
THE NON-PLANARITY OF SL(2,Z)-ORBITS OF SQUARE-
TILED SURFACES
Luke Jeffreys1 and Carlos Matheus2

1Heilbronn Research Fellow, School of Mathematics, University of Bristol, UK
2Centre de Mathématiques Laurent Schwartz, École Polytechnique, France

THE NON-PLANARITY OF SL(2,Z)-ORBITS OF SQUARE-
TILED SURFACES
Luke Jeffreys1 and Carlos Matheus2

1Heilbronn Research Fellow, School of Mathematics, University of Bristol, UK
2Centre de Mathématiques Laurent Schwartz, École Polytechnique, France

1. THE SQUARE TORUS

Surfaces are objects that are intrinsically 2-dimensional. Take, for example,
a sphere (the surface of a ball) or a torus (the surface of a ring doughnut).
In fact, all surfaces of this type (closed and orientable) are classified by the
number of ‘doughnut holes’. We call this number g the genus of the surface.

Fig. 1: Closed orientable surfaces of genus 0, 1, and 2

We can build a torus from a square in the following way. Firstly, we identify
the top and bottom sides by translation to obtain a cylinder. Secondly, we
identify the ends of the cylinder (again by translation) to form a torus. We call
this the square torus.

Fig. 2: Gluing the sides of a square to obtain the ‘square torus’

3. THE ACTION OF SL(2,Z)

Recall that SL(2, Z) is the group of 2× 2 integral matrices of determinant
1. An element of SL(2, Z) acts on polygons in the plane by acting on the
vectors determining their sides. In particular, we can act on the polygons used
to construct a square-tiled surface. It can be checked that pairs of parallel
sides of the same length are sent to pairs of parallel sides of the same length
and so the resulting polygons (after cutting and pasting) will again give rise to
a square-tiled surface.

Fig. 3: The action of the element T =

[
1 1
0 1

]
on a square-tiled surface

The group SL(2, Z) is generated by the matrices

T =

[
1 1
0 1

]
and S =

[
1 0
1 1

]
.

The matrix T acts by shearing the surface horizontally to the right. See Fig-
ure 3. Similarly, the matrix S acts by shearing vertically upwards. The action of
SL(2, Z) fixes the number of squares that a square-tiled surface is constructed
from and also the stratum that it lies in.

2. SQUARE-TILED SURFACES

Generalising the construction of the square torus, a square-tiled surface
is a surface realised by identifying by translation the sides of a collection of
unit squares. See for example the surface shown in Figure 4. Sides with the
same label are identified by translation. Visualising the construction is more
challenging here, but it can be checked that the resulting surface has genus 2.

Fig. 4: A genus 2 square-tiled surface

The vertices of the squares are identified to a single point on the surface.
Observe that there is 6π angle around this point. We call such a point a
singularity of excess angle 4π (since 6π = 2π + 4π).

In general, if a square-tiled surface has n singularities pi each of excess
angle 2kiπ then we say that the surface lies in the stratum H(k1, . . . , kn). In
particular, the surface in Figure 4 lies in the stratum H(2).

In practice, we consider square-tiled surfaces ‘up to cut and paste’ which
means that we are allowed to cut along straight lines between vertices and
then reglue. See Figure 5.

Fig. 5: The ‘cut and paste’ equivalence on square-tiled surfaces

4. EXPANDER GRAPHS

A family {Γn}n∈N of d-regular graphs of increasing size is said to be a fam-
ily of expander graphs if the Laplacians ∆n of Γn have a uniform spectral
gap.

Fig. 6: Ramanujan graphs provide constructions of expander graphs

Expander graphs possess many desirable properties. For example, they are
hard to disconnect and have small diameter despite having relatively few
edges. These properties make them useful to computer science in the areas
of network design, coding theory and pseudo-random number generation.

5. A LONG-STANDING CONJECTURE OF MCMULLEN

The SL(2, Z)-orbits of (primitive) n-squared square-tiled surfaces in H(2) were classified by McMullen and Hubert-Lelièvre. There is a single orbit for each n = 3 and n ≥ 4
even, and two orbits called the A and B orbits for n ≥ 5 odd. The orbit for n = 3 is shown at the left of Figure 7. Since the matrices T and S generate SL(2, Z), each orbit can
be turned into a 4-valent graph with vertices the surfaces in the orbit and two surfaces connected by an edge if one is mapped to the other by T or S. We call these graphs orbit
graphs and denote them by Gn in the case of a single orbit, and by GA

n or GB
n when there are two orbits. The orbit graph G3 for n = 3 is shown at the right of Figure 7.

Fig. 7: The SL(2, Z)-orbit for n = 3 and the associated orbit graph G3

The following conjecture of McMullen has been open for nearly 20 years.
Conjecture. (McMullen) The orbit graphs of primitive square-tiled surfaces in the stratum H(2) form a family of expander graphs.

6. EXPANDER GRAPHS ARE NON-PLANAR

By work of Lipton-Tarjan, a family of expander graphs must be eventually
non-planar.

Fig. 8: The complete bipartite graph K3,3 and the complete graph K5 are non-planar

Wagner’s and Kuratowski’s Theorems state that a graph is non-planar if and
only if it can be reduced using specific combinatorial moves to either the com-
plete bipartite graph K3,3 or the complete graph K5.

7. SL(2,Z)-ORBITS ARE NON-PLANAR

In joint work with Carlos Matheus, we prove the following theorem.

Theorem. [J-Matheus, ’21] The orbits graphs Gn, GA
n , and GB

n are all non-
planar with the exception of G3 and GB

5 .

In particular, we give indirect evidence for the conjecture of McMullen.

To prove the non-planarity of the graphs we reduce each orbit graph to a K3,3
using the combinatorial moves that allow us to apply the results of Wagner and
Kuratowski.


