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Abstract

Background: We present a variational Bayesian approach to inferencepiolzabilistic model for microarray
gene expression data. The algorithmic approach efficiantyimises the probability of the model given the
data and provides an unbiased indication of the most prelaloinber of processes or soft clusters in the data.
Compared to hierarchical cluster analysis, the method masrdoer of practical advantages such as an objective
assessment of the number of soft clusters in the data, tliy adbhandle missing values and the ability to provide
a confidence measure for process membership.

Results: We describe the method and its implementation. We comparenithod to a previous variational
graphical model, proposed by the authors, and argue thaglrmelction is improved. As examples, we apply the
algorithm to microarray datasets for breast cancer, pi@stncer and leukemia. The most detailed application
is to breast cancer with a comparative study across 7 mienpaatasets. We particularly focus on one subtype
indicated by the method (the basaloid subtype) where ihdates a common genetic signature across all these
datasets and it suggests a therapeutic target.

1 Background

Unsupervised learning methods have been extensively osédding informative structure in microarray data and
they have lead to the discovery of putative subtypes for i@tyaof cancers [2, 7, 28]. Hierarchical cluster analysis
is commonly used for this purpose. However, probabilistathmds are a very attractive alternative. For example,
whereas hierarchical cluster analysis is often perforrepdmately on samples and genes, amounting to two distinct
reduced space representations of the data, samples angl@ganbe modelled using a single explanatory space
using probabilistic techniques. As we will see, probabdisechniques can provide an objective measure of the
number of clusters present and they can readily handle myisgilues. As Bayesian approaches favour simpler
models, this approach can avoid overfitting due to noiseérdtita. For many cluster analysis methods there is an
implicit mutual exclusion of clusters assumption. For epéanfor dendrograms, a sample is presumed identified
with one sub-tree group. With probabilistic methods it isgible to relax this assumption and allow membership of
several clusters simultaneously. Thus, in many biologioatexts, it may be unreasonable to assume that samples
belong to mutually exclusive clusters. For this reasonbabdistic models which relax this mutual exclusion of
classes assumption have been introduced into the bioiatirsiiterature recently [17, 23]. A further advantage of
relaxing the mutual exclusion of classes assumption iswieatan derive probabilities of membership of specific
clusters. For cancer applications, for example, it wouléhiygortant to gear future treatments to specific subtypes



and thus a confidence measure for subtype membership dargedant diagnostic information. Since cluster has
a connotation of exclusive assignment to one group we wdlthe wordgprocesor soft clustetin this paper.

Given these motivations, there has been significant rengereist in the use of probabilistic methods for clustering
microarray data [14, 15, 22]. Typically these methods usargel number of variables and so graphical models
are often used to visually indicate dependencies betweeables - the probabilistic graphical model in Figure
1 illustrates the method proposed here, for example. Fdyaghitistic approaches involving Bayesian inference a
critical task is the computation of thearginal likelihoodwhich plays an important role since it enables model
selection. Unfortunately, the marginal likelihood is difflt to compute and a range of techniques have been
proposed to handle this problem such as annealed imporsanggeling [24], path sampling [18] and a humber of
MCMC based methods [10]. In this paper we will use variationathods [4, 5, 20] in which a lower bound on
the marginal likelihood is computed using an efficient aidponic technique. Thus, in a previous comparison of
a variational method versus MCMC [12], the variational noetlppeared both computationally efficient and able
to generate a good model with some consistency across miayodatasets. Variational Bayesian methods have
been used with microarray data before. For example, a i@r&tBayesian mixture modelling approach has been
considered by Teschendorff et al [30]. However, the modebmpose here is more flexible than a mixture model
since each sample is identified with a unique mixture ovecgsses whereas, for a mixture model, each sample is
identified with one individual mixture component.

The approach we propose is motivated by Latent Dirichleb@dtion [8, 9] and we refer to it as Latent Process
Decomposition or LPD since each sample is represented anlaiatorial mixture over a set of latent processes.
In Rogers et al [27] we used a variational Expectation Masation (EM) approach in which the likelihood is
lower bounded using Jensen'’s inequality. There are twamtsito this former approach: one based on a maximum
likelihood approach (ML LPD) and the other a maximum a pasteapproach (MAP LPD). In this paper we
introduce a variational Bayesian approach to inferencéghwis as fast and efficient as these earlier methods but
which is fully Bayesian enabling determination of the fudigberior distribution. An important practical advantage
of the proposed method over ML and MAP LPD is an improvedstafor model selection, i.e. the determination
of the number of clusters or processes underlying the datecifically, the new method has an inbuilt mechanism
for model selection and there is no need to do a computatjoin&nsive cross-validation study.

Aside from improved model selection, an important furtheatiration for the proposed algorithm has been to
corroborate earlier discoveries. For example, in secti@nw8e show that the algorithm can isolate a subtype of
primary breast carcinoma (thmasal-likeor basaloidsubtype). Furthermore, it achieves a good alignment across
7 microarray breast cancer studies in the determinatioheofdp-ranked genes distinguishing this subtype from
other subtypes. The highlighted genes are biologicallgifizant and in a parallel paper with cancer researchers
[11], expression knockdown of an indicated target genegushort interferring RNAs, has lead to induced loss of
viability of more than50% of tumour cells.

