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Abstract

In this paper, we introduce two new formulations for
multi-class multi-kernel relevance vector machines (m-
RVMs) that explicitly lead to sparse solutions, both in sam-
ples and in number of kernels. This enables their appli-
cation to large-scale multi-feature multinomial classifica-
tion problems where there is an abundance of training sam-
ples, classes and feature spaces. The proposed methods are
based on an expectation-maximization (EM) framework em-
ploying a multinomial probit likelihood and explicit prun-
ing of non-relevant training samples. We demonstrate the
methods on a low-dimensional artificial dataset. We then
demonstrate the accuracy and sparsity of the method when
applied to the challenging bioinformatics task of predicting
protein subcellular localization.

1. Introduction

Recently multi-kernel learning methods (MKL methods)
have attracted great interest in the machine learning com-
munity [10, 6, 13, 14, 11]. Since many supervised learn-
ing tasks in biology involve heterogeneous data they have
been successfully applied to many important bioinformat-
ics problems [9, 12, 2], often providing state-of-the-art per-
formance. The intuition behind these multi-kernel methods
is to represent a set of heterogeneous features via differ-
ent types of kernels and to combine the resulting kernels
in a convex combination: this is illustrated in Figure 1. In
other words, kernel functions k, with corresponding kernel
parameters θ, represent the similarities between objects xn
based on their feature vectors k(xi,xj) = 〈Φ(xi),Φ(xj)〉

Learning the kernel combination parameters β is there-
fore an important component of the learning problem. Most

MKL research has been done within the popular framework
of support vector machines (SVMs) with progress concen-
trated on finding computationally efficient algorithms via
improved optimization routines [15, 20]. Such methods
provide sparse solutions in samples and kernels, due to the
optimisation over hyperplane normal parameters w and ker-
nel combination parameters β, but they inherit the draw-
backs of the non-probabilistic and binary nature of SVMs.
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Figure 1. The intuition for MKL: From a heteroge-
nous multitude of feature spaces, to a common metric and
finally to a composite space.

In the Bayesian paradigm, the functional form analogous
to SVMs is the relevance vector machine (RVM) [18] which
employs sparse Bayesian learning via an appropriate prior
formulation. Maximization of the marginal likelihood, a
type-II maximum likelihood (ML) expression, gives sparse
solutions which utilize only a subset of the basis functions:
the relevance vectors. Compared to an SVM, there are rel-
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evatively few relevance vectors and they are typically not
close to the decision boundary. However, until now, the
multi-class adaptation of RVMs was problematic [18] due
to the bad scaling of the type-II ML procedure with respect
to C, the number of classes. Furthermore, although in re-
gression problems the maximization of the marginal likeli-
hood is only required once, for classification this is repeated
for every update of the parameter posterior statistics.

In this paper we describe two multi-class multi-kernel
RVM methods which are able to address multi-kernel
learning while producing both sample-wise and kernel-
wise sparse solutions. In contrast to SVM approaches,
they utilize the probabilistic framework of RVMs, avoid
pre-computation of margin trade-off parameters or cross-
validation procedures and produce posterior probabilities
of class memberships without using ad-hoc post-processing
methods.

In contrast with the original RVM [17, 18], the pro-
posed methods employ the multinomial probit likelihood
[1], which results in multi-class classifiers via the introduc-
tion of auxiliary variables. In one case (m-RVM1) we pro-
pose a multi-class extension of the fast type-II ML proce-
dure in [16, 4] and in the second case (m-RVM2) we explic-
itly employ a flat prior for the hyper-parameters that con-
trol the sparsity of the resulting model. In both cases, in-
ference on the kernel combinatorial coefficients is enabled
via a constrained QP procedure and an efficient expectation-
maximization (EM) scheme is adopted. The two algorithms
are suitable for different large-scale application scenarios
based on the size of the initial training samples.

