s where we force
the sequence to instead terminate by 21 to the right or by 12 to the left. We find the
modification that gives the smallest increase in the corresponding Markov value.
Call this modified sequence w. Next, we try to determine the central portions of
sequences that could give rise to Markov values in the range [m(s), m(w) + €], for
some small (possibly negative) e. By searching for central portions of larger and
larger length we can observe evidence for the one-sided periodicity we hope to
make use of in the arguments given in Section 2. If we see no evidence for such
one-sided periodicity after searching for central portions of a reasonable length
then we throw out the candidate a and try for a new finite sequence. The pseudo-
code describing the algorithm used to determine the central portions of candidate
sequences is given in Appendix B.

In practice the candidate finite sequences a are chosen to be odd length non-
semi-symmetric words, where a word is semi-symmetric if it is a palindrome or
a concatenation of two palindromes. We direct the reader to [MM20, Subsection
1.3] for a discussion of why odd length non-semi-symmetric words are natural
candidates for finding elements of M \ L.

Acknowledgements. We are thankful to the referee whose comments helped to
improve this paper.
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2. A NEW PORTION OF M \ L NEAR 3.938

We consider the word of odd length 11121211333. Note that it is non-semi-
symmetric (in the sense of Flahive), i.e., it is not a palindrome nor a concatenation
of two palindromes.

The Markov value of the associated periodic sequence is

Ao(11121211333*) = 3.938776241981028026 . . .

Generally speaking, our goal below is to show that a portion of M\ L occurs
near

A0(1212121133311121211333*11121211333) = 3.938776241981139302....

In the sequel, we shall study a sequence (..., Xy, ..., X_1,X5,X1,...,Xpn,...) €
{1,2,3}# with a Markov value m(x) = Ag(x) nearby 3.9387762419811.

For a finite sequence 4, inequalities of the form A¢(...a...) > v, say, mean that we
have Ag(w) > v for all bi-infinite sequences w that are obtained by extending 2 on
both sides.

2.1. Local uniqueness. Note that xo = 3. Moreover, the possible vicinities of x;
(up to transposition) are 13*1, 13*2, 13*3, 23*2, 23*3, 33*3.

Lemma 2.1. i) Ap(...13%1...) > 4.11
(ii) Ag(..33°3..) < Ag(...33°2...) < Ag(...23°2...) < 3.884

By the previous lemma, up to transposition, it suffices to analyse the extensions
to the right of 23*1 and 331, i.e., 23*11, 23*12, 23*13, 33*11, 3312, 33*13.

Lemma 2.2. Ao(..3*13...) > Ag(...3*12...) > 3.957.

By the previous lemma, it suffices to analyse the extensions to the left of 23*11
and 33*11, i.e., 123*11, 223*11, 323*11, 133*11, 233*11, 333*11.

Lemma23. (i) Ao(...323*11...) > Ag(..223*11...) > 3.9678
(i) Ag(..133*11...) < 3.9228

By the previous lemma, it suffices to analyse the extensions to the right of
123*11, 233*11, 333*11, i.e., 123*111, 123*112, 123*113, 233*111, 233*112, 233*113,
333*111, 333*112, 333*113.

Lemma 2.4. (i) Ag(...123*111...) > 3.9673
(ii) if 131 and 312 are forbidden, then Ag(...233*113...) < Ag(...233*112...) <
Ao(...233*111...) < Ap(...21233*11132...) < 3.93676
(i) Ag(...333*113...) < Ag(...333*112...) < 3.8969

By the previous lemma, it suffices to analyse the extensions to the left of 123112,
123*113,333*111, i.e,,1123*112, 2123*112, 3123112, 1123*113, 2123113, 3123*113,
1333*111, 2333*111, 3333*111.

Lemma 2.5. (i) Ao(...1123*112...) > Ao(...2123*112...) > 3.9414; in particular,
123*112 is forbidden if 312 is forbidden
(i) Ao(..2123°113...) < 3.93768
(iii) if 131 is forbidden, then Ag(...1123*113...) > Ag(...1123*11323...) > 3.9419

By the previous lemma, it suffices to analyse the extensions to the right of
1333*111, 2333*111, 3333*111, i.e., 13331111, 1333*1112, 1333*1113, 2333*1111,
2333*1112,2333*1113, 33331111, 3333*1112, 3333*1113.



NEW GAPS ON THE LAGRANGE AND MARKOV SPECTRA 5

Lemma 2.6. (i) Ag(...333*1113...) > 3.94084
(ii) Ag(...3333*1111...) < Ag(...2333*1111...) < Ag(...1333*1111...) < 3.92786
(i) Ag(...3333*1112...) < Ag(...2333*1112...) < 3.93844

By the previous lemma, it suffices to analyse the extensions to the left of 1333*1112,
ie., 11333*1112, 21333*1112, 31333*1112. Since 213 and 313 are forbidden (cf.
Lemma 2.2), our task is reduced to study the extensions to the right of 11333*1112,
ie., 11333*11121, 11333*11122, 11333*11123.

Lemma 2.7. Ag(...11333%11123...) < Ag(...11333*11122...) < 3.93631

By the previous lemma, it suffices to analyse the extensions to the left and right
of 1133311121 (while taking into account that 213 is forbidden), i.e., 111333*111211,
211333*111211, 311333*111211, 111333*111212, 211333*111212, 311333*111212.