The paper is organised as follows. The method we proposetligeaiin the next Section and in Section 3 we
will illustrate the use of the method with three applicatgtindies to breast cancer, prostate cancer and leukemia.
In Appendix A we outline the general variational Bayes's iaggh to provide further background to the method.
Since the approach is mathematically defined in the nexi@ea reader with a biological interest may wish to
proceed to the Section 3 for examples of data analysis wightlethod.

2 A Variational Bayes Approch to LPD

With variational methods [32] a bound on probabilities isistmucted via the introduction of variational distribu-
tions. There are two distinct approaches to variationargrice. The first is most similar in motivation to the
standard Expectation Maximisation (EM) algorithm and jieg an iterative procedure to generate maximum
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Figure 1: A Graphical Model Representation for the VariaéibBayesian Latent Process Decomposition model
proposed in this papetE,, denotes the expression value for ggnie sampled, 1 will give the average gene
expression for a subgroup afds an inverse variance (these determe distributions asriéited in Figure 5, m,

b anda are hyperparameters on these variabtgg,is a hidden variable giving the label of gempén sampled, 6,4
gives the mixing over subgroups for samgland« is a dirichlet parameter: the probability &f givena is given

by a Dirichlet distribution defined by this hyper-paramet&ll square boxed variables are hyper-parameters for
which we estimate a point value. We have not given the indi€®ariables outside the central plate.

likelihood (ML) or maximum a posterior (MAP) point estimaterhe bound is introduced using Jensen’s inequal-
ity. This bounded likelihood can be maximised by iteratyvepdating the maximum likelihood solution of the
model parameters and the maximum likelihood solution of/drétional distribution until convergence. As is the
case with the EM algorithm, variational inference will gegoint estimate of the posterior distribution.

In keeping with the Bayesian methodology, the second apgprtmavariational inference attemptserplain away
any latent uncertainty in the model by integrating out aldgén nodes. This is formulated by constructing a
bound based on the negative free energy of the system andnisig this bound. Among the first authors to
adopt this approach was Attias [3]. One advantage of a vamiat Bayesian approach over the ML and MAP
algorithms is that model comparison can be performed maiye8&pecifically there is an inbuilt mechanism for
penalising over-complex models. For the ML and MAP methodsmaputationally wasteful cross validation study
is required. This involves setting aside a certain perggntd the data and then estimating the parameters on the
remaining data. A model accuracy score is then found frontike&hood of the left-out data.

2.1 Variational BayesLPD

In Appendix A we outline the general methodology of the véwizal Bayes approach. The probabilistic graphical
model we consider is illustrated in Figure 1. Experimentsdervations ard’;, denoting the expression value
for geneg in sampled. p andg (an inverse variance) are model parameters and they wérohéne a posterior
distribution modelling gene expression values (see Figudoe an illustration). The posterior distribution for tlees



model parameters are governed by hyper-parameters b anda. There are two hidden variablegy, is a
hidden variable giving the label of gepeén samplead, while 8, gives the mixing over subgroups for samglev;,
is a dirichlet parameter, governing this distribution,twitthe process index. If the;, are uniformly valued there
is uniform mixing but a small value relative to the othersidades fewer members in that group. We will us¢o
denotes the number of processes, @rathdD similarly denote number of genes and samples. Given théngralp
model in Figure 1, the joint likelihood of the observed d&tand the latent variabled, Z, is then:

p(E,0,Z|0) = Hp(0d|a) Hp(ng|9d)P(Edg|Nga Bgs Zag|04a) ()
d g

whered is the sample indexg the attribute index anél labels the process. Furthermore, we make the following
distributional assumptions in keeping with earlier mod2H4:

F(Zk Oék) aj—1

p(Balo) = m : 0j 2
P(Zag = k|0a) = O 3)
p(Ed!]“/’g’Bg) = N(Edg;,umﬂg) = \/%exp (_0-555](Ed9 - //'9)2) (4)

where is the inverse variance. Thus we assume an approximate hdistigbution for the microarray data
presented later, a Dirichlet distribution 8y, while 6, denotes the probability of a labklfor sampled. We can
extendZy, to ak dimensional vector of zeros except for a 1 in the locatiomhefdriginal Z,, (henceZ,, will be
represented by, ). The joint likelihood in equation (1) can then be re-expeebas:

p(E,0,2|0) = [ p(0al) [ [0(Zag.1104)0(Eaglity, Bys Zagi)) 7
d g,k

and the log joint likelihood is:
logp(E,0,Z|©) = Ed,k(ak — 1) logOar + >4 log (324 ) — 3oy log Iaw)
+ Ed,g,k ng,k [log adk - 0-56gk(Edg - //fgk)2 +0.5 log ng]

We endow the model parameters with prior distributions, give the form of the distributions for the latent
variables as

(5)

p(p) ~ TN (gr;mo,vo) 6)
gk

p(B) ~ J]T(Bsk;a0,bo) (7)
gk

n(zle) ~ [[en ®)
dgk

p(Bla) = Hp(0d|a)~Dirichlet(a) 9)
d



wherewy, like our previous3, is an inverse variance and where:

T(Bgrsao,bo) = By exp(=Byk/bo)/ (b5°T (ao)) (10)

We need to take expectations of the log likelihood given inatipn (5) with respect to the approximate posterior
distributionsq(8), q(«), ¢(p) andq(3). The approximate posteriors are assumed to factorise amctha form

q0) = [[aa) ~ [] Dirichlet(cia) (11)

a(p) ~ fk[N(mgkﬂ?Zk) (12)

a(B) ~ lg'k[r(agk,égw (13)

