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Abstract—Recent improvements in sequencing technologies
provide unprecedented opportunities to investigate the role of
genetic variation in human disease. In previous work we have
proposed a machine learning approach to predicting whether
single nucleotide variants (SNVs) are functional or neutral in
human disease. Many data sources from the Encyclopaedia of
DNA Elements (ENCODE) may be relevant to this problem.
To integrate these data sources, we applied integrative multiple
kernel learning (MKL) that weights each source according to
its relevance. Using an MKL optimization that yields sparse
weights, we were able to eliminate the least informative data
sources from our model. However, when selecting from a wide
assortment of data sources, we have found that MKL may not be
an efficient method for eliminating uninformative sources. Many
data sources related to the human genome are incomplete: this
can reduce dramatically the data available for training and the
proportion of novel predictions that exploit all relevant sources.
Here we introduce a greedy sequential selection method that
assesses data sources in a structured fashion prior to MKL weight
optimization. This method allows us to eliminate a majority of
uninformative data sources prior to assigning kernel weights.
When we use this method with our coding-region predictor, we
select just five kernels for our final model, yielding increased
accuracy over our previous model. In addition, by reducing the
amount of data required for novel predictions, we are able to
increase by five fold our model’s coverage for new predictions.

I. INTRODUCTION

The introduction of fast and inexpensive sequencing tech-
nologies is providing many new insights into the role of
genetic variation in human disease. In this work we consider
single nucleotide variants (SNVs) in the human genome.
Predicting which of these are functional, as against neutral,
promises to improve our understanding of the molecular
mechanisms underpinning human disease. In a recent study
we proposed a novel algorithmic approach to predicting the
functional consequences of both coding and non-coding SNVs
(FATHMM-MKL) [12]. Our approach uses integrative multiple
kernel learning (MKL), a method that learns to weight differ-
ent types of data according to their relative informativeness.
In our work we use SimpleMKL [9], an MKL implementation
that uses an L1 norm to yield sparse solutions that implic-
itly exclude data sources by assigning them zero weights.
In our previous study, our predictor for non-coding SNVs

outperformed competing methods using just 4 out of 10 data
sources [12]. Our coding-region predictor, using all 10 data
sources, matched competitors’ performance when all data were
available, but its performance suffered when data were missing
from some sources.

With MKL, different types of input data are encoded into
kernel matrices that quantify the similarity of data objects.
A number of different methods have been proposed for
deriving kernel matrices for different types of data objects,
including data with discrete and continuous values, sequence
data and graph data [10]. With MKL, each constituent data
type is encoded into a corresponding base kernel K` (where
` = 1, . . . , p if there are p feature groups), from which
we can derive a composite kernel matrix K =

∑p
`=1 λ`K`,

where
∑p

`=1 λ` = 1 and λ` ≥ 0. The λ` are kernel weights.
This aggregate kernel can then be used with a kernel-based
classifier, such as a Support Vector Machine (SVM) [1], which
was the classifier used here.

Suppose the training set for a Support Vector Machine
consists of vectors xi with associated labels yi = ±1. The
index i labels the training example (xi, yi) and we will assume
there are m such training examples in the training set. During
the training process for the SVM, the learning parameters αi

are found by maximizing the following convex (quadratic)
objective function in αi [1]:

W (α) =

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjK(xi,xj) (1)

subject to the linear constraints:

αi ≥ 0 ,

m∑
i=1

αiyi = 0 (2)

Suppose α?
i are the values of the training parameters at the

optimum of the objective function stated in (1). From the α?
i

it is then straightforward to find the bias, b?, or offset in the
decision function via:



b? = −1

2

 max
{i|yi=−1}

 m∑
j=1

α?
jyjK(xi,xj)

 (3)

+ min
{i|yi=+1}

 m∑
j=1

α?
jyjK(xi,xj)

 (4)

For the binary decision function of an SVM, the predicted
label of a novel input z is then decided by the sign of
φ(z) =

∑m
i=1 α

?
i yiK(xi, z) + b?. With a composite kernel

of the form K(xi,xj) =
∑p

`=1 λ`K`(xi,xj) substituted into
(1) we see that the learning process now involves optimisation
of a linearly constrained linear program in the kernel weights
λ` and a linearly constrained quadratic program in the learning
parameters αi. This is a tractable problem in optimisation
theory and can be approached via a wide variety of meth-
ods [5], including semi-definite programming or quadratically
constrained linear programming (QCLP), for example.