Within a Bayesian framework, we have pursued related
work on kernel learning for binary classification [7], com-
bination of covariance functions within a Gaussian Pro-
cess (GP) methodology [8] and the variational treatment of
the multinomial probit likelihood with GP priors [6]. The
present work can be seen as the maximum-a-posteriori solu-
tion of previous work [2] with sparsity inducing priors and
maximization of a marginal likelihood. In a summary we
offer the following novel contributions:

• A fast type-II ML procedure for multi-class regression
and classification problems.

• A constructive type [16] m-RVM (m-RVM1).

• A bottom-down type [18] m-RVM utilizing a sparse
hyper-prior to prune samples (m-RVM2).

• Multi-kernel adaptations for both these methods to
handle multi-feature problems.

2 Model formulation

We consider feature spaces S in which aDs-dimensional
sample xsn has an associated label tn ∈ {1, . . . , C}. We ap-

ply kernel substitution in each feature space and embed our
features in base kernels Ks ∈ <N×N that can be combined
into our composite kernel and so we let

Kβ (xi,xj) =
S∑
s=1

βsK
s
(
xsi ,x

s
j

)
(1)

Introducing the auxiliary variables Y ∈ <N×C and param-
eters W ∈ <N×C we regress on Y with a standardized
noise model, see [1, 6], thus:

ync|wc,kβ
n ∼ Nycn

(
kβ
nwc, 1

)
. (2)

Then we link the regression target to the classification label
via the standard multinomial probit function

tn = i if yin > yjn ∀ j 6= i. (3)

The resulting multinomial probit likelihood (details in [6,
2]) is given by

P
(
tn = i|W,kβ

n

)
= Ep(u)

{∏
j 6=i Φ

(
u+ kβ

n (wi −wj)
)}
.

(4)

Finally we introduce a zero-mean Gaussian prior distri-
bution for the regression parameters wnc ∼ N

(
0, 1

αnc

)
with scale αnc, and place a Gamma prior distribution with
hyper-parameters a, b on these scales in accordance with
standard Bayesian approaches [3] and the RVM formalism.
This hierarchical Bayesian framework results in an implicit
Student-t distribution on the parameters [18] and therefore
encourages sparsity. Together with appropriate inference of
the scales α, this is the main focus of the RVM approach
and hence it will play an important role in both m-RVM
algorithms that we now propose.
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Figure 2. Plates diagram of the model.

2.1 m-RVM1

The first multi-class multi-kernel RVM we consider is
based on the “constructive” variant of RVMs [16, 4] which
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employs a fast type-II ML procedure. The maximization of
the marginal likelihood

p(Y|X,α) =
∫
p(Y|X,W)p(W|α)dW (5)

with respect to α results in a criterion to either add a sample,
delete or update its associated hyper-parameter αn. There-
fore, the model can start with a single sample and proceed
in a constructive manner as detailed below. The (log) multi-
class marginal likelihood is given by

L(α) = log p(Y|α) = log
∫ +∞
−∞ p(Y|W)p(W|α)dW

=
C∑
c=1

−1
2

[N log 2π + log |C|+ yT
c C−1yc]

where C = I + KA−1KT for composite kernel K and A
is defined as diag(α1, . . . , αN ). Here we have made the
assumption that a common scale αn is shared across classes
for every sample n. This allows an effective type-II ML
scheme based on the original binary scheme proposed by
Tipping and Faul [16, 4].

The decomposition of terms in C follows exactly as [16]
listed as below

|C| = |C−i| |1 + α−1
i kT

i C−1
−iki|, (6)

and

C−1 = C−1
−i −

C−1
−ikik

T
i C−1
−i

αi + kT
i C−1

i ki
. (7)

Hence the (log) marginal likelihood can be decomposed as
L(α) = L(α−i) + l(αi) with l(αi) given by

C∑
c=1

1
2

[
logαi − log(αi + si) +

q2
ci

αi + si

]
(8)

By slightly modifying the same analysis as in [4] to the
multi-class case, L(α) has again a unique maximum with
respect to αi