«(Z) ~ g e (14)
dgk

Note thatg(a) does not have a definite form. This is because the Dirichitibdution does not have a sim-
ple conjugate prior. Leaving out the parameter of interest taking expectations with respect to the posterior
distributionsg(. . .) of all the remaining parameters we have equations (15) tp (19

(10gp(E7 0: Z|®)>9,u,ﬁ7a = Zd,g,k ng,k [<10g 9dk> + 05<10g ng> (15)
_0-5<ng>(E39 — 2Eq4g(pgr) + (u§k>) ]

(logp(E,0,Z|O))z upa = Z(Lk((ak) —1)logfay + Zd,g,k<ng,k> log 6.4y,

= > axan) =1+ 32 (Zag k) log Oax (16)
(log p(E, 0, Z|1))o.z.p.a = —0.5 Y (Zag.i)(Bok) (12 — 2Eagitgr) (17)
d,g,k
(logp(E,0,Z|B))6,7 1o = D a4k Zdg,k) [—0-55gk(<uﬁk> — 2Ea(pgr) + E3,) (18)
+0.5log Bgk]
(log p(E, 8, Z|a))e,z.up = Y _(ar — 1)(logOa) (19)
4k

With the exception ofy, these expectations take the form of simply the m&4iX )), second moment&'( X ?2)
or E(log(X)) with expectation over a well formed posterior, and can béuatad analytically in a standard way.
Below we give their values with no working (see [26] for morgalls):



(log Oar)qeoy = ¥ (Gar) Z Gar) = log By (20)

(ng,k)q(Z) = Tdg,k (21)

(BykYa(s) = grbgn (22)

(log Bgk)q(a) = ¥(agk) + log ggk (23)
<N3k>q(u) = mﬁk + 1/ (24)
(Bgk)g(u) = Mgk (25)

For the latent variabl&, combining equations(15) and (A-6) we have

q(Z) = rdej‘k = Mult(Z;rqq.1) (26)
dgk

Tdg,k X éng exp |:—0.5§,gkl~)gk (Egg —2Eqgmgr + mf,k + 1/"7gk) + 0.5(‘1’((~Lgk) + log ng)] (27)

For the latent variabl@, combining equations (16) and (A-5) we have

(o) + Zrdg L) o HO(akHZ Tdak HO“‘”“

For model parameters, from equation (AglP) x exp((p(E, 08, Z|®)))p(®). Thus for the posterior distribu-
tion of the meang(u):

q(0) < Dirichlet (

YoardekEag .
T T e ) i

gk

For a product of Gaussians the inverse variances are aglditnce:

q IJ/) X HN(/Jgk;mgkaf)gk)

gk

where

ﬁgk =1 + afgkbgk Zrdg’k
d

- 1 .
Mgp, = ﬂ vgmo + agkbgk Z rngcEdg
g d

For the posterior distribution of the Dirichlet parameté8)

) o Hﬁc“’ "exp <—Bb—gok>



a(B) < [[T | B:05> rgas, (05D ragi((Fag — 1igr)® +1/0,1) x T'(B; ao, bo)
d

gk d
q(/@) ~ H F(ng; &gka ng)
gk
where
dgk = Qg + 0.5Zrdg,k
d
1 1 5.)2 0]
- = 4+ 0.527"dg,k ((Edg - mgk) + I/ng)
bgk bo d

The iterative equations of interest for the latent varigialeameters are therefore

agr = (og) + Z Tdg,k (28)
g
Tdgk X éng exp [_O-S&gkl;gk (Ejg —2Eqgmgr, + m;k + 1/"7gk) + 0.5(‘1’((~Lgk> + log ng)] (29)

Whereéd’k is found from (20).r44,x can be interpreted as the probability that ggrnie sampled is generated by
process: and hence should be normalised o&erFor the hyper-parameters:

Vg, = v+ &gkggk Z Tdg,k (30)
d
- 1 R
Mg, = . [Uomo + Ggrbgr Z Tdg,kFag (31)
9 d
Ggr = aop+0.5 Z Tdg.k (32)
d

1 1 e

E_ = E + 0.5 Zrdg,k ((Edg — mgk) + ]./’ng) (33)
gk d

These update equations are in-line with expectations. Tihehlet parametery,, is made up of grior mean
count and a number of observations. Similarly the parars@tgr, g, Ggx, by all decompose into the form
fnew = fprior + fdata fora general parameter

2.2 Implementation

We can now outline the method in full (demonstration sofeiaravailable [1]). First we need to fixy) in (28)
andwvg, mg, ap andby in (30-33). For{ay) = ay/ Z]. a;, we can assume the same prior on all the processes.
Distributed on a simplex we therefore assume= 1, for all £ and hencéa;) = 1/, wherelC is the number

of processes. Thus, in the numerical experiments belowyihare fixed throughout, though we can consider a



more general class of models where there are also hyperpggemomy,. In the experiments below we used a
linear translation of the data to give zero mean and uniavae and thus priors with hyperparametegs= 0.0
andvo = 1.0 are suitable choices. For the priors @(the inverse variance or precisigh~= 1/0?), we note from
equation (7) that the standard conjugate prior is a Gamntaldison. Since the mean of a Gamma distribution
(T(B3;a,b) as defined in (10)) iab and the variance igb*> we usedz, = 20.0, by = 0.05 giving a mean ofl and

a variance 0f).05. This gives a fairly peaked distribution nelar We experimented with alternative choices for
these hyperparameters but found the results were quitestobtom equations (32,33) we see that the choice of
ap andby gives a lower bound af ;. andb,;, and hence they implicitly act as smoothing terms. For exapip!
avoidingay; = 0 we avoid a singularity in the digamma function in the upda&) (

Having defined starting values and supplied the daja(denoting the expression value of gena sampled),

we then iteratively updat&y, andrq,  and the hyperparamete{ﬁgk,mgk,dgk,ng} until convergence. For
many microarray experiments there may be missing valuesar guality readings which should be discarded.
If the expression value for gergein sampled is absent then we discard the correspondirgntributions in the
summations oved in the update equations (28-33): for example, ther E4, product term is discarded for the
given samplel in the update forn gy, in (31).

