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Abstract

In this paper we develop a novel generalization bound for learning the kernel

problem. First, we show that the generalization analysis of the kernel learning

problem reduces to investigation of the suprema of the Rademacher chaos pro-

cess of order two over candidate kernels, which we refer to as Rademacher chaos

complexity. Next, we show how to estimate the empirical Rademacher chaos com-

plexity by well-established metric entropy integrals and pseudo-dimension of the

set of candidate kernels. Our new methodology mainly depends on the principal

theory of U-processes and entropy integrals. Finally, we establish satisfactory ex-

cess generalization bounds and misclassification error rates for learning Gaussian

kernels and general radial basis kernels.
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1 Introduction

Kernel methods such as Support Vector Machines (SVM) have been extensively applied

to supervised learning tasks such as classification and regression, see e.g. Schölkopf and

Smola (2002); Shawe-Taylor and Cristianini (2004); Cucker and Zhou (2007); Stein-

wart and Christmann (2008). The performance of a kernel machine largely depends on

the data representation via the choice of kernel function. Hence, one central issue in

kernel methods is the problem of kernel selection.

Kernel learning can range from the width parameter selection of Gaussian kernels to

obtaining an optimal linear combination from a set of finite candidate kernels. The latter

is often referred to as multiple kernel learning (MKL) in Machine Learning and non-

parametric Group Lasso (Bach, 2008) in Statistics. Lanckriet et al. (2004) pioneered

work on MKL and proposed to automatically learn a linear combination of candidate

kernels for the case of SVMs using a semi-definite programming (SDP) approach. Sim-

ilar problems studied recently include hyperkernels (Ong and Smola, 2005), Bayesian

probabilistic kernel learning models (Girolami and Rogers, 2005), kernel discriminant

analysis (Ye et al., 2008) and information-thereotic data integration (Ying et al., 2009)

etc. Such MKL formulations have been successfully demonstrated in combining multi-

ple heterogeneous data sources to enhance biological inference (Lanckriet et al., 2004;

Damoulas and Girolami, 2008; Ying et al., 2009).

The above mentioned MKL models usually learn an optimal combination from a

finite set of candidate kernels. A general regularization framework including kernel

hyper-parameter learning and MKL was formulated in Micchelli and Pontil (2005); Wu

et al. (2006) with a potentially infinite number of candidate kernels which is generally

referred to as the learning the kernel problem. Specifically, let Nn = {1, 2, · · · , n}
for any n ∈ N and we are interested in the classification problem on the input space

X ⊆ Rd and output space Y = {±1}. The relation between input X and output Y is

specified by a set of training samples z = {zi = (xi, yi) : xi ∈ X, yi ∈ Y, i ∈ Nn}
which are identically and independently distributed (i.i.d.) according to an unknown

distribution ρ on Z = X × Y . Let K be a prescribed (possible infinite) set of candidate

(base) kernels and denote the candidate reproducing kernel Hilbert space (RKHS) with

kernel K byHK with norm ‖·‖K . In addition, we always assume that the quantity κ :=

2



supK∈K,x∈X

√
K(x, x) is finite. Then the general kernel learning scheme (Micchelli

and Pontil, 2005; Wu et al., 2006) can be cast as a two-layer minimization problem:

fφ
z = arg min

K∈K
min

f∈HK

{
1

n

∑

i∈Nn

φ
(
yif(xi)

)
+ λ‖f‖2

K

}
. (1)

Here, φ : R → [0,∞) is a loss function for classification and λ is a positive regu-

larization parameter. We use the superscript φ of fφ
z to emphasize the solution fφ

z is

produced by scheme (1) with loss function φ. When the loss function φ is the hinge

loss and K is the linear combination of the set of finite base kernels {K` : ` ∈ Nm},

i.e. K := {∑`∈Nm
λ`K` :

∑
`∈Nm

λ` = 1, λ` ≥ 0, ∀` ∈ Nm}, then the above ker-

nel learning framework (1) is reduced to the standard margin-based MKL formulation

(Lanckriet et al., 2004). If K =
{
e−σ‖x−t‖2 : σ > 0

}
then it is reduced to the formula-

tion for learning the Gaussian kernel hyper-parameter (Chapelle et al., 2002).

Statistical generalization analysis of learning the kernel problem (1) was pursued by

Bousquet and Herrmann (2003); Lanckriet et al. (2004); Ying and Zhou (2007); Mic-

chelli et al. (2005); Srebro and Ben-David (2006). In this paper we leverage Rademacher

complexity bounds for empirical risk minimization (ERM) and for SVM with a single

kernel (Bartlett and Mendelson, 2002; Bartlett et al., 2006; Koltchinskii and Panchenko,

2002) and develop a novel generalization bound for kernel learning problem (1). In par-

ticular, we show that generalization analysis of the kernel learning algorithms reduces

to investigation of the suprema of the Rademacher chaos process of order two over

candidate kernels, which we refer to as Rademacher chaos complexity. Next, we show

how to estimate the empirical Rademacher chaos complexity by well-established met-

ric entropy integrals and pseudo-dimension of the set of candidate kernels. Our new

methodology mainly depends on the principal theory of U-processes (De La Peña and

Giné, 1999). A preliminary version of this paper has appeared in the COLT conference

Ying and Colin (2009).

This paper is organized as follows. In Section 2 we illustrate our main theorems.

The main proofs for theorems are given in Section 3 and Section 4. Explicit error

rates with examples for learning Gaussian kernels and radial basis kernels are given in

Section 5. In Section 6 we discusses related work and compares our results with those

in the literature. The last section concludes the paper.
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2 Main Results

In this section we illustrate our main contributions.

2.1 Main Theorems

The true error or generalization error is defined as

Eφ(f) =

∫∫

X×Y

φ(yf(x))dρ(x, y),

and the target function fφ
ρ is defined by fφ

ρ = arg minf Eφ(f). Let the empirical error

Ez be defined, for any f , by

Eφ
z (f) =

1

n

∑

j∈Nn

φ(yjf(xj)).

For brevity, throughout this paper we restrict our interest to a large class of loss func-

tions for classification (Wu et al., 2006), see also a general definition of classification

loss functions in Bartlett et al. (2006).

Definition 1 A function φ : R → [0,∞) is called a normalized classifying loss if it is

convex, φ′(0) < 0, inft∈R φ(t) = 0, and φ(0) = 1.

Our target is to bound the true error by the empirical error. To this end, let the union

of the unit ball of candidate RKHSs be denoted by

BK :=
{

f : f ∈ HK and ‖f‖K ≤ 1, K ∈ K
}

.