αi =
Cs2

i∑C
c=1 qci + Cs2

i

, if
C∑
c=1

q2
ci > si, (9)

αi = ∞, if
C∑
c=1

q2
ci ≤ si. (10)

where we follow [16] in defining the ’sparsity factor’ si and
the now multi-class ’quality factor’ qci:

si
4
= kT

i Cki and qci
4
= kT

i Cyc. (11)

It is worth noting that although the sparsity factor si can
be still be seen as a measure of overlap between sample

ki and the those already included, the quality factor qci is
now class-specific and the unique maximum of a retained
sample’s scale (Eq. 9) is an average, over classes, of the
original binary maximum solution.

Furthermore, this multi-class formulation of the fast
type-II ML procedure can be directly used for multinomial
regression problems with little additional overhead to the
original binary procedure as it only requires an extra sum-
mation over the ’quality factors’ qci. Returning back to our
classification framework, the M-steps for the estimates Ŵ
and β̂ are given by

Ŵ∗ =
(
KT
∗K∗ + A

)−1
KT
∗ Ỹ, (12)

and
β̂ = arg min

β

1
2βTΩβ − βTf

s.t βi ≥ 0 ∀ i and
∑S
s=1 βs = 1

(13)

where Ωij =
∑N,C
n,c wckin

TkjnwT
c is an S×S matrix, fi =∑N,C

n,c wckin
T
ỹnc, and the ∗ notation implies that currently

M samples are included (i.e W∗ is M ×C and K∗ is N ×
M ) in the model.

Finally in the E-step the posterior expectation
EY|W,β,t{ync} of the latent variables is obtained, see
[6, 2] with a closed form representation given by

ỹnc ← kβ̂
nŵc −

Ep(u){Nu

“
kβ̂

nŵc−kβ̂
nŵi,1

”
Φn,i,c

u }

Ep(u){Φ
“
u+kβ̂

nŵi−kβ̂
nŵc

”
Φn,i,c

u }

ỹni ← kβ̂
nŵi −

(∑
j 6=i ỹnj − kβ̂

nŵj

) (14)

where Φ is the cumulative distribution function and
Φn,i,cu defined as

∏
j 6=i,c Φ

(
u+ w̃ik

eβ eΘ
n − w̃jk

eβ eΘ
n

)
. The

resulting predictive likelihood for an unseen sample xs† em-
bedded into S base kernels ks† is given by

p
(
t† = c|xs†,X, t

)
=
∫
δ†cNy†

(
kβ̂
† Ŵ, I

)
dy†

= Ep(u)

{∏
j 6=c

(
u+ kβ̂

† (ŵc − ŵc)
)}

.

Here the expectation Ep(u) is taken, in the usual manner,
with respect to the standardized normal distribution p(u) =
N (0, 1). Typically 1,000 drawn samples give a good ap-
proximation. In Algorithm 1 a procedure for m-RVM1 is
given, summarizing the above section.

2.2 m-RVM2

In the next multi-class multi-kernel RVM proposed we
will not adopt marginal likelihood maximization but rather
employ an extra E-step for the updates of the hyper-
parameters α. This leads to a bottom-down sample pruning
procedure which starts with the full model and results in a
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Algorithm 1 mRVM1

1: Initialization
2: Sample Y ∈ <C×N to follow target t.
3: while Iterations< max & Convergence< Threshold do
4: while Convergence do
5: Fast Type-II ML : Similar to [16] for new updates Eq. 9, 10
6: end while
7: M-Step for W : Eq. 12
8: E-Step for Y : Eq. 14
9: QP program for β : Eq. 13

10: end while

sparse model through constant discarding of non-relevant
samples. This has the potential disadvantage that removed
samples cannot be re-introduced into the model.

Revisiting our model we have p(t|X, a, b) =∫
p(t|Y)p(Y|W, β,X)p(W|α)p(α|a, b)dYdWdα and

we are interested in the posterior of the hyper-parameters
p(α|W, a, b) ∝ p(W|α)p(α|a, b).