Having iterated the algorithm until the stopping criteriersatisfied, we derive the resulting model from the final
values of latent variable parameters and hyper-parameiggsquantifies the extent to which sampleame from
process:. From the final values of the hyper-parameters we can algoast posterior distributions: an example
of a posterior distribution of means is given in Figure 5 feotgenes~OXAlandTFF3 and the interpretation of
these distributions and relation to the point estimate itieastimates of ML and MAP LPD is described in Section
3.2. To determine these posterior distributions weiigg which gives the mean of the distribution for gepe

in process:. From equation (22) we can also estimate the inverse vargincthe posterior distribtion from the
product ofa,y, and?)gk. Using these means and variances we can also derive sttstores to rank differentially
expressed genes. For example, there is significant ungeession in process 4 in Figure 5(a) and hence this gene
is distinguished by a high Fisher score in comparison togsses 1-3.

In Appendix A we give a general description of the variatioBayes method. Specifically, the idea behind the
method is to maximise the evidence for the mogéIl{ata)) by maximising an expression called the free energy
F(®), which is a lower bound on the log of the evidence, see (A-8)Appendix B we give an expression for
this lower bound. Since the free energy should increaseesith iteration this provides a useful check on correct
implementation and a stopping criterion for convergendegfnthe incremental change in the free energy is below
a tolerance).

From equation (A-7) we also note that VB LPD method preseh&zd has an inbuilt model selection mechanism.
Specifically, the second term ifi(®) is a Kullback-Leibler divergence between the approximatstgrior and
prior over parameters. As more processes are added theu€kgéince term will increase, causing the free energy
to fall. The KL-divergence thus penalises complexity: theefenergy increases until it passes through a peak as
the KL-divergence penalises overcomplexity. Figures 4fej) 6(a) are two examples.

The original ML LPD and MAP LPD [27] has a similar graphicapresentation to Figure 1 but without the
hyper-parameters on the model variables. These two mettaxasno inbuilt method for penalising model over-
complexity. ML LPD can simply overfit (Figure 2(a) is an exdejp while for MAP LPD there is a prior to
avoid over-complex models. Either way, a cross-validastudy using held-out data is necessary to determine
the correct model complexity to use. As an approach to maaetson, this has disadvantages. Firstly, we are
setting aside some data to perform the cross-validatiadystior VB LPD no such data is set aside. Secondly,
the cross-validation study is computationally wastefihirdly, for MAP LPD there is the question of what type
of prior should we use to avoid over-complex models. Finaligre is the potential for bias. If we calculate the
probability of the model given the data it will be much lower & simple model fitting complex data, as opposed



to a complex model fitting simple data. Hence, there is theipdity that the likelihood doesn’t start to fall rapidly
enough after passing through the correct model complexitisé.

3 Results

3.1 Introduction

In this section we will demonstrate the above method on tapgdications in cancer informatics, specifically,
identification of the genetic signature of the basaloid #b#ike) subtype of primary breast carcinoma, the identifi-
cation of possible subtypes of prostate cancer and thefidatipn of subtypes of leukemia. We will compare with
hierarchical cluster analysis, generally the method ofahin the original data analyses. We will also compare
and contrast with the original ML and MAP LPD algorithms.

3.2 Example 1. identifying the genetic signature of the basaloid subtype of primary
breast cancer.

In a previous study [12] we investigated possible subtyfesimary breast carcinoma using ML and MAP LPD
across 3 microarray datasets for breast cancer (pringip&ithvasive ductal type). To differ from our earlier inves-
tigation, we will extend this study to a further 4 microardgtasets and focus on one subtype, demonstrating that
the proposed method can successfully delineate the gesigitiature of a subtype across a number of microarray
studies. This example will also serve to illustrate the adges of VB LPD over ML or MAP LPD. For our
earlier study using ML and MAP LPD, we considered the dataE&orlie et al [28] consisting of 115 primary
breast carcinoma samples (we used the 534 genes seledteit isttidy). The corresponding ML LPD maximum
likelihood curve is established using hold-out cross \alwh and it is given in Figure 2(a). As the number of
processes increases, the likelihood curve passes thropghlka Prior to this peak underfitting occurs, whereas
after the peak overfitting occurs: the algorithm would cordtan over-complex model given the sample size and
extent of noise in the data. The MAP solution is very simitecept that the likelihood plateaus after 4 processes
since further model complexity is not required. Thus thekprdicates that a 4 process model is most appropriate
and, with a 4 process decomposition, samples can be identifie particular processes. The patients so identified
have very different clinical outcomes: in Figure 2(b) weggitie survival curves for patients identified with these
4 processes (for more details see Carrivathl[12]).
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Figure 2: Log-likelihood curve (left) and Kaplan Meier plpight) using ML LPD for the dataset of Sorlet al
[28]. Figure 2(a) gives the log-likelihoog{axis) versus number of processesakis), while Figure 2(b) gives the
the fraction not expired from the diseagegxis) versus number of months-éxis) for a 4 process decomposition.

