
Class Prediction from Disparate Biological Data
Sources using an Iterative Multi-kernel

Algorithm

Yiming Ying†, Colin Campbell†, Theodoros Damoulas‡, and Mark Girolami‡
†, Department of Engineering Mathematics,

University of Bristol, Bristol BS8 1TR, United Kingdom
‡Department of Computer Science,

University of Glasgow,Glasgow, G12 8QQ, United Kingdom
mathying@gmail.com,C.Campbell@bris.ac.uk,

theo@dcs.gla.ac.uk,girolami@dcs.gla.ac.uk

Abstract. For many biomedical modelling tasks a number of different
types of data may influence predictions made by the model. An estab-
lished approach to pursuing supervised learning with multiple types of
data is to encode these different types of data into separate kernels and
use multiple kernel learning. In this paper we propose a simple iterative
approach to multiple kernel learning (MKL), focusing on multi-class clas-
sification. This approach uses a block L1-regularization term leading to a
jointly convex formulation. It solves a standard multi-class classification
problem for a single kernel, and then updates the kernel combinatorial
coefficients based on mixed RKHS norms. As opposed to other MKL ap-
proaches, our iterative approach delivers a largely ignored message that
MKL does not require sophisticated optimization methods while keeping
competitive training times and accuracy across a variety of problems.
We show that the proposed method outperforms state-of-the-art results
on an important protein fold prediction dataset and gives competitive
performance on a protein subcellular localization task.

Key words: Multiple kernel learning, multi-class, bioinformatics, pro-
tein fold prediction, protein subcellular localization

1 Introduction

Kernel methods [15, 16] have been successfully used for data integration across a
number of biological applications. Kernel matrices encode the similarity between
data objects within a given space. Data objects can include network graphs and
sequence strings in addition to numerical data: all of these types of data can be
encoded into kernels. The problem of data integration is therefore transformed
into the problem of learning the most appropriate combination of candidate ker-
nel matrices and typically a linear combination is used. This is often termed
multi-kernel learning (MKL) in Machine Learning and, due to its practical im-
portance, it has recently received increased attention. Lanckriet et al. [9] pro-
posed a semi-definite programming (SDP) approach to automatically learn a

2 Multiple Kernel Learning

linear combination of candidate kernels for SVMs. This approach was improved
by Bach et al. [3] who used sequential minimization optimization (SMO) and
by Sonnenburg et al. [18] who reformulated it as a semi-infinite linear program-
ming (SILP) task. In [11], the authors studied the kernel learning problem for
a convex set of possibly infinite kernels under a general regularization frame-
work. Other approaches include the COSSO estimate for additive models [10],
Bayesian probabilistic models [5, 8], kernel discriminant analysis [20], hyperker-
nels [12] and kernel learning for structured outputs [21]. Such MKL formulations
have been successfully demonstrated in combining multiple data sources to en-
hance biological inference [5, 9].

Most of the above MKL methods were for binary classification. In Section 2
we build on previous contributions [1, 3, 10, 11, 13, 21] to propose a simple itera-
tive kernel learning approach focusing on multi-class problems. This formulation
employs a mixed RKHS norm over a matrix-valued function which promotes
common information across classes. We demonstrate that this problem is jointly
convex, laying down the theoretical basis for its solution using an extremely sim-
ple iterative method. This approach solves a multi-class classification problem
for a single kernel, and then updates the kernel combinatorial coefficients based
on the mixed RKHS norms. As opposed to other multi-kernel approaches, our
iterative approach delivers an important message that MKL does not require so-
phisticated optimization methods while keeping competitive training times and
accuracy across a wide range of problems. In Section 3 we briefly validate our
method on UCI benchmark multi-class datasets before applying it to two multi-
class multi-feature bioinformatics problems: protein fold recognition and protein
subcellular localization.