The prior on the parameters is a product of normal dis-
tributions W|α ∼

∏C
c=1

∏N
n=1Nwnc

(0, 1
αnc

) and the con-
jugate prior on the scales is a product of Gamma distribu-
tions α|a, b ∼

∏C
c=1

∏N
n=1 Gαnc

(a, b). Hence we are led to
a closed form Gamma posterior with updated parameters,
αnc|wnc, a, b ∼ G(1 + a,w2

nc + b). Therefore the E-step is
just the expected value or mean of that distribution and we
are left with the following well-known update

αnc =
1 + a

w2
nc + b

(15)

Hence, we are now following the initial RVM formulation
[17] and we simply place a flat prior (i.e a, b → 0) on the
scales which in the limit lead to the improper prior for the
parameters p(wnc) ∝ 1

|wnc| , as given in [18]. The M-steps
for the parameters W and the kernel combination coeffi-
cients β are given as before in Eq. 12 and Eq. 13 respec-
tively, and also the E-step for the latent variables Y in Eq.
14. The procedure is given below in Algorithm 2.

Algorithm 2 mRVM2

1: Initialization
2: Sample Y ∈ <C×N to follow target t.
3: while Iterations< max & Convergence< Threshold do
4: M-Step for W : Eq. 12
5: E-Step for Y : Eq. 14
6: E-Step for α : Eq. 15
7: Prune wi, and ki when aic > 106 ∀ c
8: QP program for β : Eq. 13
9: end while

3 Multi-class relevant vectors

Due to the different inference approaches adopted for
the scales α, which in m-RVM1 is the maximization of the
marginal likelihood and in m-RVM2 is the E-step update,
the resultant level of sparsity will slightly vary for the two

methods. Furthermore, since the first is a constructive ap-
proach and the second a pruning approach, there are signif-
icant differences on the way sparse solutions are achieved.

In order to study that and visualize the “relevant” vectors
retained by the models we examine a 2-D artificial data-
set with 3 classes. This dataset has t=1 when 0.5 > x2

1 +
x2

2 > 0.1, t=2 when 1.0 > x2
1 + x2

2 > 0.6 and t=3 when
[x1, x2]T ∼ N (0, σ2I). Convergence is monitored via the
mean % change of (Y −KW).

In Figure 3 typical resulting multi-class relevant vectors
are shown.
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Figure 3. Typical Relevant vectors

The differences in the resulting sparsity and associated
error progression can be seen from Figure 4. Results are av-
eraged over 20 randomly initialized trials while keeping the
same train/test split and varying the number of iterations.
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Figure 4. Error and Sparsity progression.

The results in this artificial dataset demonstrate the dif-
ferent nature of the two approaches, as it can be seen
mRVM1 starts with a single sample and progresses sequen-
tially adding and deleting vectors as it goes through the data.
We can see that after a certain dataset-dependent point the
model gets greedy, discarding more samples than needed
and hence the average error percentag starts increasing. Fur-
thermore, the number of relevant vectors retained varies sig-
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nificantly from trial to trial as it can be witnessed by the
increasing standard deviation.

On the other hand, mRVM2 starts with the full model
and prunes down samples. As it can be seen, the variance
of the error is large due to the sensitivity to initial condi-
tions. However, the mean retained vectors, or relevant vec-
tors, stays almost constant. In this toy dataset, there is no
statistical significant difference in zero-one loss when con-
vergence is monitored.

4 Protein subcellular localization

In order to evaluate performance on real world datasets
we consider the problem of predicting subcellular localiza-
tion based on a set of disparate data sources, represented as
a set of feature spaces and incorporated in the method by
a set of appropriate kernels. We follow the experimental
setup of Ong and Zien [20] by employing 69 feature spaces
of which 64 are motif kernels computed at different sec-
tions of the protein sequence and the rest are pairwise string
kernels based on BLAST E-values and phylogenetic profile
kernels.

