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Abstract

Background: Bayesian unsupervised learning methods have many applications in the analysis of biological data.
For example, for the cancer expression array datasets presented in this study, they can be used to resolve possible
disease subtypes and to indicate statistically significant dysregulated genes within these subtypes.

Results: In this paper we outline a marginalized variational Bayesian inference method for unsupervised clustering.
In this approach latent process variables and model parameters are allowed to be dependent. This is achieved
by marginalizing the mixing Dirichlet variables and then performing inference in the reduced variable space. An
iterative update procedure is proposed.

Conclusion: Theoretically and experimentally we show that the proposed algorithm gives a much better free-energy
lower bound than a standard variational Bayesian approach. The algorithm is computationally efficient and its
performance is demonstrated on two expression array data sets.

Background

Unsupervised clustering methods from machine learning are very appropriate in extracting structure from
biological data sets. There has been extensive work in this direction using hierarchical clustering analysis [5],
K-Means clustering [11] and self-organizing maps [9]. Bayesian methods are an effective alternative since
they provide a mechanism for inferring the number of clusters. They can easily incorporate priors which
penalise over-complexed models which would fit to noise and they allow probabilistic confidence measures
for cluster membership. In this paper, we focus on Bayesian models which use Dirichlet priors. Examples
of these models include Latent Dirichlet Allocation [3] (LDA) for use in text modeling and Latent Process
Decomposition (LPD) [8] for analysis of microarray gene expression datasets. One appealing feature of the
latter models is that each data point can be stochastically associated with multiple clusters. One approach
to model inference is to use methods such as Markov Chain Monte Carlo and Gibbs sampling. However, for
the large datasets which occur in many biomedical applications these methods can be too slow for certain
tasks such as model selection. This motivates our interest in computationally efficient variational inference



methods [3,4, 8].

Typically, these inference methods posit that all the latent variables and model parameters are indepen-
dent of each other (i.e. a fully factorized family) which is a strong assumption. In this paper we propose and
study an alternative inference method for LPD, which we call marginalized variational Bayesian (MVB). In
this approach the latent process (cluster) variables and model parameters are allowed to be dependent on
each other. As we will show in the next section, this assumption is made feasible by marginalizing the mix-
ing Dirichlet variables, and then performing inference in the reduced variable space. This new approach to
constructing an LPD model theoretically and experimentally provides much better free-energy lower bounds
than standard a variational Bayes (VB) approach [2,4]. Moreover, the algorithm is computationally efficient
and converges faster, as we demonstrate with experiments using expression array datasets.

Methods

The LPD probabilistic model

We start by recalling LPD [8]. Let d index samples, g the genes (attributes) and & the soft clusters (samples
are represented as combinatorial mixtures over clusters). The numbers of clusters, genes and samples are
denoted K, G, and D respectively. For each data E;, we have a multiple process (cluster) latent variable

Zg =A{Zag : g =1,...,G} where each Z;, is a K-dimensional unit-basis vector, i.e., choosing cluster k is
represented by Zg, = 1 and Z4, ; = 0 for j # k, otherwise. Given the mixing coeflicient 4, the conditional
distribution of Z; is given by p(Z4|0a) = [, , 05,:9 **. The conditional distributions, given the latent variables,

is given by p(Ea|Za, u, ) = [1, 1 [J\/'(Edgmgk,ﬂgk)}zdg’k, where A is the Gaussian distribution with mean
w1 and precision J3.

Now we introduce conjugate priors over parameters 0, u, 5. Specifically, we choose p(6;) = Dir(64]«), and
p(p) ~ T1, 1 N (pgr|mo, vo), and p(B) distributed as [, T'(Bgx|ao, bo) where I' is defined by T'(x[ao, by) =
2%~ exp(—%)/b5°T(by). We assume the data is i.i.d. and let © = {u, 3}. The joint distribution is given by

p(E,0,20) = [ [ p(0a)p(Zal6a)p(Ealps, B: Za)- (1)
d

One can easily see that the marginal likelihood p(E|©) is the same as that in [8]. It is important to note
that, in standard Gaussian mixture models [1], each data point is only related with a -dimensional latent
variable which restricts the data to being in one cluster. Instead, in LPD each data point Ej; is associated
with multiple latent variables Zy = {Z4, : ¢ = 1,...,G}, and thus E; is stochastically associated with
multiple clusters.