2 The Learning Method

Let Nn = {1, 2, . . . , n} for any n ∈ N and input/outputs sample z = {(xi, yi) :
i ∈ Nn} with y = {yi ∈ [1, C] : i ∈ Nn} where C is the number of classes. For
input sample xi, there are m different sources of information (feature spaces),
i.e. xi = (x1

i , x
2
i , . . . , x

m
i) with x`

i from `-th data source for any ` ∈ Nm.
To introduce the learning model, we employ a one-versus-all strategy that

encodes the multi-class classification problem as a set of binary ones. To this
end, we reconstruct the output vector yi = (yi1, . . . , yiC) such that yic = 1 if
yi = c and otherwise −1. Hence the outputs are represented by an n×C indicator
matrix Y = (yic)i,c whose c-th column vector is denoted by yc. For source ` and
class c, we use a reproducing kernel space H` with reproducing kernel K` to
represent this dataset. In particular, let f = (f`c) be a matrix-valued function1.
For each class c and data source ` we use a function f`c ∈ H` to learn the output.
Then, we simply use the composite function defined by

fc(xi) =
∑

`∈Nm

f`c(x`
i)

1 We denote with bold type a vector or matrix, e.g. f`c is a real function while f c

denotes a vector of functions and f denotes a matrix of functions.

Lecture Notes in Bioinformatics 3

to combine m sources. The accuracy of the approximation at sample i can be
measured by e.g.

(
yic − fc(xi)

)2. However, taking the direct minimization of
the above empirical error will inevitably lead to overfitting. Hence, we need
to enforce some penalty term on f . Since we expect to get good performance
after combining multiple sources, the penalty term intuitively should play the
role of removing redundant sources (feature spaces) across classes. With this
motivation, we introduce a block L1 regularization on the matrix-valued function
f = (f`c). This kind of regularization was used in [1] for multi-task linear feature
learning and also used in [3, 10, 11, 13] for binary classification kernel learning
with block regularization over a vector of functions instead of over a matrix-

valued function. More specifically, let ‖f‖(2,1) =
∑

`∈Nm

(∑

c∈NC

‖f`c‖2H`

) 1
2
. We now

propose the following multi-class multiple kernel learning formulation with least
square loss. One can easily extend the method and the followed arguments to
other loss functions.

min
f

µ
∑

i∈Nn

∑

c∈NC

(
yic −

∑

`∈Nm

f`c(x`
i)

)2 +
1
2
‖f‖2(2,1)

s.t. f`c ∈ H`, ∀ c ∈ NC , ` ∈ Nm

(1)

The mixed (2, 1)-norm of f in the regularization term is obtained by first com-
puting the H`-norm of the row vector (across all classes) f` = (f`1, . . . , f`C) and
then the 1-norm F(f) = ((

∑
c ‖f1c‖2H1

)
1
2 , . . . , (

∑
c ‖fmc‖2Hm

)
1
2). Consequently,

the 1-norm of vector F(f) (mixed norm term of f) encourages a sparse represen-
tation of the candidate RKHSs {H` : ` ∈ Nm} for the learning task, and thus
implies automatically adapting the combination of multiple sources.

In order to deal with the non-differential L1 regularizer of equation (1), we
turn to an equivalent form. To this end, recall [11], for any w = (w1, . . . , wm) ∈
Rm, that

(∑
`∈Nm

|w`|
)2 = min

{∑
`∈Nm

w2
`

λ`
:
∑

`∈Nm
λ` = 1, λ` ≥ 0

}
. Now, we

replace w` by
(∑

c∈NC
‖f c

` ‖2H`

) 1
2 and obtain the following equivalent formulation

of equation (1):

minf ,λ µ
∑

i∈Nn

∑

c∈NC

(
yic −

∑

`∈Nm

f`c(x`
i)

)2

+ 1
2

∑

`∈Nm

∑

c∈NC

‖f`c‖2H`

λ`

s.t.
∑

`∈Nm
λ` = 1, λ` ≥ 0

and f`c ∈ H`, ∀ c ∈ NC , ` ∈ Nm .

(2)

From the auxiliary regularization term
∑

`∈Nn

∑
c∈NC

‖f`c‖2H`
/λ` in equation

(2), we note that if λ` is close to zero then
∑

c∈NC
‖f`c‖2H`

should also be close
to zero as we are minimizing the objective function. This intuitively explains the
role of the auxiliary variable λ.

The following theorem demonstrates the joint convexity of problem (2) which
could be shown by adapting the argument in [4]. For completeness, we outline a
proof here.

4 Multiple Kernel Learning

Theorem 1. The objective function in (2) is jointly convex with respect to f
and λ.

Proof: It suffices to prove the joint convexity of ‖f‖2H`
/λ with respect to f ∈ H`

and λ ∈ (0, 1), ∀ ` ∈ Nm. The proof is parallel to that in [2]. For completeness,
we briefly prove it again here.

