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Abstract

In this paper we develop a novel probabilistic gen-
eralization bound for learning the kernel problem.
First, we show that the generalization analysis of
the kernel learning algorithms reduces to investi-
gation of the suprema of the Rademacher chaos
process of order two over candidate kernels, which
we refer to as Rademacher chaos complexity. Next,
we show how to estimate the empirical Rademacher
chaos complexity by well-established metric en-
tropy integrals and pseudo-dimension of the set of
candidate kernels. Our new methodology mainly
depends on the principal theory of U-processes.
Finally, we establish satisfactory excess general-
ization bounds and misclassification error rates for
learning Gaussian kernels and general radial basis
kernels.

1 Introduction
Kernel methods such as Support Vector Machines (SVM)
have been extensively applied to supervised learning tasks
such as classification and regression, see e.g. [9, 23, 24, 28].
The performance of a kernel machine largely depends on the
data representation via the choice of kernel function. Hence,
one central issue in kernel methods is the problem of kernel
selection. To automate kernel learning algorithms, it is de-
sirable to integrate the process of selecting kernels into the
learning algorithms.

Kernel learning can range from the width parameter se-
lection of Gaussian kernels to obtaining an optimal linear
combination from a set of finite candidate kernels. The lat-
ter is often referred to as multiple kernel learning (MKL) in
Machine Learning and nonparametric Group Lasso [3, 32]
in Statistics. Lanckriet et al. [17] pioneered work on MKL
and proposed a semi-definite programming (SDP) approach
to automatically learn a linear combination of candidate ker-
nels for the case of SVMs. Similar problems studied re-
cently include the so-called COSSO estimate for additive
model [18], hyperkernels [22], Bayesian probabilistic kernel
learning models [14], and kernel discriminant analysis [30]
etc. Such MKL formulations have been successfully demon-
strated in combining multiple heterogeneous data sources to
enhance biological inference [17].

The above mentioned MKL algorithms learn the linear
combination of a finite set of candidate kernels. A general
regularization framework including kernel hyper-parameter
learning and MKL is formulated in [20, 29] with a poten-
tially infinite number of candidate kernels which is generally
referred to as the learning the kernel problem. Specifically,
let Nn = {1, 2, · · · , n} for any n ∈ N and we are interested
in the classification problem on the input space X ⊆ Rd and
output space Y = {±1}. The relation between input X and
output Y is specified by a set of training samples z = {zi =
(xi, yi) : xi ∈ X, yi ∈ Y, i ∈ Nn} which are identically
and independently distributed (i.i.d.) according to an un-
known distribution ρ on Z = X × Y . Let K be a prescribed
(possible infinite) set of candidate (base) kernels and denote
the candidate reproducing kernel Hilbert space (RKHS) with
kernel K by HK with norm ‖ · ‖K . In addition, we always
assume that the quantity κ := supK∈K,x∈X

√
K(x, x) is fi-

nite. Then the general kernel learning scheme in [20, 29] can
be cast as a two-layer minimization problem:

fφz = arg min
f∈HK
K∈K

{
1
n

∑
i∈Nn

φ
(
yif(xi)

)
+ λ‖f‖2K

}
. (1)

where φ : R → [0,∞) is a prescribed loss function and
λ is a positive regularization parameter. We emphasize that
the superscript φ means that the solution fφz is produced by
(1) with loss function φ. When the loss function φ is cho-
sen to the hinge loss for SVM and K is the linear combina-
tion of the set of finite base kernels {K` : ` ∈ Nm}, i.e.
K := {

∑
`∈Nm λ`K` :

∑
`∈Nm λ` = 1, λ` ≥ 0, ∀` ∈ Nm},

then the above kernel learning framework (1) is reduced to
the SVM-based MKL formulation [17]. If we choose the set
of base kernels as K =

{
e−σ‖x−t‖

2
: σ > 0

}
, the above for-

mulation (1) is generally reduced to the problem of Gaussian
kernel hyper-parameter learning.

Statistical generalization analysis of learning the kernel
system (1) was pursued by [7, 17, 31, 21, 25]. In this paper
we leverage Rademacher complexity bounds for empirical
risk minimization (ERM) and for SVM with a single kernel
[4, 5, 16] and develop a novel generalization bound for ker-
nel learning system (1). Our new approach is based on the
principal theory of U-processes (e.g. [11]) which can yield
tight generalization bounds.

This paper is organized as follows. In Section 2 we re-
view necessary background for generalization analysis and
illustrate our main results. Section 3 discusses related work



and compares our results with those in the literature. Our
main idea is developed in Section 4. There we show the
generalization analysis of the kernel learning problem (1) re-
duces to investigation of the suprema of the homogeneous
Rademacher chaos of order two over candidate kernels, which
we refer to as Rademacher chaos complexity. In Section 5
we show how to estimate the Rademacher chaos complexity
using metric entropy integrals and the pseudo-dimension of
the set of candidate kernels. Examples for learning Gaussian
kernels and radial basis kernels are given in Section 6 to il-
lustrate our proposed generalization analysis. In Section 7
we present the conclusion and discussion of possible exten-
sions.

2 Main Results
In this section we outline our main contributions. Before we
do this, let us review the objective of generalization analysis
for multiple kernel learning focusing on classification prob-
lems.