Marginalized variational Bayes
In this section we describe a marginalized variational Bayesian approach for LPD. The target of model
inference is to compute the posterior distribution p(6, Z, ©|E) = p(E, 0, Z|0)p(©)/p(E). Unfortunately, this
involves computationally intensive estimation of the integral in the evidence p(E). Hence, we approximate
the posterior distribution in a hypothesis family whose element are denoted by ¢(6, Z, ©).

The standard variational bayesian method [2,7] uses the equality:

logp(E) =log / > p(E,0,2,0)dode
4

= B, [log BEGZEEO)] 1 KL(g(0, Z,0)|p(0, Z,©))).

(2)

Our optimization target is to maximize the free-energy: E, [log %] which, equivalently, min-

imizes the KL-divergence. One standard way is to choose the hypothesis family in a factorized form
q(0,Z,0) = q(0)q(Z)q(©). In this setting, the free-energy lower bound (2) for the likelihood can be written
as:



£(q(9),4(2),q(0)) :=E, {log P(E,@,Z@)} -

W KL(q(©[[p(©)))- (3)

In this paper we study an alternative approach motivated by [12] which only marginalizes the latent
variable 6 and do variational inference only with respect to the leftover latent variable Z. In essence, we
assume that the latent variables 6 can be dependent on Z,© and the hypothesis family is chosen in the
form of ¢(0,7,0) = ¢(0|Z,0)q(Z)q(®). Since the distribution ¢(f|Z,©) is arbitrary, let it be equal to

p(0|E, Z,0) = pB9.2.9) pytting this into equation (2) and observing that £ p(B.8.219) _ p(E, Z|0O) gives

p(E,Z,0) p(0|E,Z,©) —
logp(E) = E,[log p(%)'@)] ~ KL(¢(©[p(©))) + KL(p(6]Z, ©)a(©)a(2) |p(6. 2.0))  (4)
— B, [log W] _KL(a(0]p(©)) + KL(a(2)(0) (2, 8)). (5)

Therefore, it is sufficient to maximize the lower bound

p(E7Z|@)}

q(Z)
p(E,0,7|©)

Observe that log % > [q(0)log Wd& Consequently, we see that

L(4(2),4(0)) := Eyo)q(z) | log — KL(¢(6p(©))- (6)

L(q(9),9(2),4(0)) < L(¢(%),4(©)). (7)

As mentioned above, since € can be dependent on Z, 0, marginalized VB (MVB) yields a tighter lower
bound for the likelihood than the standard VB approach in [4], thus potentially yielding better clustering
results.

Model inference and learning
We now turn our attention to the derivation of updates for marginalized VB following the inference method-
ology [2,7]. For simplicity, let the posterior distribution ¢(Z), ¢(x), ¢(8) be indexed by parameters. Specif-

ically, we assume that ¢(Z) =[], , x Tf;,%ék7 q(p) = 1, & N (kgrlmgr, vgr), and q(8) = [1, . T(Bgklagr. bgk)-
Correspondingly, the free-energy lower bound £L(¢(Z), ¢(©)) in equation (6) becomes a variational functional
over these parameters, and hence we use L(R, u,3) later on. The model inference can be summarized by
the following coordinate ascent updates.