A variety of methods have been proposed for MKL [5]
and this approach has been successfully demonstrated with
various classification problems in bioinformatics, which use
different types of input data e.g. [15]. By using all available
data encoded into a set of kernels, MKL classifiers most
frequently outperform a single kernel classifier constructed for
one type of data. In addition, the kernel weights are adjusted
according to the relative informative-ness of the different types
of data: this enhances overall performance and interpretation
of the model. In its simplest form, all weights in a composite
kernel are the same (λ` = 1

p ), a form we call an unweighted
aggregate. When all constituent data sources are at least
somewhat informative, an unweighted aggregate may perform
as well as one with fully-trained kernel weights. However,
when there is disagreement between kernels, performance
may decline substantially if uninformative kernels outnumber
informative ones. This behavior allows us to evaluate the
potential impact of each set of kernels prior to optimizing
kernel weights.

MKL optimization methods rely on the assumption that
data are available for every kernel for every training example.
However, as ENCODE is an ongoing project to annotate the
human genome, many data sources are incomplete. As we
add data sources it can become increasingly difficult to use
MKL to select the most informative ones, as MKL requires
training examples common to all of them (see Figure 1). This
same restriction can impact novel predictions when data are
missing for some sources. In previous work we addressed
this by re-weighting the remaining kernels [12] but this may
yield lower accuracy than a full-featured prediction (Figure 2).
Accordingly, we have developed a novel, greedy approach
that pre-selects data sources according to the accuracy of
their corresponding kernels. We assess each kernel using
cross-validation (CV) and rank the data sources according to
their accuracy on a validation set. We then build unweighted
aggregate models starting with the two most accurate kernels
and sequentially adding the next-lowest-ranked kernel until the

aggregate model’s performance on the validation set reaches
a plateau or declines. Our results suggest that this approach
can yield state-of-the-art predictors that dramatically increase
the proportion of full-featured predictions.

Fig. 1. Training data available for MKL as a function of the number of data
sources (kernels) being used. Shown are the total number of examples, along
with the number of positive (pathogenic) and benign (negative) examples.
The top two kernels (FATHMM conservation scores, Table III) have nearly
167,000 examples in common, including 57,000 positives. As we add kernels,
the number drops dramatically, until with 10 or more kernels we have fewer
than 5,000 examples, of which just 1,300 are positive.

Fig. 2. When all feature groups are available, prediction accuracy remains
high (black line) but when only a subset are available, accuracy may be
impacted (red line).

II. METHODS

For this study we used the same positive and negative
examples as in our previous work [12]: a set of pathogenic
SNVs derived from the Human Gene Mutation Database [4],
and a control set of neutral SNVs from the 1,000 Genomes
Project [2]. Many data sources may be relevant to predicting
whether a variant is functional in disease. In particular, we
used data from the ENCODE consortium, who have assembled
approximately 1,640 datasets comprising 24 different experi-
mental approaches in 147 cell lines under various conditions
[3]. To leverage this plethora of data, prediction methods



must integrate data from diverse sources and identify the
most informative of them. Our FATHMM-MKL method used
integrative MKL to weight kernels constructed from different
data sources, where zero weights implicitly exclude the least
informative sources. However, this may not be a practical
way to handle a large number of datasets: as we add new
datasets, training an MKL model becomes difficult because
many examples are not represented in all data sources. For
example, in our previous work only 2,146 out of 87,518
training examples (2.5%) were represented in all 10 of the
datasets we used [12]. In addition, a parsimonious model that
uses a few well-chosen data sources may generalize better than
a model constructed from many sources.

To assess each data source, we train a single-kernel support
vector machine (SVM) and compute its average accuracy in
5-fold CV. By isolating each data source in this manner,
we can assess its performance across the full spectrum of
SNVs represented in the data. To make results comparable
between data sources, we use balanced sets of 1,000 positive
(pathogenic) and 1,000 negative (neutral) examples in each
case. We then rank the data sources according to their average
CV accuracy on a validation set.

