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Abstract. We present a Bayesian variational inference scheme for semi-
supervised clustering in which data is supplemented with side information
in the form of common labels. There is no mutual exclusion of classes
assumption and samples are represented as a combinatorial mixture over
multiple clusters. We illustrate performance on six datasets and find a
positive comparison against constrained K-means clustering.

1 Introduction

With semi-supervised clustering the aim is to find clusters or meaningful parti-
tions of the data, aided by the use of side information. This side information
can be in the form of must-links (two samples must be in the same cluster)
and cannot-links (two samples must not belong to the same cluster). A num-
ber of approaches have been proposed for semi-supervised clustering including
modifications of pre-existing clustering schemes such as incremental clustering
algorithms [1] or K-means clustering [2]. One problem with some of these ap-
proaches is that the method can work well if the correct number of clusters is
already known: K-means clustering is an example. However, a principled ap-
proach to finding K is generally not given. Other potential disadvantages of
some clustering approaches is that there is an implicit mutual exclusion of clus-
ters assumption. In many applications this assumption may not be fully valid
and it would be more appropriate for a sample to be associated with several
clusters.

Our motivation for considering semi-supervised clustering comes from poten-
tial applications in cancer informatics. There have been a number of instances
where unsupervised learning methods have been applied to cancer expression
array datasets and clinically distinct cancer subtypes have been indicated e.g.
[3, 4]. However, in some cases a specific causative event is known and thus it is
possible to give common labels to some samples. In these cancer applications,
the side information is typically in the form of must-links: these will be the fo-
cus of this paper. We thus propose a probabilistic graphical model approach to
semi-supervised clustering with samples represented as combinatorial mixtures
over a set of soft clusters. By allowing a representation overlapping different
clusters we can derive a confidence measure for cluster membership. In clinical
cancer applications, a subtype assignment confidence measure is plainly impor-
tant. In the next section we propose our probabilistic graphical model, followed
by experiments in section 3.



2 The Method

Our semi-supervised model utilizes the Latent Process Decomposition (LPD)
model developed in [5, 6], and hence we will call this variant semi-supervised
LPD or SLPD. For the natural numbers we adopt the notation Nm = {1, . . . , m}
for any m ∈ N. For the data we use d as the sample index, g as the attribute
index, and script letters D,G to index the corresponding number of samples and
attributes. The number of clusters is K. The complete data set is E = {Edg :
d ∈ ND, g ∈ NG}. This notation stems from our cancer informatics motivation
of expression value of gene g in sample d.

In our semi-supervised setting, we have additional block information C where
each block c denotes a set of data points that is known to belong to a single class.
In keeping with standard Bayesian models, we also assume both blocks and the
data points in each block are i.i.d. sampled. Specifically, this side information
can be represented by a D × C matrix δ with its entities δdc defined as follows

δdc =
{

1 if data d is a member of block c,
0 otherwise.

In probabilistic terms, the dataset E will be partitioned into K soft clusters
described as follows. For a complete data set, a Dirichlet prior distribution for
the distribution of clusters is defined by a K-dimensional parameter α. For each
known block c, a distribution θc over the set of mixture components indexed by
k is drawn from a single Dirichlet distribution parameterized by α. Then, for
all samples d in block c (i.e. δdc = 1), the latent indicator variable Zdg indicates
which cluster k is chosen, with probability θck, from the common block-specific
distribution θc. The value Edg for attribute g in sample d is then drawn from the
kth Gaussian with mean µgk and deviation σgk, denoted as N (Edg|µgk, σgk). We
repeat the above procedure for each block in C. The graphical model is illustrated
in Figure 1 which is motivated by Latent Dirichlet Allocation [5].

The model parameters are Θ = (µ, σ, α) and we use the notation d ∼ c to
denote sample d in block c. From the graphical model in Figure 1, we can
formulate the block-specific joint distribution of the observed data E and the
latent variables Z by

p(E, θ, Z|Θ, C) =
∏
c

p(θc|α)
∏

d∼c

p(Ed, Z|θc, Θ), (1)

where p(θc|α) is Dirichlet defined by p(θc|α) = Γ(
∑

k αk)∏
k Γ(αk)

∏
k θαk−1

ck . Using the
block matrix δ, we further see that

∏

d∼c

p(Ed, Z|θc,Θ) =
∏

d

[
p(Zd|θc)p(Ed|Zd, µ, σ)

]δdc

=
∏

d

∏
g

[
p(Zdg|θc)N (Edg|µg, σg, Zdg)

]δdc

.