We need to show, for any f1, f2 ∈ H` and λ1, λ2 ∈ (0, 1) and θ ∈ (0, 1), that

‖θf1 + (1− θ)f2‖2H`

θλ1 + (1− θ)λ2
≤ ‖θf1‖2H`

θλ1
+
‖(1− θ)f2‖2H`

(1− θ)λ2

Let a = 1
λ1θ , b = 1

(1−θ)λ2
, c = 1

θλ1+(1−θ)λ2
and F = θf1 + (1 − θ)f2, G = θf1.

Since f1, f2 is arbitrary, the above equation is reduced to the following:

c‖F‖2H`
≤ a‖G‖2H`

+ b‖F −G‖2H`
, ∀F, G ∈ H`.

Equivalently,

c‖F‖2H`
≤ minG∈H`

a‖G‖2H`
+ b‖F −G‖2H`

= ‖F‖2H`

b2a
(a+b)2 + ‖F‖2H`

a2b
(a+b)2 , ∀F ∈ H`.

which is obviously true by the definition of a, b, c. This completes the proof of
the convexity. ¤

Let the composite kernel Kλ be defined by Kλ =
∑

`∈Nm
λ`K

`. Then, the
role of λ becomes more intuitive if we use the following dual formulation of (2):

minλ maxα

∑
i,c αicyic − 1

4µ

∑
i,c α2

ic

− 1
2

∑
i,j,c αicαjcKλ(x`

i , x
`
j)

s.t.
∑

`∈Nm
λ` = 1, λ` ≥ 0.

which can be directly derived from the dual of kernel ridge regression [16] by first
fixing λ. It is worth noting that for the equally weighted kernel combination, i.e.
λ = 1

m , equation (2) is reduced to a formulation with a plain L2-regularization
term

∑
`c ‖f`c‖2H`

. We also note that [14] proposed a multi-class kernel learning
algorithm based on one-against strategy starting from the dual formulation of
SVM.

We can formulate (2) as a semi-infinite linear programming (SILP) problem,
as in [18, 20]. First, however, we propose a conceptually simple implementation
based on Theorem 1 which will be referred to as MCKL-EM hereafter.

We will initialize λ(0) with λ
(0)
` = 1

m for any ` ∈ Nm. We then solve (2) for
this equally weighted kernel coefficient λ(0) and get f (0) which is a least-square
ridge regression problem. Next, for any t ∈ N we update λ(t) for fixed f (t−1) and
update f (t) for fixed λ(t). We repeat the above EM-type iteration until conver-
gence. This can reasonably be monitored by the changes of kernel combinatorial
coefficients

∑
`∈Nm

|λold
` − λ`| or changes of the objective function, since we are

mainly interested in obtaining an optimal kernel combination. Global conver-
gence is expected since the overall problem (2) is jointly convex by Theorem 1.
The updates at step t ∈ N are listed as follows:

Lecture Notes in Bioinformatics 5

1. For fixed f (t−1), λ
(t)
` =

(
∑

c ‖f(t−1)
`c ‖2H`

)
1
2

∑
`(

∑
c ‖f(t−1)

`c ‖2H`
)
1
2

for any ` ∈ Nm. Here we denote

the matrix function f (t−1) = (f (t−1)
`c)`c.

2. For given λ(t), f
(t)
`c (·) = λ

(t)
`

∑
i α

(t)
ic K`(x`

i , ·). Here, α(t) = (α(t)
ic) is an n×C

matrix given by the equation

α(t) = (Kλ(t) + I/2µ)−1Y (3)

where Kλt =
(∑

` λ
(t)
` K`(x`

i , x
`
j)

)
.

The second update equation follows from standard kernel ridge regression [16] for
fixed λ. The first update for λ follows from the fact that {|w1|/

∑
`∈Nm

|w`|, . . .
|wm|/

∑
`∈Nm

|w`|} is the optimizer of the minimization problem min
{∑

`∈Nm

w2
`

λ`
:∑

`∈Nm
λ` = 1, λ` ≥ 0

}
. Let the convergent solution be f̂ . Given a new sample

x∗, then we assign its class by y∗ = arg maxc

∑
` f̂`c(x∗).

