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Abstract

In this paper we develop a novel probabilistic generalization bound for regular-
ized kernel learning algorithms. First, we show that generalization analysis of
kernel learning algorithms reduces to investigation of the suprema of homogeneous
Rademacher chaos process of order two over candidate kernels, which we refer
to it as Rademacher chaos complexity. Our new methodology is based on the
principal theory of U-processes. Then, we discuss how to estimate the empiri-
cal Rademacher chaos complexity by well-established metric entropy integrals and
pseudo-dimension of the set of candidate kernels. Finally, we establish satisfac-
tory generalization bounds and misclassification error rates for learning Gaussian
kernels and general radial basis kernels.
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1. Introduction

Kernel methods (Schölkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004)
such as Support Vector Machines (SVMs) have been extensively used for supervised
learning tasks such as classification and regression. The performance of a kernel
machine largely depends on the data representation via the choice of kernel function.
Hence, one central issue in kernel methods is the problem of kernel selection.

To automate kernel learning algorithms, it is desirable to integrate the process
of selecting kernels into the learning algorithms. This topic has recently received
increasing attention which is often termed multi-kernel learning (MKL) in Machine
Learning and nonparametric group lasso in Statistics. Lanckriet et al. (2004) pro-
posed a semi-definite programming (SDP) approach to automatically learn a linear
combination of candidate kernels for the case of SVMs. This approach was improved
by Bach et al. (2004) who used sequential minimization optimization (SMO) and by
Sonnenburg et al. (2006) who reformulated it as a semi-infinite linear programming
(SILP) task. Other approaches include the so-called COSSO estimate for addi-
tive models (Lin and Zhang, 2006), hyperkernels (Ong and Smola, 2005), Bayesian
probabilistic kernel learning models (Girolami and Rogers, 2005), and kernel dis-
criminant analysis (Ye et al., 2008). Such MKL formulations have been successfully
demonstrated in combining multiple heterogeneous data sources to enhance biolog-
ical inference (Lanckriet et al., 2004).

The above mentioned MKL algorithms (Lanckriet et al., 2004; Bach et al., 2004;
Sonnenburg et al., 2006) are based on the dual formulation of binary SVM to learn
the linear combination of a finite set of candidate kernels. Departing from the
primal problem, a general regularization framework for the kernel learning problem
is formulated in Micchelli and Pontil (2005); Wu et al. (2006) with a potentially
infinite number of candidate kernels. A difference of convex (DC) programming
approach was proposed in Argyriou et al. (2006) for this framework. Specifically, let
Nn = {1, 2, · · · , n} for any n ∈ N. We are interested in the classification problem on
the input space X ⊆ Rd and output space Y = {±1}. The relation between input X
and output Y is reflected by a set of training samples z = {zi = (xi, yi) : xi ∈ X, yi ∈
Y, i ∈ Nn} which are identically and independently distributed (i.i.d.) according to
an unknown distribution ρ on Z = X × Y . Let K be a prescribed (possible infinite)
set of candidate (basis) kernels and denote the candidate reproducing kernel Hilbert
space (RKHS) with kernel K by HK with norm ‖ · ‖K . In addition, we always
assume that the quantity κ := supK∈K,x∈X

√
K(x, x) is finite. Then the general

regularization scheme (Micchelli and Pontil, 2005; Wu et al., 2006) for MKL can be
cast as a two-layer minimization problem:

fφ
z = arg min

K∈K
min

f∈HK

{
1
n

∑

i∈Nn

φ(yif(xi)) + λ‖f‖2
K

}
. (1)
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where φ : R→ [0,∞) is a prescribed loss function and λ is a positive regularization
parameter. We emphasize that the superscript φ means that the solution fφ

z is
produced by algorithm (1) with loss function φ.

The objective of statistical generalization analysis of MKL algorithms is to study
its properties such as generalization and the characterization of the complexity of
MKL system which are essential for building its theoretical foundations. Theoretical
work towards this direction was pursued by Bousquet and Herrmann (2003); Lanck-
riet et al. (2004); Micchelli et al. (2005); Srebro and Ben-David (2006); Ying and
Zhou (2007). In this paper we adopt the spirit of Rademacher complexity bounds
for empirical risk minimization (ERM) and SVM with a single kernel (Bartlett et
al., 2006; Bartlett and Mendelson, 2002; Koltchinskii and Panchenko, 2002) and de-
velop an appealing generalization bound for general MKL algorithm (1). Our novel
approach is based on the principal theory of U-processes (e.g. Arcones and Giné
(1993); De La Peña and Giné (1999)) which can yield tighter generalization bounds
than previous approaches.

This paper is organized as follows. In Section 2 we review necessary background
for generalization analysis and illustrate our main results. Section 3 discusses re-
lated work and compares our results with those in the literature. Our main idea
is developed in Section 4. There we show the generalization analysis of algorithm
(1) reduces to investigation of the suprema of a homogeneous Rademacher chaos
process of order two over candidate kernels, which we refer to as Rademacher chaos
complexity. In Section 5 we show how to estimate the Rademacher chaos complex-
ity using metric entropy integrals and the pseudo-dimension of the set of candidate
kernels. Examples for learning Gaussian kernels and radial basis kernels are given in
Section 6 to illustrate our proposed generalization analysis. In Section 7 we present
the conclusion and give a discussion of possible extensions.

2. Main Results

In this section we outline our main contributions. Before we do this, let us review
the objective of generalization analysis for multiple kernel learning classification
problems.

2.1 Target of Analysis

A classifier C assigns, for each point x, a prediction C(x) ∈ Y . The prediction
power of classifiers is measured by the misclassification error which is defined, for a
classifier C : X → Y , by

R(C) :=
∫

X×Y
P (y 6= C(x)|x)dρ(x, y). (2)
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The best classifier is called the Bayes rule (Devroye et al., 1997) which minimizes
the misclassification error over all classifiers: fc = arg infR(C).

We are interested in the statistical behavior of the multi-kernel regularized clas-
sifier given by sign(fφ

z ) with the regularization scheme (1). For brevity, throughout
this note we restrict our interest to a class of loss functions used in Wu et al. (2006),
see also a general definition of classification loss functions in Bartlett et al. (2006).

Definition 1 A function φ : R→ [0,∞) is called a normalized classifying loss if it
is convex, φ′(0) < 0, inft∈R φ(t) = 0, and φ(0) = 1.

