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Abstract

We present a variational inference scheme for semi-supervised clustering in which data is sup-
plemented with side information in the form of common labels. There is no mutual exclusion of
classes assumption and samples are represented as a combinatorial mixture over multiple clusters.
The method has other advantages such as the ability to find the most probable number of soft clusters
in the data, the ability to avoid overfitting and the ability to find a confidence measure for member-
ship of a soft cluster. We illustrate performance of the method on six data sets and find a positive
comparison against constrained K-means clustering.

1 Introduction

With semi-supervised clustering the aim is to find clusters or meaningful partitions of the data, aided by
the use of side information. This side information can be in the form of must-links (two samples must
be in the same cluster) and cannot-links (two samples must not belong to the same cluster). A number
of approaches have been proposed for semi-supervised clustering. Typically these methods have used the
constraints from the side information to either alter the objective function or the distance measure used.
Many methods have used modifications of pre-existing clustering schemes such as incremental clustering
algorithms [13], K-means clustering [2, 7] or Hidden Markov Random Fields [3]. One problem with some
of these approaches is that the method can work well if the correct number of clusters is already known:
K-means clustering is an example. However, a principled approach to finding K is generally not given.
Other potential disadvantages of some clustering approaches is that there is an implicit mutual exclusion
of clusters assumption i.e. samples are assumed to uniquely belong to a particular cluster. In many cases
this assumption may not be fully valid and it would be more appropriate for a sample to be associated
with multiple soft clusters. A further issue with some clustering approaches is that there is no principled
mechanism to avoid fitting to noise in the data. With Bayesian methods, however, we can incorporate a
Bayes prior which penalizes such overfitting.
Our motivation for considering semi-supervised clustering comes from potential applications in cancer
informatics. There have been a number of instances where unsupervised learning methods have been
applied to cancer microarray data sets, for example, and clinically distinct subtypes of cancer have been
indicated e.g. [1, 9]. However, in some cases a specific causative event is known and thus it is possible to
give common labels to some samples. A specific example might be acute lymphoblastic leukemia [15]. This
disease is known to have a number of subtypes with variable response to chemotherapy. An originating
event for some of these subtypes is believed known, sometimes stemming from the creation of fusion genes
through genetic rearrangement involving genes BCR-ABL, E2A-PBX1, TEL-AML1 or rearrangements
of the MLL gene. These rearrangements can be detected via FISH (Fluorescent in situ Hybridization),
and thus we can assign common labels to certain samples and use semi-supervised clustering to improve
characterization of unlabelled samples. In these cancer applications, the side information is typically in
the form of must-links which will therefore be the focus of this paper.
We thus propose a probabilistic graphical model approach to semi-supervised clustering with the side
information given as the addition of must-links between some samples. The proposed method provides
an objective measure of the number of clusters present and can readily handle missing values. Samples
are represented as combinatorial mixtures over a set of latent processes or soft clusters, so there is no
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mutual exclusion of clusters assumption. In addition, by allowing a representation overlapping different
clusters we can derive a confidence measure for cluster membership: a confidence measure for subtype
membership is important in clinical cancer informatics applications. As a Bayesian methodology we can
also modify the method to incorporate a Bayes prior penalizing over-complex models which would fit to
noise in the data. In the next two sections we propose our semi-supervised probabilistic graphical model,
followed by experiments in section 4.

2 The Methods

Our semi-supervised model utilizes the Latent Process Decomposition (LPD) model developed in [5, 12],
and hence we will call this variant semi-supervised LPD or SLPD. For the natural numbers we adopt the
notation Nm = {1, . . . , m} for any m ∈ N. For the data we use d as the sample index, g as the attribute
index, and script letters D,G to index the corresponding number of samples and attributes. The number
of clusters is K. The complete data set is E = {Edg : d ∈ ND, g ∈ NG}. This notation stems from our
cancer informatics motivation of using the expression value of gene g in sample d.
In our semi-supervised setting, we have additional block information C where each block c denotes a set
of data points that is known to belong to a single class. In keeping with the standard Bayesian models,
we also assume both blocks and the data points in each block are i.i.d. sampled. Specifically, this side
information can be represented by a D × C matrix δ with its entities δdc defined as follows

δdc =

{

1 if data d is a member of block c,
0 otherwise.