2.1 Target of Analysis
A classifier C assigns, for each point x, a prediction C(x) ∈
Y . The prediction power of classifiers is measured by the
misclassification error which is defined, for a classifier C :
X → Y , by

R(C) :=
∫
X×Y

P (y 6= C(x)|x)dρ(x, y). (2)

The best classifier is called the Bayes rule [13] which min-
imizes the misclassification error over all classifiers: fc =
arg infR(C).

We are interested in the statistical behavior of the multi-
kernel regularized classifier given by sign(fφz ) with the reg-
ularization scheme (1). For brevity, throughout this note we
restrict our interest to a class of loss functions used in [29],
see also a general definition of classification loss functions
in [4].

Definition 1 A function φ : R→ [0,∞) is called a normal-
ized classifying loss if it is convex, φ′(0) < 0, inft∈R φ(t) =
0, and φ(0) = 1.

The convexity and the condition φ′(0) < 0 in the defini-
tion of the normalized classifying loss implies that φ(yf(x)) >
φ(0) > 0 whenever yf(x) < 0 (i.e. when sgn(f(x)) mis-
classifies the true label y). The true error or generalization
error is defined as

Eφ(f) =
∫
X×Y

φ(yf(x))dρ(x, y),

and the target function fφρ is defined by fφρ = arg minf Eφ(f).
Examples of normalized classifying losses include the hinge
loss φ(t) = (1 − t)+ for soft margin SVM, general q-norm
soft margin SVM loss φ(t) = (1 − t)q+ with q > 1, and the
least square loss φ(t) = (1− t)2.

The target of error analysis is to understand how sign(fφz )
approximates the Bayes rule fc. More specifically, we aim
to estimate the excess misclassification error

R(sign(fφz ))−R(fc)

for the multi-kernel regularized classification algorithm (1).
As shown in [33, 4], the excess misclassification error usu-
ally can be bounded by the excess generalization error:

Eφ(fφz )− Eφ(fφ), (3)

and we refer to the relation between these two excess errors
as the comparison inequality. For example, for a SVM hinge
loss we know [33] that fφ = fc and

R(sign(fφz ))−R(fc) ≤ Eφ(fφz )− Eφ(fc). (4)

One can refer to [4, 33] for more comparison inequalities for
general loss functions.

Consequently, it suffices to bound the excess generaliza-
tion error (3). To this end, we introduce the error decompo-
sition of algorithm (1). Let the empirical error Ez be defined,
for any f , by Eφz (f) = 1

n

∑
j∈Nn φ(yjf(xj)). We also intro-

duce the regularization error D(λ) defined by

D(λ) = inf
K∈K

inf
f∈HK

{
Eφ(f)− Eφ(fφρ ) + λ‖f‖2K

}
,

and also call the minimizer fφλ of the regularization error the
regularization function. Also, we define the sample error
Sz,λ by

Sz,λ =
{
Eφ(fφz )− Eφz (fφz )

}
+
{
Eφz (fφλ )− Eφ(fφλ )

}
.

Then, we know from [31] that the error decomposition holds
true:

Eφ(fφz )− Eφ(fφρ ) ≤ D(λ) + Sz,λ. (5)
Throughout this paper, for simplicity we always assume the
existence of the empirical solution fφz and the regularization
function fφλ , see discussions in Appendix B of [31].

To estimate the sample error Sz,λ, we need to find the
hypothesis space of fφz and fφλ . Let the union of the unit
balls of candidate RKHSs be denoted by

BK :=
{
f : f ∈ HK and ‖f‖K ≤ 1, K ∈ K

}
. (6)

By the definition of fφz , we get, for some RKHS HK , that
1
n

∑n
i=1 φ

(
yif

φ
z (xi)

)
+λ‖fφz ‖2K ≤ 1

n

∑n
i=1 φ

(
0)+λ‖0‖2K =

1. Hence, ‖fφz ‖K ≤
√

1/λ. Likewise, for some kernel K ∈
K, ‖fφλ ‖K ≤

√
1/λ. This implies, for any samples z, that

fφz , f
φ
λ ∈ Bλ :=

1√
λ
BK :=

{ f√
λ

: f ∈ BK
}
. (7)

Hence, ‖fφz ‖∞ < κ
√

1/λ and ‖fφλ ‖∞ < κ
√

1/λ. Finally,
for a locally Lipschitz continuous function ψ : R → [0,∞)
we need the constant defined by

Mψ
λ = sup

{
|ψ(t)| : |t| ≤ κ

√
1/λ
}
, (8)

and denote the local Lipschitz constant by

Cψλ = sup
{ |ψ(x)− ψ(x′)|

|x− x′|
: ∀|x|, |x′| ≤ κ

√
1
λ

}
. (9)

If ψ = φ is convex, then φ’s left derivative φ′− and right one
φ′+ are well defined and Cφλ is identical to

Cφλ = sup
{

max
(
|φ′−(t)|, |φ′+(t)|

)
: |t| ≤ κ

√
1/λ
}
.



2.2 Main Theorems
Our generalization analysis depends on the suprema of the
homogeneous Rademacher chaos of order two over a class
of functions defined as follows, see Chapter 3.2 of [11] for a
general definition of Rademacher chaos of order m for any
m ∈ N.