The convexity and the condition φ′(0) < 0 in the definition of the normalized
classifying loss implies that φ(yf(x)) > φ(0) > 0 whenever yf(x) < 0 (i.e. when
sgn(f(x)) misclassifies the true label y). The true error or generalization error is
defined as

Eφ(f) =
∫

X×Y
φ(yf(x))dρ(x, y),

and the target function fφ
ρ is defined by fφ

ρ = arg minf Eφ(f). Examples of normal-
ized classifying losses include the hinge loss φ(t) = (1 − t)+ for soft margin SVM,
general q-norm soft margin SVM loss φ(t) = (1 − t)q

+ with q > 1, and the least
square loss φ(t) = (1− t)2.

The target of error analysis is to understand how sign(fφ
z ) approximates the

Bayes rule fc. More specifically, we aim to estimate the excess misclassification
error

R(sign(fφ
z ))−R(fc)

for the multi-kernel regularized classification algorithm (1). As shown in Zhang
(2004); Bartlett et al. (2006), the excess misclassification error can usually be
bounded by the excess generalization error:

Eφ(fφ
z )− Eφ(fφ), (3)

and we refer to the relation between these two excess errors as the comparison
inequality. For example, for a SVM hinge loss we know Zhang (2004) that fφ = fc

and the
R(sign(fφ

z ))−R(fc) ≤ Eφ(fφ
z )− Eφ(fc). (4)

One can refer to Zhang (2004); Bartlett et al. (2006) for more comparison inequalities
for general loss functions.

Consequently, it suffices to bound the excess generalization error (3). To this
end, we introduce the error decomposition of algorithm (1). Let the empirical error
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Ez be defined, for any f , by

Eφ
z (f) =

1
n

∑

j∈Nn

φ(yjf(xj)).

We also introduce the regularization error defined by

D(λ) = inf
K∈K

inf
f∈HK

{
Eφ(f)− Eφ(fφ

ρ ) + λ‖f‖2
K

}

and call the minimizer fφ
λ of the regularization error the regularization function. In

addition, we define the sample error Sz,λ by

Sz,λ =
{
Eφ(fφ

z )− Eφ
z (fφ

z )
}

+
{
Eφ
z (fφ

λ )− Eφ(fφ
λ )

}
.

Then, we know from Ying and Zhou (2007) that the error decomposition holds true:

Eφ(fφ
z )− Eφ(fφ

ρ ) ≤ D(λ) + Sz,λ. (5)

Throughout this paper, for simplicity we always assume the existence of the empir-
ical solution fφ

z and the regularization function fφ
λ , see discussions in Appendix B

of Ying and Zhou (2007).
To estimate the sample error Sz,λ, we need to find the hypothesis space of fφ

z

and fφ
λ . Let the union of the unit ball of candidate RKHSs be denoted by BK :={

f : f ∈ HK and ‖f‖K ≤ 1, K ∈ K
}

. By the definition of fφ
z , we get, for some

RKHS HK , that 1
n

∑n
i=1 φ(yif

φ
z (xi)) + λ‖fφ

z ‖2
K ≤ 1

n

∑n
i=1 φ(0) + λ‖0‖2

K = 1. Hence,
‖fφ

z ‖K ≤
√

1/λ. Likewise, for some kernel K ∈ K, ‖fφ
λ ‖K ≤

√
1/λ. This implies,

for any samples z, that

fφ
z , fφ

λ ∈ Bλ :=
1√
λ
BK :=

{ f√
λ

: f ∈ BK
}

. (6)

Hence, ‖fφ
z ‖∞ < κ

√
1/λ and ‖fφ

λ ‖∞ < κ
√

1/λ. Finally, for a Lipschitz continuous
function ψ : R→ [0,∞) we need the constant defined by

Mψ
λ = sup

{
|ψ(t)| : ∀|t| ≤ κ

√
1/λ

}
, (7)

and denote its local Lipschitz constant by

Cψ
λ = sup

{ |ψ(x)− ψ(x′)|
|x− x′| : ∀|x|, |x′| ≤ κ

√
1
λ

}
. (8)

If ψ = φ is convex, then φ’s left derivative φ′− and right one φ′+ are well defined and
Cφ

λ is identical to Cφ
λ = sup{max(|φ′−(t)|, |φ′+(t)|) : ∀|t| ≤ κ

√
1/λ}.
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2.2 Main Theorems

Our generalization analysis depends on the suprema of the homogeneous Rademacher
chaos of order two over a class of functions defined as follows, see Chapter 3.2 of De
La Peña and Giné (1999) for a general definition of Rademacher chaos of order m
for any m ∈ N.

Definition 2 Let F be a class of functions on X ×X and {εi : i ∈ Nn} are inde-
pendent Rademacher random variables. Also, x = {xi : i ∈ Nn} are independent
random variables distributed according to a distribution µ on X. The homogeneous
Rademacher chaos process of order two, with respect to the Rademacher variable ε,
is a random variable system defined by

{Ûf (ε) =
1
n

∑

i,j∈Nn,i<j

εiεjf(xi, xj) : f ∈ F}.

We refer to the expectation of its suprema

Ûn(F ) = Eε[sup
f∈F

|Ûf (ε)|]

as the empirical Rademacher chaos complexity over F .

It is worth mentioning that the Rademacher process { 1√
n

∑
i∈Nn

εif(xi) : f ∈ F}
for Rademacher averages can be regarded as a homogeneous Rademacher chaos
process of order one. The nice application of U-processes to the generalization
analysis of ranking and scoring problem is recently developed in Clémencon et al.
(2008).

Our first main result shows that the excess generalization error of MKL algo-
rithms can be bounded by the empirical Rademacher chaos complexity over the set
of candidate kernels.

Theorem 3 Let φ be a normalized classifying loss. Then, for any δ ∈ (0, 1), with
probability at least 1− δ, there holds

Eφ(fφ
z )− Eφ

z (fφ
z ) ≤ 4Cφ

λ

(2Ûn(K)
λn

) 1
2 + 4κCφ

λ

( 1
nλ

) 1
2 + 3Mφ

λ

( ln(2
δ )

n

) 1
2 +

2√
n

, (9)

and

Eφ(fφ
z )− E(fφ

ρ ) ≤ 8Cφ
λ

(2Ûn(K)
λn

) 1
2 + 8Cφ

λκ
( 1

nλ

) 1
2 + 6Mφ

λ

( ln(2
δ )

n

) 1
2 +

4√
n

+D(λ).