We can now describe our semi-supervised graphical model. In probabilistic terms, the data set E can be
partitioned into K-processes (soft clusters) described as follows. For a complete data set, a Dirichlet prior
distribution for the distribution of processes is defined by K-dimensional parameter α. For each known
block c, a distribution θc over the set of mixture components indexed by k is drawn from a single Dirichlet
distribution parameterized by α. Then, for all samples d in block c (i.e. δdc = 1), the latent indicator
variable Zdg indicates which process k is chosen, with probability θck, from the common block-specific
distribution θc. The value Edg for attribute g in sample d is then drawn from the kth Gaussian with
mean µgk and deviation σgk, denoted as N (Edg|µgk, σgk). We repeat the above procedure for each block
in C. The graphical model is illustrated in Figure 1 which is motivated by Latent Dirichlet Allocation
[5].

Figure 1: A graphical model representation of the method proposed in this paper. Edg denotes the value
of attribute g in sample d. µ and σ are model parameters. Zdg is a hidden variable giving the process
index of attribute g in sample d. θc gives the mixing over subgroups for sample d in block c denoted by
d ∼ c. The probability of θc is given by a Dirichlet distribution with hyper-parameter α.

The model parameters are Θ = (µ, σ, α) and we use the notation d ∼ c to denote sample d in block
c. From the graphical model in Figure 1, we can formulate the block-specific joint distribution of the
observed data E and the latent variables Z by

p(E, θ, Z|Θ, C) =
∏

c

p(θc|α)
∏

d∼c

p(Ed, Z|θc, Θ), (1)

where p(θc|α) is Dirichlet defined by p(θc|α) =
Γ(

∑

k
αk)

∏

k
Γ(αk)

∏

k θαk−1
ck . Using the block matrix δ, we further

see that
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∏

d∼c

p(Ed, Z|θc, Θ) =
∏

d

[

p(Zd|θc)p(Ed|Zd, µ, σ)

]δdc

=
∏

d

∏

g

[

p(Zdg|θc)N (Edg|µg, σg, Zdg)

]δdc

.

(2)

For notational simplicity, we regard Zdg as a unit-basis vector (Zdg,1, . . . , Zdg,K) which transforms the
process latent variable Zdg = k to the unique vector Zdg given by Zdg,k = 1 and Zdg,j = 0 for j 6= k.
Equivalently, the random variable Zdg is distributed according to a multinomial probability defined by

p(Zdg|θc) =
∏

k θ
Zdg,k

ck . Hence, the above equation can be rewritten as

p(E, θ, Z|Θ, C) =
∏

c

p(θc|α)
∏

d

∏

g

∏

k

[

θckN (Edg |µgk, σgk)

]Zdg,kδdc

. (3)

With these priors, the final data likelihood can be obtained by marginalizing out the latent variables θ
and Z := {Zdg : d ∈ ND, g ∈ NG}

p(E|Θ, C) :=

∫

θ

∑

Z

p(E, θ, Z|Θ, C)dθ. (4)

In particular, we can see from equations (2) and (3) that

p(E|Θ, C) =
∏

c

∫

θc

∑

Z

∏

d

∏

g

[

p(Zdg|θc)N (Edg|µg, σg, Zdg)

]δdc

p(θc|α)dθc

=
∏

c

∫

θc

∑

Zdg,d∼c

∏

d∼c,g,k

[

θckN (Edg|µgk, σgk)

]Zdg,k

p(θc|α)dθc

=
∏

c

∫

θc

∏

d,g

[

∑

k

θckN (Edg|µg, σg, Zdg)

]δdc

p(θc|α)dθc.

(5)

We should mention that, without block information (i.e. δ = ID×D), the above equation is the exact
likelihood of Latent Process Decomposition given in [12].