Let Z\% denote the random variables excluding Z4g. For any d, g let © and Z\49 be fixed, then we take
the functional derivative of the free-energy L(q(Z),q(©)) w.r.t. ¢(Z44) and obtain the update:

q(Zag) x exp(Eq\dg [logp(E, Z|@)]) (8)
For the updates for ¢(©), we obtain
q(p) o< p(p) exp(Equ [log p(E, Z|0)]), a(8) o p(B) exp(E s [log p(E, Z|©)]). 9)
Marginalizing out € in (1) yields
p(E, Z]0) = ];Li[ (Zd|a)] (Edlpa, Bs: Za)
Hd[m’ggz—qu) [T, %ﬁdm] 1, .x [./\/(Edigkaﬁgk)}ng'k- (10)

Estimating the expectations of the log likelihoods in equations (8) and (9), we derive the variational
EM-updates as follows. Details are postponed to the Appendix.



E-step: using equation (8) and denoting the digamma function by 1, we have

(Oék + &]/7&9 ng',k:) eXp(ng,k)

o' o’ 1 (1=Tag’ 1)
eXp( ekt grsg Taghk)?

(11)

Tdg,k X

where Nyg 1, is given by 0.5(¢(agk) +10g bgr) — 0.5a g,y ((Eaqg — mgr)? —I-U;kl) and 744, should be normalized
to one over k.

M-step: using equation (9):

Vgk = Vg + agkbgk Z Tdg,k> (12)
d
1

Mgk = ﬁ [Uomo + agkbgk Z rdg,kEdg] , (13)

9 d
agr, = agp + 0.5 Z Tdg.,k> (14)

d
1 1 1

— = — 405 Eqg — T+ 1. 15
o = o 09 S By = mg?+ L] (15)

We pursue the above iterative procedure until convergence of the lower bound £(R; ©) whose evaluation
is given in the Appendix. Since Z4 ; determines the cluster for the observed data point E; at attribute g and
Tdg,k is its expectation, we intuitively assign data Ey to cluster argmax{}_ ragk : k =1,...,K}. We can
also do model selection over the number of clusters based on a free energy lower bound of the marginalized
VB. Experiments in the next section show that this approach is reasonable.

Results

We ran marginalized VB on three data sets. The first was the wine data set from the UCI Repository [10]: this
has 178 samples and each sample has 13 features. This data set was chosen for the purpose of validating the
proposed method since there are 3 distinct clusters present (derived from 3 cultivars). As more biologically
relevant examples we then selected two cancer expression array datasets. The first of these was a lung cancer
data set [6] consisting of 73 samples and 918 features. The second was a leukemia data set [13] with 90
samples and 500 features. All the data sets were normalized to zero mean and unit variance and the hyper-
parameters mg, vg, ag, and by were chosen to have the same values in both standard VB and marginalized
VB. Since the datasets are normalized and mg, vy are hyper-parameters of the Gaussian prior distribution
over the mean for the data, it is reasonable to choose my = 0,v9 = 1. For similar reasons, given ag, by are
hyper-parameters of the Gamma prior distribution over the precision (inverse variance) of the data and the
mean of a Gamma distributed random variable is agby, we chose ag = 20 and by = 0.05 throughout these
experiments.

First we compared the free energy lower bound of marginalized VB and standard VB based on 30 random
initialization. In Figure 1 (top row) we observe an improvement in the free energy as a function of iteration
step, for marginalized VB over standard VB. In analogy to standard VB, marginalized VB can determine the
appropriate number of soft clusters by estimating the free energy bound given by equation (6) in contrast
to the hold-out cross-validation procedure for a maximum likelihood approach to LPD [8]. To investigate
the effectiveness of this approach to model selection, free energies were averaged over 20 runs from different
random initializations. As shown in Figure 1 (middle row), marginalized VB performed well in determining
the correct number of clusters (three) in the UCI wine data set. For the cancer array datasets, the peak in
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Figure 1: Results for the wine data set (left column), lung cancer data set (middle column) and leukemia data
set (right column). Top row: free energy bounds comparison (upper curve:MVB, lower curve:VB). Middle
row: free energy (y-axis) versus K, the number of clusters. Bottom row: the normalized }_ 744,k gives a
confidence measure that sample d belongs to a cluster k. For the two cancer datasets, samples separated
by dashed lines belong to an identified class e.g. adenocarcinoma samples or small cell lung cancer samples
(middle column, bottom row, see text).



the averaged free energy is less marked with an indication of six soft clusters for the leukemia data set and
seven clusters for the lung cancer data set.