This analysis suggested a minimum one indolent and threessgjge subtypes. The most aggressive process 4 has
the most distinctive profile and, with one exception, thégras belonging to this process are identified with the
basaloid subtype of breast cancer found by Seliel using hierarchical cluster analysis [28]. The density esrv

for two top-ranked genes distinguishing this proc@$3:3 andFOXAY, are given in Figure 3. Expression values
associated with samples belonging to particular procem®egiven below the plot and the given density curves
model the distribution of this data.
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Figure 3: Density curves derived using MAP LPD and expresgadues for two gene§OXAlandTFF3, for the
Sorlieet al [28] dataset. Expression values are below the curves viftllicating expression values for samples
belonging to process 4 and the other symbols indicatingessgion values for samples belonging to other processes.
The density curves model extent of data present on a givagerafhusFOXAland TFF3 underexpress in the
most aggressive process 4 identified in Figure 2(b).

In Figure 4(a) we give the free energy curve using the VB LPDhoe proposed in this paper. The curve peaks
at 4, suggesting this is the correct number of processesetamuagreement with the ML LPD likelihood curve.
Later, though, we will present examples where the peaksrdifid VB LPD may give a more unbiased estimate
for model selection. In Figure 4(b) we give the correspogdaplan-Meier plot for VB LPD using a 4 process
decomposition. The top ranked genes distinguishing the agggressive process 4 are given in Table 1 for VB
LPD and, as for MAP LPDTFF3 and genes expressing forkhead box transcription fa¢to§Aland FOXC1
are prominant. The 19 process 4 samples are identified wathtbasaloid samples of breast cancer described by
Sorlieet al[28]. In Figure 5(a) we plot the posterior distributions fdl0XAlandTFF3, derived using VB LPD.
The proposed variational Bayes algorithm is more informeatihan ML and MAP LPD. Thus in Figure 3 MAP
LPD uses point estimates for the density estimator meansanghces whereas VB LPD gives the full posterior
distribution: a wide spread in the peaks in Figure 5 woulddatt that a range of models fit the data well and the
density estimations in Figure 3 would be unreliable.
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(a) Free Energy plot (b) Kaplan Meier plot

Figure 4: Free energy plot (left) and Kaplan Meier plot (t)glor the dataset of Sorliet al [28] using the varia-
tional Bayes method. These plots may be compared with FR(@eand 2(b). The peak in the free energy is more
pronounced than the result in Figure 2(a). The decompaodids to a similar Kaplan Meier plot to Figure 2(b).
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Figure 5: The distribution of means for two selected genessé distributions indicate the reliability of the point
estimates of the means found using MAP LPD and given in Fgy8(a) and 3(b) for comparison.

In a similar fashion to our earlier paper, Carriviekal [12], we also used VB LPD with the 49 sample breast
cancer dataset of West al [34] and the dataset of van t'veet al [31] with 78 samples. In Table 1 we show
the genetic signatures matching the Soeli@l basal signature (for West alwe have used time-to-metastasis to
match processes, but for van't vesral there was no survival data and the match is by correlatedsigs). So

far, we find that VB LPD confirms the results of Carriviekal [12]. However, to extend the study and to show
that the method can successfully identify the genetic sigeaf a subtype across a large number of datasets, we
will consider 4 further microarray datasets for breast eanthese recent studies all use the Affymetrix Hu133A
GeneChip and hence we will use them as a composite datasé#idfréast carcinoma samples rather than use

12



them individually (the 4 component datasets are Yahgl with 28 samples [36], Farmest al with 49 samples
[16], Pawitanet al with 251 samples [25] and Wared al with 286 samples [33]). The free energy plot is given in
Figure 6(a) and the peak is now at 5. Though Figures 2(a) aajdsdfgested 4 subtypes this result is in line with
expectations: as we increase the sample set size the affetisse are averaged out, model parameters are better
estimated and a more detailed partitioning is achievedughdhis further partitioning affects the other subtypes
(principally process 2), the basaloid subtype is distimtt anchanged if we use a 4 process or 5 process model
(we will discuss this shortly with the results presented @bl€ 1). In Table 1 we give the top 20 ranked genes
distinguishing the basaloid subtype using a 5-processfeplthis composite dataset. We observe that the large
majority of these genes overlap with the top 20 genes listedthie previous 3 studies for Sorlk al, Westet al

and van t' veeet al. In line with our remark that increasing dataset size redtigce effect of noise, we observe
that the composite dataset, as the largest dataset, hasetiteg} alignment with the Sorlet al, Westet al and

van t'veeret al signatures, whereas the smallest dataset, testwith 49 samples, has least commonality with
the other datasets. Of course, if we had decided to use thdatadets individually, rather than as a composite
dataset, the observed gene ranking alignment is weakeusecd the enhanced effects of noise. In our earlier
comment on 4 versus 5 subtypes we mentioned that the geiggtatsre of this basaloid subtype is very robust.
In Table 1 we also give the matching signature if we had use&®l@ncess split: a process with the same signature
is apparent. This specific signature and failure to reseli@éomponents with an increasing number of processes
may indicate a single underlying cause for the genesis sfkihlbtype.