3 Model inference and parameter learning

We now consider model inference and parameter estimation under SLPD. The main inferential goal is
to compute the posterior distribution of the hidden variables p(θ, Z|E, Θ, C). One direct method is to

use Bayes rule p(θ, Z|E, Θ, C) = p(E,θ,Z|Θ,C)
p(E|Θ,C) . This approach is usually intractable since this involves

computationally intensive estimation of multi-integrals in the final likelihood p(E|θ, C).
In this paper, we rely on variational inference methods [10, 11] which maximize a lower bound on the like-
lihood p(E|Θ, C) to estimate the model parameters Θ and approximate p(θ, Z|E, Θ, C) in a hypothesis fam-
ily. One common hypothesis family is the factorized family defined by q(θ, Z|γ, Q) = q(θ|γ)q(Z|Q) with
variational parameters γ, Q where, in the expression of the distribution q, the dependency on the E, Θ, C is

omitted. More specifically, in our model we assume that q(θ|γ) =
∏

c q(θc|γc) =
∏

c

(Γ(
∑

k
γck)

∏

k
Γ(γck)

∏

k θγck−1
ck

)

,

and q(Z|Q) =
∏

d,g q(Zdg|Qdg) =
∏

d,g

(
∏

k Q
Zdg,k

dg,k

)

, among which γ, Q will be set as we describe below.
We can lower bound the log-likelihood by applying Jensen’s inequality to equation (4):

log p(E|Θ, C) = log

∫

θ

∑

Z

p(E, θ, Z|Θ, C)dθ

≥ L(γ, Q; Θ) := Eq

[

log p(E, θ, Z|Θ, C)
]

− Eq

[

q(θ, Z|γ, Q)
]

.

Consequently we can estimate the variational and model parameters by alternative coordinate ascent
methods known as a variational EM algorithm. The details are summarized in the Appendix.
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• E-step: maximize L with respect to the variational parameters γ, Q and get the updates

Qdg,k =
N (Edg|µgk, σgk)

[
∏

c exp(δdc(Ψ(γck) − Ψ(
∑

k γck)))
]

∑

k N (Edg|µgk, σgk)
[
∏

c exp(δdcΨ(γck) − Ψ(
∑

k γck))
] , (6)

and
γck = αk +

∑

d,g

δdcQdg,k. (7)

• M-step: maximize L with respect to α, µ and σ and get that

µgk =

∑

d Qdg,kEdg
∑

d Qdg,k

, σ2
gk =

∑

d Qdg,k(Edg − µgk)2
∑

d Qdg,k

. (8)

and the parameter α is found using a Newton-Raphson method as given in the Appendix.

The above iterative procedure is run until convergence (plateauing of the lower bound or the estimated
likelihood p(E|Θ, C), see the Appendix for details). Interpretation of the resultant model is very similar
to Latent Process Decomposition [12]. When normalized over k, the parameter γck gives the confidence
that a sample belonging to block c (which share a common label) belongs to soft cluster k. For each
soft cluster k the model parameters µgk and σgk give a density distribution for the attribute value g over
all samples, see [6] for examples of use of these density estimators in application to interpreting breast
cancer microarray data. If some values of Edg are missing, we omit corresponding contributions in the
M -step updates and the corresponding Qdg,k.
The above argument is based on a maximum likelihood approach. We end this section with a comment
about the maximum a posterior (MAP) solution. In this case µgk and σgk are produced by prior dis-
tributions p(µ) =

∏

gk p(µgk) and p(σ2) =
∏

gk p(σ2
gk) with p(µgk) ∼ N (0, σµ), p(σ2

gk) ∼ exp
(

− s
σ2

gk

)

.

