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1. Predicting the pathogenic impact of sequence variation
in the human genome

Using integrative methods from machine learning we have
developed a variety of classifiers for predicting if a variant in
the human genome is functional (or not) in disease.

Input Data: discrete, continuous, graph, sequence (ACGT)),
up to 30 types of data can be used by the algorithm.

One example of input data: sequence conservation across
species (exploit evolution). A variant in a region highly
conserved across species has a higher probability of being
functional in disease relative to a region with high variability
across species (it’s important, Nature can’t mess with it).
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Main tools developed

generic (FATHMM-MKL, -XF): fathmm.biocompute.org.uk

cancer (CScape, CScape-somatic): cscape.biocompute.org.uk

indels (FATHMM-indel): indels.biocompute.org.uk

visualisation: gtb.biocompute.org.uk

haploinsufficiency
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Main contexts

Single nucleotide variant (SNV): AACTAGGTA ↔
AACTAAGTA

Indel (insertion or deletion of genetic code): ACCGTATACG
↔ ACCGCG

Ongoing research programme (CScape-somatic, CScape-indel,
applications projects)
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FATHMM-XF

Positive examples: Human Gene Mutation Database (HGMD)

Neutral examples: the 1000 Genomes Project Consortium

We restrict neutral data to SNVs with a global minor allele
frequency ≤ 1% and remove any that appear in the
pathogenic dataset

To mitigate potential bias, we filter neutral examples, selecting
only those within 1000 positions of a pathogenic mutation.

Our final training set consists of 156775 coding examples and
25720 non-coding.

The model uses six feature groups and reaches 88.0% test
accuracy.
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2. CScape: cancer-specific prediction (2017)

Used cancer data from the COSMIC archive (FATHMM-MKL
is main variant annotator) (the positives).

Used data from 1000 Genomes Project (the negatives)

Associates a confidence measure to the predicted label
(disease-driver or neutral): Platt scaling, gives a p-score (a
proxy p-value)
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Typical feature groups

Genomic and Evolutionary: a comprehensive set of
conservation-based measures

Histone Modifications

Open Chromatin

Transcription Factor Binding Sites

Gene Expression

Sensitivity to methylation

Digital Genomic Footprinting Sites

Network data

for the coding predictor only we also used a variety of protein
structure measures.
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Test Accuracy (CScape predictor, 2017)

Positives: COSMIC data which shows little evidence of bias
and provides enough training examples to build a classifier
(balanced data). With this criterion we selected a recurrence
threshold of r = 5 in coding regions and r = 3 in non-coding
regions for the positives.

Negatives: 1000 Genomes.

Using balanced test sets, and LOCO-CV testing (LOCO: leave
one chromosome out), the classifier achieves a test accuracy
of 72.3% in coding regions and 62.3% in non-coding regions
with some higher test accuracies on independent datasets
(training and test sets approximately balanced: no bias
towards false positives or false negatives).
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Coding regions

Colin Campbell Novel Machine Learning Methods for Cancer Research



Non-Coding regions
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Evaluation

Coding regions: the peak test accuracy is 91.7%
(LOCO-testing) which is achieved for a cutoff on the
confidence measure at 0.89. For test data taken across the
genome, 17.7% of test examples had a high enough
confidence for prediction at this level.

Non-coding regions: the peak test accuracy is 76.1%, which is
achieved at a cutoff on the confidence of 0.70. Taken across
the entire genome, 14.8% of locations in non-coding regions
had a predicted label at this accuracy.

Compared CScape against other methods, on unseen data
from the International Cancer Genome Consortium, The
Cancer Genome Atlas, The Database of Curated Mutations
and ClinVar.
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Germline vs r = 1 somatic: there is a difference in the
distributions (here: sequence conservation scores)
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CScape-Somatic and more recent predictors, 2019

CScape-somatic: uses purely cancer data (r = 1, versus
recurrent)

More accurate: 74% in coding, 69% in non-coding.

Using more recent data and experimenting with new feature
groups: more than 80% test accuracy in coding regions looks
tractable (incomplete study).
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. . . but what do these methods tell you about cancer?

The following discussion is based on CScape (2017):

Mark Rogers, Hashem Shihab, Tom Gaunt, and Colin Campbell.
CScape: a tool for predicting oncogenic single-point mutations in
the cancer genome. Scientific Reports (Nature) 7, article number:
11597, (2017)

and it is based on this paper:

Madeleine Darbyshire, Zachary du Toit, Mark F. Rogers, Tom R.
Gaunt and Colin Campbell. Estimating the Frequency of Single
Point Driver Mutations across Common Solid Tumours. Scientific
Reports (Nature) 9, article number: 13452, (2019).
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Coding regions: false discovery rate and p-score
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Coding regions (FDR of 5%)
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Coding regions: alternative estimation
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Coding regions: alternative estimation
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Observation 1: the number of SNV disease-drivers in
coding regions is small in size, SNV-drivers are partially
identifiable

Coding: small number of SNV disease-drivers. There may be
many sites where single point mutations can act as drivers,
but an individual clone only has a small subset of these.

Very variable by type of cancer. For example:

Thyroid cancer: average number of SNV-drivers in coding
regions is 3.8 (492 samples), average across all cancers is 15.9
(5424 samples). Hypothesis testing: the probability that these
two distributions are the same is upper-bounded by 10−100

(well, the set sizes are large and the means very different).

Non-coding: not clear at present.
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CScape results

Coding regions: driver sets sizes in single figures or low double
figures depending on cancer type.