(2)



Fig. 1: A graphical model representation of the method proposed in this paper.
Edg denotes the value of attribute g in sample d. µ and σ are model parameters.
Zdg is a hidden variable giving the cluster index of attribute g in sample d. θc

gives the mixing over subgroups for sample d in block c denoted by d ∼ c. The
probability of θc is given by a Dirichlet distribution with hyper-parameter α.

For notational simplicity, we regard Zdg as a unit-basis vector (Zdg,1, . . . , Zdg,K)
which transforms the cluster latent variable Zdg = k to the unique vector
Zdg given by Zdg,k = 1 and Zdg,j = 0 for j 6= k. Equivalently, the random
variable Zdg is distributed according to a multinomial probability defined by
p(Zdg|θc) =

∏
k θ

Zdg,k

ck . Hence, the above equation can be rewritten as

p(E, θ, Z|Θ, C) =
∏
c

p(θc|α)
∏

d

∏
g

∏

k

[
θckN (Edg|µgk, σgk)

]Zdg,kδdc

. (3)

With these priors, the final data likelihood can be obtained by marginalizing
out the latent variables θ and Z := {Zdg : d ∈ ND, g ∈ NG}

p(E|Θ, C) :=
∫

θ

∑

Z

p(E, θ, Z|Θ, C)dθ. (4)

In particular, we can see from equations (2) and (3) that

p(E|Θ, C) =
∏
c

∫

θc

∑

Z

∏

d

∏
g

[
p(Zdg|θc)N (Edg|µg, σg, Zdg)

]δdc

p(θc|α)dθc

=
∏
c

∫

θc

∑

Zdg,d∼c

∏

d∼c,g,k

[
θckN (Edg|µgk, σgk)

]Zdg,k

p(θc|α)dθc

=
∏
c

∫

θc

∏

d,g

[∑

k

θckN (Edg|µg, σg, Zdg)
]δdc

p(θc|α)dθc.

(5)
We should mention that, without block information (i.e. δ = ID×D), the above
equation is the exact likelihood of Latent Process Decomposition given in [6].

We now consider model inference and parameter estimation under SLPD. The
main inferential goal is to compute the posterior distribution of the hidden vari-
ables p(θ, Z|E, Θ, C). One direct method is to use Bayes rule p(θ, Z|E, Θ, C) =



p(E,θ,Z|Θ,C)
p(E|Θ,C) . This approach is usually intractable since this involves computa-

tionally intensive estimation of multi-integrals in the final likelihood p(E|θ, C).
In this paper, we rely on variational inference methods [7] which maximize
a lower bound on the likelihood p(E|Θ, C) to estimate the model parameters
Θ and approximate p(θ, Z|E, Θ, C) in a hypothesis family. One common hy-
pothesis family is the factorized family defined by q(θ, Z|γ, Q) = q(θ|γ)q(Z|Q)
with variational parameters γ,Q where, in the expression of the distribution
q, the dependency on the E, Θ, C is omitted. More specifically, in our model
we assume that q(θ|γ) =

∏
c q(θc|γc) =

∏
c

(Γ(
∑

k γck)∏
k Γ(γck)

∏
k θγck−1

ck

)
, and q(Z|Q) =

∏
d,g q(Zdg|Qdg) =

∏
d,g

(∏
k Q

Zdg,k

dg,k

)
, among which γ, Q will be set as we describe

below. We can lower bound the log-likelihood by applying Jensen’s inequality
to equation (4):

log p(E|Θ, C) = log
∫

θ

∑

Z

p(E, θ, Z|Θ, C)dθ

≥ L(γ, Q; Θ) := Eq

[
log p(E, θ, Z|Θ, C)]− Eq

[
q(θ, Z|γ, Q)

]
.

Consequently we can estimate the variational and model parameters by al-
ternative coordinate ascent methods known as a variational EM algorithm:

• E-step: maximize L with respect to the variational parameters γ, Q to give
the following updates (Ψ(x) is the digamma function):

Qdg,k =
N (Edg|µgk, σgk)

[∏
c exp(δdc(Ψ(γck)−Ψ(

∑
k γck)))

]
∑

kN (Edg|µgk, σgk)
[∏

c exp(δdcΨ(γck)−Ψ(
∑

k γck))
] , (6)

and
γck = αk +

∑

d,g

δdcQdg,k (7)

• M-step: maximize L with respect to µ, σ and α to give:

µgk =
∑

d Qdg,kEdg∑
d Qdg,k

, σ2
gk =

∑
d Qdg,k(Edg − µgk)2∑

d Qdg,k
. (8)

with the parameter α found using an additional Newton-Raphson method
(see Appendix A in [5] for details).