These priors for penalizing over-complexity are justified in [12]. In this case we only need to change the
updates for µ and σ

µgk =
σ2

µ

∑

d Qdg,kEdg

σ2
gk + σ2

µ

∑

d Qdg,k)
, σ2

gk =

∑

d Qdg,k(Edg − µgk)2 + 2s
∑

d Qdg,k

. (9)

The argument leading to the above updates is the same as before except we replace the likelihood p(E|Θ)
by p(E|Θ)p(µ)p(σ), and consequently the lower bound is replaced by L(Q; Θ) + log p(µ) + log p(σ).

4 Experimental Results

To validate the proposed approach, we investigated the ML solution applied to four datasets from the
UCI Repository [8] and two cancer microarray data sets (see Table 1). The four data sets from the UCI
Repository have known sample labels and thus we can achieve an objective performance measure. As
mentioned in the introduction section, our interest in semi-supervised clustering stems from a potential
use in cancer informatics. Thus the next two data sets we consider are for cancer. One is a leukemia
microarray data [15]: in this case some labels are known since the causative events are observed genetic
translocations or rearrangements. We have only used a subset of the original data with unambiguous sam-
ple labels. The second dataset is for lung cancer [4]. Again this consisted of histologically labelled samples
derived from squamous cell lung carcinomas (21 samples), adenocarcinomas (139 samples), pulmonary
carcinoids (20 samples), small-cell lung carcinomas (6 samples) and normal lung tissue (17 samples). The
dimensionality of the both cancer datasets was reduced to 500 features based on largest variance.
In the evaluation of the methods given below, we investigated three issues. Firstly, we pursued a com-
parison of the proposed method with pre-existing semi-supervised clustering methods. As our principal
comparison we will use constrained K-means clustering (CKM) [2, 7] since this method has been widely
used (we will only compare against constrained K-means clustering with must-links). Secondly, we will
consider the possible gains to be made by using sample label information. Finally, we also compared the
unsupervised ULPD with semi-supervised SLPD to evaluate the gains made by using side information.
We use the Balanced Rand Index (BRI) as evaluation criterion. Let nTS (nTD) be the true number of
pairs of data in the same (different) clusters and nPS (nPD) be the correctly predicted number of pairs
of data in the same (different) clusters. BRI is defined as
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Data Sets Letter {I, J} Wine Iris Digit {3, 6, 8} Leukemia Lung Cancer
Number of Samples 150 178 150 174 90 203
Number of Features 16 13 4 16 500 500
Number of Classes 2 3 3 3 6 5

Table 1: Data sets used in the experimental study.

Data UKM CKM ULPD SLPD

Sets 0 25% 50% 0 25% 50%
Letter 0.501±0.005 0.502±0.010 0.501±0.009 0.519±0.025 0.521±0.031 0.527±0.039

Wine 0.877±0.052 0.885±0.051 0.893±0.047 0.930±0.032 0.926±0.032 0.935±0.032

Iris 0.824±0.036 0.825±0.035 0.828±0.041 0.872±0.037 0.910±0.043 0.920±0.038

Digit 0.751±0.068 0.758±0.069 0.772±0.078 0.736±0.046 0.747±0.045 0.755±0.045

Table 2: A comparison of constrained K-means clustering and SLPD. The entries are the BRI (mean ± standard
deviation over 100 trials using 3-fold cross validation tests). Hypothesis testing indicates a statistically significant
performance gain over CKM.

BRI = 0.5

(

nPS

nTS
+

nPD

nTD

)

(10)