(10)
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In practice, the empirical complexity Ûn(K) can be estimated from finite samples. In
analogy to the data-dependent risk bounds of Rademacher averages (Bartlett et al.,
2006), we can get margin bounds for learning the kernel problems using Rademacher
chaos complexities.

Corollary 4 Let γ > 0, 0 < δ < 1 and define the margin cost function by

ψ(t) =





1, t ≤ 0
1− t

γ , 0 < t ≤ γ

0, t > γ

(11)

Then, with probability at least 1− δ, there holds

R(sgn(fφ
z )) ≤ Eψ

z (fφ
z ) + 4

(2Ûn(K)
nλγ2

) 1
2 + 4κ

( 1
nλγ2

) 1
2 + 3

( ln(2
δ )

n

) 1
2 +

2√
n

.

Theorem 3 and Corollary 4 will be proved in Section 4. When K only has a
single kernel K, we have

Ûn(K) ≤ Eε

∣∣∣ 1
n

∑
i,j∈Nn

εiεjK(xi, xj)
∣∣∣ +

∣∣∣ 1
n

∑
i∈Nn

K(xi, xi)
∣∣∣

= Eε
1
n

∑
i,j∈Nn

εiεjK(xi, xj) + 1
n

∑
i∈Nn

K(xi, xi)

where the last equality follows from the positive semi-definiteness of kernel K.
Hence, the Rademacher chaos complexity can be estimated by

Ûn(K) ≤ 2
n

∑

i∈Nn

K(xi, xi) :=
2
n

trace(K).

Consequently, Corollary 4 implies that

R(sgn(fφ
z )) ≤ Eψ

z (fφ
z ) +

8
γ

√
trace(K)
n
√

λ
+ 4κ

( 1
nλγ2

) 1
2 + 3

( ln(2
δ )

n

) 1
2 +

2√
n

.

This coincides with the bound in Bartlett and Mendelson (2002) for the single kernel
case with solutions fφ

z in the function space
{

f =
∑

i∈Nn

αiK(xi, ·) :
∑

i,j∈Nn

αiαjK(xi, xj) ≤ 1
λ

}
.

Now we apply the well-established theory of U processes to estimate Rademacher
chaos complexity by pseudo-dimension of candidate kernels. For this purpose, we
recall the definition of kernel pseudo-dimension of a class of kernel functions on the
product space X ×X, see Anthony and Bartlett (1999).
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Definition 5 Let K be a set of reproducing kernel functions mapping from X ×X
to R. We say that Sm = {(xi, ti) ∈ X × X : i ∈ Nm} is pseudo-shattering by K
if there are real numbers {ri ∈ R : i ∈ Nm} such that for any b ∈ {−1, 1}m there
is a function K ∈ K with property sgn(K(xi, ti) − ri) = bi for any i ∈ Nm. Then,
we define a pseudo-dimension dK of K to be the maximum cardinality of Sm that is
pseudo-shattered by K.

The Rademacher chaos complexity can be bounded using pseudo-dimensions.

Theorem 6 Denote the pseudo-dimension of K by dK. Then, there exists a uni-
versal constant C such that, for any x = {xi : i ∈ Nn}, there holds

Ûn(K) ≤ C(1 + κ)2dK ln(2en2). (12)

For Gaussian-type kernels, we can explicitly bound the empirical Rademacher chaos
complexities. First, consider the set of scalar candidate kernels given by

Ksc = {e−σ‖x−t‖2 : σ ∈ [0,∞)}. (13)

The second class of candidate kernels is more general as considered in Micchelli
et al. (2005): the whole class of radial basis kernels. Let M(R+) be the class of
probabilities on R+. We consider the candidate kernel defined by

Krbf =
{∫ ∞

0
e−σ‖x−t‖2dp(σ) : p ∈M(R+)

}
(14)

For the above specific sets of basis kernels, we can have the following result by
estimating the pseudo-dimension of Ksc.

Corollary 7 Let candidate kernels be given by equation (13) and (14). Then, there
exists a universal constant C, such that, for x = {xi : i ∈ Nn}, there holds

Ûn(Krbf) ≤ Ûn(Ksc) ≤ C (1 + κ)2 ln(2en2).

Theorem 6 and Corollary 7 will be proved in Section 5. Denote the convex hull
of K by

conv(K) :=





∑

j∈Nm

λ`K` : K` ∈ K, λ` ≥ 0,
∑

`∈Nm

λ` = 1,m ∈ N


 .

Then, it is easy to check, by the definition of the Rademacher chaos complexity,
that

Ûn(conv(Krbf))≤ Ûn(Krbf), Ûn(conv(Ksc))≤ Ûn(Ksc).
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One can also refer to Srebro and Ben-David (2006) for more examples of Gaussian
kernels with low rank covariance matrices.

Combining Theorems 3 with 6, the excess generalization bound can be summa-
rized as follows: there exists a universal constant C such that, with probability at
least 1− δ there holds

Eφ(fφ
z )− Eφ(fφ

ρ ) ≤ C

(
Cφ

λ

(
dK lnn

nλ

) 1
2

+ Mφ
λ (

ln 2
δ

n
)

1
2

)
+D(λ). (15)

From the above equation, by choosing λ appropriately we can derive meaningful
excess generalization error rates with respect to sample number n, and hence excess
misclassification error rates by the comparison inequalities such as equation (4).
To this end, we usually assume conditions on the distribution ρ or some regularity
condition on the target function fφ

ρ under which the regularization error D(λ) decays
polynomially. For instance, we can employ the following condition.

Definition 8 We say that ρ is separable by {HK : K ∈ K} if there is some fsp ∈
HK̄ with some K̄ ∈ K such that yfsp(x) > 0 almost surely. It has separation
exponent θ ∈ (0,∞] if we can choose fsp and positive constants ∆, cθ such that
‖fsp‖K̄ = 1 and

ρX

{
x ∈ X : |fsp(x)| < ∆t

} ≤ cθt
θ, ∀t > 0. (16)

Observe that condition (16) with θ = ∞ is equivalent to

ρX{x ∈ X : |fsp(x)| < γt} = 0, ∀ 0 < t < 1.

That is, |fsp(x)| ≥ γ almost everywhere. Thus, separable distributions with sep-
aration exponent θ = ∞ correspond to strictly separable distributions. Other as-
sumptions on the distribution ρ such as the geometric noise condition introduced
in Steinwart and Scovel (2005) are possible to achieve polynomial decays of the
regularization error.

We are now ready to state misclassification error rates. Hereafter, the expression
an = O(bn) means that there exists an absolute constant c such that an ≤ cbn for
all n ∈ N.