Lemma 2.8. Ag(...311333*111211...) < Ag(..211333*111211...) <
Ao(...111333*111211...) < 3.938464

By the previous lemma (and after recalling that 131 and 3111333 are forbid-
den, cf. Lemmas 2.1 and 2.6 (i)), it suffices to analyse the extensions to the left of
111333*111212,211333*111212,311333*111212, i.e.,1111333*111212, 1211333*111212,
2111333*111212,2211333*111212,2311333*111212, 3211333*111212, 3311333*111212.

Lemma 2.9. Ag(...2111333*111212...) > 3.93889

By the previous lemma, it suffices to analyse the extensions to the right of
1111333*111212,1211333*111212,2211333*111212,2311333*111212, 3211333*111212,
3311333*111212, i.e.,

1111333*1112121,1111333*1112122, 1111333*1112123
1211333*1112121, 1211333*1112122, 1211333*1112123
2211333*1112121, 2211333*1112122, 2211333*1112123
2311333*1112121, 2311333*1112122, 2311333*1112123
3211333*1112121, 3211333*1112122, 3211333*1112123
3311333*1112121, 3311333*1112122, 3311333*1112123

Lemma210. (i) Ag(...1111333*1112121...) > Ag(...1111333*1112122...) > 3.938835
(i) max{Ag(...1211333*1112123...), Ao(...1211333*1112122...), Ao(...2211333*1112123...)} <
Ao(..2211333*1112122...) < 3.938751
(iii) Ag(...3211333*1112121...) > A¢(...2211333*1112121...) > 3.938824
(iv) Ag(..3211333*1112123...), Ag(...2311333*1112122...), Ag(...2311333*1112123...),
Ao(...3311333%1112122...), Ag(...3311333*1112123...) < A(...3211333*1112122...) <
3.9387718

By the previous lemma (and after recalling that 312, 22311 and 32311 are forbid-
den, cf. Lemmas 2.2 and 2.3 (i)), it suffices to analyse the extensions to the left of
1111333*1112123, 1211333*1112121, 2311333*1112121, 3311333*1112121, i.e.,

11111333*1112123, 21111333%1112123, 31111333%1112123
11211333%1112121, 21211333*1112121

12311333%1112121

13311333*1112121, 23311333*1112121, 33311333*1112121

Lemma211. (i) Ag(...11111333*1112123...) > 3.9388049
(i) Ag(...11211333*1112121...) > 3.9387855
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(iii) if 312 and 313 are forbidden, then Ag(...21111333%1112123...) >
Ao(...21111333*111212311...) > 3.93877973

By the previous lemma (and after recalling that 213 is forbidden), it suffices to
analyse the extensions to the right of 31111333*1112123,21211333*1112121, 12311333*1112121,
13311333*1112121, 23311333%1112121, 33311333*1112121, i.e.,

31111333%11121231, 31111333%11121232, 31111333*11121233
21211333*11121211, 21211333*11121212
12311333*11121211, 12311333*11121212
13311333*11121211, 13311333*11121212
23311333%11121211, 23311333*11121212
33311333*11121211, 33311333*11121212

Lemma 2.12. (i) if312 and 313 are forbidden, then Ag(...31111333*11121231...) <
Ao(...31111333*111212311...) < 3.938775326
(ii) #f131is forbidden, then Aq(...31111333*11121233...) > A¢(...31111333*11121232...) >
Ao(...231111333*11121232...) > 3.9387807
(iii) Ap(...21211333*11121212...) > Ap(...3311333*11121212...) > 3.938783
(iv) Ap(...12311333*11121211...) < Ap(...3311333*11121211...) < 3.9387521

By the previous lemma (and after recalling that 312 and 1123113 are forbid-
den, cf. Lemmas 2.2 and 2.5 (iii)), it suffices to analyse the extensions to the left of
21211333*11121211, 12311333*11121212, i.e.,121211333*11121211,221211333*11121211,
321211333*11121211, 212311333*11121212.

Lemma 2.13. If 131 is forbidden, then Ao(...321211333*11121211...) >
Ao(--221211333*11121211...) > Ap(...221211333*1112121132...) > 3.9387772

By the previous lemma, it suffices to analyse the extensions to the right of
121211333*11121211,212311333*11121212, i.e., 121211333*111212111, 121211333*111212112,
121211333*111212113,212311333*111212121, 212311333*111212122, 212311333*111212123.

Lemma 2.14. (i) Ao(...121211333*111212111...) > Ap(...121211333*111212112...) >
3.9387821
(ii) if 312 and 313 are forbidden, then Ao(...212311333*11121212...) >
Ao(...212311333*11121212311...) > 3.938776505

By the previous lemma (and after recalling that 312 is forbidden), it suffices to
analyse the extensions to the left of 121211333*111212113, i.e., 1121211333*111212113,
2121211333*111212113.

Lemma 2.15. Ag(...2121211333*111212113...) < 3.93877609

By the previous lemma (and after recalling that 131 is forbidden), it suffices to
analyse the extensions to the right of 1121211333*111212113,i.e., 1121211333*1112121132,
1121211333%1112121133.

Lemma 2.16. [f131 and 211321 are forbidden', then Ag(...1121211333*1112121132...) <
Ao(...231121211333*11121211322...) < 3.938775922

By the previous lemma, we are led to investigate the extensions of 1121211333%1112121133.
More concretely, the following statement is an immediate corollary of our discus-
sions so far:

1Compare with Lemma 2.5 (i)
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Corollary 2.17. Let x € {1,2,3}% be a sequence such that 3.93877609 < m(x) =
Ao(x) < 3.938776505. Then,

co.X_qxgxq - - =...1121211333%1112121133. ..