By the definition of fφ
z , we get, for some RKHS HK , that 1

n

∑n
i=1 φ

(
yif

φ
z (xi)

)
+

λ‖fφ
z ‖2

K ≤ 1
n

∑n
i=1 φ

(
0) + λ‖0‖2

K = 1. Hence, ‖fφ
z ‖K ≤

√
1/λ. This implies, for

any samples z, that

fφ
z ∈ Bλ :=

1√
λ
BK :=

{ f√
λ

: f ∈ BK
}

. (2)

Hence, ‖fφ
z ‖∞ < κ

√
1/λ. Finally, for a Lipschitz continuous function ψ : R→ [0,∞)

we need the constant defined by

Mψ
λ = sup

{
|ψ(t)| : ∀|t| ≤ κ

√
1/λ

}
, (3)
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and denote its local Lipschitz constant by

Cψ
λ = sup

{ |ψ(x)− ψ(x′)|
|x− x′| : ∀|x|, |x′| ≤ κ

√
1

λ

}
. (4)

If ψ = φ is convex, then φ’s left derivative φ′− and right one φ′+ are well defined and Cφ
λ

is identical to Cφ
λ = sup

{
max

(|φ′−(t)|, |φ′+(t)|) : ∀|t| ≤ κ
√

1/λ
}
.

Our generalization analysis depends on the suprema of the homogeneous Rademacher

chaos of order two over a class of functions defined as follows, see Chapter 3.2 of De

La Peña and Giné (1999) for a general definition of Rademacher chaos of order m for

any m ∈ N.

Definition 2 Let F be a class of functions on X×X and {εi : i ∈ Nn} are independent

Rademacher random variables. Also, x = {xi : i ∈ Nn} are independent random vari-

ables distributed according to a distribution µ on X . The homogeneous Rademacher

chaos process of order two, with respect to the Rademacher variable ε, is a random

variable system defined by
{
Ûf (ε) = 1

n

∑
i,j∈Nn,i<j εiεjf(xi, xj) : f ∈ F

}
. We refer to

the expectation of its suprema

Ûn(F ) = Eε[sup
f∈F

|Ûf (ε)|]

as the empirical Rademacher chaos complexity over F .

It is worth mentioning that the Rademacher process { 1√
n

∑
i∈Nn

εif(xi) : f ∈ F}
for Rademacher averages can be regarded as a homogeneous Rademacher chaos process

of order one. The nice application of U-processes to the generalization analysis of

ranking and scoring problem is recently developed in Clémencon et al. (2008).

Our first main result shows that the excess generalization error of MKL algorithms

can be bounded by the empirical Rademacher chaos complexity over the set of candi-

date kernels.

Theorem 1 Let φ be a normalized classifying loss. Then, for any δ ∈ (0, 1), with

probability at least 1− δ, there holds

Eφ(fφ
z )− Eφ

z (fφ
z ) ≤ 2Cφ

λ

(2Ûn(K)

λn

) 1
2

+ 2κCφ
λ

( 1

nλ

) 1
2

+ 3Mφ
λ

( ln(2
δ
)

n

) 1
2
. (5)
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Theorem 1 will be proved in Section 3.

Now we apply the well-established theory of U processes to estimate Rademacher

chaos complexity by entropy integrals. To this end, let G be a set of functions on X×X

and x = {xi ∈ X : i ∈ Nn}, define the l2 empirical metric of two functions f, g ∈ G
by

dx(f, g) =
( 1

n2

∑

i,j∈Nn,i<j

|f(xi, xj)− g(xi, xj)|2
) 1

2
.

The empirical covering number N (G, dx, η) is the smallest number of balls with radius

η required to cover G. The empirical Rademacher chaos complexity Ûn(K) can be

bounded by the metric entropy integral as follows.

Theorem 2 For any x = {xi : i ∈ Nn}, there holds

Û(K) ≤ κ2 + 12e

∫ κ2

0

log [1 +N (K, dx, δ)] dδ

Theorem 2 will be proved in Section 4. Theorem 2 suggests that if logN (K, dx, ε) =

O(ε−p) with some 0 ≤ p < 1 then the Rademacher chaos complexity Ûn(K) is uni-

formly bounded. To estimate the covering number, a simple case would bound it by the

number of candidate kernels. For example, if

Kfinite = {K` : ` ∈ Nm} (6)

then N (K, dx, ε) ≤ m and hence

Ûn(Kfinite) ≤ κ2 + 12eκ2 log(m + 1) ≤ 24eκ2 log(m + 1), ∀m ≥ 2. (7)

If the candidate kernel set has an infinite number of kernels, the covering number can

further be estimated by capacity numbers such as the pseudo-dimension. For this pur-

pose, we recall the definition of kernel pseudo-dimension of a class of kernel functions

on the product space X ×X , see Anthony and Bartlett (1999).

Definition 3 Let K be a set of reproducing kernel functions mapping from X × X to

R. We say that Sm = {(xi, ti) ∈ X × X : i ∈ Nm} is pseudo-shattering by K if

there are real numbers {ri ∈ R : i ∈ Nm} such that for any b ∈ {−1, 1}m there

is a function K ∈ K with property sgn(K(xi, ti) − ri) = bi for any i ∈ Nm. Then,

we define a pseudo-dimension dK of K to be the maximum cardinality of Sm that is

pseudo-shattered by K.
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We are now ready to estimate the Rademacher chaos complexity using pseudo-

dimensions.

Theorem 3 If the pseudo-dimension dK of the set of basis kernels is finite, then we have

that

N (K, dx, ε) ≤ 2
(4eκ4

ε2

)dK
. (8)

Moreover, for any x = {xi : i ∈ Nn}, there holds

Ûn(K) ≤ (96e + 1)κ2dK. (9)

Theorem 3 will be proved in Section 4. For Gaussian-type kernels, we can explic-

itly estimate the pseudo-dimension, and hence bound the empirical Rademacher chaos

complexities. To see this, consider the set of scalar candidate kernels given by

Kgau =
{
e−σ‖x−t‖2 : σ ∈ [0,∞)

}
. (10)

The second class of candidate kernels is more general as considered in Micchelli et al.

(2005): the whole class of radial basis kernels. LetM(R+) be the class of probabilities

on R+. We consider the candidate kernel defined by

Krbf =
{ ∫ ∞

0

e−σ‖x−t‖2dp(σ) : p ∈M(R+)
}

(11)

Overall, for the above specific sets of basis kernels, we can have the following result.

Corollary 1 For the Rademacher chaos complexity of K, we respectively have the fol-

lowing estimation:

1. If K has a finite number of kernels given by (6) then

Ûn(Kfinite) ≤ 24eκ2 log(m + 1).

2. If K is the set of gaussian-type kernels given by equation (10) and (11) then

Ûn(Krbf) ≤ Ûn(Kgau) ≤ (1 + 96e)κ2.

Corollary 1 will be proved in Section 4. Combining Theorem 1 with Corollary 1,

the generalization bound can be summarized as follows: with probability at least 1− δ

there holds

Eφ(fφ
z )− Eφ

z (fφ
z ) ≤ 4

(
Cφ

λ

(
(192e + 2)κ2dK

nλ

) 1
2

+ Mφ
λ

( ln 2
δ

n

) 1
2

)
. (12)
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Moveover, if K = Kfinite is given by equation (6) then the above bound is reduced to

Eφ(fφ
z )− Eφ

z (fφ
z ) ≤ 4

(
Cφ

λ

(
48eκ2 ln(m + 1)

nλ

) 1
2

+ Mφ
λ

( ln 2
δ

n

) 1
2

)
. (13)

where m is the number of candidate kernels in K.