Definition 2 Let F be a class of functions on X × X and
let {εi : i ∈ Nn} be independent Rademacher random vari-
ables. Also, let x = {xi : i ∈ Nn} be independent random
variables distributed according to a distribution µ onX . The
homogeneous Rademacher chaos process of order two, with
respect to the Rademacher variable ε, is a random variable
system defined by{

Ûf (ε) =
1
n

∑
i,j∈Nn,i<j

εiεjf(xi, xj) : f ∈ F
}
,

and we refer to the expectation of its superma

Ûn(F ) = Eε[sup
f∈F
|Ûf (ε)|]

as the empirical Rademacher chaos complexity over F .

It is worth mentioning that the Rademacher process{ 1√
n

∑
i∈Nn

εif(xi) : f ∈ F
}

for Rademacher averages can be regarded as a homogeneous
Rademacher chaos process of order one. The nice appli-
cation of U-processes to the generalization analysis of the
ranking and scoring problem is recently developed in [10].

Our first main result shows that the excess generalization
error of MKL algorithms can be bounded by the empirical
Rademacher chaos complexity over the set of candidate ker-
nels.

Theorem 3 Let φ be a normalized classifying loss. Then,
for any δ ∈ (0, 1) we have, with probability at least 1 − δ,
that

Eφ(fφz )− Eφz (fφz ) ≤ 4Cφλ
(

2Ûn(K)
λn

) 1
2

+ 4κCφλ
(

1
nλ

) 1
2

+3Mφ
λ

(
ln( 2

δ )

n

) 1
2

+ 2√
n
,

and

Eφ(fφz )− E(fφρ ) ≤ 8Cφλ
(

2Ûn(K)
λn

) 1
2

+ 8Cφλκ
(

1
nλ

) 1
2

+3Mφ
λ

(
ln( 2

δ )

n

) 1
2

+ 4√
n

+D(λ).

In practice, the empirical complexity Ûn(K) can be esti-
mated from finite samples. In analogy to the data-dependent
risk bounds of Rademacher averages [4], we can get margin
bounds of Rademacher chaos complexities for learning the
kernel problems.

Corollary 4 Let γ > 0, 0 < δ < 1 and define the margin
cost function by

ψ(t) =


1, t ≤ 0
1− t

γ , 0 < t ≤ γ
0, t > γ

(10)

Then, with probability at least 1− δ, there holds

R(sgn(fφz )) ≤ Eψz (fφz ) + 4
(

2Ûn(K)
nλγ2

) 1
2

+ 4κ
(

1
nλγ2

) 1
2

+3
(

ln( 2
δ )

n

) 1
2

+ 2√
n
.

Theorem 3 and Corollary 4 will be proved in Section 4.
When K only has a single kernel K, we have

Ûn(K) ≤ Eε
∣∣∣ 1
n

∑
i,j∈Nn εiεjK(xi, xj)

∣∣∣
+
∣∣∣ 1
n

∑
i∈Nn K(xi, xi)

∣∣∣
= Eε 1

n

∑
i,j∈Nn εiεjK(xi, xj)

+ 1
n

∑
i∈Nn K(xi, xi)

where the last equality follows from the positive semi-definiteness
of kernelK. Hence, denote by K the matrix (K(xi, xj))ij∈Nn ,
the Rademacher chaos complexity can be estimated as fol-
lows:

Ûn(K) ≤ 2
n

∑
i∈Nn

K(xi, xi) =
2
n

trace(K).

Consequently, Corollary 4 implies that

R(sgn(fφz )) ≤ Eψz (fφz ) + 8
γ

√
trace(K)

n
√
λ

+4κ
(

1
nλγ2

) 1
2

+ 3
(

ln( 2
δ )

n

) 1
2

+ 2√
n
,

which coincides with the bound in [5] for the single kernel
case with solutions fφz in the function space

{f =
∑
i∈Nn

αiK(xi, ·) :
∑
i,j∈Nn

αiαjK(xi, xj) ≤
1
λ
}.

Now we apply the well-established theory of U processes
to estimate Rademacher chaos complexity by the pseudo-
dimension of the set of candidate kernels. For this purpose,
we recall the definition of the kernel pseudo-dimension of a
class of kernel functions on the product space X × X , see
[2].

Definition 5 Let K be a set of reproducing kernel functions
mapping from X × X to R. We say that Sm = {(xi, ti) ∈
X×X : i ∈ Nm} is pseudo-shattering byK if there are real
numbers {ri ∈ R : i ∈ Nm} such that for any b ∈ {−1, 1}m
there is a function K ∈ K with property sgn(K(xi, ti) −
ri) = bi for any i ∈ Nm. Then, we define a pseudo-dimension
dK ofK to be the maximum cardinality of Sm that is pseudo-
shattered by K.

The Rademacher chaos complexity can be bounded using
pseudo-dimensions.

Theorem 6 Denote the pseudo-dimension ofK by dK. Then,
there exists a universal constant C such that, for any x =
{xi : i ∈ Nn}, there holds

Ûn(K) ≤ C(1 + κ)2dK ln(2en2). (11)



For Gaussian-type kernels, we can explicitly bound the em-
pirical Rademacher chaos complexities. First, consider the
set of scalar candidate kernels given by

Kgau =
{
e−σ‖x−t‖

2
: σ ∈ [0,∞)

}
. (12)

The second class of candidate kernels is more general as con-
sidered in [21]: the whole class of radial basis kernels. Let
M(R+) be the class of probabilities on R+. We consider the
candidate kernel defined by

Krbf =
{∫ ∞

0

e−σ‖x−t‖
2
dp(σ) : p ∈M(R+)

}
(13)

For the above specific sets of base kernels, we can have
the following result by estimating the pseudo-dimension of
Kgau.