2.2. Self-replication. Our current goal is to describe the extensions of the string

1121211333*1112121133 leading to a Markov value strictly smaller than 3.938776241981443.
For this sake, note that the extensions to the left of 1121211333*1112121133 are

11121211333*1112121133, 21121211333*1112121133, 31121211333*1112121133.

Lemma 2.18. A((...31121211333*1112121133...) > A¢(...21121211333*1112121133...) >
3.93877687

By the previous lemma, it suffices to analyse the extensions to the right of
11121211333*1112121133, i.e., 11121211333*11121211331, 11121211333%11121211332,
11121211333%11121211333.

Lemma 2.19. A((...11121211333*11121211331...) > Ag(...11121211333*11121211332...) >
3.938776301

By the previous lemma, it suffices to analyse the extensions to the left of 11121211333%11121211333,
ie., 111121211333*11121211333,211121211333*11121211333, 311121211333*11121211333.

Lemma 2.20. A((...111121211333*11121211333...) > A((...211121211333*11121211333...) >
3.938776282

By the previous lemma (and the fact that 312 and 313 are forbidden), it suffices
to analyse the extensions to the right of 311121211333*11121211333, i.e., 311121211333*1112121133311,
311121211333%111212113332, 311121211333*111212113333.

Lemma 2.21. If 131 is forbidden, then Ao(...311121211333*111212113333...) >
Ao(...311121211333*111212113332...) > A(...2311121211333*111212113332...) > 3.938776248

By the previous lemma (and after recalling that 131, 22311, 32311, 123111 are
forbidden, cf Lemmas 2.1 (i), 2.3 (i), 2.4 (i)), it suffices to analyse the extensions to
the left of 311121211333*1112121133311, i.e., 3311121211333*1112121133311. Now,
we observe that the extensions to the left of 3311121211333*1112121133311 are
13311121211333*1112121133311,23311121211333*1112121133311, 33311121211333*1112121133311.

Lemma 2.22. [f213 and 3331113 are forbidden, then A(...13311121211333*1112121133311...) >
Ao(-.23311121211333%1112121133311...) > A((2123311121211333%111212113331112) =
3.938776242699

By the previous lemma, it suffices to analyse the extensions to the right of
33311121211333*1112121133311, i.e.,, 33311121211333*11121211333111, 33311121211333%11121211333112,
33311121211333*11121211333113.

Lemma 2.23. A¢(...33311121211333*11121211333113...) >
Ap(...33311121211333*11121211333112...) > 3.93877624592

By the previous lemma (and after recalling that 213 and 313 are forbidden), it
suffices to analyse the extensions to the left of 33311121211333*11121211333111,
i.e., 1133311121211333*11121211333111, 233311121211333*11121211333111,
333311121211333*11121211333111.

Lemma 2.24. If213 and 3331113 are forbidden, then A¢(...333311121211333*11121211333111...) >
A0 (--.233311121211333*11121211333111...) > A(...233311121211333*1112121133311121) >
3.93877624206
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By the previous lemma (and after recalling that 3331113 is forbidden), it suffices
to analyse the extensions to the right of 1133311121211333*11121211333111, i.e.,
1133311121211333*111212113331111, 1133311121211333*111212113331112.

Lemma 2.25. A((...1133311121211333*111212113331111...) > 3.93877624309

By the previous lemma, it suffices to analyse the extensions to the right of
1133311121211333*111212113331112, i.e,

e 1133311121211333*1112121133311121,
e 1133311121211333*1112121133311122,1133311121211333*1112121133311123

Lemma 2.26. Ag(...1133311121211333*1112121133311123...) >
Ao(...1133311121211333*1112121133311122...) > 3.938776242211

By the previous lemma (and after recalling that 213 is forbidden), it suffices
to analyse the extensions to the right of 1133311121211333*1112121133311121, i.e.,
1133311121211333*11121211333111211, 1133311121211333*11121211333111212.

Lemma 2.27. A((...1133311121211333*11121211333111211...) > 3.93877624201

By the previous lemma (and after recalling that 3111333, 2111333111212, 11113331112121
are forbidden, cf Lemmas 2.6 (i), 2.9, 2.10 (i)), it suffices to analyse the extensions to
the left of 1133311121211333*11121211333111212, i.e.,21133311121211333%11121211333111212,
31133311121211333*11121211333111212. As it turns out, the extensions to the right
of these two words are:

e 21133311121211333*111212113331112121, 31133311121211333*111212113331112121
e 21133311121211333*111212113331112122,31133311121211333*111212113331112122
e 21133311121211333*111212113331112123,31133311121211333%111212113331112123

Lemma 2.28. min{A(...21133311121211333*111212113331112123...),
Ao(...31133311121211333*111212113331112123...),
Ao(...31133311121211333*111212113331112122...) } >
Ao(...21133311121211333*111212113331112122...) >
Ao(...12121133311121211333*111212113331112122...) > 3.938776241990046,

since 32113331112121 and 22113331112121 are forbidden by Lemma 2.10,11211333111212
is forbidden by Lemma 2.11, and 32121133311121211 and 22121133311121211 forbidden
by Lemma 2.13.