Recently, the SILP approach has been applied to kernel learning problems
for large scale datasets, see [18, 20, 21]. Since we later use a SILP approach for
comparison (MCKL-SILP) we briefly described this variant here. In a similar
fashion to arguments in [18], we can formulate the dual problem as an semi-
infinite linear programming. Specifically, let S0(α) =

∑
c,i αicyic − 1

4µ

∑
c,i α2

ic

and, for any ` ∈ Nm, S`(α) = 1
2

∑
c,i,j αicαjcK

`(xi, xj). Then, the SILP formu-
lation of algorithm (2) is stated as

maxγ,β γ
s.t.

∑
`∈Nm

λ` = 1, 0 ≤ λ ≤ 1
γ −∑

`∈Nm
λ`S`(α) ≤ S0(α),∀α.

(4)

The SILP can be solved by an iterative algorithm called column generation
(or exchange methods) which is guaranteed to converge to a global optimum.
The basic idea is to compute the optimum (λ, γ) by linear programming for a
restricted subset of constraints, and update the constraint subset based on the
obtained suboptimal (λ, γ).

Given a set of restricted constraints {αp : p ∈ NP }, first we find the interme-
diate solution (λ, γ) by the following linear programming optimization with P
linear constraints

maxγ,λ γ
s.t.

∑
` λ` = 1, 0 ≤ λ ≤ 1

γ −∑
` λ`S`(αp) ≤ S0(α), ∀p ∈ NP .

(5)

This problem is often called the restricted master problem. Then, we find the
next constraint with the maximum violation for the given intermediate solution
(λ, γ), i.e. minα

∑
`∈Nm

λ`S`(α)+S0(α). If its optimal α∗ satisfies
∑

` λ`S`(α∗)+
S0(α∗) ≥ γ then current intermediate solution (λ, γ) is optimal for the optimiza-
tion (4). Otherwise α∗ should be added to the restriction set. We repeat the above

6 Multiple Kernel Learning

iteration until convergence which is guaranteed to be globally optimal, see e.g.
[18]. The convergence criterion for the SILP is usually chosen as

∣∣∣∣∣1−
∑

` λ
(t−1)
` S`(α(t)) + S0(α(t))

γ(t−1)

∣∣∣∣∣ ≤ ε. (6)

3 Experiments

3.1 Validation on UCI datasets

In this section we briefly validate MCKL-EM on UCI datasets [19], to illus-
trate its performance, before proceeding to bioinformatics datasets. For fairness
of comparison, in all kernel learning algorithms we chose the change of kernel
weights,

∑
` |λold

` −λ`| ≤ ε = 10−4, as the stopping criterion, and the parameter
µ was set at a value of 10.

We compared our iterative approach (MCKL-EM) with the SILP approach
(MCKL-SILP) and its doubly cross-validated method (LSR-CV) over µ and σ.
The results are based on 10 random data splits into 60% training and 40%
test. We can see from Table 1 that there is no significant difference between
MCKL-EM and MCKL-SILP with respect to both computation time and test set
accuracy (TSA), despite the fact that MCKL-EM is much simpler to implement.
These accuracies are also equal to, or better than, the corresponding doubly
cross-validated results. The first column of Figure 1 shows that the objective
finction value of MCKL-EM quickly becomes stable while MCKL-SILP oscillates
during the first few steps. To validate the global convergence of MCKL-EM, in
Figure 1 we also depict evolution of the test set accuracy and the largest two
kernel combinatorial weights for MCKL-EM and MCKL-SILP for two example
datasets. For both methods, we can see from the second column of Figure 1 that
the test set accuracy quickly becomes stable.

3.2 Protein Fold Prediction

We now evaluated our algorithm on a well-known protein fold prediction dataset
[6]. Prediction of protein three-dimensional structure is a very important problem
within computational biology. Protein fold prediction is the sub-task in which
we predict a particular class of arrangement of secondary structure components
such as alpha-helices or beta-strands. The benchmark dataset is taken from
[6] which has 27 SCOP fold classes with 313 proteins for training and 385 for
testing. There are 12 different data-types, or feature spaces, including Amino
Acid Composition (C), Predicted Secondary Structure (S), Hydrophobicity (H),
Polarity (P), van der Waals volume (V), Polarizability (Z), PseAA λ = 1 (L1),
PseAA λ = 4 (L4), PseAA λ = 14 (L14), PseAA λ = 30 (L30), SW with
BLOSUM62 (SW1) and SW with PAM50 (SW2). As in [5], we employed linear
kernels (Smith-Waterman scores) for SW1 and SW2 and second order polynomial
kernels for the others. In [6] and [17], test set accuracies of 56.5% and 62.1%