We conclude this subsection with an important remark on the bounds for learn-

ing a convex hull of candidate kernels. All the above estimations and bounds for the

Rademacher chaos complexity hold true for the convex hull of K defined by

conv
(K)

:=





∑

j∈Np

λ`K` : K` ∈ K, λ` ≥ 0,
∑

`∈Np

λ` = 1, p ∈ N


 ,

since it is easy to check, by the definition of the Rademacher chaos complexity, that

Ûn

(
conv

(K))≤ Ûn(K).

2.2 Error Rates in Classification

In this subsection we derive misclassification error rates for multi-kernel regularized

classifier sign(fφ
z ) with the regularization scheme (1). The quality of a classifier C :

X → Y is measured by the misclassification error which is defined by

R(C) :=

∫∫

X×Y

P (y 6= C(x)|x)dρ(x, y). (14)

The target is to understand how sign(fφ
z ) approximates the Bayes rule fc (Devroye et al.,

1997) defined by fc = arg infR(C). More specifically, we aim to estimate the excess

misclassification error

R(sign(fφ
z ))−R(fc).

As shown in Zhang (2004); Bartlett et al. (2006), the excess misclassification error can

usually be bounded by the excess generalization error: Eφ(fφ
z )) − E(fφ

ρ ). To trans-

fer generalization bounds in Subsection 2.1 to the misclassificaiton error bounds, we

introduce the error decomposition of problem (1).

Let the empirical error Ez be defined, for any f , by Eφ
z (f) = 1

n

∑
j∈Nn

φ(yjf(xj)).

We also introduce the regularization error defined by

D(λ) = inf
K∈K

inf
f∈HK

{
Eφ(f)− Eφ(fφ

ρ ) + λ‖f‖2
K

}
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and call the minimizer fφ
λ of the regularization error the regularization function. In

addition, we define the sample error Sz,λ by

Sz,λ =
{
Eφ(fφ

z )− Eφ
z (fφ

z )
}

+
{
Eφ
z (fφ

λ )− Eφ(fφ
λ )

}
.

From the standard error decomposition (Zhang, 2004; Bartlett et al., 2006; Steinwart

and Scovel, 2007; Ying and Zhou, 2007), we have that

Eφ(fφ
z )− Eφ(fφ

ρ ) ≤ D(λ) + Sz,λ. (15)

Throughout this paper, for simplicity we always assume the existence of the empirical

solution fφ
z and the regularization function fφ

λ , see discussions in Appendix B of Ying

and Zhou (2007).

We are now ready to state misclassification error rates. Hereafter, the expression

an = O(bn) means that there exists an absolute constant c such that an ≤ cbn for

all n ∈ N. We usually assume conditions on the distribution ρ or some regularity

condition on the target function fφ
ρ under which the regularization error D(λ) decays

polynomially. For instance, we can employ the following condition.

Definition 4 We say that ρ is separable by {HK : K ∈ K} if there is some fsp ∈ HK̄

with some K̄ ∈ K such that yfsp(x) > 0 almost surely. It has separation exponent

θ ∈ (0,∞] if we can choose fsp and positive constants ∆, cθ such that ‖fsp‖K̄ = 1 and

ρX

{
x ∈ X : |fsp(x)| < ∆t

} ≤ cθt
θ, ∀t > 0. (16)

Observe that condition (16) with θ = ∞ is equivalent to

ρX

{
x ∈ X : |fsp(x)| < γt

}
= 0, ∀ 0 < t < 1.

That is, |fsp(x)| ≥ γ almost everywhere. Thus, separable distributions with separation

exponent θ = ∞ correspond to strictly separable distributions. Other assumptions on

the distribution ρ such as the geometric noise condition introduced in Steinwart and

Scovel (2005) are possible to achieve polynomial decays of the regularization error.

Example 1 Let φ(t) = (1 − t)+ be the hinge loss and consider the MKL algorithm

(1) with K given by either Ksc or Krbf. Suppose that the separation condition holds
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true with exponent θ > 0. Then, by choosing λ = n−
2+θ

(2+3θ) , for any δ ∈ (0, 1), with

probability at least 1− δ there holds

R(sgn(fφ
z ))−R(fc) ≤ O

([
ln (1/δ)

] 1
2

( 1

n

) θ
3θ+2

)
.

The proof of this example is postponed to Section 5. Other examples such as least

square loss regression can be found in Section 5. In this case we need to consider the

function approximation (De Vito et al., 2006; Smale and Zhou, 2004; Ye and Zhou,

2008) on a domain or low dimensional manifold of Rd.

In analogy to the data-dependent risk bounds of Rademacher averages (Bartlett

et al., 2006), we can get margin bounds for learning the kernel problems using Rademacher

chaos complexities.

Corollary 2 Let φ(t) = (1 − t)+ be the hinge loss and γ > 0, 0 < δ < 1 and define

the margin cost function by

ψ(t) =





1, t ≤ 0

1− t
γ
, 0 < t ≤ γ

0, t > γ

(17)

Then, with probability at least 1− δ, there holds

R(sgn(fφ
z )) ≤ Eψ

z (fφ
z ) + 2

(2Ûn(K)

nλγ2

) 1
2

+ 2κ
( 1

nλγ2

) 1
2

+ 3
( ln(2

δ
)

n

) 1
2
.

Corollary 2 will be proved in Section 5. When K only has a single kernel K, we

have
Ûn(K) ≤ Eε

∣∣∣ 1
n

∑
i,j∈Nn

εiεjK(xi, xj)
∣∣∣ +

∣∣∣ 1
n

∑
i∈Nn

K(xi, xi)
∣∣∣

= Eε
1
n

∑
i,j∈Nn

εiεjK(xi, xj) + 1
n

∑
i∈Nn

K(xi, xi)

where the last equality follows from the positive semi-definiteness of kernel K. Hence,

the Rademacher chaos complexity can be estimated by

Ûn(K) ≤ 2

n

∑

i∈Nn

K(xi, xi) :=
2

n
trace(K),

where K = (K(xi, xj))i,j∈Nn . Consequently, Corollary 2 implies that

R(sgn(fφ
z )) ≤ Eψ

z (fφ
z ) +

4

γ

√
trace(K)

n
√

λ
+ 2κ

( 1

nλγ2

) 1
2

+ 3
( ln(2

δ
)

n

) 1
2
.
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This coincides with the bound in Bartlett and Mendelson (2002) for the single kernel

case with solutions fφ
z in the function space

{
f =

∑
i∈Nn

αiK(xi, ·) : ‖f‖K ≤ 1√
λ

}
.

We now present an example of margin bounds which can be directly obtained by

combining Corollary 1 with Corollary 2.

Example 2 Let φ(t) = (1 − t)+ be the hinge loss. Then, for any margin γ > 0, we

have the following estimation for gaussian-type kernel set and the set of finite kernels:

1. If K = Kgau or K = Krbf then, with probability 1− δ, there holds

R(sgn(fφ
z )) ≤ Rγ

z(f
φ
z ) + 2

((192e + 2)κ2

nλγ2

) 1
2

+ 2κ
( 1

nλγ2

) 1
2

+ 3
( ln 2

δ

n

) 1
2
.