0 2‘0 4‘0 éo 2;0 1‘00 1‘20 140
(a) Free Energy plot for the composite dataset (b) Fox-ratios (Sorlieet al dataset)

Figure 6: The free energy plot (left) for the composite deta$ 614 samples suggests 5 subtypes for breast cancer.
The most aggressive subtype is the basaloid subtype andhiimcterised by a highOX-ratio (right). Figure

6(b) gives the ratio oFOXCZlover FOXAlfollowing linear rescaling of the data to zero mean and uaitance.
TheFOX-ratiosare so high for the basaloid subtype that we have logged tios 50 they can be easily visualised
on the same plot+ give non-basaloid samples andhe basaloid samples as identified by MAP LPD.

It is therefore possible to claim that the basaloid sigreatsiapparent across 7 microarray studies and it appears
quite specific. Among the genes in the basaloid signaft@XAlappears to play a pivotal role. It features in
the top three positions for Sorlet al, Westet al and the composite dataset (it was absent from the van t' veer
et al dataset). Indeed its importance is apparent from some obtier genes in the list: the X box-binding
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Sorlieetal | West et al Van t' Veer et al| Composite (5-split)) Composite (8-split)
TFF3 CRIP1 VGLL1 FOXA1l FOXA1l
XBP1 XBP1 AGR2 AGR2 MLPH
FOXA1l FOXA1l TFF3 XBP1 FLJ20174
GATA3 CEBPD ESR1 MLPH AGR2
B3GNT5 HSPA8 CA12 FLJ20174 CA12
GALNT10 | GATA3 DSC2 CA12 AK127020
FBP1 RARA NAT1 GATA3 AR
DSC2 CRYAB EST AK127020 DSC2
FOXC1 GATA3 CDH3 CA12 XPB1
FOXC1 FBP1 FOXC1 CA12 CA12
FLT1 KRT18 SCUBE2 GATA3 GABRP
FOXC1 MSN AR AR GATA3
GATA3 TCEAL1 Corf7 TFF3 CA12
SLC11A3 | SCNN1A SLC7A2 ABAT GATA3
SLC11A3 | NSEP1 GABRP FBP1 TFF3
MGC27171| CDH3 EST DSC2 ANP32E
NAT1 BF XPB1 GATA3 ELF5
MRPS14 | TFF3 BCMP11 CA12 ABAT
LOC51313 | Hu. clone 23948 VAV3 TFF1 GATA3
MGC10710| FSCN1 EST GABRP CA12

Table 1: The top-ranked genes distinguishing the basalditlype of breast cancer. Genes given in bold are
common in the top 20 genes across more than one study. Theostmpataset of 614 samples is taken as one
study (see text). The composite dataset is derived fromasdtd [16, 25, 33, 36], using the Affymetrix UL33A
chip. If these datasets are used individually poorer gemle aignment is achieved due to the enhanced effects of
noise. The genetic signature of the basaloid subtype isredyst: the peak in the free energy suggest 5 subtypes.
However, if we choose 8 subtypes instead (right hand colutmnsame signature is retrieved with one process
(see text). Note: (a) multiple entries for a gene in a columg.(FOXC1and GATA3under Sorlie et al) come
from different probes for the same gene, (b) absense of aigem&olumn can stem from the fact it is absent
from the dataset e.gzOXCl1lis listed under Sorliet aland van t’ veeet al but was absent from West al and

the composite dataset, (c) For the composite dataset ifhth@ genes ranked below position 20 are, in order:
DACH1, ESR1, ANP32E, MCCC2, KRT18, ABAT, GALNT6, INPP4ABBE?2, NAT] (d) ESTis an expressed
sequence tag.

14



protein 1,XBP1 is believed to be regulated ByOXA1[13] as is the trefoil factomFF1 [6], a close relative of
TFF3. The biological importance diOXALlis also apparent from some recent results reported in grafitre: a
substantial number of estrogen response elements (ER&Esabksociated binding sites 8OXA1[13, 21]. In our
earlier study [12] we found tumour samples fr&RCAlmutation carriers were exclusively associated with the
basaloid subtype and FOXA1 and BRCA1 proteins coregulditeyade inhibition [35]. FOXAlis a member of the
forkhead box family of transcription factors, as is a secbigtly ranked gene: the developmental g&i@XC1
The latter regulateBACH1 and the transforming growth factor TGH29, 38]. FOXAlunderexpresses in the
basaloid subtype where&©OXC1overexpresses. Indeed, if we evaluate the Pearson carretatefficient for all
possible gene pairings in the Sortital dataset, the pairingOXAlandFOXC1has the highest anticorrelation (for
this reason the ratio ?FOXCloverFOXAlappears a useful marker of the basaloid subtype, see Fifhike b a
parallel paper [11] we report results on knockdown of exgicesby FOXC1using small inferring RNAs (siRNA)
for a breast cancer cell line (BT549) which has a similar H@XC1:FOXAlratio as discussed here. We report
loss of viability of more thar50% of cancer cells within 72 hours as a result. Thus the propossttiod appears
to have correctly highlighted a significant target.