To identify the data sources we will include in our final
model, we construct an unweighted aggregate model using
the two top-ranked data sources and record its accuracy
on a validation set. We build subsequent models by adding
data sources in descending order of accuracy, constructing
an aggregate for each combination of data sources. For each
combination we establish separate training, validation and test
sets: a training set to train the model; a validation set to
determine optimal parameters and to record accuracy, and
a test set we leave aside to test the final MKL model. We
select as our final combination the data sources associated
with the unweighted aggregate where accuracy on validation
data reaches a plateau or declines. At this point we optimize
MKL weights and evaluate the final model on the test set.

III. RESULTS

A. Tests on original data

To assess our proposed method, we compared our original
FATHMM-MKL coding-region classifier with models com-
posed of two to ten component kernels, using the same
datasets as the original model. Two of these datasets, 100-
way conservation and 46-way conservation, were constructed
from FATHMM [11], PhastCons [13] and Phylop [7] scores,
while the remaining data were downloaded from ENCODE [3]
(for more details on the datasets and how they were selected,
see [12]). These data consist of ten feature groups, with an
intersection set of 7,597 examples (2,218 positive and 5,379
negative). To evaluate each component kernel, we performed
nested 5-fold CV on balanced sets of 1,774 positive/1,774
negative training examples and 443 positive/443 negative test
examples. We used the same training and test examples for all
kernels to ensure that we could compare CV statistics between
them. The test sets were put aside to test MKL models from
the same training data, while the training data were used to

evaluate individual kernels. Within each fold, we randomly
split the training data into training and validation subsets
(80% training and 20% validation). We used the validation
set to establish optimal kernel parameters and to determine
the maximum accuracy (per fold) for each kernel. We then
averaged each kernel’s accuracy across folds to yield a kernel
ranking (Table I).

Rank Feature group Source Accuracy
1 100-way conservation FATHMM 0.812
2 46-way conservation FATHMM 0.805
3 TFBS (Peak-Seq) ENCODE 0.698
4 Histone (ChIP-Seq) ENCODE 0.685
5 TFBS (SPP) ENCODE 0.655
6 Open chromatin (DNase-Seq) ENCODE 0.623
7 Open chromatin (FAIRE) ENCODE 0.575
8 Genome segmentation ENCODE 0.562
9 DNA footprints ENCODE 0.555

10 GC content ENCODE 0.552

TABLE I
5-FOLD CV PERFORMANCE OF INDIVIDUAL LINEAR KERNELS TRAINED
AND TESTED ON THE SAME DATA USED TO CONSTRUCT THE ORIGINAL

FATHMM-MKL CODING CLASSIFIER. FEATURE GROUPS ARE SHOWN IN
DESCENDING ORDER OF ACCURACY AVERAGED ACROSS THE FIVE FOLDS.
OUR GREEDY AGGREGATION METHOD SELECTS THE TOP FIVE KERNELS

(BOLD) FOR FURTHER MODEL REFINEMENT.

Next we constructed unweighted aggregate models from two
or more component kernels and compared their performance
to the original FATHMM-MKL on the same test examples.
For k = 2, . . . , 10 kernels, we constructed k-kernel aggregates
using the top k component kernels according to the rankings
shown in Table I. All of the unweighted aggregate models
performed better than any of their component kernels, and at
k = 5 we observed a nominal peak in performance, where
the unweighted aggregate performed nearly as well as the
original FATHMM-MKL (Table II and Figure 3), The k-
kernel aggregate models were trained on 80% of the data
and tested on the remaining 20% for five folds, hence each
was trained using less data than FATHMM-MKL and none
had prior exposure to the test examples. Despite this arguably
unfair comparison, the strong performance of these models and
the consistent accuracy for models with k = 5, . . . , 10 suggests
that we can use fewer datasets than the original model without
sacrificing performance.

B. Constructing a new model

For this study we obtained 57,276 pathogenic SNVs from
HGMD and identified 109,667 neutral (presumed benign)
SNVs from the 1,000 Genomes database for a total of 166,843
SNV examples. We were able to generate FATHMM scores
(100-way conservation and 46-way conservation) for all of
these examples. Within the 12 additional datasets we selected
from ENCODE, we found just one database (Mappability)
with all of these examples, while DNA footprints had just
15,399 (Table III). For our greedy aggregation procedure, we
used the data common to all 14 datasets. When we combine all
14 datasets, our training data consists of 4,849 SNVs common
to all of them, including 1,300 pathogenic and 3,549 neutral