2. If K is the convex hull of m candidate kernels, then, with probability 1− δ,

R(sgn(fφ
z )) ≤ Rγ

z(f
φ
z ) + 2

(48eκ2 log(m + 1)

nλγ2

) 1
2

+ 2κ
( 1

nλγ2

) 1
2

+ 3
( ln 2

δ

n

) 1
2
.

3 Generalization Bounds by Rademacher Chaos

In this section we prove Theorem 1 which states that the generalization bound of MKL

algorithm (1) can be bounded by well-established Rademacher chaos of order two. To

this end, recall the definition of the ordinary Rademacher averages, see e.g. Bartlett

and Mendelson (2002); Bartlett et al. (2005); Koltchinskii (2001); Koltchinskii and

Panchenko (2002).

Definition 5 Let µ be a probability measure on Ω and F be a class of uniformly

bounded and measurable functions on Ω. For any n ∈ N, define the random variable

by

R̂n(F ) :=
1√
n

sup
f∈F

∣∣∣
∑

i∈Nn

εif(zi)
∣∣∣

where {zi : i ∈ Nn} are independent random variables distributed according to µ and

{εi : i = 1, . . . , n} are independent Rademacher random variables, that is, P (εi =

+1) = P (εi = −1) = 1/2. Also, we often call Rn(F ) := E[R̂n(F )] = EµEε[Rn(F )]

the Rademacher averages (complexity)1 over the class F .

1The empirical Rademacher average is usually defined by R̂n(F ) := 1
n supf∈F

∣∣ ∑
i∈Nn

εif(zi)
∣∣.

For technical simplicity, we use its scaling version here.
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Hence, R̂n(F ) is the suprema of the Rademacher process { 1√
n

∑
i∈Nn

εif(zi) : f ∈ F}
indexed by F which can also be regarded as the homogenous Rademacher chaos process

of order one. Some useful properties of Rademacher averages can be found in Bartlett

and Mendelson (2002). Now we assemble the necessary materials to obtain the main

technical result.

Theorem 4 Let ψ be a Lipschitz continuous cost function satisfying inft ψ(t) = 0 and

ψ(0) = 1. Let Bλ be defined by equation (2) and Mψ
λ , Cψ

λ be respectively defined by (3)

and (4). Then, with probability at least 1− δ, there holds

sup
f∈Bλ

[Eψ(f)− Eψ
z (f)

] ≤ 2Cψ
λ

(2Ûn(K)

λn

) 1
2

+ 2κCψ
λ

( 1

nλ

) 1
2

+ 3Mψ
λ

( ln(2
δ
)

n

) 1
2
.

Similarly, with probability at least 1− δ, we have

sup
f∈Bλ

[Eψ
z (f)− Eψ(f)

] ≤ 2Cψ
λ

(2Ûn(K)

λn

) 1
2

+ 2κCψ
λ

( 1

nλ

) 1
2

+ 3Mψ
λ

( ln(2
δ
)

n

) 1
2
.

Proof By McDiarmid’s bounded difference inequality (see e.g. Devroye et al. (1997)),

with probability 1− δ
2

we have that

sup
f∈Bλ

[Eψ(f)− Eψ
z (f)

] ≤ E sup
f∈Bλ

[Eψ(f)− Eψ
z (f)

]
+ Mψ

λ

( ln 2
δ

2n

) 1
2
. (18)

The first term on the righthand side of the above inequality can be estimated by the

standard symmetrization arguments. Indeed, with probability at least 1− δ
2
, there holds

E
[
supf∈Bλ

(Eψ(f)− Eψ
z (f)

) ]
≤ 2EEε

[
supf∈Bλ

1
n

∑

i∈Nn

εiψ(yif(xi))
]

≤ 2Eε

[
supf∈Bλ

1
n

∑

i∈Nn

εiψ(yif(xi))
]

+ 2Mψ
λ

( ln 2
δ

2n

) 1
2 ,

(19)

where the last inequality used again the McDiarmid’s bounded difference inequality.

Note that ‖f‖∞ ≤ κ
√

1/λ for any f ∈ Bλ. Then, from the definition of Cψ
λ given

by equation (4), function ψ has a Lipschitz constant Cψ
λ . Applying the contraction

property of Rademacher averages (Theorem 7 of Meir and Zhang (2003)) implies that,

with probability 1− δ
2
,

Eε

[
supf∈Bλ

∑

i∈Nn

εiψ(yif(xi))
]
≤ Eε sup

f∈Bλ

∑

i∈Nn

εiψ(yif(xi))

≤ Cψ
λ Eε sup

f∈Bλ

∑

i∈Nn

εif(xi)

≤ Cψ
λ Eε

[
supf∈Bλ

∑

i∈Nn

εif(xi)
]
.

12



Also,

Eε sup
f∈Bλ

∑

i∈Nn

εif(xi) = Eε

√
1
λ

supK∈K sup‖f‖K≤1〈
∑

i∈Nn

εiKxi
, f〉K)

≤
√

1
λ
Eε supK∈K

∣∣∣ ∑
i,j∈Nn

εiεjK(xi, xj)
∣∣∣

1
2

≤
√

2n
λ

√
Ûn(K) +

√
1
λ

supK∈K
√

trace(K).

Putting all the above inequalities back into (19) yields that

E
[

sup
f∈Bλ

Eψ(f)− Eψ
z (f)

]
≤ 2Cψ

λ

√
2Ûn(K)

λn
+ 2Cψ

λ κ
( 1

λn

) 1
2

+ 2Mψ
λ

( ln 2
δ

2n

) 1
2 ,

where we used the fact that trace(K) ≤ κ2n. Putting this back into inequality (18)

yields the desired result.

By similar arguments as above, we can prove the second statement. This completes

the proof of the theorem. 2

We are ready to prove Theorem 1.

Proof of Theorem 1: Recall that fz ∈ Bλ and note that φ is a normalized classifying

loss. Then, applying Theorem 4 with ψ = φ implies inequality (5). 2

4 Estimating the Rademacher Chaos Complexity

In this section we discuss how to estimate the Rademacher chaos complexity. First,

parallel to the properties of Rademacher averages, it is useful to outline some properties

of the Rademacher chaos complexity some of which may be interesting in its own right.

Proposition 1 Let F1, · · · , Fk and H be classes of real functions on X ×X . Then the

following holds true.

(a) If F ⊆ H then Ûn(F ) ≤ Ûn(H).

(b) Ûn(conv(F)) = Ûn(F ).

(c) For any c ∈ R, Ûn(cF ) = |c|Ûn(F ).

(d) Ûn(
∑

i∈Nk
Fi) ≤

∑
i∈Nk

Ûn(Fi).