By the previous lemma (and after recalling that 213 and 2121133311121212 are
forbidden, cf. Lemmas 2.2 and 2.12 (iii)), it suffices to analyse the extensions to the
right of 21133311121211333*111212113331112121, 31133311121211333*111212113331112121,
i.e.,21133311121211333*1112121133311121211, 31133311121211333%1112121133311121211.
As it turns out, the extensions to the right of these two words are

21133311121211333%11121211333111212113,
and
31133311121211333%11121211333111212113
because the strings 121211333111212111, 121211333111212112 are forbidden (cf.
Lemma 2.14 (i)). Finally, the resulting words extend to the right as
21133311121211333*111212113331112121133

and
31133311121211333*111212113331112121133
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because 131 and 11323, 11322, 211321 are forbidden (cf. Lemmas 2.3 (i) and 2.5 (i)).
In summary, our discussion so far yields the following statement:

Corollary 2.29. Let x € {1,2,3}% be a sequence with Markov value m(x) < 3.938776241990046.
If x contains the string 1121211333*1112121133, say,

X=...Xig..X .. Xij10... =...1121211333*1112121133. . .,
then one has
X =...Xj_15...% ...Xjpp1 = ...1133311121211333%11121211333"*1112121133.....

and the vicinity of x;7, is 1121211333**1112121133. In particular, by recursively analysing
the positions x;, 11k, k € IN, one actually has

X=...X_15...% ... =...1133311121211333*11121211333
Let
jo := Ao(11121211333*) = 3.938776241981028026... € L
and
1= Ap(21233111331132123113331112121133311121211333*11121211333111212232)

= 3.93877624199054947868687... € L

Proposition 2.30. If jo < m(a) = Ag(a) < 3.9387762419922 then (up to transposition)
either

a =..21133311121211333*111212113331112122...;

..21133311121211333*11121211333; or
..31133311121211333*11121211333.

Proof. Since jo < m(a) = Ag(a) < 3.9387762419922, we can use Corollary 2.17 and
all of the results from Lemma 2.18 up to Lemma 2.27. Because

min{Ag(...21133311121211333%111212113331112123...),
Ao(...31133311121211333*111212113331112123...),
Ao(...31133311121211333*111212113331112122...) } > 3.9387762419922,

we can partly use Lemma 2.28 together with the subsequent analysis to derive that
either

a =..21133311121211333*111212113331112122...,
a = ..21133311121211333*11121211333,

or
a =..31133311121211333%11121211333.

Proposition 2.31. If jo < m(a) < 3.9387762419922 and a contains
21133311121211333*111212113331112122,

then m(a) > jy.
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Proof. Asin Lemma 2.28, we are forced to have

m(a) = Ag(...12121133311121211333*111212113331112122....).
Therefore, our task is reduced to check that if

m(a) = Ap(...12121133311121211333*111212113331112122....),
then one actually has m(a) > j;. For this sake, observe that

Ao(a) > Ag(...112121133311121211333%111212113331112122....).
At this point, Lemmas 2.18, 2.20, 2.22 and 2.24 force us to have
Ao(a) > Ag(...113331112121133311121211333%111212113331112122...).
Hence,
Ao(a) > Ag(...123113331112121133311121211333%111212113331112122...)

since 131, 32311 and 22311 are forbidden (cf. Lemmas 2.1 and 2.3). It follows from
Lemma 2.5 (iii) that

Ao(a) > Ag(...132123113331112121133311121211333%111212113331112122....).
After Lemmas 2.2, 2.4 (i), 2.5 (i), one has
Ao(a) > Ap(...3111331132123113331112121133311121211333*111212113331112122....).

By Lemmas 2.1(i), 2.3 (i), 2.4 (i), 2.6 (i), the strings 131, 23111 and 3331113 are
forbidden, so that

Ao(a) > A¢(21233111331132123113331112121133311121211333*111212113331112122...).
We also have that
Ao(a) > A¢(21233111331132123113331112121133311121211333*1112121133311121223...).

We claim that 4 cannot contain 2231. Indeed, Lemma 2.2 forbids 22313 and
22312 since both contain 313 or 312, while Lemma 2.3 forbids 22311. So we see
that 2231 can never be extended.

We also claim that a2 cannot contain 3231. Indeed, Lemma 2.2 forbids 32313 and
32312 since both contained 313 or 312, while Lemma 2.3 forbids 32311. So we see
that 3231 can never be extedned.

Therefore, since 2231 is forbidden,

Ao(a) > /\0(ﬁ233111331132123113331112121133311121211333*11121211333111212232...).

We also have that 3231 is forbidden and so we find that

Ao(a) > /\0(ﬁ233111331132123113331112121133311121211333*11121211333111212237) =j1.
O

Proposition 2.32. The open interval | = (jo, j1) is a maximal gap of L.

Proof. 1f a is periodic and jo < m(a) < j; < 3.9387762419922, then Proposi-
tion 2.30 tells us that @ = 11121211333 in which case m(a) = jo & ], or a contains
21133311121211333%*111212113331112122. In the latter case, Proposition 2.31 then
tells us that m(a) > j; and so again m(a) ¢ J. Therefore, | does not contain the
Markov value of any periodic sequence and so, since the Lagrange spectrum is the
closure of the set of Markov values of periodic sequences, we conclude that | is
indeed a maximal gap of L. O
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Proposition 2.33. Let a € {1,2,3}% be a sequence with Markov value jo < m(a) =
Mo(a) < jy then my < m(a) < my, where

my = m(123311133113212121133311121211333*11121211333)

= 3.9387762419810960597...
and
my = m(12331113311321231133311121211333*11121211333)
= 3.9387762419897849009....