Model Acc. ROC
Original 0.846 0.912
2-kernel 0.820 0.899
3-kernel 0.831 0.892
4-kernel 0.828 0.882
5-kernel 0.833 0.907
6-kernel 0.829 0.889
7-kernel 0.831 0.903
8-kernel 0.831 0.899
9-kernel 0.831 0.901
10-kernel 0.832 0.901

TABLE II
PERFORMANCE OF UNWEIGHTED AGGREGATE KERNELS ON ORIGINAL
TRAINING DATA. SHOWN ARE THE PREDICTION ACCURACY AND ROC

SCORE FOR THE ORIGINAL VERSION OF FATHMM-MKL (Original) AND
FOR AGGREGATES CONSISTING OF UP TO 10 KERNELS ON THE SAME TEST

DATA.

Fig. 3. Top: accuracy of aggregate models using the top k kernels in the list,
for k = 2, . . . , 10. We reach a nominal peak with 5 kernels, suggesting that
a reduced model may yield accuracy at least as high as our original model.
Bottom: Comparison of the top-performing 5-kernel combination (Table II)
with the original FATHMM-MKL. Both models were tested against the data
used to train FATHMM-MKL; results for the 5-kernel model are taken from
5-fold CV while results for FATHMM-MKL were taken directly from the
database. While FATHMM-MKL may yield slightly better discrimination,
there is little evident loss of performance when using the 5-kernel model.

(Figure 1). For each of these datasets we performed nested
5-fold CV using balanced sets of 1,000 pathogenic and 1,000
neutral SNV examples and recorded the average accuracy. For
each kernel we used the same examples in each fold, to ensure
that the accuracy results were comparable.

As described in Section III-A, we optimised kernel param-

Rank Feature group Examples Accuracy
1 100-way conservation 166,843 0.819
2 46-way conservation 166,843 0.785
3 TFBS (Peak-Seq) 63,106 0.706
4 Histone (ChIP-Seq) 150,882 0.681
5 TFBS (uniform) 48,882 0.673
6 TFBS SPP 32,494 0.652
7 Genome segmentation 166,703 0.601
8 Open chromatin (DNase-Seq) 79,540 0.600
9 Dnase uniform 79,219 0.586
10 DNA footprints 15,399 0.578
11 Open chromatin (FAIRE) 48,505 0.573
12 Riken CAGE 81,004 0.566
13 GC content 164,656 0.553
14 Mappability 166,843 0.496

TABLE III
THE FULL SET OF FEATURE GROUPS CONSIDERED FOR OUR NEW MODEL,

SHOWN IN DESCENDING ORDER OF ACCURACY. ACCURACY WAS
DETERMINED BY SELECTING FROM THE DATA AVAILABLE FOR EACH DATA

SET, AS OPPOSED TO THE CROSS-SECTION USED IN OUR ORIGINAL
MODEL. THE RESULTING PERFORMANCE, ALONG WITH NEW DATA
SOURCES (ITALICS) CHANGED THE RANKINGS FOR SOME FEATURE

GROUPS. USING OUR GREEDY SELECTION METHOD, WE IDENTIFIED SIX
DATA SETS (BOLD) AS LIKELY TO BE THE MOST INFORMATIVE.

eters for each fold by splitting the training data into training
and validation subsets. We did not find that any of the kernels
were linearly separable, so we searched C-values from 10−3

to 103 and selected the value that yielded the highest accuracy
and still permitted convergence. We then computed average 5-
fold CV accuracy for the validation sets to establish kernel
rankings. These new rankings are similar to those in our
first test (Table III): the two datasets based on FATHMM
conservation scores yielded the strongest performance, with
accuracy up to 84%. For the ENCODE datasets accuracy
ranged from 50% for Riken CAGE to 68% for TFBS (Peak-
Seq). The new ENCODE datasets altered the rankings slightly,
but only TFBS (Uniform), performed well enough to appear
in the top half of the rankings.

Fig. 4. Five-fold CV performance on the 14 new kernels illustrates
how performance for unweighted models can degrade as we add new, less
informative, kernels. Performance appears to peak with accuracy of 82%
with the top six kernels, after which we see sharp drop and continued weak
performance for aggregates with seven to 14 kernels.

When we applied our greedy aggregation procedure, we
found that average accuracy increased gradually from 81% for



for k = 2 to 82% for k = 6, but declined after that. We also
see a sharp decline in individual kernel performance between
the sixth and seventh ranked kernels (Table III, TFBS SPP
and Genome segmentation), so we selected the top six kernels
for MKL optimization. Note that the unweighted aggregates
may not perform as well as their best constituent kernels, as
conflicting scores from constituent kernels may cancel each
other out. However, the model can realize substantial gains
once optimum weights have been learned.