In the bottom row of Figure 1, we see that marginalized VB shows quite promising clustering results
using the normalized ) g Tdg these peaks indicate the confidence in the allocation of the dth sample to
the kth cluster and accord well with known classifications. The lung cancer dataset of Garber et al [6]
(middle column, Figure 1) consisted of 73 gene expression profiles from normal and tumour samples with
the tumours labelled as squamous, large cell, small cell and adenocarcinoma. The samples are in the order
in which they are presented in the original paper [6] with the dashed lines showing their original principal
sample groupings. As with Garber et al [6] we identified seven clusters in the data with the adenocarcinoma
samples falling into three separate clusters with strong correlation with clinical outcomes. For their ordering
(which we follow) samples 1-19 belong to adenocarcinoma cluster 1, samples 20-26 belong to adenocarcinoma
cluster 2, samples 27-32 are normal tissue samples, samples 33-43 are adenocarcinoma cluster 3, samples
44-60 are squamous cell carcinomas, samples 61-67 are small cell carcinomas and samples 68-73 are from
large cell tumours.

As our last example, we applied the proposed MVB method to an oligonucleotide microarray dataset
from 360 patients with acute lymphoblastic leukemia (ALL) from Yeoh et al [13]. ALL is known to have
a number of subtypes with variable responses to chemotherapy. In many cases fusion genes are implicated
in the genesis of the disease. For the Yeoh et al [13] dataset, samples were drawn from leukemias with
rearrangements involving BCR-ABL, E2A-PBX1, TEL-AML]1, rearrangements of MLL gene, hyperdiploid
karyotope (more than 50 chromosomes) and T lineage leukemias (7-ALL). The free energy is plotted in
Figure 1 (right column, middle row) with a peak suggesting 6 subtypes. The dashed lines represent the
original demarcations of groups according to known genetic rearrangement. Samples 1-15 are BCR-ABL,
16-42 are F2A-PBX1, 43-106 Hyperdiploid> 50, 107-126 MLL, 206-248 T-ALL, 249-327 TEL-AML1, 328-
335 Group23 and 127-205 are labelled as Others. Some groupings, such as F24-PBX1, are very distinct.
However, the overall groupings are not as well defined as with lung cancer.

Conclusion

We have proposed an efficient variational Bayesian inference method for LPD probabilistic models. By
allowing the variables to be dependent on each other, the method can provide more accurate approximation
than standard VB. Also, the method provides a principled approach to model selection via the free energy
bound. Promising clustering results were also reported on lung cancer and leukemia data sets. Extensions
of this method to semi-supervised clustering will be reported elsewhere.
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Appendix
In this appendix we derive the EM-updates and free energy bound for MVB.

Derivation of updates

Noting that, for any d, g, >, Zigr = 1 and denoting the number of features by G we obtain from equation
(10):

logp(E, Z|©) = Dlogl' (3", ar) — D>, log () — Dlog (Y, ke + G)

16
+ Zd’,k IOgF(OLk + Zg/ Zd/g’,k) + Zd/,g’,k Zarg k logN(Ed/g/ ‘,U,g/k, 6g’k)~ (16)

Since F(akJng,# ng/,k+ng,k) = (akJng/#g ng’,k)Zd”’kF(O‘kJrzg'#g nglyk), putting this observation
into the logp(E, Zf@) yields:

IEq\dg (logp(E7 Z|®)) = Zk ng,k (]Eq\dg DOg(O‘k + Zg/;ﬁg ng/,k)]
+Eq o) [log N (Eqg|pigk; ogi)]) + constant terms ,

where constant terms are independent of Zg, 1. Hence, substituting this into equation (8) we conclude that

Tdg,k X exp(Eq(@) [logN(EdgLLLgk, 5gk)] + log Eq\dg [log(ak + Zg’#g ng’,k)] ) . (17)

To estimate the expectation of the Normal distribution, we use the fllowing observations (e.g. [2] ) for
the Gamma and Normal distributions:

EQ(,@) [ﬂgk] = agkbgk, IEq(ﬁ) [log ﬁgk] = ¢(agk) + log by,

and
Eq(n) [“zk] = mik + v;kl’ Eq(u lgr] = mgk.