13



(e) For any 1 < q < p < ∞, the Khinchin-type inequality holds true
(
Eε sup

f∈F
|Ûf (ε)|q

) 1
q

≤
(
Eε sup

f∈F
|Ûf (ε)|p

) 1
p

≤
(p− 1

q − 1

) (
Eε sup

f∈F
|Ûf (ε)|q

) 1
q

Proof Properties (a), (c), and (d) are directly from Definition 2 of the Rademacher chaos

complexity. To prove Property (b), we note, for any m ∈ N, fk ∈ F , and {λk : k ∈ Nm}
satisfying

∑
k λk = 1 and λk ≥ 0, that

∣∣∣ ∑
i,j,i<j εiεj

∑
k∈Nm

λkfk(xi, xj)
∣∣∣ ≤ ∑

k∈Nm
λk

∣∣∣ ∑
i<j εiεjfk(xi, xj)

∣∣∣
≤ supf∈F

∣∣∣ ∑
i<j εiεjf(xi, xj)

∣∣∣.

Since λk, fk ∈ F are arbitrary, Ûn(conv(F)) ≤ Ûn(F ). The reverse inequality is obvi-

ous which completes the proof of the desired Property (b). The last property is from

Theorem 3.2.2 of De La Peña and Giné (1999). 2

Now we are in a position to prove Theorem 2 using the standard chaining arguments.

The estimation of the Rademacher chaos complexity by entropy integrals is a simple

version of of maximal inequalities based on metric entropy (De La Peña and Giné,

1999, Chapter 5) which we give a proof for completeness. To this end, let G be a set of

functions on X ×X and x = {xi ∈ X : i ∈ Nn}, define the l2 empirical metric of two

functions f, g ∈ G by

dx(f, g) =
( 1

n2

∑

i,j∈Nn,i<j

|f(xi, xj)− g(xi, xj)|2
) 1

2
.

The empirical covering number N (G, dx, η) is the smallest number of balls with radius

η required to cover G.

We begin with a useful lemma which deals with a finite class of homogeneous

Rademacher chaos of order two.

Lemma 1 Let {f` : ` ∈ NN} be a finite class of functions on X × X and {εi :

i ∈ Nn} are independent Rademacher random variables. Consider the homogeneous

Rademacher chaos process of order two
{
Ûf`

(ε) = 1
n

∑
i,j∈Nn,i<j εiεjf`(xi, xj) : ` ∈

NN

}
. Then, we have that

E
[
max
`∈NN

|Ûf`
(ε)|

]
≤ 2e log(1 + N) max

`∈NN

( 1

n2

∑
i<j

|f`(xi, xj)|2
) 1

2
,

where E[·] denotes the expectation with respect to the Rademacher variable ε.
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Proof: By Jensen’s inequality,

eλE
[
max`∈NN

|Ûf`
(ε)|

]
− 1 ≤ E[

eλ max`∈NN
|Ûf`

(ε)| − 1
]

= E
[
max
`∈NN

(
eλ|Ûf`

(ε)| − 1
)]

≤ ∑
`∈NN

E
[(

eλ|Ûf`
(ε)| − 1

)]
.

(20)

For any ` ∈ NN , the term E[eλ|Ûf`
(ε)| − 1] can be estimated by the Khinchin-type

inequality (see property (e) in Proposition 1) as follows:

E[eλ|Ûf`
(ε)| − 1] =

∑
k≥1

1
k!

λkE
[|Ûf`

(ε)|k]

≤ ∑
k≥1

1
k!

λkkk
[
E|Ûf`

(ε)|2]
k
2

≤ ∑
k≥1(eλ

[
E|Ûf`

(ε)|2]
1
2 )k.

(21)

Here, in the second to last inequality of (21), we used the fact the E
[|Ûf`

(ε)|] ≤
E

[|Ûf`
(ε)|2]

1
2 and, for k ≥ 2, the Khinchin-type inequality for homogeneous Rademacher

chaos process of order two: E
[|Ûf`

(ε)|k] ≤ kk
[
E|Ûf`

(ε)|2]
k
2 . In the last inequality of

(21), we used the Stirling’s inequality i.e. e−kkk ≤ k!.

Now set λ = (2e max`∈NN

[
E|Ûf`

(ε)|2]
1
2 )−1, the above inequality can be bounded

by

E[eλ|Ûf`
(ε)| − 1] ≤

∑

k≥1

2−k = 1, ∀` ∈ NN .

Putting this back into (20) yields that

eλE
[
max`∈NN

|Ûf`
(ε)|

]
− 1 ≤ N.

Equivalently,

E
[
max
`∈NN

|Ûf`
(ε)|

]
≤ 2e log(1 + N) max

`∈NN

[
E|Ûf`

(ε)|2]
1
2 . (22)

Observe that

E|Ûf`
(ε)|2 =

1

n2

∑

i<j,i′<j′
E

[
εiεjεi′εj′f`(xi, xj)f`(xi′ , xj′)

]
=

∑
i<j

f`(xi, xj)
2/n2.

Plugging this back into inequality (22) completes the proof of the lemma. 2

Equipped with the above lemma, we can prove Theorem 2 by the standard chaining

arguments. To this end, let D be the diameter of K with respect to dx then

D = sup
K1,K2∈K

dx(K1, K2) ≤ 2 sup
K∈K

(
1

n2

∑
i<j

|K(xi, xj)|2
) 1

2

≤ 2κ2.
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Proof of Theorem 2: For each k = 0, 1, 2, . . . , let K(k) be a minimal cover of K of

radius D2−k and the cardinality of K(k) denoted by |K(k)| = N (K, dx, D2−k). Without

loss of generality, choose some K0 ∈ K and let K(0) = {K0}. For any Rademacher

variable ε, let

K∗ = arg sup
K∈K

|ÛK(ε)|

and choose a K∗
k ∈ K(k) whose distance to K∗ is minimal. Obviously,

dx(K
∗
k−1, K

∗
k) ≤ dx(K

∗
k−1, K

∗) + dx(K
∗, K∗

k) ≤ D2−(k−1) + D2−k = 3D2−k. (23)

Moreover, limk→∞ dx(K
∗, K∗

k) → 0. Hence,

sup
K∈K

|ÛK(ε)| = |ÛK∗(ε)| = |ÛK0(ε) +
∑

k∈N
(ÛK∗

k
(ε)− ÛK∗

k−1
(ε))|,

and therefore

E
[
supK∈K |ÛK(ε)|

]
≤ E

[
|ÛK0(ε)|

]
+

∑
k∈N E

[
max

(K,K′)∈K(k)×K(k−1)

dx(K,K′)≤3D2−k

|ÛK(ε)− ÛK′(ε)|
]

≤
(

1
n2

∑
i<j

|K0(xi, xj)|2
) 1

2
+

∑

k∈N
E

[
max

(K,K′)∈K(k)×K(k−1)

dx(K,K′)≤3D2−k

|ÛK−K′(ε)|
]
.

Applying Lemma 1, we have, for k ≥ 1, that

E
[

max
(K,K′)∈K(k)×K(k−1)

dx(K,K′)≤3eD2−k

|ÛK−K′(ε)|
]
≤ 3eD2−k log(1 +N (K, dx, D2−k)N (K, dx, D2−(k−1)))

≤ 6eD2−k log(1 +N (K, dx, D2−k))

Consequently,

E
[
supK∈K |ÛK(ε)|

]
≤ κ2 +

∑
k≥1 6D2−k log(1 +N (K, dx, D2−k))

≤ κ2 + 12e

∫ D/2

0

log(1 +N (K, dx, δ)dδ.