The standard Rand Index is defined as (nPS + nPD)/(nTS + nTD), which favors assigning data points
to different clusters [14]. BRI favors matched pairs and mismatched pairs equally, hence it is more
suitable for evaluating clustering algorithms.
In Table 2 we tabulate performance for both constrained K-means clustering and SLPD using the BRI.
For each study, the whole data set was divided into 3 folds by random partition. One fold of the data set
was used as a test set and a subset of the remaining two folds was used for supervised training. Exactly
the same sample allocations were used in the evaluation of both constrained K-means clustering and
SLPD. For the training set we also imposed a degree of supervision to compare unsupervised learning
with semi-supervised clustering using different levels of supervision. The fraction of the data set used for
supervision was 0% (unsupervised), 25% and 50%. With random resampling of the data, this 3-fold cross
validation procedure was repeated over 100 trials. As observed from Tables 2 and 3, SLPD compares
favorably with CKM. In addition, by enforcing a degree of supervision (from 0% to 50%), we can observe
performance improvements of both SLPD and CKM over LPD and unconstrained K-means clustering
(UKM).
As a real-life application we tested SLPD on two cancer microarray datasets for leukemia and lung cancer.
We selected these datasets since labels can be reliably assigned to a large proportion of the samples and
thus we can evaluate performance of the proposed metethod. Thus, for the leukemia dataset, we used
a reduced 90-sample, 6-class subset of the data where labels can be assigned in our study (balanced
to give 15 samples per class). However, for the full dataset there are a small number of samples with
unclear assignment to subtype: this subset would be a good target for semi-supervised clustering since
we would want to use all available information to characterise these samples as defining novel subtypes
or as having a relation to known subtypes. The results are tabulated in Table 3, where the values are the
average values of 50 runs. For the leukemia dataset, both unsupervised LPD and semi-supervised LPD
were trained on 45 samples from 3 classes, with clustering performance evaluated on the other 45 samples
from the remaining 3 classes. For leukemia we find that the BRI index improves as we increase the extent
of supervision. We also find that SLPD consistently outperforms K-means clustering. A similar picture
is repeated for lung cancer.
Constrained K-means clustering is faster to execute compared to SLPD. However, SLPD has important
advantages over constrained K-means. K-means clustering can work well if K is known but the method
does not have an intrinsic mechanism for determining the correct model complexity. With SLPD we can
determine the appropriate number of clusters by determining the estimated log-likelihood on hold-out
data in a cross-validation study (see Appendix 6.2).
In Figure 2 we illustrate this procedure using the wine data set mentioned earlier. This data set has
3 class labels and 178 samples. To determine the appropriate model complexity we find the averaged
log-likelihood on 28 hold-out samples using the likelihood estimate given in the Appendix (section 6.2,
the curves are averages over 100 runs, error bars are omitted to simplify the Figure). For unsupervised
learning the peak is at 4 (solid curve). This result appears reasonable since a dendrogram decomposition
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Data UKM CKM ULPD SLPD

Sets 0 25% 50% 0 25% 50%
Leukemia 0.786±0.065 0.782±0.061 0.798±0.062 0.838±0.053 0.846±0.049 0.851±0.048

Lung Cancer 0.578±0.030 0.583±0.033 0.599±0.041 0.660±0.033 0.665±0.032 0.670±0.039

Table 3: A comparison of constrained K-means clustering and SLPD. The entries are the BRI (mean ± standard
deviation over the 50 trials of 3-fold cross validation tests). Hypothesis testing indicates a statistically significant
performance gain over CKM.

of this data set (Figure 2 (right)) suggests this is an appropriate decomposition. If all the class labels
are used we get a sharp peak at 3 (upper dashed curve) as expected. However, if we use the labels of one
class and leave the other two classes unlabelled we get a shallow peak at 3 (lower dotted curve). This
illustrates the point that the class labelling may not necessarily reflect the underlying cluster structure,
potentially negating any gains made by using side information.
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Figure 2: The left-hand Figure gives the Log-likelihood (y-axis) versus K for the wine data set for varying degrees
of supervision (see text). The right-hand Figure gives a dendrogram partitioning of the same data set using a
correlation distance measure and average linkage (only the upper branches of the dendrogram are illustrated).

5 Conclusion

In this paper we have presented a novel variational inference method for clustering with side information.
The method provides a principled approach to model selection via determination of the log-likelihood
on hold-out data, as illustrated in Figure 2. By contrast, many earlier methods for clustering with side
information appear to lack a sound approach to establishing the correct model complexity. As a Bayesian
methodology we could also implement prior beliefs which can improve model performance. Specifically,
we can incorporate a Bayes prior penalizing overfitting to noise. Semi-supervised clustering methods
have many important applications: we have mentioned cancer applications where partial labelling of the
samples is sometimes possible. Determining the number of subtypes and avoiding a fit to the extensive
noise present in many of these data sets are important issues in this application domain.

