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Abstract. In this paper we present a new score for gene annotation. This new score 
is based on the proximity matrix obtained from a trained Random Forest (RF) 
model. As an example application, we built this model using the association p-
values of genotype with blood phenotype as input and the association of genotype 
data with coronary heart disease as output. This new score has been validated by 
comparing the Gene Ontology (GO) annotation using this score versus the score 
obtained from the gene annotation “String” tool. Using the new proximity based 
measure results in more accurate annotation, especially in the GO categories 
Molecular Function and Biological Process.  

1 Introduction 

In large population epidemiological studies, access to the original data is often not 
straightforward, because of privacy issues related with genetic data [1]. However, 
summary statistics from the study could be made publicly available and used by third 
parties in further analyses, without concern about privacy issues. This summary data 
could include individual association coefficients (betas of the regression) and 
probability values (p-values) between the genetic variables and phenotypic traits. By 
comparing the association patterns with multiple traits for one genetic variant with 
another we could potentially obtain novel information about the functional similarity 
of those two variants. If two variants present a similar association pattern with a set of 
phenotypes, it is likely that both genes are functionally related in some way; 
conversely, if their association patterns are very different they are likely to be 
functionally unrelated. 
 There has been considerable effort in the last decade to develop computational 
methods for gene functional annotation [2]. Using a variety of types of data (amino 
acid sequences, evolutionary relationships, protein-protein interaction networks, 
expression or combination of them) many approaches have been developed, using 
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different methodologies. Some of these methodologies involve machine learning 
approaches, such as kernel methods, graph-based methods, Markov random field, etc. 
Some of the state-of-the-art methodologies have been compared in these papers [3] 
[4].  
 In this work we propose a new gene-gene interaction measure based on Random 
Forest to discover new Gene Ontology annotations using patterns of genotype-
phenotype association p-values (multi-phenotype association profiles, MPAP). 
 Because of their high performance in high dimensional analysis, Random 
Forests [5] have been used in recent years in a number of projects related to genetic 
analysis [6]. One of the important features of Random Forests is the potential to 
obtain a set of measures related with the model in addition to the classification model, 
such as the proximity matrix, the feature importance values or the local importance 
matrix. Once the Random Forest has been trained, the proximity matrix shows this 
similarity between the samples in the Out of Bag (OOB) set (internal validation set of 
the RF algorithm, used to get the performance measures, and also the proximity 
matrix). The proximity between two samples is calculated by measuring the number 
of times that these two examples end in the same terminal node of the same tree of the 
RF, divided by the number of trees in the forest.  

2 Methods 

2.1 Data 

Original association data was obtained by performing a linear regression association 
analysis of genotype data over a set of 64 blood samples phenotypes using PLINK 
[7]. Data are from The British Women’s Heart and Health Study (BWHHS), a UK-
based prospective cohort study of 4286 healthy women aged 60-79 years at baseline 
(1999-2001) [8]. Genotyping was performed using the Illumina HumanCVD 
BeadArray (Illumina Inc, San Diego, USA), which comprises nearly 50,000 Single 
Nucleotide Polymorphisms (SNPs) in over 2,000 genes selected on the basis of 
cardiovascular candidacy by an international consortium of experts [9]. The different 
phenotypes used in this study consisted of 64 cardiovascular-disease related blood 
measures and an indicator of whether a patient has suffered coronary heart disease. 
All phenotypic features were normalized to zero mean and unit variance.  