Example 1 Let φ(t) = (1− t)+ be the hinge loss and consider the MKL algorithm
(1) with K given by either Ksc or Krbf. Suppose that the separation condition holds

true with exponent θ > 0. Then, by choosing λ = n
− 2+θ

(2+3θ) , for any δ ∈ (0, 1), with
probability at least 1− δ there holds

R(sgn(fφ
z ))−R(fc) ≤ O

(
[lnn + ln (2/δ)]

1
2

( 1
n

) θ
3θ+2

)
.

9
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The proof of this example is postponed to Section 6. Other examples such as
least square loss regression can be found in Section 6. In this case we need to
consider the function approximation (De Vito et al., 2006; Smale and Zhou, 2004)
on a domain of Rd.

3. Related Work

Statistical bounds with Rademacher complexities were first pursued by Lanckriet
et al. (2004) and Bousquet and Herrmann (2003) for kernel learning from a linear
combination of finite candidate kernels. The Rademacher complexities are estimated
by the eigenvalues of the candidate kernel matrix over the inputs. Ying and Zhou
(2007) first showed that the statistical generalization performance of MKL algo-
rithms essentially relied on Vγ-dimension (see e.g. Alon et al., 1997; Anthony and
Bartlett, 1999) of

KX = {K(·, x) : x ∈ X, K ∈ K}.
There, the empirical covering number of KX was also estimated. Based on these
main results, the following generalization bounds of Rademacher averages were es-
tablished in Ying and Zhou (2007); Micchelli et al. (2005)1:

E(fφ
z )− Ez(fφ

z ) ≤ 4Cφ
λ

(2Rn(KX)√
nλ

) 1
2 + 4κCφ

λ

( 1√
nλ

) 1
2 + Mφ

λ

( ln(1
δ )

n

) 1
2 +

1√
n

.

Here, the Rademacher complexity Rn(KX) is defined by supf∈KX

1√
n
|∑i∈Nn

εif(xi)|
which is often bounded by O(dKlnn) by using metric entropy integrals, see Theo-
rem 20 in Ying and Zhou (2007). Hence, the resultant rates are quite loose with
dependence on the sample number of order n−

1
4 . In contrast, by combining Theorem

3 with Theorem 6 our new bound is of order n−
1
2 . Specifically, for the hinge loss

for soft margin SVM classification, under the same conditions of Example 1 with
K = Ksc, the following rates was obtained there

E[R(sgn(fz,λ))−R(fc)] = O((log n)
1
2 n

− θ
2(2+3θ) ).

In contrast, we can get O((log n)
1
2 n−

θ
2+3θ ) as stated in Example 1, and hence our

Rademacher chaos complexity approach greatly improves the results in Ying and
Zhou (2007).

1. This bound is originally given in the form of expectation. However, it is easy to convert it to
the current probabilistic form by the bounded difference inequality from which the extra term

Mφ
λ

(
ln( 1

δ
)/n

) 1
2

appears.

10
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Subsequently, Srebro and Ben-David (2006) employed a different approach by
directly estimating the empirical covering number of BK with the pseudo-dimension
of the candidate kernels. Margin bounds were established for SVM. Specifically, let

Rγ
z(f) =

|{i : yif(xi) < γ}|
n

.

Note, for any sample z, that

fφ
z ∈

1√
λ
BK

where BK is the same as the notation FK used in Srebro and Ben-David (2006). A
simple modification of Theorem 2 in Srebro and Ben-David (2006) to the function
class 1√

λ
BK yields

R(sgn(fφ
z )) ≤ Rγ

z(f
φ
z ) +

(
8(2 + dK) ln

128en3κ2

γ2λdK
+ 256

κ2

γ2λ
ln

128nκ2

γ2λ
+ ln

1
δ

) 1
2
/
√

n.

Since Rγ
z(f

φ
z ) ≥ Eψ

z (fφ
z ) with margin cost function ψ defined by equation (11),

Corollary 4 implies

R(sgn(fφ
z )) ≤ Rγ

z(f
φ
z ) + 8C

(2(1 + κ)2dK ln(2en2)
nλγ2

) 1
2 + 4

( ln 2
δ

n

) 1
2
.

Comparing the above two margin bounds, there is no logarithmic margin term,
i.e. ln 1

γ2 , in our bound. One possible advantage of the direct empirical cover-
ing approach Srebro and Ben-David (2006) is that the dependence on the pseudo-
dimension and margin is in a additive form, i.e. dK + ln 1

γ2 . The Rademacher
approach is of multiplicative form dK ln 1

γ2 due to the contraction inequality of
Rademacher averages for the margin cost function.

However, considering that our main target is to estimate generalization bounds
and excess misclassification errors, the direct approach (Srebro and Ben-David,
2006) would result in quite loose generalization bounds. To see this, we focus on
the hinge loss and recall the scaling version of Theorem 1 there:

Nn(FK, ε
√

λ) ≤ 2(
en2κ2

ε
√

λ
)dK(

16nκ2

ε2λ
)

64κ2

ε2λ
ln( ε

√
λen
8κ

).

There are two ways to get generalization bounds from this covering number: the
Rademacher approach with entropy integrals and the classical method. We point out
that the first approach does not work since the entropy lnNn(FK, ε

√
λ) = O(ε−2)

which tells us the entropy integral
∫∞
0

√
lnNn(FK, ε)dε = ∞. The second approach

11
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is a classical method. For example, applying Theorem 2.3 of Mendelson (2003) (or
Lemma 3.4 of Alon et al. (1997)) to the function class φ ◦ Bλ implies that

Eφ(fφ
z )− Eφ

z (fφ
z ) ≤ sup

f∈Bλ

|Eφ(f)− Eφ
z (f)| ≤ 8E[N∞(ε, φ ◦ Bλ, z)]e−

nε2λ
128κ2 ,

where φ◦Bλ = {φ(yf(x)) : f ∈ Bλ} andN∞(ε, T, z) is the empirical covering number
defined, for any f, g ∈ T , by the pseudo-metric dz(f, g) = supi∈Nn

|f(zi) − g(zi)|.
Note for the hinge loss, N∞(ε, φ ◦ Bλ, z) ≤ N∞(ε,Bλ,x) = Nn(FK, ε

√
λ). Hence,

with probability at least 1− δ, there holds

Eφ(fφ
z )− Eφ

z (fφ
z ) ≤ ε,

with ε satisfying the equation

nε2λ

128κ2
≥ lnE[Nn(FK, ε

√
λ)] + ln

8
δ
. (17)

Hence, from equation (17) we have, at least for ε ≤ 1, that ε ≥ 64κ
(

ln(16nκ2/λ)
nλ2

) 1
4
.