Lecture Notes in Bioinformatics 7

5 10 15 20 25 30 35 40 45 50 55 60

550

600

650

700

750

Iteration

O
b

je
c
ti
v
e

 v
a

lu
e

MCKL−EM

MCKL−SILP

5 10 15 20 25 30 35 40 45 50 55 60
500

550

600

650

700

750

800

850

900

Iteration

O
b

je
c
ti
v
e

 v
a

lu
e

MCKL−EM
MCKL−SILP

0 20 40 60 80 100 120 140 160 180 200
85

86

87

88

89

90

91

92

Iteration

A
c
c
u

ra
c
y

MCKL−EM

MCKL−SILP

0 20 40 60 80 100 120 140 160 180 200
87

88

89

90

91

92

93

94

95

96

Iteration

A
c
c
u

ra
c
y

MCKL−EM
MCKL−SILP

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iteration

K
e

rn
e

l
w

e
ig

h
ts

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iteration

K
e

rn
e

l
w

e
ig

h
ts

Fig. 1. Evolution of MCKL-EM (blue line) and MCKL-SILP (red line) on the satim-
age6 (left column) and segment7 (right column) datasets from the UCI Repository
[19]. Top: objective function value of MCKL-EM and MCKL-SILP versus iteration;
Middle: accuracy of MCKL-EM and MCKL-SILP versus iteration. Bottom: the largest
two kernel weights versus iteration, MCKL-EM (blue line) and MCKL-SILP (red line).

8 Multiple Kernel Learning

wine MCKL-EM MCKL-SILP LSR-CV

TSA 98.19± 1.52 98.05± 1.17 98.75± 1.69
Time 1.20 0.9498

waveform3 MCKL-EM MCKL-SILP LSR-CV

TSA 85.54± 1.78 85.95± 0.79 86.75± 1.77
Time 10.97 2.91

segment3 MCKL-EM MCKL-SILP LSR-CV

TSA 98.66± 0.61 98.58± 0.65 97.16± 1.36
Time 23.24 8.30

satimage3 MCKL-EM MCKL-SILP LSR-CV

TSA 99.58± 0.32 99.58± 0.34 99.66± 0.36
Time 7.02 4.56

segment7 MCKL-EM MCKL-SILP LSR-CV

TSA 93.76± 1.14 94.12± 0.73 92.71± 1.20
Time 106.56 89.77

satimage6 MCKL-EM MCKL-SILP LSR-CV

TSA 90.14± 1.45 90.14± 1.48 91.14± 0.98
Time 40.06 27.93

Table 1. Test set accuracy (%) and time complexity (seconds) comparison on UCI
datasets denoted wine, waveform3, etc [19]. LSR-CV denotes ridge regression with
double cross validation over µ and the Gaussian kernel parameter.

were reported based on various adaptations of binary SVM and neural network.
Recently, test performance was greatly improved by Damoulas and Girolami [5]
using a Bayesian multi-class multi-kernel algorithm. They reported a best test
accuracy of 70% on a single run.

For this problem, we examined the proposed method MCKL-EM, and com-
pared against MCKL-SVM [21] and kernel learning for regularized kernel dis-
criminant analysis, RKDA [20] (MCKL-RKDA)2. For the first two methods,
the parameter µ is tuned by 3-fold cross validation based on a grid search
over {10−2, 10−1, . . . , 106}. For RKDA kernel learning [20], we used the SILP
approach and the regularization parameter there is also tuned by 3-fold cross
validation by a grid search over {10−6, 10−4, . . . , 102}.