2.2 Study design 

We used a Random Forest (RF) implementation of R (package randomForest) as a 
regression model using as outcome the association odds ratio between each SNP and 
the presence or absence of coronary heart diseases CHD, and using as input to the RF 
the phenotype p-values of the association between each SNP and phenotype as 
features.  
 We used cross validation to select the main parameter of the RF, defined by 
Breiman as the number of features that each new tree selects randomly for 
classification. The best results were obtained using all the features (64). 
We also ran several executions to select the optimum number of trees comprising the 
RF. We observed graphically that results did not improve significantly when the 
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number of trees was bigger than ~2000 trees, so we selected a conservative number of 
2500 trees. 
 Once the model was trained, we obtained not only the regression model, but also 
the local importance matrix, which reflects the “importance” of each phenotype to 
each SNP for the prediction and the proximity matrix, which reflects the similarity 
between the SNPs. 
 We decided to use this similarity concept to functionally annotate genes 
involved in this study. Our hypothesis was that if two SNPs have similar behaviour 
(similar terminal nodes in random forest training) in a prediction model which relates 
association values between SNPs/phenotypes and coronary heart diseases, the genes 
related with these SNPs are likely to have similar functions associated with CHD. 
 We trained several random forest models to ensure that the proximity matrix is 
equivalent. We selected the median of 5 proximity matrices. Most of the values in the 
proximity matrix were zero, or very close to zero. Based on the histogram of these 
values we selected a threshold of importance to include SNPs in the study of 0.01. We 
applied a log transformation to these proximity values in order to homogenize the 
distribution and scale it to (0-1). Each gene is represented by different SNPs, and 
functions are associated with an individual gene. We assign the proximity value to a 
gene as the maximum value of all the SNPs associated with this gene. 

2.3 Gene annotation 

In order to assign a function to a gene, formally represented by a Gene Ontology 
annotation, we selected an approach called guilt-by-association [10]. This approach 
states that genes that are associated or interact share some function. This concept has 
been used extensively in computational biology to annotate a gene based on the 
functions of the genes associated with it, following different types of association, such 
as co-expression, appearance in the same pathway database, etc. We must note that 
the guilt-by-association approach has some drawbacks, discussed by [11], such us the 
importance of critical nodes in the network. 
 In the first step, for each gene of interest (GoI) in our study, we created a 
network of genes related with this GoI, using the web tool String [12]. This tool 
allowed us to retrieve a set of genes that are related with a particular gene, with a 
relatedness score. This score is calculated based on several concepts, such as co-
expression, interaction, occurrence in databases or text mining. This gene network 
was then used as the baseline of our annotation algorithm. For each gene of interest 
we selected the 20 most important genes with scores bigger than 100. Later we 
discarded genes in this set that were not in our study or with a low score in the 
proximity matrix.  
 In the second step, we selected all possible Gene Ontology annotations 
(including ancestors) of genes related with GoI. All these annotations were potential 
new annotations for our gene of interest. 
 In order to select which functions are related with the GoI and which not, we 
used an annotation algorithm proposed in [13]. For each potential GO tag, we 
annotated the genes that have this tag with a one, the genes without this tag with a 
minus one and the genes with unknown function (GoI) with a zero. We built a graph 
where nodes represent genes and the edges represent the relationship between them.  
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The edges have weights that represent the value of the proximity score between each 
pair of genes. We then applied the max flow / min cut algorithm [14]. This algorithm 
minimizes the inconsistent assignments for each GO annotation with a low 
computational cost using graph theory. The results were a set of candidate GO 
annotation related with GoI. 

2.4 Validation 

In order to validate the use of a proximity matrix as a new score value for gene 
annotation, we used a “leave-one-out” approach. We removed all GO annotation for 
each gene of interest in turn and then calculated the potential annotations for that 
particular gene using the GO terms of the other related genes. We then compared the 
obtained gene annotations with the true gene annotation using precision (intersection 
between number of real GO annotations and retrieved annotations divided by total 
retrieved annotations), recall (intersection between number of real GO annotations 
and retrieved annotation divided by total real annotation) and F-score (harmonic mean 
between precision and recall, 2 x (precision x recall) / (precision + recall) ). 
 We were unable to compare our results directly with the performance of other 
gene annotation methods, because these results are based on a single dataset. 
However, we could compare our proximity score with a well known score, such as the 
String database score (obtained from several concepts, such as co-expression, 
interaction, occurrence in databases or text mining). We applied the same 
methodology described above, using the String score [12] as weights between the 
nodes instead of proximity score, and compare the precision, recall and F-score 
between the two scores. 