Proof. By Propositions 2.30 and 2.31, we have that
a =..21133311121211333*11121211333

or
a = ..31133311121211333*11121211333

We begin by analysing the former. Since 32113331112121 and 22113331112121
are forbidden by Lemma 2.10, 11211333111212 is forbidden by Lemma 2.11, and
32121133311121211 is forbidden by Lemma 2.13, we have

a=...12121133311121211333*11121211333.

Since 312 is forbidden, this sequence extends to the left with 1 or 2. Suppose that
it extends by a 1. By Corollary 2.29, and the same arguments we just made, we see
that
a =...12121133311121211333***11121211333%11121211333

and, once again, this word could extend on the left with 1 or 2. Here, the triple
indicates the neighbourhood in which Corollary 2.29 is being applied. However,
an extension with 2 is not possible because this would force A_11(a) > Ag(a) =
m(a), a contradiction. Continuing would leave us with a = 11121211333, so
m(a) = jo, which is also a contradiction. So we must have

a=...212121133311121211333*11121211333.

*3kok

Now
m(a) > m(...13212121133311121211333*11121211333).

By Lemma 2.2, 313 and 213 are forbidden in 4 and so
m(a) > m(..113212121133311121211333*11121211333).
Lemmas 2.4 and 2.5 forbid 111321 and 2113212, so we must have
m(a) > m(..3113212121133311121211333*11121211333).
Similar arguments allow us to show that
m(a) > m(..311133113212121133311121211333*11121211333).

Lemma 2.1 forbids 131. We claim that 23111 is also forbidden. Lemma 2.3 for-
bids 223111 and 323111 while Lemma 2.4 forbids 123111 and so 23111 is never
extendible and so must be forbidden. Therefore,

m(a) > m(...3311133113212121133311121211333*11121211333).
Lemma 2.6 prevents 3331113 and so
m(a) > m(...23311133113212121133311121211333*11121211333).
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From here on, 312 being forbidden by Lemma 2.2 gives us that
m(a) > m(123311133113212121133311121211333*11121211333) = m;.

Now analysing the possibility thata = ...31133311121211333*11121211333. Since
131 is forbidden, we have

m(a) < m(..231133311121211333*11121211333).
Now, we are forbidden to have 32311 and 22311 so we must have
m(a) < m(...1231133311121211333*11121211333).
Next, since 1123113 is forbidden, we must have
m(a) < m(..21231133311121211333*11121211333).

Then
m(a) < m(...321231133311121211333%11121211333).

Now we have
m(a) < m(...1321231133311121211333*11121211333).
Since 313 and 213 are forbidden, we must have
m(a) < m(...11321231133311121211333*11121211333).
Now 111321 and 211321 are forbidden so we must have
m(a) < m(..311321231133311121211333*11121211333).

Then
m(a) < m(...13311321231133311121211333*11121211333).

Since 313 and 213 are forbidden we get
m(a) < m(...113311321231133311121211333*11121211333).

then m(a) < m(...31113311321231133311121211333*11121211333).
Now 131 is forbidden and extending by 2 would lead to one of 32311, 22311, or
123111 all of which are forbidden. So we obtain

m(a) < m(...331113311321231133311121211333*11121211333).
We have that 3331113 is forbidden and so we must have

m(a) < m(..2331113311321231133311121211333*11121211333).
From here we obtain

m(a) < m(12331113311321231133311121211333*11121211333) = my.

This completes the proof. O
An immediate consequence of our discussion so far is the following statement:

Corollary 2.34. HD((M\ L) N (jo,j1)) = HD(K) where K is the Gauss—Cantor set of
continued fractions with entries 1, 2, 3 not containing the following forbidden strings (nor
their transposes):

131,312,313, 22311, 32311, 123111, 123112, 1123113, 3331113, 2111333111212,
11113331112121, 11113331112122, 22113331112121, 32113331112121,
111113331112123, 112113331112121, 211113331112123, 3111133311121232,
3111133311121233,2121133311121212, 331133311121212, 22121133311121211,
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e 32121133311121211, 121211333111212111, 121211333111212112,
e 21231133311121212,11212113331112121133.

Proof. Denote by F the set consisting of the strings above and their transposes.

By Corollary 2.17, if x € {1,2,3}% and jo < m(x) < ji, then ...x_1xix; -+ =

...1121211333*1112121133.. .. (up to transposition). Furthermore, the discussion

before Corollary 2.17 says that x doesn’t contain the strings in F \ {-y, 7'}, where

v = 11212113331112121133 is the “self-replicating” word and 7/ is its transpose.
By Propositions 2.30 and 2.31, one actually has that

x = y'1133311121211333* 11121211333

where y € {1,2,3}N doesn’t contain strings from F \ {*,~!}. By Proposition 2.33
and Corollary 2.29, either y has the form y = 611121211333 where ¢ is a finite string
or iy doesn’t contain a string from F. In particular, M N (o, j1) is included in the
union of a countable set and a set which is bi-Lipschitz homeomorphic to K, so
that HD((M \ L) N (jo,j1)) = HD(M N (jo,j1)) < HD(K). Since it is not hard to
see that (M \ L) N (jo, j1) contains the set