Table 2 illustrates the result for MCKL-EM with µ adjusted by 3-fold cross
validation. The method achieves a 74.15% test set accuracy (TSA) which outper-
forms the previously reported state-of-art result of 70% obtained in [5] using a
probabilistic Bayesian model, the 68.40% TSA attained by RKDA kernel learn-
ing method [20], and the 67.36% TSA by multi-class SVM multi-kernel learning
method [21]. The first subfigure of Figure 2 illustrates the performance with
each individual feature. The result for MCKL-EM is depicted by a solid line in
the first subfigure of Figure 2. The proposed algorithm was also examined with
all kernels equally weighted, i.e. λ` = 1

m for any ` ∈ Nm, which as mentioned

2 The MATLAB code is available from http://www.public.asu.edu/jye02/Software/DKL

Lecture Notes in Bioinformatics 9

MCKL-EM MCKL-SVM MCKL-RKDA

Protein fold (TSA) 74.15 67.36 68.40

PSORT+ (Average F1 score) 93.34 93.8 93.83

PSORT− (Average F1 score) 96.61 96.1 96.49

Table 2. Performance comparison (test set accuracy as %) for the protein fold recog-
nition [6, 17] and PSORT protein localization datasets [7, 21]. Results for PSORT are
cited from [21].

above is equivalent to a plain L2-norm regularization. The performance is 70.49%
depicted by the dash-dotted line. The second subfigure of Figure 2 shows the
kernel combinatorial weights λ. There, the features Amino Acid Composition
(C), van der Waals volume (V), SW with BLOSUM62 (SW1), and SW with
PAM50 (SW2) are the most prominent sources.

Without using the stopping criterion, MCKL-EM was further examined for
up to 2000 iterations after µ was selected by cross-validation. The third subfigure
shows the convergence of λ and the fourth subfigure illustrates accuracy versus
number of iterations which validates convergence of the iterative algorithm. In
Figure 3 the kernel combinatorial weights λ for MCKL-SVM, and MCKL-RKDA
are plotted. They both indicate that the first, fifth and last feature are important
which is consistent with previous observations. However, the kernel combinations
are sparse and quite different from that of MCKL-EM as depicted in the second
subfigure of Figure 2. The competing methods also result in worse performance
(less than 70%) while MCKL-EM achieves 74.15%. This indicates different com-
binations of kernel weights lead to significantly different predictions by kernel
learning algorithms and sparsity in the kernel weights does not necessarily guar-
antee good generalization performance. We should note here that the parameter
µ in all algorithms is chosen by cross-validation using grid search over the same
grid. Moreover, the sparsity usually depends on the parameter µ: the smaller
the value µ, the greater the sparsity in kernel weights. This may explain why
different kernel weights are obtained for different kernel learning algorithms.

3.3 Prediction of protein subcellular localization

The proposed method (MCKL-EM) was further evaluated on two large datasets
for bacterial protein localization [7] where 69 kernels are available. The first
problem, derived from the PSORT+ dataset, contains four classes and the other,
called PSORT−, has five classes. The results will be based on 30 random parti-
tions into 80% training and 20% test data3.

In Table 2, test set accuracies for MCKL-EM, MCKL-SVM, MCKL-RKDA
are listed. Zien and Ong [21] provided an average F1 score of 93.8% and 96.1%
respectively for the PSORT+ and PSORT− datasets after filtering out 81/541
and 192/1444 ambiguous samples. These outperformed the results 90.0% and

3 http://www.fml.tuebingen.mpg.de/raetsch/suppl/protsubloc

10 Multiple Kernel Learning

C S H P V Z L1 L4 L14 L30 SW1 SW2
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

C S H P V Z L1 L4 L14 L30 SW1 SW2
0

0.05

0.1

0.15

0.2

0.25

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.05

0.1

0.15

0.2

0.25

0 200 400 600 800 1000 1200 1400 1600 1800 2000
71

71.5

72

72.5

73

73.5

74

74.5

Fig. 2. Performance of MCKL-EM on the protein fold dataset. First subfigure: perfor-
mance of each individual kernel; dash-dotted red line is for all kernels equally weighted
(i.e. plain 2-norm regularization) and the solid blue line is for MCKL-EM. Second one:
kernel combinatorial weights i.e. λ. The last two subfigures: evolution of λ and test set
accuracy up to 2000 iterations.

C S H P V Z L1 L4 L14 L30 SW1 SW2
0

0.1

0.2

0.3

0.4

0.5

0.6

C S H P V Z L1 L4 L14 L30 SW1 SW2
0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 3. Kernel weights (i.e. λ) of MCKL-SVM (left subfigure) and MCKL-RKDA (right
subfigure) on the protein fold recognition dataset.

Lecture Notes in Bioinformatics 11

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
ve

ra
ge

 λ

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
ve

ra
ge

 λ

Fig. 4. Averaged kernel combinatorial weights (i.e. λ) with error bars of MCKL-EM
on PSORT− (left subfigure) and PSORT+ (right subfigure).