Corollary 7 Let candidate kernels be given by equation (12)
and (13). Then, there exists a universal constant C, such
that, for x = {xi : i ∈ Nn}, there holds

Ûn(Krbf) ≤ Ûn(Kgau) ≤ C (1 + κ)2 ln(2en2).

Theorem 6 and Corollary 7 will be proved in Section 5.
Define the convex hull of K by

conv
(
K
)

:=
{∑

j∈Nm λ`K` : K` ∈ K, λ` ≥ 0,∑
`∈Nm λ` = 1,m ∈ N

}
.

Then, it is easy to check, by the definition of the Rademacher
chaos complexity, that Ûn

(
conv

(
Krbf

))
≤ Ûn(Krbf) and

Ûn

(
conv

(
Kgau

))
≤ Ûn(Kgau). One can also see [25] for

more examples of Gaussian kernels with low rank covari-
ance matrices.

Combining Theorems 3, 6 with Corollary 7, for learning
the kernel problem (1) with the set of candidate kernels K =
Krbf or K = Kgau the excess generalization bound can be
summarized as follows: there exists a universal constant C
such that, with probability at least 1− δ there holds

Eφ(fφz )− Eφ(fφρ ) ≤ C
(
Cφλ
(

lnn
nλ

) 1
2

+Mφ
λ

( ln 2
δ

n

) 1
2
)

+D(λ). (14)

From the above equation, by choosing λ appropriately we
can derive meaningful excess generalization error rates with
respect to the sample number n, and hence excess misclas-
sification error rates by the comparison inequalities such as
inequality (4). To this end, we usually assume conditions
on the distribution ρ or some regularity condition on the tar-
get function fφρ under which the regularization error D(λ)
decays polynomially. For instance, we can employ the fol-
lowing condition introduced in [8].

Definition 8 We say that ρ is separable by {HK : K ∈ K}
if there is some fsp ∈ HK̄ with some K̄ ∈ K such that
yfsp(x) > 0 almost surely. It has separation exponent θ ∈
(0,∞] if we can choose fsp and positive constants ∆, cθ
such that ‖fsp‖K̄ = 1 and

ρX
{
x ∈ X : |fsp(x)| < ∆t

}
≤ cθtθ, ∀t > 0. (15)

Observe that condition (15) with θ = ∞ is equivalent to
ρX
{
x ∈ X : |fsp(x)| < γt

}
= 0, ∀ 0 < t < 1.

That is, |fsp(x)| ≥ γ almost everywhere. Thus, separable
distributions with separation exponent θ = ∞ correspond
to strictly separable distributions. Other assumptions on the
distribution ρ such as the geometric noise condition intro-
duced in [26, 27] are possible to achieve polynomial decays
of the regularization error.

We are now ready to state misclassification error rates.
Hereafter, the expression an = O(bn) means that there ex-
ists an absolute constant c such that an ≤ cbn for all n ∈ N.

Example 1 Let φ(t) = (1 − t)+ be the hinge loss and con-
sider the kernel learning formulation (1) with K given by
either Kgau or Krbf. Suppose that the separation condi-
tion holds true with exponent θ > 0. Then, by choosing
λ = n−

2+θ
(2+3θ) , for any δ ∈ (0, 1), with probability at least

1− δ there holds

R(sgn(fφz ))−R(fc) ≤ O
([

lnn+ ln (2/δ)
] 1

2
( 1
n

) θ
3θ+2

)
.

The proof of this example is postponed to Section 6.
Other examples such as least square loss regression can be
established. In this case we need to consider the function
approximation [12, 31] on a domain of Rd.

3 Related Work
Statistical bounds with Rademacher complexities were first
pursued by [17, 7] for learning the kernel from a linear com-
bination of finite candidate kernels. The Rademacher com-
plexities are estimated by the eigenvalues of the candidate
kernel matrix over the inputs.

It was established by Ying and Zhou [31] that the union
space BK is a uniform Glivenko-Cantelli (uGC) class (see
definition in [1]) if and only if, for any γ > 0, the Vγ-
dimension of

KX = {K(·, x) : x ∈ X,K ∈ K}

is finite. There, the empirical covering number of KX was
also estimated. Based on these main results, the Rademacher
bounds were established in [31, 21]1:

E(fφz )− Ez(fφz ) ≤ 4Cφλ
(

2Rn(KX)√
nλ

) 1
2

+ 4κCφλ
(

1√
nλ

) 1
2

+Mφ
λ

(
ln( 2

δ )

n

) 1
2

+ 2√
n
.

Here, the Rademacher complexity Rn(KX) is defined by
E supf∈KX

1√
n

∣∣∑
i∈Nn εif(xi)

∣∣ which is often bounded by
O
(
dKlnn

)
by using metric entropy integrals, see Theorem

20 in [31]. Hence, the resultant rates are quite loose whose
dependence on the sample number is of order n−

1
4 in com-

parison with our new bound of order n−
1
2 summarized in

1This bound is originally given in the form of expectation.
However, it is easy to convert it to the current probabilistic form
by the bounded difference inequality from which the extra term

Mφ
λ

(
ln( 1

δ
)/n

) 1
2 appears.



equation (14). Specifically, for the hinge loss, as stated in Ex-
ample 1 we can get a better rateO

(
(log n)

1
2n−

θ
2+3θ

)
in com-

parison with the rate O
(
(log n)

1
2n−

θ
2(2+3θ)

)
given in [31].