This tells us that the sample complexity is of the form of O(n−
1
4 ) which makes the

generalization bound unacceptably loose, and hence leads to loose misclassification
error bounds.

Moreover, Rademacher approaches are usually more flexible. For instance, it is
unknown how to directly estimate the pseudo-dimension of the RBF kernels Krbf
and hence it could be a problem to directly apply the approach of Srebro and Ben-
David (2006). The Rademacher approaches can handle this general case using the
Rademacher chaos complexity of Ksc instead of directly using that of Krbf as stated
in Corollary 7 in Section 2.

4. Generalization Bounds by Rademacher Chaos

In this section we show that the excess generalization bound of MKL algorithm
(1) can be bounded by well-established Rademacher chaos of order two as stated
in Theorem 3. To prove this theorem, we recall the definition of the ordinary
Rademacher averages, see e.g. Bartlett and Mendelson (2002); Bartlett et al. (2005);
Koltchinskii (2001); Koltchinskii and Panchenko (2002).

Definition 9 Let µ be a probability measure on Ω and F be a class of uniformly
bounded and measurable functions on Ω. For any n ∈ N, define the random variable
by

R̂n(F ) :=
1√
n

sup
f∈F

∣∣∣
∑

i∈Nn

εif(zi)
∣∣∣

12



Technical Report, University of Bristol, October 2008

where {zi : i ∈ Nn} are independent random variables distributed according to µ and
{εi : i = 1, . . . , n} are independent Rademacher random variables, that is, P (εi =
+1) = P (εi = −1) = 1/2. Also, we often call Rn(F ) := E[R̂n(F )] = EµEε[Rn(F )]
the Rademacher averages (complexity) over the class F .

Hence, R̂n(F ) is the suprema of the Rademacher process { 1√
n

∑
i∈Nn

εif(zi) : f ∈ F}
indexed by F which can also be regarded as the homogenous Rademacher chaos
process of order one. Some useful properties of Rademacher averages are summarized
in the following proposition, see e.g. Bartlett and Mendelson (2002); Ledoux and
Talagrand (1991).

Proposition 10 Let F be a class of uniformly bounded, real-valued, and measurable
functions on (Ω, µ). Then, the following properties hold true.

(a) For every c ∈ R, EεRn(cF ) = |c|EεRn(F ), where cF = {cf : f ∈ F}.
(b) If for each i ∈ Nn, φi : R → R is a function with φi(0) = 0 having a Lipschitz
constant ci, then for any {xi ∈ X : i ∈ Nn},

Eε

[
sup
f∈F

|
∑

i∈Nn

εiφi(f(xi))|
]
≤ 2Eε

[
sup
f∈F

∣∣∣
∑

i∈Nn

ciεif(xi)|
]
.

Now we assemble the necessary materials to obtain the main technical lemma.

Lemma 11 Suppose the cost function ψ is Lipschitz continuous with ψ(0) = 1. Let
Bλ be defined by equation (6) and Mψ

λ , Cψ
λ be respectively defined by (7) and (8).

Then, with probability at least 1− δ, there holds

sup
f∈Bλ

|Eψ(f)− Eψ
z (f)| ≤ 4Cψ

λ

(2Ûn(K)
λn

) 1
2 + 4κCψ

λ

( 1
nλ

) 1
2 + 3Mψ

λ

( ln(2
δ )

n

) 1
2 +

2√
n

.

Proof By McDiarmid’s bounded difference inequality (McDiarmid, 1989), with
probability 1− δ

2 there holds that

sup
f∈Bλ

|Eψ(f)− Eψ
z (f)| ≤ E sup

f∈Bλ

|Eψ(f)− Eψ
z (f)|+ Mψ

λ

( ln 2
δ

2n

) 1
2
. (18)

Consequently, the first term on the righthand side of the above inequality can be
estimated by the standard symmetrization arguments. Indeed, with probability at
least 1− δ

2 , there holds

E
[
supf∈Bλ

|Eψ(f)− Eψ
z (f)|

]
≤ 2EEε

[
supf∈Bλ

1
n |

∑

i∈Nn

εiψ(yif(xi))|
]

≤ 2Eε

[
supf∈Bλ

1
n |

∑

i∈Nn

εiψ(yif(xi))|
]

+ 2Mψ
λ (

ln 2
δ

2n
)

1
2 ,

(19)

13
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where the last inequality used again the McDiarmid’s bounded difference inequality.
Note that ‖f‖∞ ≤ κ

√
1/λ for all f ∈ Bλ. Then, from the definition of Cψ

λ given by
equation (8), ψ̄ = ψ − ψ(0) : R → R has the Lipschitz constant Cψ

λ and ψ̄(0) = 0.
Applying the contraction property of Rademacher averages (e.g. Property (b) of
Proposition 10) implies that, with probability 1− δ

2

Eε

[
supf∈Bλ

∣∣∣
∑

i∈Nn

εiψ(yif(xi))
∣∣∣
]
≤ Eε sup

f∈Bλ

∣∣∣
∑

i∈Nn

εiψ̄(yif(xi))
∣∣∣ + Eε sup

f∈Bλ

∣∣∣
∑

i∈Nn

εi

∣∣∣

≤ 2Cψ
λ Eε sup

f∈Bλ

|
∑

i∈Nn

εif(xi)|+ (Eε

∑

i,j∈Nn

εiεj)
1/2

≤ 2Cψ
λ Eε

[
supf∈Bλ

|
∑

i∈Nn

εif(xi)|
]

+
√

n.

Finally, we know that

Eε sup
f∈Bλ

∣∣∣
∑

i∈Nn

εif(xi)
∣∣∣ = Eε

√
1
λ supK∈K sup‖f‖K≤1

∣∣∣〈
∑

i∈Nn

εiKxi , f〉K)
∣∣∣

=
√

1
λEε supK∈K

∣∣∣ ∑
i,j∈Nn

εiεjK(xi, xj)
∣∣∣
1
2

≤
√

2n
λ

√
Ûn(K) +

√
1
λ supK∈K

√
trace(K),

where K = (K(xi, xj))i,j∈Nn . Putting all the above inequalities back into (19) yields
that

E
[

sup
f∈Bλ

|Eψ(f)− Eψ
z (f)|

]
≤ 4Cψ

λ

√
2Ûn(K)

λn
+ 4Cψ

λ κ
( 1

λn

) 1
2 +

2√
n

+ 2Mψ
λ (

ln 2
δ

2n
)

1
2 ,

where we used the fact that trace(K) ≤ κ2n. Putting this back into inequality (18)
yields the desired result.

