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Abstract

In this paper we consider a novel information-theoreticrapph to multiple ker-
nel learning based on minimising a Kullback-Leibler (KLy€éligence between
the output kernel matrix and the input kernel matrix. There tavo formula-
tions which we refer to aMKLdiv-dc and MKLdiv-conv We propose to solve
MKLdiv-dc by a difference of convex (DC) programming metharad MKLdiv-
conv by a projected gradient descent algorithm. The effectss of the proposed
approaches is evaluated on a benchmark dataset for protdiretognition and a
yeast protein function prediction problem.

1 Information-theoretic Data Integration

In this paper we consider the problem of integrating mudtigghta sources using a kernel-based ap-
proach. Recent trends in learning kernel combination anallysbased on the margin maximization
criterion used by Support Vector Machines (SVMs) or vasdbt 8, 9, 10, 14, 16, 17]. There, each
data source can be representedddy= {z! : i € N,,} for £ € N,, and the outputs are similarly
denoted by = {y; : i € N,,}. With kernel methods, for an&e Nm, each/-th data source can be
encoded into a candidate kernel matrix denotedhby= (K, (x ij- Depending on the type of
data source used, the candidate kernel funddemvould be specnzled a priori, as a graph kernel for
graph data or a string kernel for sequence data, for exaniplke composite kernel matrix is given
byK, = Z,EN M Ky. Hence, in this context the problem of data integration isiced to learning

a convex combination of candidate kernel matrices Witmel coefficientsr weightsdenoted byh.

We can quantify the similarity betwed&, and the output kerndK, through a Kullback-Leibler
(KL) divergence or relative entropy term [3, 6, 7, 12, 13]. efd&is a simple bijection between
the set of distance measures in these data spaces and tHezest-mean multivariate Gaussian
distributions [3]. Using this bijection, the differencetiveen two distance measures, parameterized
by K, and Ky, can be quantified by the relative entropy or Kullback-LefblKL) divergence
between the corresponding multivariate Gaussians. Kenaglices are generally positive semi-
definite and thus can be regarded as the covariance matfites®@aussian distributions. Matching
kernel matrice, andK,, can therefore be realized by minimizing a KL divergencenaein
these two distributions. As described in [3, 6, 13], the Katlk-Leibler (KL) divergence (relative
entropy) between a Gaussian distributidi{0, K,,) with the output covariance matriK, and a
Gaussian distributioh/ (0, K ) with the input kernel covariance matig, is defined by

1 1 1 n
KL (N0, Ky)[IW(0. Kx)) = 5Tr(Ky K ") + 2 log [Ka| — 5 log [Ky | — 5. 1)

Here, the notation TB) denotes its trace. Though KIV(0, K, )||A(0, Kx)) is non-convex w.r.t.
K, it has a unigue minimum & = K, if K, is positive definite, suggesting that minimizing the
above KL-divergence encouragis to approactK,. If the input kernel matri¥<y is represented
by a linear combination of. candidate kernel matrices, iKx = K, = ZeeNm MKy, the above



MKLdiv-dc MKLdiv-conv  SimpleMKL VBKC MKL-RKDA
All data sources 7336 7101 6657 68.1+1.2 68.40
Uniform weighted 6840 6840 68.14 — 6606

Table 1: Performance with individual and all data sourcése fesults of VBKC are cited from [2].
The results not employed there are denoted-by The best result for each kernel learning method
is marked in bold.

KL-divergence based kernel learning is reduced to thevielig formulation:
argminyea KL (NV(0, Ky ) ||V (0,K))) )
= argminyea Tf (KY(ZZENM MKy + O'In)fl) + log ‘ ZEGNM MKy + ol |, @)

wherel,, denotes the, x n identity matrix ands > 0 is a supplemented small parameter to avoid
the singularity ofi< .

Since the KL-divergence is not symmetric with respedkipandK y, another alternative approach
to matching kernel matrices is given by

argminyea KL (NV(0, K)|IN(0,Ky))
= argminyea ZZENm A Tr ((Ky + O'In)_lKg) — 10g ‘ ZEGNm MKy + o1,

where parameter > 0 is to avoid the singularity oK, . If there is no positive semi-definiteness
restriction oveiK,, this formulation is a well-known converaximum-determinant problerDefine
g(A) = —1og|Y ey, MK+ oL, | andf(X) := Tr(Ky (3 ,cn, . AKe+01,) 7). Since from [1]
functions— log |C| and Tr(KyC*l) are convex with respect to positive semi-definite matriCes
Then it is easy to see that bothandg are convex with respect to € /. Consequently, problem
(3) is convex and problem (2) isdifference of convex probleror the convex problem (2) we can
follow a projected gradient descent procedure and hencefge to problem (2) aMKLdiv-conv
For the difference of convex (DC) problem (3) we use a conaamrevex procedure [18], and hence
we refer to problem (3) asIKLdiv-dc Full details are given in our paper [15].
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The KL-divergence criterion for kernel integration wasocassiccessfully used in [13, 7] which for-
mulated the problem of supervised network inference as aekenatrix completion problem. In
terms of information geometry, formulation (2) correspsimifinding then-projection ofK, over
an e-flat submanifold. The convex problem (3) can be regardechafy thee-projection ofK,,
over am-flat submanifold. The formulation (2) also has a close retatvith Gaussian Process re-
gressior[11]. Specifically, the Gaussian process prior can be writef |x ~ N (f] 0, K, ). For the
output vectory € R", if we let K, = yy' in the objective function of formulation (2), then one
can easily check that, up to a constant term, the objectivetiion in formulation (2) is the negative
of the log likelihood of Gaussian process regression.