Subsequently, Srebro and Ben-David [25] employed ma-
trix analysis techniques to directly estimate the empirical
covering number of BK with the pseudo-dimension of the
candidate kernels. Margin bounds were established for SVM.
Specifically, let

Rγz(f) =
|{i : yif(xi) < γ}|

n
.

Note fφz ∈ 1√
λ
BK where BK is the same as the notation FK

used in [25]. A simple modification of Theorem 2 in [25]
to the function class 1√

λ
BK, for any margin cost function ψ

defined by equation (10), there holds

R(sgn(fφz )) ≤ Rγz(fφz ) +
(

8(2 + dK) ln 128en3κ2

γ2λdK

+256 κ2

γ2λ ln 128nκ2

γ2λ + ln 1
δ

) 1
2
/
√
n.

Since
Rγz(fφz ) ≥ Eψz (fφz )

Theorem 4 implies

R(sgn(fφz )) ≤ Rγz(fφz ) + 8C
(

2(1+κ)2dK ln(2en2)
nλγ2

) 1
2

+4
(

ln 2
δ

n

) 1
2
.

Comparing the above two margin bounds, there is no loga-
rithmic margin term, i.e. ln 1

γ2 , in our bound. One possible
advantage of the direct empirical covering approach [25] is
that the dependence on the pseudo-dimension and margin is
roughly in a additive form, i.e. dK ln 1

γ2 + 1
γ2 ln 1

γ2 . The

Rademacher approach is of multiplicative form
√

dK
γ2 due to

the contraction inequality of Rademacher averages for the
margin cost function.

However, considering that our main target is to estimate
generalization bounds and excess misclassification errors, the
direct approach [25] would result in quite loose generaliza-
tion bounds. To see this, we focus on the hinge loss and
recall the scaling version of Theorem 1 in [25]:

Nn(FK, ε
√
λ) ≤ 2

(en2κ2

ε
√
λ

)dK(16nκ2

ε2λ

) 64κ2

ε2λ
ln
(
ε
√
λen
8κ

)
.

There are two ways to get generalization bounds from the
above covering number: the Rademacher approach with en-
tropy integrals and the classical method. We point out that
the first approach does not work since the entropy

lnNn(FK, ε
√
λ) = O(ε−2)

which tells us the entropy integral∫ ∞
0

√
lnNn(FK, ε)dε =∞.

The second approach is a classical method. For example,
applying Theorem 2.3 of [19] (or Lemma 3.4 of [1]) to the
function class φ ◦ Bλ implies that

Eφ(fφz )− Eφz (fφz ) ≤ supf∈Bλ
∣∣Eφ(f)− Eφz (f)

∣∣
≤ 8E

[
N∞(ε, φ ◦ Bλ, z)

]
e−

nε2λ
128κ2 ,

where φ ◦ Bλ = {φ(yf(x)) : f ∈ Bλ} and N∞(ε, T, z) is
the empirical covering number defined, for any f, g ∈ T , by
the pseudo-metric dz(f, g) = supi∈Nn

∣∣f(zi)− g(zi)
∣∣. Note

for the hinge loss, N∞(ε, φ ◦ Bλ, z) ≤ N∞(ε,Bλ,x) =
Nn(FK, ε

√
λ). Hence, with probability at least 1 − δ, there

holds
Eφ(fφz )− Eφz (fφz ) ≤ ε

where ε satisfies the equation

nε2λ

128κ2
≥ ln E

[
Nn(FK, ε

√
λ)
]

+ ln
8
δ
. (16)

Consequently, from equation (16) we have, at least for ε ≤ 1,

that ε ≥ 64κ
(

ln
(

16nκ2/λ
)

nλ2

) 1
4
, which makes the generaliza-

tion bound unacceptably loose, and hence leads to loose ex-
cess misclassification error bounds.

Moreover, Rademacher approaches are usually more flex-
ible. For instance, it is unknown how to directly estimate the
pseudo-dimension of RBF kernels Krbf and hence it could
be a problem to directly apply the approach of [25]. The
Rademacher approaches can handle this general case using
the Rademacher chaos complexity of Kgau instead of di-
rectly using that of Krbf as stated in Corollary 7 in Section
2.

4 Generalization Bounds by Rademacher
Chaos

In this section we show that the excess generalization bound
for the kernel learning formulation (1) can be bounded by
well-established Rademacher chaos of order two as stated in
Theorem 3.

To prove this theorem, we recall the definition of the or-
dinary Rademacher complexity, see e.g. [5, 15, 16]. For any
class F of bounded functions and any n ∈ N, the empirical
Rademacher complexity is defined by

R̂n(F ) :=
1√
n

sup
f∈F

∣∣∣ ∑
i∈Nn

εif(zi)
∣∣∣

where {zi : i ∈ Nn} are independent random variables dis-
tributed according to µ. Its useful properties can be found in,
e.g. [5, 16, 19].