We are ready to prove Theorem 3 and Corollary 4.

Proof of Theorem 3: Recall that fz, fλ ∈ Bλ and note that φ is a normalized
classifying loss. Then, applying Lemma 11 with ψ = φ implies inequality (9). For
the second assertion, observe that Sz,λ ≤ 2 supf∈Bλ

|Eφ(f)− Eφ
z (f)|. Hence, putting

Lemma 11 with ψ = φ and the error decomposition (5) together yields the desired
inequality (10). ¥
Proof of Corollary 4: The margin-based cost function ψ obviously satisfies the
conditions in Lemma 11 with Cψ

λ = 1
γ and Mψ

λ = 1. Since χy 6=sgn(f(x)) ≤ ψ(yf(x)),

there holds that R(sgn(fφ
z )) ≤ Eψ(fφ

z ) which, combining with inequality (9) in
Theorem 3, yields the desired assertion. ¥

14
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5. Estimating the Rademacher Chaos Complexity

It is well-known that Rademacher complexity can be estimated by the metric en-
tropy integral involving covering numbers and nice applications to Statistical Learn-
ing Theory can be found in Bartlett et al. (2006); Bartlett and Mendelson (2002);
Bartlett et al. (2005); Koltchinskii and Panchenko (2002); Mendelson (2003) and
references therein. In this section we discuss how to estimate the Rademacher chaos
complexity Ûn(K) by the metric entropy integral, and then prove Theorem 6 and
Corollary 7 as stated in Section 2.

First, parallel to the properties of Rademacher averages, it is useful to outline
some properties of the Rademacher chaos complexity some of which may be inter-
esting in its own right.

Proposition 12 Let F1, · · · , Fk and H be classes of real functions on X×X. Then
the following holds true.

(a) If F ⊆ H then Ûn(F ) ≤ Ûn(H).

(b) Ûn(conv(F)) = Ûn(F ).

(c) For any c ∈ R, Ûn(cF ) = |c|Ûn(F ).

(d) Ûn(
∑

i∈Nk
Fi) ≤

∑
i∈Nk

Ûn(Fi).

(e) For any 1 < q < p < ∞, the Khinchin-type inequality holds true

(
Eε sup

f∈F
|Ûf (ε)|q

) 1
q

≤
(
Eε sup

f∈F
|Ûf (ε)|p

) 1
p

≤
(p− 1

q − 1

) (
Eε sup

f∈F
|Ûf (ε)|q

) 1
q

Proof Properties (a), (c), and (d) are directly from Definition 2 of the Rademacher
chaos complexity. To prove Property (b), we note, for any m ∈ N, fk ∈ F , and
{λk : k ∈ Nm} satisfying

∑
k λk = 1 and λk ≥ 0, that

∣∣∣ ∑
i,j,i<j εiεj

∑
k∈Nm

λkfk(xi, xj)
∣∣∣ ≤ ∑

k∈Nm
λk

∣∣∣ ∑
i<j εiεjfk(xi, xj)

∣∣∣
≤ supf∈F

∣∣∣ ∑
i<j εiεjf(xi, xj)

∣∣∣.

Since λk, fk ∈ F are arbitrary, Ûn(conv(F)) ≤ Ûn(F ). The reverse inequality is
obvious which completes the proof of the desired Property (b). The last property is
from Theorem 3.2.2 of De La Peña and Giné (1999).

15
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Now let G be a set of functions on X ×X and x = {xi ∈ X : i ∈ Nn}, define the
l2 empirical metric of two functions f, g ∈ G by

dx(f, g) =
( 1

n2

∑

i,j∈Nn,i<j

|f(xi, xj)− g(xi, xj)|2
) 1

2
.

The empirical covering number N2(G,x, η) is the smallest number of balls with
pseudo-metric dx required to cover G.

The empirical Rademacher chaos complexity Ûn(K) can be bounded by the met-
ric entropy integral as follows.

Proposition 13 There exists a universal constant C such that, for any x = {xi :
i ∈ Nn}, there holds

Ûn(K) ≤ C

∫ ∞

0
logN2(K ∪ {0},x, ε)dε.

Proof We rely on Arcones and Giné (1993); De La Peña and Giné (1999) to prove
this result. Let XT = {Xs : s ∈ T} be a real-valued homogeneous Rademacher
chaos process and the pseudo-distance defined by

ρx(s, t) = (Eε|Xs −Xt|2)
1
2 .

Then, by Corollary 5.1.8 in De La Peña and Giné (1999) or Proposition 2.6 of
Arcones and Giné (1993) we know that there exists a universal constant C such
that

Eε sup
s,t∈T

|Xs −Xt| ≤ C

∫ ∞

0
logN (XT , ρx, ε)dε (20)

Applying this result to our context, for x = {xi ∈ X : i ∈ Nn}, let the Rademacher
chaos process of order two be defined by

{
XK =

1
n

∑

i,j∈Nn,i<j

εiεjK(xi, xj) : K ∈ K ∪ {0}
}

.

Moreover, for any K, K̃ ∈ K there holds

ρx(K, K̃)2 = E|XK −XK̃ |2
= 1

n2

∑

i<j,i′<j′
E[εiεjεi′εj′(K(xi, xj)− K̃(xi, xj))(K(xi′ , xj′)− K̃(xi′ , xj′))]

=
∑

i<j

|K(xi, xj)− K̃(xi, xj)|2/n = dx(K, K̃)2.

16
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Hence, for any ε > 0 we have that

N (XT , ρx, ε) = N2(K ∪ {0},x, ε).

Consequently, applying equation (20) yields the desired assertion.

It is worth mentioning that the standard entropy integral for bounding the
suprema of Rademacher chaos processes of order one (Rademacher averages) is of
the form ∫ ∞

0

√
logN2(K ∪ {0},x, ε)dε.

One can refer to Arcones and Giné (1993); De La Peña and Giné (1999) for more
general entropy integrals to bound the suprema of Rademacher chaos processes of
order m for any m ∈ N. Also, it is worth noting that

∫ ∞

0
logN2(K ∪ {0},x, ε)dε =

∫ κ2

0
logN2(K ∪ {0},x, ε)dε

since N2(K ∪ {0},x, ε) = 1 whenever ε is larger than κ2.
The empirical covering number can be further estimated by the shattering di-

mension of the set of candidate kernels.