Combining this with the estimation D ≤ 2κ2 completes the proof of Theorem 2. 2

It is worth mentioning that the above arguments hold true for the suprema of ho-

mogeneous Rademacher chaos processes of order m and a general function space F

(not only the space of kernels). Here, the Rademacher chaos processes of order one

is reduced to the standard Rademacher averages. The only difference in the proof is

the Khinchin-type inequality. For instance, for the homogeneous Rademacher chaos

processe {Xf : f ∈ F} of order m, the general Khinchin-type inequality is given by
(
Eε sup

f∈F
|Xf (ε)|q

) 1
q

≤
(
Eε sup

f∈F
|Xf (ε)|p

) 1
p

≤
(p− 1

q − 1

)m
2

(
Eε sup

f∈F
|Xf (ε)|q

) 1
q

.
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By this inequality, we can show that, in analogy to the proof of Theorem 2, the superma

of a homogeneous Rademacher chaos process of order m is bounded by the following

entropy integral ∫ D/2

0

[
logN (K, dx, δ)

]m
2
dδ.

One can refer to Arcones and Giné (1993); De La Peña and Giné (1999) for more

general entropy integrals to bound the suprema of Rademacher chaos processes of order

m for any m ∈ N.

Now we turn our attention to the proof of Theorem 3 in Section 2 which states that

the empirical covering number is further estimated by the shattering dimension (Alon

et al., 1997; Anthony and Bartlett, 1999) of the set of candidate kernels.

Proof of Theorem 3: For the first assertion, observe that the pseudo-dimension is

equivalent to the VC-dimension of the following space (Anthony and Bartlett, 1999,

Theorem 11.4)

{((x, x′), t) ∈ X ×X × R : g((x, x′), t) = sgn(t−K(x, x′)), K ∈ K} .

Combining this fact with (Bartlett, 2006, Theorem 3.1), we have

N (K, dx, ε) ≤ 2

(
4eκ4

ε2

)dK

, (24)

which completes the proof of the first assertion2.

For the second assertion, we obtain from Theorem 2 and inequality (24) that

Ûn(K) ≤ κ2 + 12e

∫ κ2

0

log (1 +N (K, dx, ε)) dε

≤ κ2 + 12e

∫ κ2

0

ln

[
e
(4eκ4

ε2

)dK
]

dε

≤ κ2 + 12eκ2 + 12e ln(4e)κ2dK + 12e

∫ κ2

0

ln
(κ4

ε2

)dKdε

Observe that ∫ κ2

0

ln
(κ4

ε2

)dKdε = 2κ2dK

∫ 1

0

ln
1

ε
dε = 4κ2dK.

Putting these estimates together implies that

Û(K) ≤ (12e + 1)κ2 + κ2(60e + 12e ln 4)dK ≤ (96e + 1)κ2dK,

2Similar covering number bound was also established in (van der Vaart and Wellner, 1996, Theorem

2.6.7): there exists a universal constant C such thatN (K, dx, ε) ≤ CdK(16e)dK
(

κ2

ε

)2(dK−1)

. However,

we failed to work out what is the universal constant C.
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which completes the proof of the theorem. 2

For the set of scalar Gaussian kernels given by equation (10), we have the following

estimation.

Lemma 2 Let the set of basis kernels Kgau be given by equation (10), then we have

dKgau = 1.

Proof: It is obvious that there exists at least one pair of points (x, t) ∈ X × X

such that it is pseudo-shattering by K. Now assume that two pairs of points (x1, t1)

and (x2, t2) are shattering by K. By Definition 3 of pseudo-dimension, there exists

r1, r2 ∈ R and σ, σ′ ∈ [0,∞) such that

e−σ‖x1−t1‖2 > r1, e−σ‖x2−t2‖2 < r2,

and

e−σ′‖x1−t1‖2 < r1, e−σ′‖x2−t2‖2 > r2.

Hence,

e−σ‖x1−t1‖2 > e−σ′‖x1−t1‖2 , and e−σ‖x2−t2‖2 < e−σ′‖x2−t2‖2 .

Equivalently, σ < σ′, and σ > σ′, which is obviously a contradiction. Consequently,

the pseudo-dimension of Kgau is identical to one. 2

We are ready to prove Corollary 1 with estimation of the Rademacher chaos com-

plexities of Kgau and Krbf.

Proof of Corollary 1: The first statement follows directly from Theorem 2 and the

observation that N (Kfinite, dx, ε) ≤ m where m denotes the number of kernels in the

set Kfinite.

Note that κ = 1. Then, the estimation of Ûn(Kgau) follows immediately by com-

bining inequality (9) in Theorem 3 with Lemma 2. For the RBF kernels set Krbf, note,

for any {xi : i ∈ Nn}, that

Ûn(Krbf) ≤ Eε sup
p∈M(R+)

∣∣∣
∫ ∞

0

∑
i<j

εiεje
−σ‖xi−xj‖2dp(σ)

∣∣∣
/
n

≤ Eε sup
σ∈R+

∣∣∑
i<j

εiεje
−σ‖xi−xj‖2∣∣/n ≤ Ûn(Kgau).

This completes the proof of the corollary. 2
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The estimation of pseudo-dimensions for Gaussian kernels with covariance matrices

can be referred to Srebro and Ben-David (2006); Anthony and Bartlett (1999).

5 Deriving Error Rates in Classificaiton

We are now ready to derive explicit error rates for classification using the above gener-

alization bounds. In subsequent examples we emphasize that the set of base kernels are

given by either Gaussian kernels defined by equation (10) or the RBF kernels defined

by equation (11).

We begin with the proofs of example 1 and example 2 stated in Section 2.1. To

this end, we notice that, by the definition of fφ
λ , we have Eφ(fφ

λ ) + λ‖fφ
λ ‖2

K ≤ E(0) +

λ‖0‖2
K = Eφ(0) = 1 which implies that ‖fφ

λ ‖K ≤
√

1/λ.

Proof of Example 1: First note, for the hinge loss, that Cφ
λ = 1 and Mφ

λ ≤ 1 + κ√
λ

and observe that Sz,λ ≤ supf∈Bλ

[Eφ(f)− Eφ
z (f)

]
+ supf∈Bλ

[Eφ
z (f)− Eφ(f)

]
. Then,

combining Theorem 4, Corollary 1 and the error decomposition (15) together, with

probability at least 1− δ there holds that

Eφ(fφ
z )− Eφ(fc) ≤ O

(( 1

nλ

) 1
2

+
( ln 4

δ

nλ

) 1
2
)

+D(λ). (25)

In addition, we know from Theorem 10 of Chen et al. (2004) that if the distribution

enjoys the weakly separation condition with exponent θ then the regularization error

decays as D(λ) = O
(
λ

θ
θ+2

)
. Letting λ = n−

θ+2
3θ+2 . Combining inequality (25) with the

comparison inequality (e.g. Bartlett et al. (2006); Zhang (2004))

R(sgn(fφ
z )) ≤ Eφ(fφ

z )− Eφ(fc)

yields the desired result. 2

Proof of Corollary 2: The margin-based cost function ψ obviously satisfies the condi-

tions in Theorem 4 with Cψ
λ = 1

γ
and Mψ

λ = 1. Since χy 6=sgn(f(x)) ≤ ψ(yf(x)), there

holds that R(sgn(fφ
z )) ≤ Eψ(fφ

z ) which, combining with inequality (5) in Theorem 1,

yields the desired assertion. 2

Proof of Example 2: The results can be directly obtained by combining Corollary 1

with Corollary 2. 2
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Now we turn our attention to general q-norm soft margin SVM losses φ(t) = (1 −
t)q

+ for q ∈ (1,∞) for classification. In this case, we know from Chen et al. (2004) that

the target function fφ
ρ becomes

fφ
ρ (x) = fq(x) =

(1 + fρ(x))
1

q−1 − (1− fρ(x))
1

q−1

(1 + fρ(x))
1

q−1 + (1− fρ(x))
1

q−1

,

where fρ(x) := P (Y = 1|x)− P (Y = −1|x).