Two problems are considered: predicting subcellular lo-
calization for Gram positive (PSORT+) and Gram negative
bacteria (PSORT-). Original state-of-the-art performance
on this problem was given by PSORTb [5], a prediction
tool utilizing multiple SVMs and a Bayesian network which
provides a prediction confidence measure for the method,
compensating for the non-probabilistic formulation of stan-
dard SVMs. The confidence measure can be thresholded
to perform class assignment or to indicate some samples as
unclassifiable.

Recently, a MKL method with SVMs [20] claimed a
new state-of-the art performance, on a reduced subset of the
PSORTb dataset, with reported performances of 93.8± 1.3
on PSORT+ and 96.1 ± 0.6 on PSORT- using an aver-
age F1 score. However due to the non-probabilistic na-
ture of SVMs the MKL method was augmented with a
post-processing criteria to create class probabilities in or-
der to leave out the 13% lowest confidence predictions for
PSORT+ and 15% for PSORT-, thus approximating the un-
classifiable assignment option of PSORTb. We also com-
pare with another multi-class multi-kernel learning algo-
rithm proposed in [19] for regularized kernel discriminant
analysis (RKDA). For this algorithm, we employ the semi-
infinite linear programming (SILP) approach with a fixed
regularization parameter 5× 10−4 as suggested there.

In Table 1 we report the average test-error percentage
over 10 randomly initialized 80% training and 20% test
splits on the PSORT+ subset for both m-RVM methods and
report the resulting average sample sparsity of the two mod-
els. Similarly Table 2 presents the results for PSORT-. We
point out that there are no analogous sparse relevant vec-

tors in the RKDA kernel learning approach and the method
relies on all the training samples.

Method Test Error% Relevance Vectors
m-RVM1 12.9± 3.7 27.9± 4.5
m-RVM2 10.4± 3.9 60.8± 4.3

RKDA-MKL 8.39± 1.46 −−

Table 1. Error and sparsity on PSORT+

Method Test Error% Relevance Vectors
m-RVM1 13.8± 4.5 109.2± 19.5
m-RVM2 11.9± 1.2 102.7± 7.4

RKDA-MKL 10.52± 2.56 −−

Table 2. Error and sparsity on PSORT-

The sparsity of the kernel combinations for PSORT+ can
be seen from Figure 5, where the average kernel combina-
tion parameters β, over the 10 runs, is shown in reverse
alphabetical order to the kernel collection provided by [20].
We are in general agreement with the selected kernels from
previous studies as E-value kernels (3,4) and phylogeny ker-
nels (68,69) are judged significant in these combinations.

0 10 20 30 40 50 60 700

0.1

0.15

!i

Figure 5. Average kernel usage: PSORT+

Similarly for PSORT-, Figure 6 indicates that the E-value
and phylogeny kernels are significant contributors. We now
have sample-wise and kernel-wise sparse solutions for the
problem under consideration.

5 Conclusion

In this contribution we have described two multi-class
and multi-kernel extensions of relevance vector machines
and their application to a significant multi-feature problem
in the area of subcellular localization prediction. Following
the original derivation of the fast type-II ML we present a
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Figure 6. Average kernel usage: PSORT-

multi-class extension. The additional computational over-
head to the binary case is minimal and given only by a sum-
mation of the ’quality factor’ over classes. This renders
the multi-class extension very efficient for large multino-
mial problems following the already established benefits of
sparse Bayesian learning.

The application of m-RVMs to subcellular localization
offers the ability to integrate heterogenous feature spaces
while imposing sparse solutions and being able to cope
with a large number of training samples. Depending on the
requirements, either a constructive approach (m-RVM1),
which has less bias on initialization, or a bottom-down one
(m-RVM2), which increases learning rate as basis/samples
are removed, can be used to tackle multi-feature multi-class
problems.
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