Lemma 14 If the pseudo-dimension dK of the set of basis kernels is finite, then we
have that

N2(K ∪ {0},x, ε) ≤ 1 +
(en2κ2

εdK

)dK
.

Proof Note, for any K ′,K ∈ K, that

dx(K ′,K) ≤ Dx
∞(K ′,K) := sup

i,j∈Nn

|K(xi, xj)−K ′(xi, xj)|.

Denote by N∞(KX ∪ {0},x, ε) the empirical covering number with pseudo-metric
Dx∞. Hence,

N2(K ∪ {0},x, ε) ≤ N∞(K ∪ {0},x, ε).

Now, applying the relation (see Chapter 11 of Anthony and Bartlett (1999) and also
Lemma 3 of Srebro and Ben-David (2006)) between covering number and pseudo-
dimension implies that

N∞(K,x, ε) ≤
(en2κ2

εdK

)dK
.

17
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Consequently,

N2(K ∪ {0},x, ε) ≤ N∞(K ∪ {0},x, ε) ≤ 1 +N∞(K,x, ε) ≤ 1 +
(en2κ2

εdK

)dK

This completes the proof of the desired assertion.

We are in a position to apply Lemma 14 and Proposition 13 to prove Theorem
6.

Proof of Theorem 6: From Lemma 14 and Proposition 13, we have that

Ûn(K) ≤ C

∫ κ2

0
logN2(K ∪ {0},x, ε)dε

≤ C

∫ κ2

0
ln(

2en2κ2

ε
)dKdε ≤ CdK(

∫ κ2

0
2 ln

√
κ2

ε
dε + κ2 ln(2en2))

≤ CdK(
∫ κ2

0
2

√
κ2

ε
dε + κ2 ln(2en2)) ≤ 2C(1 + κ)2dK ln(2en2).

This completes the assertion. ¥

For the set of scalar Gaussian kernels given by equation (13), we have the fol-
lowing estimation.

Lemma 15 Consider the set of basis kernels Ksc given by equation (13), then
dKsc = 1.

Proof: It is obvious that there exists at least one pair of points (x, t) ∈ X×X
such that it is pseudo-shattering by K. Now assume that two pairs of points (x1, t1)
and (x2, t2) are shattering by K. By Definition 5 of pseudo-dimension, there exists
r1, r2 ∈ R and σ, σ′ ∈ [0,∞) such that

e−σ‖x1−t1‖2 > r1, e−σ‖x2−t2‖2 < r2,

and
e−σ′‖x1−t1‖2 < r1, e−σ′‖x2−t2‖2 > r2.

Hence,
e−σ‖x1−t1‖2 > e−σ′‖x1−t1‖2 , and e−σ‖x2−t2‖2 < e−σ′‖x2−t2‖2 .

Equivalently, σ < σ′, and σ > σ′, which is obviously a contradiction. Consequently,
the pseudo-dimension of Ksc is identical to one. ¤

18
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We are ready to prove Corollary 7 with estimation of the Rademacher chaos
complexities of Ksc and Krbf.

Proof of Corollary 7: The estimation of Ûn(Ksc) follows immediately by com-
bining Theorem 6 with Lemma 15. For the RBF kernels set Krbf, note, for any
{xi : i ∈ Nn}, that

Ûn(Krbf) ≤ Eε sup
p∈M(R+)

∣∣∣
∫ ∞

0

∑

i<j

εiεje
−σ‖xi−xj‖2dp(σ)

∣∣∣/n

≤ Eε sup
σ∈R+

|
∑

i<j

εiεje
−σ‖xi−xj‖2 |/n ≤ Ûn(Ksc).

This completes the assertion. ¥
More examples such as Gaussian kernels with covariance matrices are illustrated

in Srebro and Ben-David (2006) where these pseudo-dimensions can be directly
estimated using the techniques developed in Chapter 11 of Anthony and Bartlett
(1999).

6. Error Rates

We are now in a position to derive explicit error rates by trading off the sample
error of Rademacher chaos complexity and the regularization error in the error
decomposition inequality (5). In subsequent examples we emphasize that the set
of basis kernels are given by either equation (13) or the RBF kernels defined by
equation (14).

Proof of Example 1: First note, for the hinge loss, that Cφ
λ = 1 and Mφ

λ ≤ 1+ κ√
λ
.

Then, putting Theorems 3, 6 and Corollary 7 together, with probability at least 1−δ
there holds that

Eφ(fφ
z )− Eφ(fc) ≤ O

(( lnn

nλ

) 1
2 +

( ln 2
δ

nλ

) 1
2 +

1√
n

)
+D(λ).

In addition, we know from Theorem 10 of Chen et al. (2004) that if the distribution
enjoys the weakly separation condition with exponent θ then the regularization
error decays as D(λ) = O

(
λ

θ
θ+2

)
. Letting λ = n−

θ+2
3θ+2 and noting the comparison

inequality (4) yields the desired result. ¥
Now we turn our attention to general q-norm soft margin SVM losses φ(t) =

(1− t)q
+ for q ∈ (1,∞) for classification. In this case the target function fφ

ρ becomes

fφ
ρ (x) = fq(x) =

(1 + fρ(x))
1

q−1 − (1− fρ(x))
1

q−1

(1 + fρ(x))
1

q−1 + (1− fρ(x))
1

q−1

,
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where fρ(x) := P (Y = 1|x)− P (Y = −1|x).

Example 2 Let φ(t) = (1−t)q
+ for some q ∈ (1,∞) and suppose that the separation

condition holds true with exponent θ > 0. Then, choosing λ = n
− qθ

4+2(2q+1)θ with
probability at least 1− δ there holds

R(sgn(fφ
z ))−R(fc) ≤ O

([
lnn + ln

2
δ

] 1
4
n
− qθ

4+2(2q+1)θ

)

Proof First observe that Cφ
λ ≤ (1 + 1√

λ
)q−1 and Mφ

λ ≤ (1 + κ√
λ
)q. Hence, from

Theorems 3, 6 and Corollary 7 we know, for any λ ∈ (0, 1), that

Eφ(fφ
z )− Eφ(fc) ≤ O

(( lnn

nλq

) 1
2 +

( ln 2
δ

nλq

) 1
2 +

1√
n

)
+D(λ).