Example 3 Let φ(t) = (1 − t)q
+ for some q ∈ (1,∞) and suppose that the separa-

tion condition holds true with exponent θ > 0. Then, choosing λ = n−
qθ

4+2(2q+1)θ with

probability at least 1− δ there holds

R(sgn(fφ
z ))−R(fc) ≤ O

([
ln

1

δ

] 1
4
n−

qθ
4+2(2q+1)θ

)

Proof: First observe that Cφ
λ ≤ (1 + 1√

λ
)q−1 and Mφ

λ ≤ (1 + κ√
λ
)q. Hence, from

Theorem 4, Corollary 1 and the error decomposition (15), we know, for any λ ∈ (0, 1),

that

Eφ(fφ
z )− Eφ(fq) ≤ O

(( 1

nλq

) 1
2

+
( ln 4

δ

nλq

) 1
2
)

+D(λ).

Also, we know from (Chen et al., 2004, Theorem 10) that if the distribution enjoys

the weakly separation condition with exponent θ then the regularization error decays as

D(λ) = O
(
λ

θ
θ+2

)
. Letting λ = n−

q(θ+2)
2+(2q+1)θ yields that

Eφ(fφ
z )− Eφ(fq) ≤ O

([
ln

1

δ

] 1
2
n−

qθ
2+(2q+1)θ

)
.

Recall the comparison inequality (Theorem 14 of Chen et al. (2004)) for q-norm SVM:

R(sgn(fφ
z ))−R(fc) ≤

√
2
(
Eφ(fφ

z )− Eφ(fq)
)
.

Consequently, with probability at least 1− δ there holds

R(sgn(fφ
z ))−R(fc) ≤ O

([
ln

1

δ

] 1
4
n−

qθ
4+2(2q+1)θ

)
,

which completes the proof of the example. 2

Our last example is the least square loss for classification which is extensively stud-

ied in the single kernel case (Caponnetto and De Vito, 2007; De Vito et al., 2006; Smale
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and Zhou, 2004; Zhang, 2004). In this case, in order to get meaningful rates of the reg-

ularization error D(λ) we can assume the target function enjoys some Sobolev smooth-

ness. Recall in the regression case, the target function fφ
ρ = fρ(x) for any x ∈ X

usually referred to as the regression function and the nature of least square loss implies

that

E(fφ
z )− E(fρ) =

∫

X

|fφ
z (x)− fρ(x)|2dρX(x).

Example 4 Let X be a domain in Rd with Lipschitz boundary. Assume the regression

function fρ ∈ Hs(X) with some s > 0. Then the following holds true.

1. If d/2 < s ≤ d/2 + 2 then for any 0 < ε < 2s − d, by taking λ = n−
2s−ε

2(4s−d−2ε) ,

with probability at least 1− δ there holds

R(sgn(fφ
z ))−R(fc) ≤

( ∫

X

|fφ
z (x)− fρ(x)|2dρX(x)

) 1
2

≤ O
([

ln 1
δ

] 1
4
n−

2s−d−ε
4(4s−d−2ε)

)
.

2. If X is bounded, ρX is the Lebesgue measure, and 0 < s ≤ 2 then by choosing

λ = n−
2s+d

2(4s+d) , with probability at least 1− δ, there holds

R(sgn(fφ
z ))−R(fc) ≤

( ∫

X

|fφ
z − fρ|2dρX(x)

) 1
2

≤ O
([

ln 1
δ

] 1
4
n−

s
2(4s+d)

)
.

Proof: For the least square loss, we observe that Cφ
λ = 2(1+ 1√

λ
) and Mφ

λ ≤ (1+ κ√
λ
)2.

Then, we know from Theorem 4, Corollary 1 and the error decomposition (15) that

E(fφ
z )− E(fρ) =

∫

X

|fφ
z (x)− fρ(x)|2dρX(x)

≤ O
((

1
nλ2

) 1
2

+
(

ln 2
δ

nλ2

) 1
2

+ 1√
n

)
+D(λ).

(26)

Then, for the first assertion we know from Proposition 22 of Ying and Zhou (2007)

that

D(λ) ≤ O
(
λ

2s−ε−d
2s−ε

)
.

Putting the above two equations together and letting λ = n−
2s−ε

2(4s−2ε−d) implies that
∫

X

|fφ
z (x)− fρ(x)|2dρX(x) ≤ O

([
ln

1

δ

] 1
2
n−

2s−d−ε
2(4s−d−2ε)

)
.
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Hence, the desired result follows from the comparison inequality (Chen et al., 2004;

Bartlett et al., 2006; Zhang, 2004) for the least square loss:

R(sign(fφ
z ))−R(fc) ≤

√
2
(
Eφ(fφ

z )− Eφ(fρ)
)
. (27)

The proof of the second assertion is similar as above. Recall that Proposition 22 of

Ying and Zhou (2007) implies that the regularization error is estimated as follows:

D(λ) ≤ O
(
λ

2s
2s+d

)
.

Combining this with inequality (26) and the comparison inequality (27), with choice

λ = n−
2s+d

2(4s+d) we get the desired second assertion. 2

We end this section with a comparison with error rates in Ying and Zhou (2007)

on the least square loss for classification. In Example 1 there, it was proven that: if

d/2 < s ≤ d/2 + 2 then for any 0 < ε < 2s− d, we have that

E
[ ∫

X

|fφ
z (x)− fρ(x)|2dρX(x)

] 1
2 ≤

(
E

[ ∫

X

|fφ
z (x)− fρ(x)|2dρX(x)

]) 1
2

≤ O
(
n−

2s−d−ε
8(4s−d−2ε)

)
.

Ignoring the difference of the forms to express error rates using expectations and prob-

abilistic inequalities, Example 4 yields that O
(
n−

2s−d−ε
4(4s−d−2ε)

)
. Likewise, for the case

0 < s ≤ 2 and ρX is the Lebesgue measure, we got improved rates O
(
n−

s
2(4s+d)

)
in

comparison with O
((

ln n
) 1

4 n−
s

4(4s+d)

)
obtained previously. Hence, our new error rates

substantially improve those in Ying and Zhou (2007).