3.3 Example 2: identifying subtypes of prostate cancer.

For our second example we consider the prostate cancertaf6linsky et al [19]. These authors used a
selected set of recurrence predictor genes and a traintngf 4 tumours to evaluate prediction of recurrence
versus non-recurrence on a further set of 79 tumours. Inase we will use all these samples, starting from the
original dataset (12,625 probes), to determine any subtgp@rostate cancer. Specifically we are interested in
determining if there are subtypes with differing frequeatgecurrence or non-recurrence. This is a very important
problem since currently there are no reliable methods foausging indolent from aggressive prostate cancers with
the recognition that most prostate cancer patients havdantisubtypes which are overtreated. Using ML LPD
we give the likelihood curve in Figure 7(a) and the corresjiog clinical outcomes in Figure 7(b). The likelihood
curve suggests 3 processes with quite different clinicad@ues: two subtypes appear to be heading toward a
plateau with no disease recurrence, while the third subdypears very aggressive with inevitable recurrence.
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LogLikelihood

3 4
Number of Processes

(a) Log-likelihood curve (b) Fraction without recurrencey{axis) versus number of
months {-axis),x represents a patient remining in the sur-
vey without recurrence

Figure 7: For ML LPD the log-likelihood curve (left) sugge& subtypes. The clinical outcomes are distinct with
one processes having disease recurrence for all patiethis® D months, whereas the other two processes appear
to head toward a plateau with no recurrence. There are 2Indldpatients in processes 1, 2 and 3 respectively.

In Figure 8(a) we show the free energy curve for the dataséliogky et al for VB LPD, with the corresponding
clinical outcomes depicted in Figure 8(b).

(a) Free energy plot (b) Recurrence curves

Figure 8: Free energy curve and disease recurrence pldtdqrbstate cancer dataset of Glingtyal[19]. As for
Figure 7(b) a drop in Figure 8(b) indicates disease recag@nd a star indicates the patient remains in the survey
without recurrence. There are 47 patients in process 1 aimt@bcess 2.

Interestingly, the peak is now at 2 with a clear split into tgrupings, one with a very high probability of
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recurrence and a second grouping with a milder form of theadis. Earlier we remarked that the ML and MAP
LPD model could over-estimate the number of processes anthty be an instance where this occurs.

3.4 Example 3: identifying subtypes of leukemia.

As a last example, we applied the variational Bayes methahtoligonucleotide microarray dataset from 360
patients with acute lymphoblastic leukemia (ALL) [37]. Alid.known to have a number of subtypes with variable
responses to chemotherapy. In many cases fusion genes @ieated in the genesis of the disease. For the
Yeohet al[37] dataset samples were drawn from leukemias with regeanrents involvin@dCR-ABL E2A-PBX1
TEL-AMLY, rearrangements of MLL gene, hyperdiploid karyotope (ntbesn 50 chromosomes) and T lineage
leukemias T-ALL). The free energy is plotted in Figure 9(a) with a peak sutjgg$ subtypes.
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(a) Free energy plot (b) Decomposition diagram

Figure 9: The free energy curve (left) for the Leukemia dettasd Yeohet al gives a peak at 5 processes. For
the decomposition diagram (right) samples 1-15B@#R-ABL, 16-42 areE2A-PBX1 43-106Hyperdiploid> 50,
107-126MLL, 206-248T-ALL, 249-327TEL-AMLY, 328-335Group23and 127-205 are labelled &hers E2A-
PBX1, T-ALL, TEL-AML1and the hyperdiploid samples are very distinct groupindee [ack of distinction with
the other groups probably explains the free energy peakath®&rthan a higher level of partitioning.

In section 2.2 we mentioned that; ;, quantifies the probability that sampdeis generated by proceds and

in Figure 9(b) we give a decompostion diagram using, (the peaks give the probability that samplés in
processk). We see that the subtypes fBRA-PBX1 T-ALL, TEL-AML1and the hyperdiploid samples are very
distinct groupings.BCR-ABLandMLL are less distinct groupings which may explain why the peak & and

not higher (with the decomposition diagram we allowed for8cggesses, with more processes the remainder are
left empty). For the middle group (which the original authararked a®therg we find some peaks suggesting

a connection with known groupings with some evidence for hew groupings. A dendrogram was presented
by Yeohet al (their Figure 1), however, it only uses the top 40 genes migtiycorrelated with the 7 proposed
class distinctions, with these genes being selected by-aqelared statistic. This effectively creates a supervised
learning problem. With no such use of class label infornmatiee corresponding dendrogram has a more difficult
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interpretation (see Supplementary Information [1]).

4 Discussion

In this paper we have used the established variational Bayeoach to develop a method applicable to Latent
Process Decomposition [27]. The method has advantagesh@rarchical cluster analysis, such as a common
explanatory space for samples and genes and the abilityndldnanissing values, for example. Compared to
our earlier ML and MAP LPD methods [27], the method proposectthas advantages such as improved model
selection and the fact that we obtain a full distribution rovedel parameters rather than point estimates of the
density estimation (see captions to Figures 3 and 5, for pl@mMore generally, as a Bayesian method, any
assumptions or prior beliefs about the data are expliciis han important advantage over other data analysis
approaches where implicit assumptions could be wholly pnapriate, hence degrading performance. As an ex-
ample, hierarchical cluster analysis uses an implicit mgdclusion of classes assumption (a sample is presumed
identified with a unique grouping in a dendrogram), whereasuth assumption is made with LPD (a sample can
be represented as a combinatorial mixture over proces$ég)use of inappropriate implicit assumptions could
explain reported discrepancies between different datlysinanethods and different studies whereas we can find
reasonable agreement across datasets (e.g. for the baesedonple in Section 3.2).