{m(y'212121133311121211333*11121211333) : y'21212 doesn’t contain strings from F}

which is bi-Lipschitz homeomorphic to K, the argument is now complete. 0

Performing calculations using the methods of Jenkinson-Pollicot [JP01], we ob-
tained heuristics suggesting that 0.593 < HD(K') < HD(K") < 0.595, where K’
is the Gauss—Cantor set of continued fractions with entries 1, 2, 3 not containing
the forbidden strings 131, 312, 313, 22311, 32311, 123111, 123112, 1123113, 3331113,
and 11333111212 (nor their transposes), and K" is the Gauss—Cantor set of contin-
ued fractions with entries 1, 2, 3 not containing the forbidden strings 131, 312, 313,
22311, 32311, 123111, 123112, 1123113, 3331113 (nor their transposes). Since the
every forbidden string for K has a subword that is a forbidden string for K/, we
see that K’ C K. Similarly, since the forbidden strings for K" are a strict subset of
those for K, we have K C K”. Hence we expect the heuristic

0.593 < HD(K) < 0.595

to be true which would also give us that HD(M \ L) > 0.593 - an improved lower
bound.

3. FREIMAN’S GAP

In [Fr75, Section 10, pp.66-71], G. Freiman proved the following result:
Theorem 3.1. One has M N (v, u) = & where
v=[43,1,31,34,44,3,2,3]+1(0;3,1,3,1,2,1,1,3,3,3,1,3,1,2,1]
and
u=[4473,22731,3121 +[0;3,21,1,31,3,1,2,1]

In this section, we extract key parts of the proof of this theorem. For this sake,
we restrict from now on our attention to the sequences a = (a,),cz € (N*)Z such
that

4 < m(a) = Ag(a) <5.
Note that these inequalities imply that

ac{1,2,3,4}% and ac {3,4}.
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3.1. Preliminaries. We require the following results the proofs of which can be
found in [L+20, Appendix D]. The first determine that the central portion of a
candidate sequence giving rise to Markov values in the range (v, ;) must be (up
to transposition) ...34*3... or ...34%4....

Lemma 3.2. Ifm(a) < 4.55, then a € {1,2, 3,4}% can not contain the subwords 41, 42
or their transposes.

Lemma 3.3. If m(a) < 4.52786, then a € {1,2, 3,4}Z can not contain the subwords
313133, 443131344 or their transposes.

Corollary 3.4. Suppose that 4.5278 < m(a) = Ag(a) < 4.52786. Then, a € {1,2,3,4}%
has the form ...a_qapay --- = ...343... or...344 ... (up to transposition).

3.2. Extensions of the word 343. The following results analyse possible exten-
sions of ...34"3....

Lemma 3.5. If m(a) < 4.52786, then a € {1,2, 3,4}Z can not contain the subwords
3432, 134312, 31343132, 21313431312 or their transposes.

Corollary 3.6. If4.5278295 < m(a) = Ag(a) < 4.5278296 and a_q1apa; = 343, then
A_g...ap...ay = 33112131343131344 (up to transposition).

Lemma 3.7. Ifm(a) < 4.528, thena € {1,2, 3,4}% can not contain the subwords 334,
223444 or their transposes.

We include the proof of the following corollary as we will make use of the de-
tails in the next section.

Corollary 3.8. If4.5278295 < m(a) = Ag(a) < 4.5278296 and a_q1apa; = 343, then
m(a) <v.

Proof. By Corollary 3.6, we have thata_g...a¢...a7; = 33112131343131344 (up to
transposition). We want to maximize 4.5278295 < m(a) = Ag(a) < 4.5278296. By
Lemma 3.2, this means thata_qg...ag...a9 = 3311213134313134443. By Lemma 3.7,
we have a_g...ap...a1; = 331121313431313444323. By Lemma 3.5, we derive
A_g...a4p...a11 = 33112131343131344432344. By repeating this argument, we
conclude thata_g...ap...a7--- = 33112131343131344432344. Similarly, we have
from Lemma 3.7 that a_qg...ag...a7 = 333112131343131344. By Lemma 3.2, we
geta_q3...ap...ay = 131333112131343131344. By Lemma 3.3, a_15...a9...a7 =
12131333112131343131344. By repeating this argument, weget...a_g...a9...ay =
12131333112131343131344.

In summary, our assumptions imply the maximal value of m(a) is v. O

3.3. Extensions of the word 344. The following corollary results from an analysis
of possible extensions of ...34*4....

Corollary 3.9. If 45278291 < m(a) = Ao(a) < 4.527832 and a_qapa; = 344, then
m(a) = p.

3.4. End of the proof of Theorem 3.1. The desired result follows directly from
Corollaries 3.4, 3.8 and 3.9.
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4. GAPS OF THE SPECTRA NEARBY FREIMAN’S GAP

In this section we prove Theorem 1.3. The proof of this theorem begins with the
following lemmas.