Now we assemble the necessary materials to obtain the
main technical lemma.

Lemma 9 Suppose the cost function ψ : R → [0,∞) is lo-
cally Lipschitz continuous with ψ(0) = 1. Let Bλ be defined
by equation (7) and Mψ

λ , Cψλ be respectively defined by (8)
and (9). Then, with probability at least 1− δ, there holds

supf∈Bλ
∣∣Eψ(f)− Eψz (f)

∣∣ ≤ 4Cψλ
(

2Ûn(K)
λn

) 1
2

+4κCψλ
(

1
nλ

) 1
2

+ 3Mψ
λ

(
ln( 2

δ )

n

) 1
2

+ 2√
n
.

Proof: For any z = {(xi, yi) : i ∈ Nn}, let z′ =
{(xi, yi) : i ∈ Nn} be the same copy of z with k-th sample



replaced by sample (x′k, y
′
k). Since ψ is nonnegative, the

bounded difference coefficient is given by∣∣∣ sup
f∈Bλ

∣∣Eψ(f)− Eψz (f)
∣∣− sup

f∈Bλ

∣∣Eψ(f)− Eψz′(f)
∣∣∣∣∣

≤ sup
f∈Bλ

∣∣∣Eψz (f)− Eψz′(f)
∣∣∣

= 1
n sup
f∈Bλ

∣∣∣ψ(ykf(xk))− ψ(y′kf(x′k))
∣∣∣ ≤Mψ

λ /n.

By McDiarmid’s bounded difference inequality (e.g. [13]),
with probability 1− δ

2 there holds that

sup
f∈Bλ

∣∣Eψ(f)− Eψz (f)
∣∣

≤ E sup
f∈Bλ

∣∣Eψ(f)− Eψz (f)
∣∣+Mψ

λ

( ln 2
δ

2n

) 1
2
.

(17)

Consequently, the first term on the righthand side of the above
inequality can be estimated by the standard symmetrization
arguments. Indeed, with probability at least 1− δ

2 , there holds

EEε
[

supf∈Bλ
∣∣Eψ(f)− Eψz (f)

∣∣]
≤ 2EEε

[
supf∈Bλ

1
n

∣∣ ∑
i∈Nn

εiψ(yif(xi))
∣∣]

≤ 2Eε
[

supf∈Bλ
1
n

∣∣ ∑
i∈Nn

εiψ(yif(xi))
∣∣

+ 2Mψ
λ

( ln 2
δ

2n

) 1
2 ,

(18)

where the last inequality used again the McDiarmid’s bounded
difference inequality. Note that ‖f‖∞ ≤ κ

√
1/λ for all

f ∈ Bλ. Then, from the definition of Cψλ given by equa-
tion (9), ψ̄ = ψ − ψ(0) : R → R has the Lipschitz constant
Cψλ and ψ̄(0) = 0. Applying the contraction property of
Rademacher averages (e.g. Property (4) of Theorem 12 in
[5] or Lemma 16 in [31]) implies that, with probability 1− δ

2

Eε
[

supf∈Bλ
∣∣∣ ∑
i∈Nn

εiψ(yif(xi))
∣∣∣]

≤ Eε sup
f∈Bλ

∣∣∣ ∑
i∈Nn

εiψ̄(yif(xi))
∣∣∣+ Eε sup

f∈Bλ

∣∣∣ ∑
i∈Nn

εi

∣∣∣
≤ 2Cψλ Eε sup

f∈Bλ

∣∣ ∑
i∈Nn

εif(xi)
∣∣+
(
Eε

∑
i,j∈Nn

εiεj
)1/2

≤ 2Cψλ Eε
[

supf∈Bλ
∣∣ ∑
i∈Nn

εif(xi)
∣∣]+

√
n,

where, in the second inequality, we used the assumption that
ψ(0) = 1. Finally, we can rewrite Eε sup

f∈Bλ

∣∣∣ ∑
i∈Nn

εif(xi)
∣∣∣ as

Eε
√

1
λ supK∈K sup‖f‖K≤1

∣∣∣〈∑
i∈Nn

εiKxi , f〉K
∣∣∣

=
√

1
λEε supK∈K

∣∣∣∑i,j∈Nn εiεjK(xi, xj)
∣∣∣ 12

≤
√

2n
λ

√
Ûn(K) +

√
1
λ supK∈K

√
trace(K),

where K = (K(xi, xj))i,j∈Nn . Putting all the above in-
equalities back into (18) yields that

E
[

supf∈Bλ
∣∣Eψ(f)− Eψz (f)

∣∣]
≤ 4Cψλ

√
2Ûn(K)
λn + 4Cψλ κ

(
1
λn

) 1
2

+ 2√
n

+ 2Mψ
λ

( ln 2
δ

2n

) 1
2

where the last inequality used the fact that trace(K) ≤ κ2n.
This combining with inequality (17) yields the desired result.
�

We are ready to prove Theorem 3 and Corollary 4.
Proof of Theorem 3: Recall that fz, fλ ∈ Bλ, hence Sz,λ ≤
2 supf∈Bλ

∣∣Eφ(f)−Eφz (f)
∣∣.Note that φ is a normalized clas-

sifying loss. Then, putting Lemma 9 with ψ = φ and the er-
ror decomposition (5) together yielding the desired theorem.
�
Proof of Corollary 4: The margin-based cost function ψ

obviously satisfies the conditions in Lemma 9 with Cψλ =
1
γ and Mψ

λ = 1. Since χy 6=sgn(f(x)) ≤ ψ(yf(x)), there
holds that R(sgn(fφz )) ≤ Eψ(fφz ) which, combining with
Theorem 3, yields the desired assertion. �

5 Estimating the Rademacher Chaos
Complexity

In this section we further estimate the Rademacher chaos
complexity Ûn(K) by the metric entropy integral, and then
prove Theorem 6 and Corollary 7 as stated in Section 2.