Hypermutution is excluded (alterations in proofreading
domains of POLE, POLD1)

Some differentiation within cancer types. Late stage prostate
cancer (typecode:PRAD) has twice as many coding
SNV-drivers as early stage prostate cancer (typecode:EOPC).

Even among those cancers with larger coding SNV-driver sets,
there are sub-populations (we call neo-modal) with smaller
driver sets).

Aligns with earlier arguments based on mutation rates which
suggest driver sets are small in size.
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Other results along these lines

Aligns with analysis by Martincorena et al, Cell 171,
1029-1041 (2017).

Martincorena et al: use a statistical argument based on the
ratio of non-synonymous to synonymous mutations (dN/dS),
synonymous mutations give a null base distribution of neutral
variants.

Martincorena et al: use data from the International Cancer
Genome Consortium (ICGC).

Ourselves: machine learning argument, use COSMIC (cancer)
and 1000 Genomes (neutrals) datasets for training and to
derive above plots.

Both approaches (coding regions): thyroid cancer has one of
the smallest driver sets, bladder cancer one of the largest.

We estimate more SNV-drivers in cancer, but the picture
presented is broadly in alignment between the two approaches.
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Historical

Nordling (1953) and Armitage and Doll (1954): age/cancer
incidence models, suggested 6 to 7 sequential mutational
events.

More recent (Tomasetti et al, 2015, lung and and colorectal
cancer): statistical argument, single digits.
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Observation 2: there is limited accumulation of extra
coding SNV drivers with stage of disease (for most
cancers)

Amalgamating data across different stages of disease is maybe
unwise? Tumour mutational burden may increase with stage
of disease and biopsies may be taken at different stages.
Unequal sampling rates: successful intervention may deplete
samples at later stages of disease.

Find: increasing numbers of SNV drivers with stage of disease
is an exception as a phenomenon, not the rule.

Early onset prostate cancer (typecode: EOPC, means): 2.5
(I), 3.8 (IIA), 6.5 (IIIB). Low start and increases.

Prostate cancer (PRAD), means: 4.4 (IIB) and 7.6 (IIC), 16.4
(IIIB), 21.8 (IVA). Low start but increases.
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... but the norm

Renal cell (RECA): 3.4 (I), 3.3 (II), 3.2 (III), 3.0 (IV). Low
and stays low.

Esophageal (ESCA): 13.5 (I), 9.9 (II), 10.0 (III), 12.2 (IVA).
Higher but constant.

Same conclusion as Martincorena et al (in Cell) (cf. their
Figure S4C, dN/dS) who argue (stage I versus stage IV) there
is little evidence for significant increases in the number of
drivers as disease progresses (the tumour mutational burden,
the number of non-synonymous SNVs could increase
irrespective of the number of drivers due to loss of genomic
repair mechanisms).
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Observation 3: certain genes are common as drivers

Criterion: minimum of one high confidence SNV-driver in
gene.

Find: TP53 in top five driver genes in 17 of the 25 cancer
types studied.

Three more broad-based driver-genes:

PIK3CA (6 of 25)
KRAS (5 of 25)
CTC-297N7.11 (4 of 25)
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Certain genes are fairly specific to a context

APC is the top ranked driver-gene for colon adenocarcinoma
(COAD) and colorectal (COCA) (top five driver-gene ranking
the same despite different sample sets).

KRAS: incidence of 86.5% in pancreatic cancer.

BRAF is in the top five driver-genes for skin cutaneous
melanoma and thyroid cancer.

Thyroid: high confidence SNV-drivers are present in BRAF in
55.8% of cases, next highest qualifying gene is NRAS at 1.3%.

A given common driver-gene can have varying influence in
different cancers:
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KRAS
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Observation 4: there are long tails of infrequent
driver-genes

The above driver-genes are well known.

However, the machine learning methods are partially
successful in actually identifying the driver alterations.

We have been ignoring other types of drivers (e.g. indels,
non-coding, etc: neuroblastoma, SNV-drivers barely play a
role, other drivers such as indels, copy number variants, etc,
must be significant).

The above genes (TP53, BRAF, KRAS, etc) are common
drivers, but they are accompanied by long tails of infrequent
driver-genes.

Consequence: the driver-gene set is individual to a patient
or tumour (as expected)
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Driver-gene tails
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The top common gene-driver is KRAS in pancreatic cancer (left
side), liver cancer has a high heterogeneity, thyroid cancer the
lowest heterogeneity (top and bottom curves on the right).
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Observation 5: machine learning classifiers can generalize
(they are an AI method, we generalize too)

Example: A recurrent point mutation at chromosome 17,
position 64738741 G → C , introduces a D463H amino acid
substitution and this has been described as a hallmark of
chordoid glioma (Goode et al. Nature Commun. 9, p. 810,
(2018)).

Not in COSMIC and cBioPortal databases but CScape
(GRCh37) predicts this point mutation as oncogenic with high
confidence (0.964).

Consequence: can predict beyond its training data and would
be able, with partial accuracy, to label the driver-status of
single point mutations of infrequent genes in the driver tails.
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4. Conclusion

Would be very interesting to look at other types of drivers:
indels, copy number variation, methylation, etc.

Indels: a more substantive alteration so higher test accuracies
can be achieved relative to single nucleotides variants (SNVs).
Have proposed indel predictors (FATHMM-indel:
indels.biocompute.org.uk)

The above analysis has highlighted the importance of devising
accurate predictors covering non-coding regions of the cancer
genome (big, missing part of the picture).

The data rich world of the biomedical sciences is an excellent
area for deploying methods from machine learning.
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