Also, we know from Theorem 10 of Chen et al. (2004) that if the distribution enjoys
the weakly separation condition with exponent θ then the regularization error decays

as D(λ) = O
(
λ

θ
θ+2

)
. Letting λ = n

− q(θ+2)
2+(2q+1)θ yields that

Eφ(fφ
z )− Eφ(fq) ≤ O

([
lnn + ln

2
δ

] 1
2
n
− qθ

2+(2q+1)θ

)
.

Recall the comparison inequality (Theorem 14 of Chen et al. (2004)) for q-norm
SVM:

R(sgn(fφ
z ))−R(fc) ≤

√
2
(
Eφ(fφ

z )− Eφ(fq)
)
.

Consequently, with probability at least 1− δ there holds

R(sgn(fφ
z ))−R(fc) ≤ O

([
lnn + ln

2
δ

] 1
4
n
− qθ

4+2(2q+1)θ

)
,

which completes the proof of the example.

Our last example is the least square loss for classification which is extensively
studied in the single kernel case (Caponnetto and De Vito, 2007; De Vito et al.,
2006; Smale and Zhou, 2004; Zhang, 2004). In this case, in order to get meaningful
rates of the regularization error D(λ) we can assume the target function enjoys
some Sobolev smoothness, see e.g Stein (1970) for its precise definition. Recall in
the regression case, the target function fφ

ρ = fρ(x) for any x ∈ X usually referred
to as the regression function and the nature of least square loss implies that

E(fφ
z )− E(fρ) =

∫

X
|fφ

z (x)− fρ(x)|2dρX(x).
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Example 3 Let X be a domain in Rd with Lipschitz boundary. Assume the regres-
sion function fρ ∈ Hs(X) with some s > 0. Then the following holds true.

1. If d/2 < s ≤ d/2 + 2 then for any 0 < ε < 2s− d, by taking λ = n
− 2s−ε

2(4s−d−2ε) ,
with probability at least 1− δ there holds

R(sgn(fφ
z ))−R(fc) ≤

( ∫

X
|fφ

z (x)− fρ(x)|2dρX(x)
) 1

2

≤ O
([

lnn + ln 2
δ

] 1
4
n
− 2s−d−ε

4(4s−d−2ε)

)
.

2. If X is bounded, ρX is the Lebesgue measure, and 0 < s ≤ 2 then by choosing
λ = n

− 2s+d
2(4s+d) , with probability at least 1− δ, there holds

R(sgn(fφ
z ))−R(fc) ≤

( ∫

X
|fφ

z − fρ|2dρX(x)
) 1

2

≤ O
([

lnn + ln 2
δ

] 1
4
n
− s

2(4s+d)

)
.

Proof For the least square loss, we observe that Cφ
λ = 2(1 + 1√

λ
) and Mφ

λ ≤
(1 + κ√

λ
)2. Then, we know from Theorem 3, Theorem 6 and Corollary 7 that

E(fφ
z )− E(fρ) =

∫

X
|fφ

z (x)− fρ(x)|2dρX(x)

≤ O
((

ln n
nλ2

) 1
2 +

(
ln 2

δ
nλ2

) 1
2 + 1√

n

)
+D(λ).

(21)

Then, for the first assertion we know from Proposition 22 of Ying and Zhou
(2007) that

D(λ) ≤ O
(
λ

2s−ε−d
2s−ε

)
.

Putting the above two equations together and letting λ = n
− 2s−ε

2(4s−2ε−d) implies that
∫

X
|fφ

z (x)− fρ(x)|2dρX(x) ≤ O
([

lnn + ln
2
δ

] 1
2
n
− 2s−d−ε

2(4s−d−2ε)

)
.

Hence, the desired result follows from the comparison inequality (Chen et al., 2004;
Bartlett et al., 2006; Zhang, 2004) for the least square loss:

R(sign(fφ
z ))−R(fc) ≤

√
2
(
Eφ(fφ

z )− Eφ(fρ)
)
. (22)
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The proof of the second assertion is similar as above. Recall that Proposition
22 of Ying and Zhou (2007) implies that the regularization error is estimated as
follows:

D(λ) ≤ O
(
λ

2s
2s+d

)
.

Combining this with inequality (21) and the comparison inequality (22), with choice

λ = n
− 2s+d

2(4s+d) we get the desired second assertion.

We end this section with a comparison with error rates in Ying and Zhou (2007)
on the least square loss for classification. In Example 1 there, it was proven that: if
d/2 < s ≤ d/2 + 2 then for any 0 < ε < 2s− d, we have that

E
[ ∫

X
|fφ

z (x)− fρ(x)|2dρX(x)
] 1

2 ≤
(
E

[ ∫

X
|fφ

z (x)− fρ(x)|2dρX(x)
]) 1

2

≤ O
(
(lnn)

1
4 n

− 2s−d−ε
8(4s−d−2ε)

)
.

Ignoring the difference of the forms to express error rates using expectations and
probabilistic inequalities, Example 3 yields that O

(
(lnn)

1
4 n

− 2s−d−ε
4(4s−d−2ε)

)
. Likewise,

for the case 0 < s ≤ 2 and ρX is the Lebesgue measure, we got improved rates
O

(
(lnn)

1
4 n

− s
2(4s+d)

)
in comparison with O

(
(lnn)

1
4 n

− s
4(4s+d)

)
obtained previously.

Hence, our new error rates substantially improve those in Ying and Zhou (2007).

7. Conclusion

In this paper we provided a novel statistical generalization bound for kernel learning
algorithms which extends and improves previous work in the literature (Lanckriet et
al., 2004; Micchelli et al., 2005; Srebro and Ben-David, 2006; Wu et al., 2006; Ying
and Zhou, 2007). The main tools are based on the theory of U-processes such as the
so-called homogeneous Rademacher chaos of order two and metric entropy integrals
involving empirical covering numbers. There are several questions remaining to be
further studied.

• Firstly, it would be interesting to get fast error rates with respect to the sample
number as those in Bartlett et al. (2006); Steinwart and Scovel (2005); Wu et
al. (2006). For this purpose, the extension of localized Rademacher averages
(Bartlett et al., 2005) to the scenario of multiple kernel learning would be
useful.

• Secondly, it would be interesting to investigate generalization bounds based
on decoupling Gaussian chaos of order two, see its definition in De La Peña
and Giné (1999).
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• Thirdly, as mentioned in Section 3, it remains unknown how to get additive
margin bounds using Rademacher approaches.

• Finally, the empirical Rademacher chaos complexity can be estimated from
finite samples, and hence another direction for further investigation is to apply
it to practical kernel learning problems.
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