Now let G be a set of functions onX×X and x = {xi ∈
X : i ∈ Nn}, define the l2 empirical metric of two functions
f, g ∈ G by

dx(f, g) =
( 1
n2

∑
i,j∈Nn,i<j

|f(xi, xj)− g(xi, xj)|2
) 1

2
.

The empirical covering number N2(G,x, η) is the smallest
number of balls with pseudo-metric dx required to cover G.

The empirical Rademacher chaos complexity Ûn(K) can
be bounded by the metric entropy integral as follows.

Lemma 10 There exists a universal constant C such that,
for any x = {xi : i ∈ Nn}, there holds

Ûn(K) ≤ C
∫ ∞

0

logN2(K ∪ {0},x, ε)dε.

Proof: We rely on [11] to prove this result. Let XT =
{Xs : s ∈ T} be a real-valued homogeneous Rademacher
chaos process of order two and the pseudo-distance defined
by ρx(s, t) = (E|Xs −Xt|2)

1
2 . Then, by Corollary 5.1.8 in

[11] we know that there exists a universal constant C such
that

Eε sup
s,t∈T

|Xs −Xt| ≤ C
∫ ∞

0

[
logN (XT , ρx, ε)

]
dε (19)

In our context, for x = {xi ∈ X : i ∈ Nn}, define the
Rademacher chaos process of order two indexed by{

XK =
1
n

∑
i,j∈Nn,i<j

εiεjK(xi, xj) : K ∈ K ∪ {0}
}
.

Observe that
ρx(K,K ′)2 = E|XK −X ′K |2

= 1
n2

∑
i<j,i′<j′

E
[
εiεjεi′εj′(K(xi, xj)−K ′(xi, xj))

×(K(xi′ , xj′)−K ′(xi′ , xj′))
]

=
∑
i<j

∣∣K(xi, xj)−K ′(xi, xj)
∣∣2/n2 = dx(K,K ′)2.



Hence, N (XT , dx, ε) = N2(K ∪ {0}, dx, ε) for any ε >
0. Consequently, applying equation (19) yields the desired
assertion. �

It is worth mentioning that the standard entropy integral
for bounding the superma of Rademacher chaos processes of
order one (Rademacher averages) is of the form∫ ∞

0

√
logN2(K ∪ {0},x, ε)dε.

One can see [11] for general entropy integrals to bound the
superma of Rademacher chaos processes of order m for any
m ∈ N. Also, it is worth noting that∫ ∞

0

logN2(K∪{0},x, ε)dε =
∫ κ2

0

logN2(K∪{0},x, ε)dε

since N2(K ∪ {0},x, ε) = 1 whenever ε is larger than κ2.
The empirical covering number can further be bounded

by the shattering dimension of the set of candidate kernels.

Lemma 11 If the pseudo-dimension dK of the set of basis
kernels is finite, then we have that

N2(K ∪ {0},x, ε) ≤ 1 +
(en2κ2

εdK

)dK
.

Proof: Note, for any K ′,K ∈ K, that dx(K ′,K) ≤
Dx
∞(K ′,K) := supi∈Nn

∣∣K(xi, xj) − K ′(xi, xj)
∣∣ and de-

note by N∞(KX ∪ {0},x, ε) the empirical covering num-
ber with pseudo-metric Dx

∞. Hence, N2(K ∪ {0},x, ε) ≤
N∞(K∪{0},x, ε).Now, applying that the relation (see Chap-
ter 11 of [2] and also Lemma 3 of [25]) between the covering
number and pseudo-dimension implies that

N∞(K,x, ε) ≤
(en2κ2

εdK

)dK
.

Consequently,

N2(K ∪ {0},x, ε) ≤ N∞(K ∪ {0},x, ε)

≤ 1 +N∞(K,x, ε) ≤ 1 +
(
en2κ2

εdK

)dK
which completes the assertion. �

We are in a position to apply Lemma 11 and Lemma 10
to prove Theorem 6.

Proof of Theorem 6: Since dK ≥ 1 and en2κ2

ε ≥ 1 for any
0 < ε ≤ κ2, we have that

1 +
(en2κ2

dKε

)dK ≤ (2en2κ2

ε

)dK
.

Combinig this fact with Lemma 11 and Lemma 10, we have
that

Ûn(K) ≤ C
∫ κ2

0

logN2(K ∪ {0},x, ε)dε

≤ C
∫ κ2

0

ln
(2en2κ2

ε

)dK
dε

≤ CdK
[∫ κ2

0

2 ln

√
κ2

ε
dε+ κ2 ln(2en2)

]
≤ CdK

[∫ κ2

0

2

√
κ2

ε
dε+ κ2 ln(2en2)

]
≤ 5C(1 + κ)2dK ln(2en2).