6 Related Work and Discussion

Statistical bounds with Rademacher complexities were first pursued by Lanckriet et al.

(2004); Bousquet and Herrmann (2003) for learning the kernel from a linear combi-

nation of finite candidate kernels. The Rademacher complexities are estimated by the

eigenvalues of the candidate kernel matrix over the inputs.

Ying and Zhou (2007) pioneered the generalization analysis of learning Gaussians

with varying variances. In particular, it was proved the union space BK is a uniform

Glivenko-Cantelli (uGC) class (see definition in Alon et al. (1997)) if and only if, for

any γ > 0, the Vγ-dimension of KX = {K(·, x) : x ∈ X, K ∈ K} is finite. There,
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the empirical covering number of KX for Gaussians was also estimated. Based on

these main results, the Rademacher bounds were established in Ying and Zhou (2007);

Micchelli et al. (2005)3:

E(fφ
z )− Ez(f

φ
z ) ≤ 4Cφ

λ

(
2Rn(KX)√

nλ

) 1
2

+ 4κCφ
λ

(
1√
nλ

) 1
2

+Mφ
λ

(
ln( 2

δ
)

n

) 1
2

+ 2√
n
.

Here, the Rademacher complexity Rn(KX) is defined byE supf∈KX

1√
n

∣∣∑
i∈Nn

εif(xi)
∣∣

which is often bounded by O(
dKln n

)
by using metric entropy integrals, see Theorem

20 in Ying and Zhou (2007). Hence, the resultant rates are quite loose whose depen-

dence on the sample number is of order n−
1
4 in comparison with our new bound of order

n−
1
2 summarized in equation (13). Specifically, for the hinge loss, as stated in Example

1 we can get a better rate O(
n−

θ
2+3θ

)
in comparison with the rate O(

(log n)
1
2 n−

θ
2(2+3θ)

)

given in Ying and Zhou (2007).

Srebro and Ben-David (2006) employed matrix analysis techniques to directly es-

timate the empirical covering number of BK with the pseudo-dimension of the can-

didate kernels. Margin bounds were established for SVM. Specifically, let Rγ
z(f) =

|{i:yif(xi)<γ}|
n

. Note fφ
z ∈ 1√

λ
BK where BK is the same as the notation FK used in Srebro

and Ben-David (2006). A simple modification of Theorem 2 in Srebro and Ben-David

(2006) to the function class 1√
λ
BK, for any margin cost function ψ defined by equation

(17), there holds

R(sgn(fφ
z )) ≤ Rγ

z(f
φ
z )+

(
8(2+ dK) ln

128en3κ2

γ2λdK
+256

κ2

γ2λ
ln

128nκ2

γ2λ
+ln

1

δ

) 1
2
/
√

n.

Since Rγ
z(f

φ
z ) ≥ Eψ

z (fφ
z ), Corollary 2 implies

R(sgn(fφ
z )) ≤ Rγ

z(f
φ
z ) + 2

((192e + 2)κ2dK
nλγ2

) 1
2

+ 2κ
( 1

nλγ2

) 1
2

+ 3
( ln 2

δ

n

) 1
2
.

Comparing the above two margin bounds, there is no logarithmic margin term, i.e.

ln 1
γ2 , in our bound. The empirical covering approach Srebro and Ben-David (2006) is

is roughly of the form
(
dK ln n

γ2 + 1
γ2 ln n

γ2

) 1
2
/
√

n. The Rademacher approach is of the

form
√

dK
nγ2 due to the contraction inequality of Rademacher averages for the margin

3This bound is originally given in the form of expectation. However, it is easy to convert it to the cur-

rent probabilistic form by the bounded difference inequality from which the extra term Mφ
λ

(
ln(1

δ )/n
) 1

2

appears.
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cost function. Hence, our bound is comparable to their bounds. Moreover, there is no

logarithmic term, i.e. ln n, in our bound.

We can use the covering number in Srebro and Ben-David (2006) to derive general-

ization bounds. To see this, using standard symmetrization techniques and McDiarmid’s

inequality we have, with probablity 1− δ, that

E(fφ
z )− Ez(f

φ
z ) ≤ 2Rn(φ◦Bλ)√

n
+ Mφ

λ

(
ln( 2

δ
)

n

) 1
2

≤ 2Cφ
λ

Rn(BK)√
nλ

+ Mφ
λ

(
ln( 2

δ
)

n

) 1
2

,

where φ ◦ Bλ = {φ(yf(x)) : f ∈ Bλ}. To estimate the Rademacher complexity, recall

the scaling version of Theorem 1 in Srebro and Ben-David (2006):

Nn(FK, ε) ≤ 2
(4en3κ2

εdK

)dK(16nκ2

ε2λ

) 64κ2

ε2
ln
(

εen
8κ

)
.

Then, we use the following Dudley’s entropy bound, for any N ∈ N, there exists an

absolute constant C such that for every N ∈ N,

Rn(BK) ≤ C
N∑

k=1

εk−1 log
1
2 N (FK, dX, εk) + 2εNn

1
2 .

Since N (FK, dX, εk) ≤ Nn(FK, εk), selecting εk = 2−k and N = log n
2

implies that

Rn(BK) ≤ CdK(ln n)
3
2 . Hence,

E(fφ
z )− Ez(f

φ
z ) ≤ C

d
1
2
K(ln n)

3
2√

nλ
+ Mφ

λ

(
ln(2

δ
)

n

) 1
2

+
2√
n

.

In contrast, our generalization bound given by (13) is slightly better since it mainly

depends on
√

dK
nλ

. Moreover, Rademacher approaches are usually more flexible. For

instance, it is unknown how to directly estimate the pseudo-dimension of RBF kernels

Krbf and hence it could be a problem to directly apply the approach of Srebro and

Ben-David (2006). The Rademacher approaches can handle this general case using the

Rademacher chaos complexity of Kgau instead of directly using that of Krbf as stated

in Corollary 1 in Section 2.

7 Conclusion

In this paper we provided a novel statistical generalization bound for kernel learning

system which extends and improves previous work in the literature (Lanckriet et al.,
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2004; Wu et al., 2006; Ying and Zhou, 2007; Micchelli et al., 2005; Srebro and Ben-

David, 2006). The main tools are based on the theory of U-processes such as the

so-called homogeneous Rademacher chaos of order two and metric entropy integrals

involving empirical covering numbers. There are several questions remaining to be

further studied.

• Firstly, it would be interesting to get fast error rates with respect to the sam-

ple number as those in Bartlett et al. (2006); Steinwart and Scovel (2005); Wu

et al. (2006). For this purpose, the extension of localized Rademacher averages

(Bartlett et al., 2005) to the scenario of multiple kernel learning would be useful.

• Secondly, it would be interesting to investigate generalization bounds based on

decoupling Gaussian chaos of order two, see its definition in De La Peña and

Giné (1999).

• Thirdly, as mentioned in Section 6, it remains unknown how to get additive mar-

gin bounds using Rademacher approaches.

• Finally, another direction for further investigation is to apply Rademacher Chaos

complexities to practical kernel learning problems.
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