The above iterative procedure is run until convergence (plateauing of the
lower bound on an estimated likelihood p(E|Θ, C), see [6]). Interpretation of the
resultant model is very similar to Latent Process Decomposition [6]. When nor-
malized over k, the parameter γck gives the confidence that a sample belonging
to block c (which share a common label) belongs to soft cluster k. For each soft
cluster k the model parameters µgk and σgk give a density distribution for the
attribute value g over all samples, see [8] for examples of use of these density
estimators in application to interpreting breast cancer array data. If some values



Data UKM CKM ULPD SLPD

Sets 0 25% 50% 0 25% 50%

Letter 0.501±0.005 0.502±0.010 0.501±0.009 0.519±0.025 0.521±0.031 0.527±0.039

Wine 0.877±0.052 0.885±0.051 0.893±0.047 0.930±0.032 0.926±0.032 0.935±0.032

Iris 0.824±0.036 0.825±0.035 0.828±0.041 0.872±0.037 0.910±0.043 0.920±0.038

Digit 0.751±0.068 0.758±0.069 0.772±0.078 0.736±0.046 0.747±0.045 0.755±0.045

Table 1: A comparison of constrained K-means clustering and SLPD. The entries are
BRI (over the 100 trials using 3-fold cross validation). Hypothesis testing indicates a
statistically significant performance gain over CKM. The highest BRI score per dataset
is given in boldtype.

Data UKM CKM ULPD SLPD
Sets 0 25% 50% 0 25% 50%

Leukemia 0.786±0.065 0.782±0.061 0.798±0.062 0.838±0.053 0.846±0.049 0.851±0.048

Lung Cancer 0.578±0.030 0.583±0.033 0.599±0.041 0.660±0.033 0.665±0.032 0.670±0.039

Table 2: A comparison of constrained K-means clustering and SLPD. The entries are
the BRI (mean ± standard deviation over the 50 trials using 3-fold cross validation).
Hypothesis testing indicates a statistically significant performance gain over CKM.

of Edg are missing, we omit corresponding contributions in the M -step updates
and the corresponding Qdg,k. The above argument is based on a maximum like-
lihood approach. However, following our original argument [6], we can readily
formulate a maximum a posterior (MAP) solution penalising over-complex mod-
els which fit to noise in the data and we can perform model selection (to find
the number of clusters) using hold-out data [8].

3 Experimental Results

To validate the proposed approach, we investigated the ML solution applied
to four datasets from the UCI Repository [9] and two cancer expression array
datasets. The four data sets from the UCI Repository have known sample labels
and thus we can evaluate an objective performance measure. As mentioned,
our interest in semi-supervised clustering stems from a potential use in cancer
informatics. Thus we consider two datasets for cancer: leukemia array data
[3] in which some labels are known due to causative genetic translocations or
rearrangements such as the gene fusion events BCR-ABL or E2A-PBX1. The
second dataset is for lung cancer [4]. We investigated three issues. Firstly, a
comparison against pre-existing semi-supervised clustering methods, specifically
constrained K-means clustering (CKM)[2], since this method is widely used.
Secondly, we considered the gains to be made as available label information
increases. Finally, we compared unsupervised ULPD with SLPD to evaluate the
gains made by using side information. We use the Balanced Rand Index (BRI)
as evaluation criterion [10].



In Table 1 we tabulate performance for both constrained K-means cluster-
ing and SLPD using BRI with 3-fold random partitioning (one fold being test
data, the rest training). Exactly the same sample allocations were used in the
evaluation of both constrained K-means clustering and SLPD. For the training
set we also imposed a degree of supervision to compare unsupervised learning
with semi-supervised clustering using different levels of supervision. The frac-
tion of the supervised data was 0% (unsupervised), 25% and 50%. As observed
from Tables 1 and 2, SLPD compares favorably with CKM. With enforcement
of a degree of supervision (from 0% to 50%), performance improvement of both
SLPD and CKM over LPD and unconstrained K-means clustering (UKM) is
observed. As a real-life application we tested SLPD on two cancer expression
array datasets for leukemia and lung cancer (Table 2). For leukemia we find
that the BRI index improves as we increase the extent of supervision. We also
find that SLPD consistently outperforms K-means clustering. A similar picture
is repeated for lung cancer.
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