Lemma 4.1. If4.5278295 < m(a) = Ag(a) < 4.5278296, then either m(a) > u > v or
m(a) < vand, up to transposition,

a=...3311213134"3131344.. ..
Proof. This is a direct consequence of Corollaries 3.4, 3.6, 3.8 and 3.9. g

Define, for n,m € IN,
0, = (444323)" = 444323 ...444323 and @, := (313121)" = 313121...313121.
—_— _—

n times m times
Lemma 4.2. The family of sets
Wom = {m(a) = Ao(a) € (45278295, ) : a = §'323444313134*313121133313121¢’

with = 0,0, 0' = 0),0, and 0,0 € {1,2,3,4}N}
indexed by n,m € IN is a basis of neighborhoods of v in M.
Proof. This follows directly from Lemma 4.1 and the proof of Corollary 3.8. O

Lemma 4.3. Let
K = {[0;0]:0€{1,2, 3,4}N doesn’t contain the strings 14,24,433,434,
131313,2343,223444,123444 or their tmnsposes},
K = {[0;3,1,3,1,2,1,6] € K},
Ky = {[0;4,4,4,3,2,3,0] € K},
and define
¢(x)=10;3,1,3,1,2,1+x] and h(y) =1[0;4,4,4,3,2,3+y].
Then, for each n,m € IN, one has
Wym C An + By
where
A, =1{4313121,13,3,3,1,3,1,2,1 +g"71(x)] tx € K},
and
Bnm = {[0;3,1,3,1,3,4,4,4,3,2,3+ 1" 1(y)] : y € Kp}.

Proof. This is an immediate consequence of Lemma 4.2, and the fact that Lem-
mas 3.2, 3.3, 3.5, 3.7 ensure that a € {1,2, 3,4}N with m(a) < u can’t contain the
strings 14, 24, 433, 434, 131313, 2343, 223444, 123444 or their transposes. O

In view of Lemma 4.3, our task is reduced to find gaps in the arithmetic sums
Ay + By, for infinitely many pairs of indices #, m. In this direction, we observe that
Kj and Kj are dynamical Cantor sets which are invariant under the contractions

g(x)=10;3,1,3,1,2,1+x] and h(y) =1[0;4,4,4,3,2,3+y]
whose fixed points are
a = [0;313121] and B = [0;444323].
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For subsequent reference, we note that ¢ and / can be rewritten as

(x) = 14x +19 (y) = 127y + 436
SV = s 72 "W T Basy + 1847

In particular,

/ _ 1 / _ 1
A o Al o Ty
and
| 2y/362 - 29 V243542 - 430
N 53 7 b= 269

Lemma 4.4. One has # = minKj, f = min Ky, and

log|g'(a)]

—C_—— € R\ Q.

log [ (B)]
Proof. The fact that « = minKj;, § = minKj; follows from the definition of Kj,
K5 and the constraint on the continued fraction expansions of the elements of K.
Furthermore, a straightforward computation yields

R 1y 1
gl = (43 421/462)2 and 1 (f) = (987 +21/243542)2

Since 462 =2-3-7-11 and 243542 = 2-13-17 - 19 - 29, their square roots generate
distinct quadratic extensions of Q and

1 1
/ o m _ — h/ n
g (@) (43 + 2+/462)2m 7 (987 + 21/243542)2n (B)
for all n,m € IN*. Hence, igg E,E € R\ Q. This ends the proof of the lemma. [

Also for later use, let us recall the following bound on the distortion of certain
inverse branches of the Gauss map:

Lemma 4.5. Let f(x) = [0;ay,...,ax + x] be the inverse branch of the Gauss map asso-
ciated to a finite word (al,...,ak) €{1,2,3, 4}", k > 1. Then,

f'(x)]
< <23
()]
for any @ <x,y<2v2-2.
Proof. Since f(z) = Z’;:Sigf and |f'(z)| = m, where % = [0;a1,...,a;] for

all1 <j <k, wehave

1 (V2 _fwl (! 20v2-1)
z.3<<z<m1>) If’(y)|_<qu+1) 5( 12 ) =2

\f L<x,y<2v2—-2(as1/5 < qe_q/qx < 1). -

An interesting consequence of this lemma is the fact that the sets A;, and By, (cf.
Lemma 4.3) are mildly distorted “copies” of K; and K5. For this reason, the next
lemma about the “thickness” of K7 and Kj at their minima will be useful later.
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Lemma 4.6. Consider the intervals Ry = [a,a1], Uy = (aq,a2), Ly = [B, B1] and
Vo = (B1, B2), where

o w is the largest element of Ky of the form [0;3,1,3,1,2,1,3, E],

o w is the smallest element of Ky of the form [0;3,1,3,1,2,1,2, E],

o By is the largest element of Ky of the form [0;4,4,4,3,2,3,4, E],

o By is the smallest element of Ky of the form [0;4,4,4,3,2,3, 3,@].

Then,

|Ro| |Lo| 1

— <1 and — < —.

|Uo| |Vo| ~ 100
Proof. Since the strings 41, 42 and 2343 are forbidden in continued fraction expan-
sions in K, we have that 81 < [0;4,4,4,3,2,3,4,4,3] and 8, > [0;4,4,4,3,2,3,3,1],
and

ILol _ B1—B < 0.008565 <

Vol ~ B2— P 100°
Similarly, we have &y < [0;3,1,3,1,2,1,3,4] and ap > [0;3,1,3,1,2,1,2,1,3], and
R _
[Rol _ =& 98479 < 1.

