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Abstract

In this paper we consider a novel information-theoretic approach to multiple ker-
nel learning based on minimising a Kullback-Leibler (KL) divergence between
the output kernel matrix and the input kernel matrix. There are two formula-
tions which we refer to asMKLdiv-dc andMKLdiv-conv. We propose to solve
MKLdiv-dc by a difference of convex (DC) programming methodand MKLdiv-
conv by a projected gradient descent algorithm. The effectiveness of the proposed
approaches is evaluated on a benchmark dataset for protein fold recognition and a
yeast protein function prediction problem.

1 Information-theoretic Data Integration

In this paper we consider the problem of integrating multiple data sources using a kernel-based ap-
proach. Recent trends in learning kernel combination are usually based on the margin maximization
criterion used by Support Vector Machines (SVMs) or variants [5, 8, 9, 10, 14, 16, 17]. There, each
data source can be represented byx` = {x`

i : i ∈ Nn} for ` ∈ Nm and the outputs are similarly
denoted byy = {yi : i ∈ Nn}. With kernel methods, for anỳ∈ Nm, each̀ -th data source can be
encoded into a candidate kernel matrix denoted byK` = (K`(x

`
i , x

`
j))ij . Depending on the type of

data source used, the candidate kernel functionK` would be specified a priori, as a graph kernel for
graph data or a string kernel for sequence data, for example.The composite kernel matrix is given
byKλ =

∑

`∈Nm

λ`K`. Hence, in this context the problem of data integration is reduced to learning
a convex combination of candidate kernel matrices withkernel coefficientsor weightsdenoted byλ.

We can quantify the similarity betweenKλ and the output kernelKy through a Kullback-Leibler
(KL) divergence or relative entropy term [3, 6, 7, 12, 13]. There is a simple bijection between
the set of distance measures in these data spaces and the set of zero-mean multivariate Gaussian
distributions [3]. Using this bijection, the difference between two distance measures, parameterized
by Kλ and Ky, can be quantified by the relative entropy or Kullback-Leibler (KL) divergence
between the corresponding multivariate Gaussians. Kernelmatrices are generally positive semi-
definite and thus can be regarded as the covariance matrices of the Gaussian distributions. Matching
kernel matricesKλ andKy, can therefore be realized by minimizing a KL divergence between
these two distributions. As described in [3, 6, 13], the Kullback-Leibler (KL) divergence (relative
entropy) between a Gaussian distributionN (0,Ky) with the output covariance matrixKy and a
Gaussian distributionN (0,Kx) with the input kernel covariance matrixKx is defined by

KL
(

N (0,Ky)||N (0,Kx)
)

:=
1

2
Tr(KyK

−1

x
) +

1

2
log |Kx| −

1

2
log |Ky| −

n

2
. (1)

Here, the notation Tr(B) denotes its trace. Though KL
(

N (0,Ky)||N (0,Kx)
)

is non-convex w.r.t.
Kx, it has a unique minimum atKx = Ky if Ky is positive definite, suggesting that minimizing the
above KL-divergence encouragesKx to approachKy. If the input kernel matrixKx is represented
by a linear combination ofm candidate kernel matrices, i.e.Kx = Kλ =

∑

`∈Nm

λ`K`, the above
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MKLdiv-dc MKLdiv-conv SimpleMKL VBKC MKL-RKDA
All data sources 73.36 71.01 66.57 68.1± 1.2 68.40
Uniform weighted 68.40 68.40 68.14 − 66.06

Table 1: Performance with individual and all data sources. The results of VBKC are cited from [2].
The results not employed there are denoted by ‘−’. The best result for each kernel learning method
is marked in bold.

KL-divergence based kernel learning is reduced to the following formulation:

arg minλ∈4 KL (N (0,Ky)||N (0,Kλ))

= argminλ∈4 Tr
(

Ky(
∑

`∈Nm

λ`K` + σIn)−1
)

+ log
∣

∣

∣

∑

`∈Nm

λ`K` + σIn

∣

∣

∣
,

(2)

whereIn denotes then × n identity matrix andσ > 0 is a supplemented small parameter to avoid
the singularity ofKλ.