Fig. 5. We used SimpleMKL to optimize kernel weights for the final model.
Weights were highly consistent across the five folds, as indicated by the error
bars. This result helped us eliminate an additional data set, TFBS (SPP).
Note that although the 46-way conservation data are ranked higher than TFBS
(Peak-Seq), the associated weight is lower. This is likely due to redundancy
within the two FATHMM score datasets.

Two of these kernels are associated with FATHMM con-
servation scores and represent all available training data.
Missing data in the remaining sets reduced our overall training
set to 28,998 examples—still vastly more than we had for
our original study. We used SimpleMKL to establish kernel
weights for each fold, using only the training and validation
sets. For each kernel we then used the average weight as the
weight for the final model (Figure 5). Note that the optimized
weights do not track the relative rankings very closely. This
is likely due to redundancies between the data sets: the 100-
way conservation and 46-way conservation scores are closely
related, so the 46-way conservation weight is considerably
lower than we might expect given the relatively small dif-
ference in their kernel accuracies (Table III). Similarly, one
of the three TFBS kernels, TFBS (SPP) received zero weight,
allowing us to eliminate that source. In turn, this increased
the number of examples available to train the final model,
to 41,476 examples. This also improved coverage for novel
predictions, from under 5% for the original classifier to 24.9%
for the new model, a five-fold improvement.

To test our final model, we ran 5-fold CV using a balanced
set of 2,000 pathogenic and 2,000 neutral examples. We com-
pared these predictions with those of the original FATHMM-

MKL and two other state-of-the-art methods, CADD [6]1

and DANN [8] (Figure 6). Our new model yields substantial
improvements over our previous model (Figure 6, top), likely
due to the additional training data now available. All of the
top competitors yield similar performance (Figure 6, top): the
newest version of CADD (v1.3) is the best of these competitors
(AUC 0.90) while our new model yields the top AUC score
of 0.91. While these results do not suggest a clear winner,
they demonstrate that our new model provides accuracy that
is competitive with an ever-improving state of the art. In
addition, we found that we could obtain scores for all five
of our datasets across 24.9% of coding regions in the human
genome, a dramatic improvement over the severely restricted
coverage we obtained when using a 10-kernel model.

Fig. 6. Five-fold CV performance using the coding dataset and the top-
performing aggregate kernel using just the top five kernels. Focusing on
just the top five kernels allowed us to use all of our training data instead
of the tiny proportion used in our original model. In sum, this improves
performance substantially over FATHMM-MKL v1.0 (top) and outperforms
the top competing algorithms in our tests (bottom).

IV. CONCLUSIONS

Motivated by observations with our previous development
of MKL methods [16], in this paper we propose a greedy

1CADD version 1.3 was released as this draft was in preparation, so we
present results for versions 1.2 and 1.3.



approach to pre-selecting data sources. Our new model gives
greater test accuracy than our original model [12]. This greedy
approach suggests that certain types of data can be ignored
because the information they contain is implicit in an already
learnt data source (encoded into its respective kernel), or
because a new data source contains little new information and
may also contribute a substantive extent of noise.

These results suggest further promising directions for future
work, to improve the data integration procedure. We intend
exploring other MKL methods such as those surveyed in
[5]. Indeed, the difference of convex approach we proposed
in [16], achieved up to 6% greater test accuracy over the
SimpleMKL method used here, for benchmarking studies with
some datasets (though it has an adjustable parameter which
must be found via a validation study). The method in [16]
also has the advantage that the kernel weights λ` are found
separately from the learning parameters αi. After deriving the
kernel weights, and hence a composite kernel, this means that
the composite kernel can be used in any kernel-based learning
method. For example, the Core Vector Machine [14] can
handle larger datasets than an SVM (computational complexity
scales as m rather than the m3 of the SVM) and, by using
more training data, we could improve performance. Rather
than integrating component feature groups at the level of the
data, via a composite kernel, it would also be possible to
integrate classifiers via ensemble learning. In future projects,
we shall investigate these potential improvements in addition
to devising bespoke predictors for labelling variants in specific
disease contexts, such as cancer.
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