This finishes the assertion. �

For the set of scalar Gaussian kernels given by equation
(12), we have the following estimation.

Lemma 12 Consider the set of basis kernels Kgau given by
equation (12), then dKgau = 1.

Proof: It is obvious that there exists at least one pair of
points (x, t) ∈ X × X such that it is pseudo-shattering by
K. Now assume that two pairs of points (x1, t1) and (x2, t2)
are shattering by K. By Definition 5, that means there exists
r1, r2 ∈ R and σ, σ′ ∈ [0,∞) such that

e−σ‖x1−t1‖2 > r1, e
−σ‖x2−t2‖2 < r2,

and
e−σ

′‖x1−t1‖2 < r1, e
−σ′‖x2−t2‖2 > r2.

Hence,
e−σ‖x1−t1‖2 > e−σ

′‖x1−t1‖2 ,

and
e−σ‖x2−t2‖2 < e−σ

′‖x2−t2‖2 .

Equivalently,
σ < σ′, and σ > σ′,

which is obviously a contradiction. Consequently, the pseudo-
dimension of Kgau is identical to one. �

We are ready to prove Corollary 7 on the estimation of
the Rademacher chaos complexities of Kgau and Krbf.
Proof of Corollary 7: For the RBF kernels set Krbf, note,
for any {xi : i ∈ Nn}, that Ûn(Krbf) is bounded by

Eε sup
p∈M(R+)

∣∣∣ ∫ ∞
0

∑
i<j

εiεje
−σ‖xi−xj‖2dp(σ)

∣∣∣/n
≤ Eε sup

σ∈R+

∣∣∑
i<j

εiεje
−σ‖xi−xj‖2

∣∣/n ≤ Ûn(Kgau).

Then, the assertion follows immediately by combining The-
orem 6 with Lemma 12. �

More examples such as Gaussian kernels with covariance
matrices are illustrated in [25] whose pseudo-dimensions can
directly be estimated using the techniques developed in Chap-
ter 11 of [2].

6 Error rates
We are in a position to derive explicit error rates by trading
off the sample error estimated by Rademacher chaos com-
plexity and the regularization error.
Proof of Example 1: First note, for the hinge loss, that
Cφλ = 1 and Mφ

λ ≤ 1 + κ√
λ
. Then, putting Theorems 3, 6

and Corollary 7 together, with probability at least 1− δ there
holds that

Eφ(fφz )− Eφ(fc) ≤ O
((

lnn
nλ

) 1
2

+
(

ln 2
δ

nλ

) 1
2
)

+D(λ).

In addition, we know from [31] that if the distribution en-
joys the weakly separation condition with exponent θ then



the regularization error decays as D(λ) = O
(
λ

θ
θ+2

)
. Let-

ting λ = n−
θ+2
3θ+2 and noting the comparison inequality (4)

yields the desired result. �
The last example is for the least square loss for clas-

sification. In this case, the target function fφρ is referred
to as the regression function defined, for any x ∈ X , by
fρ(x) = P (Y = 1|x) − P (Y = −1|x). Similar error rates
could be derived using some ideas in [8] for q-norm soft mar-
gin SVM loss and logistic regression loss.

Example 2 Let X be a domain in Rd with Lipschitz bound-
ary. Assume the regression function fρ belongs to the Sobolev
space Hs(X) with some 0 < s ≤ 2. If, moreover, the
marginal distribution ρX is the Lebesgue measure then, by
choosing λ = n−

2s+d
2(4s+d) , with probability at least 1−δ there

holds

R(sgn(fφz ))−R(fc) ≤ O
([

lnn+ ln
2
δ

] 1
4
n−

s
2(4s+d)

)
.

The proof is the same as the argument for Example 1 in
[31]. However, we replace the rough bounds given there
by our new tight generalization bound (e.g. equation (14)).
Ignoring the difference of the forms to express error rates
using expectations and probabilistic inequalities, Example
2 yields that O

(
(lnn)

1
4 n−

2s−d−ε
4(4s−d−2ε)

)
. Likewise, for the

case 0 < s ≤ 2 and ρX is the Lebesgue measure, we got

improved rates O
((

lnn
) 1

4n−
s

2(4s+d)

)
in comparison with

O
((

lnn
) 1

4n−
s

4(4s+d)

)
obtained previously. Hence, our new

error rates substantially improve those in [31].

7 Conclusion
In this paper we provided a novel statistical generalization
bound for kernel learning algorithms which extends and im-
proves the previous work in the literature [17, 7, 31, 21, 25].
The main tools are based on the theory of U-processes such
as the so-called homogeneous Rademacher chaos of order
two and metric entropy integrals involving empirical cover-
ing numbers.

There are several questions remaining to be further stud-
ied. Firstly, it would be interesting to get fast error rates
with respect to the sample number as those in [4, 26, 27, 29].
For this purpose, the extension of localized Rademacher av-
erages [6] to the scenario of multiple kernel learning would
be useful. Secondly, it would be possible to give general-
ization bounds based on decoupling Gaussian chaos of or-
der two. Thirdly, as mentioned in Section 3, it remains un-
known how to get additive margin bounds using Rademacher
approaches. Finally, the empirical Rademacher chaos com-
plexity can be estimated from finite samples, and hence an-
other direction for further investigation is to apply it to prac-
tical kernel learning problems.
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