Since the KL-divergence is not symmetric with respect toKy andKλ, another alternative approach
to matching kernel matrices is given by

arg minλ∈4 KL (N (0,Kλ)||N (0,Ky))

= argminλ∈4

∑

`∈Nm

λ`Tr
(

(Ky + σIn)−1K`

)

− log
∣

∣

∣

∑

`∈Nm

λ`K` + σIn

∣

∣

∣
,

(3)

where parameterσ > 0 is to avoid the singularity ofKy. If there is no positive semi-definiteness
restriction overK`, this formulation is a well-known convexmaximum-determinant problem. Define
g(λ) := − log

∣

∣

∑

`∈Nm

λ`K` +σIn

∣

∣ andf(λ) := Tr
(

Ky(
∑

`∈Nm

λ`K` +σIn)−1
)

. Since from [1]
functions− log |C| and Tr

(

KyC
−1

)

are convex with respect to positive semi-definite matricesC.
Then it is easy to see that bothf andg are convex with respect toλ ∈ 4. Consequently, problem
(3) is convex and problem (2) is adifference of convex problem. For the convex problem (2) we can
follow a projected gradient descent procedure and hence we refer to problem (2) asMKLdiv-conv.
For the difference of convex (DC) problem (3) we use a concave-convex procedure [18], and hence
we refer to problem (3) asMKLdiv-dc. Full details are given in our paper [15].

The KL-divergence criterion for kernel integration was also successfully used in [13, 7] which for-
mulated the problem of supervised network inference as a kernel matrix completion problem. In
terms of information geometry, formulation (2) corresponds to finding them-projection ofKy over
ane-flat submanifold. The convex problem (3) can be regarded as finding thee-projection ofKy

over am-flat submanifold. The formulation (2) also has a close relation with Gaussian Process re-
gression[11]. Specifically, the Gaussian process prior can be written asf |x ∼ N (f | 0,Kλ). For the
output vectory ∈ R

n, if we let Ky = yy> in the objective function of formulation (2), then one
can easily check that, up to a constant term, the objective function in formulation (2) is the negative
of the log likelihood of Gaussian process regression.

2 Experimental Evaluation

We evaluated both MKLdiv methods on two bioinformatics tasks: protein fold recognition and
yeast protein function prediction. In these tasks, for aC-class classification, we recast the outputs
y = {yi : i ∈ Nn} as(yi1, . . . , yiC) such thatyip = 1 if xi is in classp and otherwise−1. Hence
the outputs are represented by ann× C indicator matrixY = (yip)i,p whosep-th column vector is
denoted byyp. The output kernel matrixKy = YY>. Also, we first compute the kernel weights
using the MKLdiv methods given above and then feed these intoa one-against-all multi-class SVM
to make predictions.

2.1 Protein Fold Recognition

We evaluated MKLdiv on a well-known protein fold predictiondataset [4]. This benchmark dataset
(based on SCOP PDB-40D) has27 SCOP fold classes with311 proteins for training and383 for
testing. There are a total of12 different data sources such as Amino Acid Composition (C), Predicted
Secondary Structure (S), Hydrophobicity (H), Polarity (P), Polarizability (Z), PseAAλ = 1 (L1),
PseAAλ = 4 (L4), PseAAλ = 14 (L14), PseAAλ = 30 (L30), SW with BLOSUM62 (SW1) and
SW with PAM50 (SW2), etc. As in [2], we employ linear kernels (Smith-Waterman scores) for SW1
and SW2 and second order polynomial kernels for the other data sources. Ding and Duchbak [4]
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reported an original test set accuracy (TSA) of56%, subsequently improved to70% by Damoulas
and Girolami [2] using a Bayesian multi-class multi-kernelalgorithm. We additionally compare our
MKLdiv methods with kernel learning based on a one-against-all multiclass SVM trained using the
SimpleMKL software package [10], kernel learning for regularized discriminant analysis (MKL-
RKDA) [14] and a probabilistic Bayesian model for kernel learning (VBKC) [2].