3 Results 

As mentioned in the previous section, 5 RF were trained using p-values as input data. 
The mean of 5 models Out of the Bag (OOB) regression “pseudo R-square” error was 
0.0827 (0.0003) and the mean square error was 0.9172 (0.0003). In order to compare 
the performance of the Gene Annotation, we obtained the precision, recall and F-
score value for each gene in the study. In the top panel of figure 1 we use a boxplot to 
compare the F-score measure of the proximity score approach versus the F-score of 
the String annotation for each Gene Ontology category: molecular function (MF), 
biological process (BP) and cellular component (CC).  In the bottom panel of 
figure 1 we show, with more detail, the precision and recall for each GO category. 
Note that each value corresponds to a different gene.  The gray point represents the 
mean value and black line represents median. In table 1 we show the 
percentage of genes where precision or recall using the proximity score improves the 
String database baseline. 
 

 BP MF CC 
Precision 64.34% 59.61% 61.98% 

Recall 45.13% 50.28% 2.29% 
Table 1: Percentage of improvement. 
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Fig. 1: Results comparison boxplot: Top panel shows the comparison of F-score 
values between proximity and baseline scores in BP, MF and CC. Bottom panels 

show detail of BP, MF and CC proximity and recall comparisons. Gray point 
shows the mean of values and black line represents median 

4 Discussion 

In a machine learning context, the obtained RF performance measures are not 
particularly good (r-square 0.08). However, in the genetic association context, these 
results could be significant. Also, the objective of this work was not the prediction of 
association between a gene and cardiovascular disease, but to obtain a new useful 
score to group genes related with cardiovascular disease into sets of related genes, and 
use this score to discover and annotate gene functions.  
 Even with the low prediction performance of Random Forest, the score derived 
from the proximity matrix improves the gene annotation F-score in each of the three 
GO categories: cellular component (CC), molecular function (MF), and biological 
process (BP), as shown in the top panel of figure 1.  
 More detailed analysis of precision and recall values (bottom panel in figure 1), 
shows that the proximity score offers the greatest benefit to precision values. In BP 
terms, both the mean and median of precision in the proximity score improves over 
the String score approach. However, in recall, mean remains similar but median is 
lower (median proximity recall 0.95 vs. median String recall 1) 
 In MF GO annotation, the median of precision is similar, but the mean of the 
proximity score improves the mean of the String score. The mean of recall values is 
similar and the median of recall in the proximity is lower than the median of recall in 
the String score.  
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 In CC, both median and mean of precision with the proximity score improve the 
String score and the median of recall in both is the same (1). However, the mean of 
the proximity scores is much lower (0.89 vs 0.92) than the String score. This 
difference is reflected in the percentage of improvement, where 61% of terms 
improve the String score, and only 21% of them improve the String score in recall, 
which could indicate some biased result in CC, such as a lower number of selected 
annotations. These results indicate that the improvement of the proximity matrix 
appears mainly in MF and BP, which are more related with functional variations that 
potentially lead to a disease than CC.  
 In conclusion, this work proposes a new measure to infer gene-gene 
relationship, based on the proximity matrix of a Random Forest. Our measure obtains 
some improvements especially in terms of precision on molecular function and 
biological process, and similar results in recall. Even when the results show only a 
small improvement, they illustrate that our proposed score based in genotype-
phenotype association provides some new information, discovering new true GO 
terms, so it could improve the gene annotation process, by including it as a new 
measure in gene annotation process, in combination with other scores obtained by 
experimentation (similar expression, same pathway membership, etc.). The main 
advantage of this method is that raw genetic data is not needed, only association p-
values between SNPs and phenotypes. This is important because p-values and betas 
can potentially be obtained from very large consortia without any privacy issues.  
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