2 Experimental Evaluation

We evaluated both MKLdiv methods on two bioinformatics &slrotein fold recognition and
yeast protein function prediction. In these tasks, far-alass classification, we recast the outputs
v ={y; :i € Ny} as(ya,. .., yic) such thaty,, = 1if x; is in classp and otherwise-1. Hence
the outputs are represented byrar C indicator matrixY = (y;;)i,, Whosep-th column vector is
denoted byy,. The output kernel matriK, = YY . Also, we first compute the kernel weights
using the MKLdiv methods given above and then feed theseaimioe-against-all multi-class SVM
to make predictions.

2.1 Protein Fold Recognition

We evaluated MKLdiv on a well-known protein fold predictidataset [4]. This benchmark dataset
(based on SCOP PDB-40D) hag SCOP fold classes withB11 proteins for training an@83 for
testing. There are atotal ®2 different data sources such as Amino Acid Composition (&dRted
Secondary Structure (S), Hydrophobicity (H), Polarity, (Pylarizability (Z), PseAAN = 1 (L1),
PseAA) = 4 (L4), PseAAX = 14 (L14), PseAA) = 30 (L30), SW with BLOSUM®62 (SW1) and
SW with PAM50 (SW2), etc. As in [2], we employ linear kerneSith-Waterman scores) for SW1
and SW2 and second order polynomial kernels for the other slairces. Ding and Duchbak [4]



reported an original test set accuracy (TSA)6%%, subsequently improved % by Damoulas
and Girolami [2] using a Bayesian multi-class multi-kerakgorithm. We additionally compare our
MKLdiv methods with kernel learning based on a one-agaatistiulticlass SVM trained using the
SimpleMKL software package [10], kernel learning for regyided discriminant analysis (MKL-
RKDA) [14] and a probabilistic Bayesian model for kernelrigiag (VBKC) [2].

In Table 1 we see that the performance of MKLdiv-dc and MKLdanv inclusive of all data sources
achieves a test set accuracyrdf36% and71.01% respectively, consistently outperforming all in-
dividual performances and the uniformly weighted compokérnel ¢8.40%). Our methods also
outperforms SimpleMKL§8.14%) and MKL-RKDA (68.40%). As depicted in the subfigure (b) of
Figure 1, the kernel weights of MKLdiv-dc and MKLdiv-convdlude some less informative data
sources such as PZL1,L4,014,1 30 etc., with small (but nobzkernel weights. In contrast, as
shown in (e) and (g) of Figure 1, SimpleMKL and MKL-RKDA conepély discard these less infor-
mative data sources. However, as shown in (d) and (f) of EiguiSimpleMKL and MKL-RKDA
achieve poorer performance, less thafi, while MKLdiv-dc achieve¥3.36% and MKLdiv-conv
achieves1.01%. This suggests that MKLdiv-dc provides a more reasonabimloa over the entire
set of data sources.
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Figure 1. Kernel weights: (a) MKLdiv-dc, (b) MKLdiv-conw) SimpleMKL and (d) MKL-RKDA.
Test set accuracy versus different values oh the protein fold recognition dataset: (a) MKLdiv-dc
and (b) MKLdiv-conv.

Sensitivity against Parametero

The initial purpose of introducing is to avoid the singularity of the input kernel matrix or the
output kernel matrix. However, in practice we found thatthe convex formulation MKLdiv-
conv, values ob have a great influence on performance for protein fold reitiogn Subfigures
(e)-(f) Figure 1 depicted the test set accuracy versus sadfie where we see in (e) of Figure 1
that the test set accuracy of MKLdiv-dc is relatively stafllesmall values ob’s compared with
MKLdiv-conv. This generally suggests that the parametéis a great impact on performance of
MKLdiv-conv. This could be because the output kernel makix = YY ' is of low rank (rank
one in binary classification) and thus adding a small matiix in the formulation MKLdiv-conv
could dramatically change the information of the outputleématrix.

2.2 Yeast Protein Classification

We next extend our investigation of MKLdiv-dc and MKLdiviooto a yeast membrane protein
classification problem [8]. This binary classification thsls2316 examples with eight input kernel



matrices. MKLdiv-dc yields a ROC score 69189 + 0.0171 which is competitive with the result
in [8]. MKLdiv-conv, however, achieved a ROC score ®$016 + 0.0161 which is worse than
MKLdiv-dc. The performance of MKLdiv-dc is also slightly tier than the performance of the
uniformly weighted kerne.9084+0.0177 excluding the noise kernel afick979+0.0120 including
the noise kernel.

Conclusion

In this paper we developed a novel information-theoretjraach to learning a linear combination
of kernel matrices based on the KL-divergence [13, 7, 12],6esbecially focused on the protein
fold recognition problem.

Generally, it is difficult to determine which criterion istber for multiple kernel combination since
this problem is highly data-dependent. For the informatimgoretic approaches MKLdiv-dc and
MKLdiv-conv, although MKLdiv-dc is not convex and its DC aldgthm tends to find a local min-
ima, in practice we would recommend MKLdiv-dc for the follimg reasons. Firstly, as mentioned
above MKLdiv-dc has a close relation with the kernel mataxnpletion problem using informa-
tion geometry [13, 7] and the maximization of the log likeldd of Gaussian Process regression
[11], which partly explains the success of MKLdiv-dc. Sedlynwe empirically observed that
MKLdiv-dc outperforms MKLdiv-conv in protein fold recogtidn and yeast protein function pre-
diction. Finally, as we showed in Figure 1, the performaniclKLdiv-conv is quite sensitive to
the parametes and the choice of remains a challenging problem. MKLdiv-dc is relativelytsta
with respect to small values efand we can fix to be a very small number e.g.= 10~°.
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