In Table 1 we see that the performance of MKLdiv-dc and MKLdiv-conv inclusive of all data sources
achieves a test set accuracy of73.36% and71.01% respectively, consistently outperforming all in-
dividual performances and the uniformly weighted composite kernel (68.40%). Our methods also
outperforms SimpleMKL (68.14%) and MKL-RKDA (68.40%). As depicted in the subfigure (b) of
Figure 1, the kernel weights of MKLdiv-dc and MKLdiv-conv include some less informative data
sources such as PZL1,L4,L14,L30 etc., with small (but not zero) kernel weights. In contrast, as
shown in (e) and (g) of Figure 1, SimpleMKL and MKL-RKDA completely discard these less infor-
mative data sources. However, as shown in (d) and (f) of Figure 1, SimpleMKL and MKL-RKDA
achieve poorer performance, less than70%, while MKLdiv-dc achieves73.36% and MKLdiv-conv
achieves71.01%. This suggests that MKLdiv-dc provides a more reasonable balance over the entire
set of data sources.
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Figure 1: Kernel weights: (a) MKLdiv-dc, (b) MKLdiv-conv, (c) SimpleMKL and (d) MKL-RKDA.
Test set accuracy versus different values ofσ on the protein fold recognition dataset: (a) MKLdiv-dc
and (b) MKLdiv-conv.

Sensitivity against Parameterσ
The initial purpose of introducingσ is to avoid the singularity of the input kernel matrix or the
output kernel matrix. However, in practice we found that, inthe convex formulation MKLdiv-
conv, values ofσ have a great influence on performance for protein fold recognition. Subfigures
(e)-(f) Figure 1 depicted the test set accuracy versus values of σ where we see in (e) of Figure 1
that the test set accuracy of MKLdiv-dc is relatively stablefor small values ofσ’s compared with
MKLdiv-conv. This generally suggests that the parameterσ has a great impact on performance of
MKLdiv-conv. This could be because the output kernel matrixKy = YY> is of low rank (rank
one in binary classification) and thus adding a small matrixσIn in the formulation MKLdiv-conv
could dramatically change the information of the output kernel matrix.

2.2 Yeast Protein Classification

We next extend our investigation of MKLdiv-dc and MKLdiv-conv to a yeast membrane protein
classification problem [8]. This binary classification taskhas2316 examples with eight input kernel
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matrices. MKLdiv-dc yields a ROC score of0.9189 ± 0.0171 which is competitive with the result
in [8]. MKLdiv-conv, however, achieved a ROC score of0.9016 ± 0.0161 which is worse than
MKLdiv-dc. The performance of MKLdiv-dc is also slightly better than the performance of the
uniformly weighted kernel0.9084±0.0177excluding the noise kernel and0.8979±0.0120 including
the noise kernel.

Conclusion

In this paper we developed a novel information-theoretic approach to learning a linear combination
of kernel matrices based on the KL-divergence [13, 7, 12, 6, 3], especially focused on the protein
fold recognition problem.

Generally, it is difficult to determine which criterion is better for multiple kernel combination since
this problem is highly data-dependent. For the information-theoretic approaches MKLdiv-dc and
MKLdiv-conv, although MKLdiv-dc is not convex and its DC algorithm tends to find a local min-
ima, in practice we would recommend MKLdiv-dc for the following reasons. Firstly, as mentioned
above MKLdiv-dc has a close relation with the kernel matrix completion problem using informa-
tion geometry [13, 7] and the maximization of the log likelihood of Gaussian Process regression
[11], which partly explains the success of MKLdiv-dc. Secondly, we empirically observed that
MKLdiv-dc outperforms MKLdiv-conv in protein fold recognition and yeast protein function pre-
diction. Finally, as we showed in Figure 1, the performance of MKLdiv-conv is quite sensitive to
the parameterσ and the choice ofσ remains a challenging problem. MKLdiv-dc is relatively stable
with respect to small values ofσ and we can fixσ to be a very small number e.g.σ = 10−5.
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