6 Appendix: derivation of the inference updates for SLPD

6.1 EM-updates

In the E-step, we compute the posterior distribution q(E, θ|γ, Q) and get the corresponding updates for
γ, Q. To this end, we take the functional derivative of q, and get that

q(Z|Q) ∝ exp
(

Eq(θ|γ)

[

log p(E, θ, Z|Θ, C)
])

, (11)

and
q(θ|γ) ∝ exp

(

Eq(Z|Q)

[

log p(E, θ, Z|Θ, C)
])

. (12)
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Note that the log joint likelihood can be expressed by

log p(E, θ, Z|Θ, C)
=

∑

c,k(αk − 1) log θck + C(log Γ(
∑

k αk) −
∑

k log Γ(αk))

+
∑

c,d,g,k Zdg,kδdc log θck +
∑

c,d,g,k Zdg,kδdc logN (Edg|µgk, σgk)

=
∑

c,k(αk − 1) log θck + C(log Γ(
∑

k αk) −
∑

k log Γ(αk))

+
∑

c,d,g,k Zdg,kδdc log θck +
∑

d,g,k Zdg,k logN (Edg|µgk, σgk),

where we used the fact
∑

c δdc = 1 for any d in the last equation. Note that Eq(θc|γc)

[

log θck

]

= Ψ(γck)−
Ψ(

∑

k γck) where Ψ is digamma function. Consequently, from the above log joint likelihood equation we
have that

Eq(θ|γ)

[

log p(E, θ, Z|Θ, C)
]

=
∑

d,g,k Zdg,k

(

∑

c δdc(Ψ(γck) − Ψ(
∑

k γck)) + logN (Edg|µgk, σgk

)

,

and Eq(Z|Q)

[

log p(E, θ, Z|Θ, C)
]

=
∑

c,k log θck

(

αk − 1 +
∑

d,g Qdg,kδdc

)

.
Therefore, putting the above equations into equations (11), (12) and normalizing Q we have the desired
updates (6) and (7) in Section 3.
At the M-step, the updates (8) for µ, σ are easy to get by solving the stationary equations ∂L

∂µgk
= 0 and

∂L
∂σ2

gk

= 0. However, for the parameter α, observe that, in its derivative equation ∂L
∂αi

= CΨ(
∑

k αk) −

CΨ(αi)+
∑

c(Ψ(γci)−Ψ(
∑

k γck)), the variable αi is mixed with other ones αj with j 6= i, then we have
to use iterative algorithm. Here, we employ a Newton-Raphson method to approximate the optimal α.
For this purpose, we compute the Hessian as follows Hij = C(Ψ′(

∑

k αk) − δijΨ
′(αi)). Hence, we have

the iterative procedure

αnew = αold −
(

H(αold)
)−1 ∂L(αold)

∂α
.

Because of the special form of the Hessian matrix (decomposable into diagonal and off-diagonal terms)
we can avoid matrix inversion of Hij , see Appendix of [5].

6.2 Computing the likelihood

Once the parameters have been estimated, we can calculate the likelihood using equation (5). By the
law of large numbers in probability theory, we can estimate the expectation with respect to p(θc|α) by
averaging over large enough set of N samples:

p(E|Θ, C) =
∏

c

1

N

N
∑

n=1

∏

d

[

∏

g

∑

k

N (Edg|µgk, σgk)θckn

]δdc

.

where {θckn} are N samples drawn from the Dirichlet distribution with parameter θc. Hence

log p(E|Θ, C) =
∑

c

log
1

N

∑

n

∏

d

[

∏

g

∑

k

N (Edg|µgk, σgk)θckn

]δdc

= −C log N +
∑

c

log
∑

n

∏

d

[

∏

g

∑

k

N (Edg|µgk, σgk)θckn

]δdc

.
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