87.5% reported by Gardy et al. [7]. On PSORT+ dataset we got an average
F1 score 93.34% for MCKL-EM. For PSORT− dataset, we report an average F1
score 96.61% for MCKL-EM. Hence, our results outperform the results of [7] and
are competitive with the methods in [20, 21]. As depicted in Figure 4, the kernel
weights for MCKL-EM are quite sparse on this dataset which are consistent with
those in [21].

4 Conclusion

In this paper we presented MCKL-EM, a simple iterative algorithm for mul-
tiple kernel learning based on the convex formulation of block RKHS norms
across classes. As opposed to other MKL algorithms, this iterative approach
does not need sophisticated optimization methods while retaining comparable
training time and accuracy. The proposed approach yielded state-of-the-art per-
formances on two challenging bioinformatics problems: protein fold prediction
and subcellular localization. For the latter we report a competitive performance.
For the first one we outperform the previous competitive methods and offer a
4.15% improvement over the state-of-art result which is a significant contribution
given the large number of protein fold classes. Future work could include pos-
sible extensions of the proposed method for tackling multi-task and multi-label
problems.

12 Multiple Kernel Learning

References

1. Argyriou A., Evgeniou T., and Pontil M. (2006). Multi-task feature learning, NIPS.
2. Argyriou A., Micchelli C.A., Pontil M., and Ying Y. (2007). A spectral regularization

framework for multi-task structure learning. NIPS.
3. Bach F., Lanckriet G.R.G, and Jordan M.I. (2004). Multiple kernel learning, conic

duality and the SMO algorithm. ICML.
4. Boyd S. and Vandenberghe L. (2004). Convex Optimization. Cambridge University

Press.
5. Damoulas T. and Girolami M. (2008). Probabilistic multi-class multi-kernel learn-

ing: On protein fold recognition and remote homology detection, Bioinformatics,
24(10), 1264-1270.

6. Ding C. and Dubchak I. (2001). Multi-class protein fold recognition using support
vector machines and neural networks. Bioinformatics, 17, 349–358.

7. J. L. Gardy et al. (2004). PSORTb v.2.0: expanded prediction of bacterial protein
subcellular localization and insights gained from comparative proteome analysis,
Bioinformatics, 21: 617–623.

8. Girolami M. and Rogers S. (2005). Hierarchic Bayesian models for kernel learning.
ICML.

9. Lanckriet G.R.G., Cristianini N., Bartlett P., Ghaoui L.E., and Jordan M.I. (2004).
Learning the kernel matrix with semidefinite programming. J. of Machine Learning
Research, 5, 27–72.

10. Lin Y. and Zhang H. (2006). Component selection and smoothing in multivariate
nonparametric regression. Annals of Statistics, 34: 2272–2297.

11. Micchelli C. A. and Pontil M. (2005). Learning the kernel function via regulariza-
tion, J. of Machine Learning Research, 6: 1099–1125.

12. Ong C. S., Smola A. J., and R. C. Williamson R.C. (2005). Learning the kernel
with hyperkernels. J. of Machine Learning Research 6 1043–1071.

13. Rakotomamonjy A., Bach F., Canu S., and Grandvalet Y. (2007). More efficiency
in multiple kernel learning. ICML.

14. Rakotomamonjy A., Bach F., Canu S., and Grandvalet Y. (2008). SimpleMKL, J.
of Machine Learning Research 9: 2491–2521.

15. Schölkopf B. and Smola A.J. (2002). Learning with Kernels . The MIT Press, Cam-
bridge, MA, USA.

16. Shawe-Taylor J. and Cristianini N. (2004). Kernel methods for pattern analysis .
Cambridge university press.

17. Shen H. B. and Chou K. C. (2006). Ensemble classifier for protein fold pattern
recognition. Bioinformatics, 22, 1717–1722.

18. Sonnenburg S., Rätsch G., Schäfer C., and Schölkopf B. (2006). Large scale multiple
kernel learning. J. of Machine Learning Research, 7, 1531–1565.

19. http://archive.ics.uci.edu/ml/
20. Ye J., Ji S., and Chen J. (2008). Multi-class discriminant kernel learning via convex

programming, J. of Machine Learning Research, 9 719–758.
21. Zien A. and Ong C. (2007). Multi-class multiple kernel learning, ICML.