Consequently, simple manipulation yields:

Eqeo) [logN<Edg ligks 59@]

equals, up to a constant term:
0.5(1/)((lgk) + log bgk) — 0«5agkbgk((Edg — mgk)z + ’U;kl).

We also use approximating methods [12] to estimate log Eq\ 44 [log(ak + Zg,;ég ng/,k)]. For this purpose, we
observe, for any positive random variable z, that

Var(x)

E(log(ak + ac)) ~ log(ay + Ex) — m,

(18)

and Eq\ 44 [Zg,;ég ng/’k] = Zg,;ég Tdg' k> Var(zg,;ég Zig k) = Zg,;ég Tag k(1 — ragr ). Plugging the above
observations into equation (17) yields the desired E-step updates.

For the updates for ¢(©), the updates are essentially the same as those in [2,4] since the associated terms
with variables with © in Egp ,[logp(E, Z|©)] are exact the same, that is, © only appears in the Normal
distribution. Hence, noting that the product of two Gamma (Normal) distributions is a Gamma (Normal)
distribution, we can obtain, from equations (16) and (9), the M-step updates.



Free energy bound
The free-energy lower bound of marginalized VB is defined by equation (6):

L(R;©) = Eq[logp(E, Z|O)] — Ey(z)[a(Z)] — KL(q(n)llp(1)) — KL(a(B)]p(8))-

From the fact that I'(z + 1) = zI'(z) for any = > 0, we know that I'(ay + PO Zagr) = Do) ngl(ozk +

g Zag,k . g
> g1 Zajk) , where we use the convention >3°_g

(10) of log likelihood, we obtain:

1 = 0. Putting this equation into the expression

Eq[logp(E, Z|©)] = DlogI'(>, i) — DY logT(a) — PlogT' (3, o + G)
+ Zd,k E, [IOgF(ak + Zg ng,k)] + Zd’g_’k; Tdg,k IOgN(Edigka O'gk)
=Dlogl'(}", ax) —DlogT' (>, ar + G)

+ g,k Tdg,k (E, [log(ax + Dizgt1 Zgj )] +1og N (Edglpgr, ogr))-

Since we used the convention Zj>g+1 Zagir =0, Eg [log (ak+zj>g+1 Zdj,k)] = log a. It remains to estimate
the term E, [log (o + D isgtt Zgjk)] for g=1,...,G —1. To this end, we use the approximation (18) again
to get: a

> g1 Tdik(l = Tajk)

2(ax + ijngl Tdjk)?

E, [log (o + Z Zajx)] ~ log(on + Z Tajk) =

Jj2g+1 Jj2g+1

Consequently, we conclude:

Eq[logp(E, Z|©)] = DlogT' (>, ) — D)og T(>- a(k + g))
. rajk(1—"q;,
+ X rag 108k + Xjs g1 Taik) — et ]

+ 2 gk Tdgk [—0.51log 2T + 0.5(¢(agk) + log bgr)
_0-5agkbgk(ﬁ + (Edg — mgk)Q)].

. G . .
where the.cpnventlon > s>g+1 = 0 is used again.
In addition,

Eq(Z) [log q(Z)] = Z Tdg,k log Tdg,k-
d,g,k

For the KL divergences, we have:

v U
KL((0)(0) = 3 0510g 2 + 0500l — mol? + 05 (k - 1) ,
9.k g

and
KL(q(Blp(3))) = Zg,k(agk — ao)¥(agr) — logbgr — agr —logI'(agk)
+1logT'(ao) + aglog by — (ag — 1)(¢(agr) + logbgr) + %