[Uol a2 —m
This completes the argument. O

At this point, we are ready to complete the proof of Theorem 1.3. In fact,
Lemmas 4.2 and 4.3 reduce our task to find gaps in A, + By, for infinitely many
n,m € N*. Since A, = fpo¢" (K1) and By, = f o W (K;), where

fo(x) =14,3,1,3,1,2,1,1,3,3+x] and fi(x)=1[0;3,1,3,1,3+1x],
and Lemma 4.4 ensures the denseness of {|g’(«)|"/[W (B)|™ : n,m € N*} in Ry,
we get?, for any ¢ € Ry, there are infinitely many n,m € IN* such that

¢ |Ry|

- < < 2c,
2 |Lu
where R, = fop0¢"(Rg) and L,, = f; o W (Ly). Because Lemma 4.5 also says that
[Lm| _ 23 [Rn|
— < — and < 2.3,
|Viu| ~ 100 |U,|

where U, = foog"(Upy), Viu = f1 o h"(Vp) are gaps of A, and By, (as Uy and Vp
are gaps of K; and K3), we conclude that

\ILm| _ |Lm| |Ra| 2 |Ru| _ |Ru| |Lm| 2.3
= . <--23 and = . <20 —.
[Un|  [Ra| |Un| ~c [Vinl  [Lm| Vi 100
Thus, if we take ¢ = 5, then
[ Lo <092<1 and [Ro| <023 < 1.

| U [Vinl

This ends the proof of Theorem 1.3 because the inequalities above imply that A, +
B has a gap: indeed, these estimates say that any parameter ¢ € R such that
t — Uy, contains L, and their right endpoints are sufficiently close also satisfies

2Actually, using the general distortion bound statement in Chapter 4 of Palis-Takens book, it is
possible to show that for any c € R} and 0 < € < 1, one has c(1 —¢) < % < ¢(1+ ¢) for infinitely

many n,m € IN*.
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t—U, t—R,
} ( —

L, Vi

FIGURE 1. Producing gaps in A, + By,.

t — R, C Vi and, a fortiori, (t — An) N By = & (see Figure 1); hence, A, + By
misses an entire open interval of parameters. Furthermore, in the language of the
statement of Theorem 1.3, each maximal gap (a,, B) in the infinite sequence is
contained in Aj+ By, for some j, k € IN, with the diameter of Aj+ By tending to 0
as j,k — co. Note that j,k — oo as n — oo. It then follows from Lemma 4.2 that

lim a, = lim B, = v, as claimed.
n—oo n—oo

APPENDIX A. ADDITIONAL ELEMENTS OF M \ L

Here we present new elements of M \ L that are less than those discussed in
Section 2. We only give the definitions of the sequences and Cantor sets involved
and leave the proofs to the interested reader. These new sequences were also dis-
covered using the computational search technique discussed in the introduction.

A.l. Elements of M \ L near to 3.676. Computer investigations lead us to believe
that there is a portion of M \ L near to 3.676 given by an analysis of the subset of
the real line near to

m(3*21112123) = 3.676699417246755742 . . ..

A.2. Elements of M \ L near to 3.726. Computer investigations lead us to believe
that there is a portion of M \ L near to 3.726 given by an analysis of the subset of
the real line near to

m(3322211121223*) = 3.726146224233042720. . ..

Computer investigations also lead us to believe that there is a portion of M \ L
near to 3.726 given by an analysis of the subset of the real line near to

m(33222121223*) = 3.726278993734881116. ...

A3. Elements of M \ L near to 3.942. Computer investigations lead us to believe
that there is a portion of M \ L near to 3.942 given by an analysis of the subset of
the real line near to

m(33211121232331113*) = 3.942001159911341469 ... ..

Note that this value is higher than the elements near to 3.938 that we rigorously
considered in this paper. We chose not to analyse this sequence since, given its
length, it would require a more involved analysis of the combinatorics without
(in heuristic calculations) giving rise to an appreciable increase in the Hausdorff
dimension estimates of M \ L.
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APPENDIX B. PSEUDO-CODE FOR COMPUTER SEARCH

Below is the pseudo-code for the part of the computer search that determines
the central portion of sequences a € {1,2,3,4}% for which m(a) = Ag(a) € [I,n],
for some interval [I,n]. The algorithm was implemented using the SageMath
mathematical software [Sage].

Algorithm 1 - Find sequences whose Markov values could lie in the range [/, 1]

candidates + [1*,2*,3*,4%]
forbidden_words < [
alphabet < {_,1,2,3,4} # _is the empty string
extensions <— (alphabet x alphabet) \ {(_,-)}
[ +1
n<n
length_limit < maximum length of sequences to search up to
min_seq_len <— minimum length of all sequences in candidates
while min_seq_len < length_limit and candidates # [| do
for sequence in candidates do
allowable < True
remove sequence from candidates
for (x,y) in extensions do
trial_sequence < concatenation(x, sequence,y)
if trial_sequence contains any words from forbidden_words then
continue # the sequence is forbidden so move on to the next
end if
Amax < maximum possible value of Ag(trial sequence)
if Ayax < I then
continue # Ag is too small so move on to the next sequence
end if
for z in trial_sequence do
j + position of z in trial _sequence
Amin < minimum possible value of A;(trial sequence)
if Ay > n then
append trial sequence to forbidden_words
allowable < False # the Markov value is too large
end if
end for
if allowable then # the Markov value can lie in (1, n]
append trial_sequence to candidates
end if
end for
end for
if candidates # [] then
min_seq_len <— minimum length of all sequences in candidates
end if
end while
return candidates
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The code can also be used to ‘confirm’ results about gaps in the spectra. For

example, when running the code on intervals like (0,+/5), (v/12,4/13) or other
known gaps the code terminates and returns an empty list of candidate sequences.
On closed intervals, if the endpoints correspond to unique sequences, the code
will return a two element list of finite sequences approaching the sequences corre-
sponding to the endpoints.
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