Though these advantages justify the proposed approachalpiistic methods have possible future advantages
which may further strengthen this approach. Thus, miceyat@chnology is intrinsically noisy, disrupting rank
scoring of genes between different studies. Apart fromeasing the size of datasets, another way to reduce the
effects of noise is to incorporate more information frompdiste types of data. Approaches such as hierarchi-
cal cluster analysis are ill-suited for incorporating athges of information, such as sequence data or pathway
information. On the other hand, different types of data caunally be encoded into probabilistic constructs and
consequently these types of techniques open an interestgrgue to information integration in the future. In
general, medical data can be expected to be noisy and ingwecjustifying probabilistic approaches. For hier-
archical cluster analysis, for example, samples are ffiedtiith groupings which reflect underlying subtypes,
but no probability of membership of a subtype is indicatedh tRe other hand, probabilistic methods can give
a confidence measure for class membership (e.g. in Figu)elt®lpeaks indicate degree of confidence in the
class assignment). For these and other reasons, they wélitmportant advantages in the future interpretation of
medical data.

Appendix A: The Variational Bayes M ethod

In this Appendix we briefly summarise the general methodplog Variational Bayesian (VB) inference. VB
seeks to find a lower bound on the evidep¢®ata), in a tractable form to be maximised. Approximations are
made to the posterior distributions of all hidden and modeiables so that they can be marginalised (integrated
out). At each iteration of VB it is the hyperparameters, eatihan parameters, that are updated. Thus, compared
to the ML or MAP LPD we presented previously [27], the emphasishifted a step upwards. The probabilistic
graphical model is presented in Figure 1. From this Figuezdtare two hidden nod€g and @ and a set of
parameter®. In the applications we consider microarray expressioa datl hencé is used to denote the data.
The evidence of some dgtédFE') can be written as a ratio of the joint distribution (with respto some variables)
p(E,©,0,Z) and the posterior distribution of these variables giverdéwap(©, 0, Z | E).

p(E)_p(E,(-),H,Z)

= 9(©,0,Z|E) (A1)
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The log of this is written as:

Let us introduce an approximation to the posterior distidns of all model and hidden variable§®, 0, Z|E).
If we take expectations of expression (A-2) with respechts approximate posterig{®, 8, Z|E), the left hand
side remains unchanged as this is independe@&, @ andZ.

logp(E) = /q(@,B,Z|E) logp(E,©,0,Z)d0d0dZ — /q(@,O,Z|E) logp(©,0, Z|E)d®dOdZ

Multiplying p(E, ©, 6, Z) top and bottom by/(®, 8, Z| E) and separating the terms we can now write

logp(E) = F(®) + KL(¢(©,0, Z|E)||p(®,0, Z|E))

where
p(E,©,0,7)
F(®) = ®,0,Z|E)log———-"—>dOd0dZ
©) = [ a(0.0.25) 15 LG22
As the KL divergence is strictly greater than zero, we can saywthat
logp(E) > F(©) (A-3)

Equality holds wherk' L = 0, i.e. the approximate posterigand true posterigs coincide. This is the case when
our approximation becomes exact. The idea behind a vaneti®ayes approach is to maximise the evidence by
maximisingF'(®). We shall now make an important assumption about the post&¥e assume that it factorises
into separate terms, such th@®, 0, Z|E) = ¢q(®)q(0)q(Z) where the dependence @&his implied. By writing
p(E,0,0,Z)=p(E,0,Z|0)p(0®) we can now expand'(®) as

p(E,0,Z]|0)p(0)

1(©)q0)q(z) 917

F(©) = [ d©)a(0)a(2)log
Thus by expanding and integrating @®) andq(Z)

p(E,0,Z]0)
9(0)q(Z)
In equation (A-4) the first term is an averaged likelihood #relsecond term- K L(q(®)||p(®)) is a measure of
the distancebetween approximate posterior and prior over parametecs; shis term increases with the number
of parameters it can be seen as a penalising term for overlemmmodels. Indeed it has been shown that in certain
situations this reduces to the Bayesian information datéBIC) and the Minimum Description Length (MDL)
(see [3] for further details).
To maximiseF'(®) in equation (A-4) we take zeroed gradients (functionahggiies in this case) with respect to
the approximate posteriogg®), ¢(0) andq(Z).

SF(©®) p(E.0,Z|O) [ 4(©)q(0)q(Z) _
20 _/q(G)q(Z)logiq(e)q(Z) d0dZ / 10 d®dZ =0

d©d0dZ — K L(q(©)||p(®)) (A-4)
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[ 4@)(2)108p(E.6. 21©)d04Z - 1 - 10g4(6) [ ¢(@)a(2)d04Z - [ 4(©)u(2)10ga(Z)dOZ =0
As the densitieg(. . . ) integrate to one we can write

4(8) o exp { [ @) 105150, Z|®)d®d2} (A-5)

Analogously

02) xexp | [ 0(©)a(6) g (.6, ZI0)a00| (A-6)
For any of the model parameters,

SF(O)  WB0.210) . p©)
54(©) ‘/ 1(0)a(Z)log = gy zy 01Z ~log gy 1 =0

SO

2(®) x exp { [ 4@z 080(E.0, Z|®>d0d4 () (A7)

Equations (A-5) to (A-7) give the approximate posteriotriisitions for the latent variables and model parameters.
They can be interpreted as the posterior taking the formeeiponential of the averaged log likelihood over all
remaining variables. Thus all uncertainty is integrate@awThe posterior forms of(®), ¢(0) andq(Z) are
determined directly from the optimisation via equationsi)Xo (A-7). In the case of model parameters, the prior
distributions in (A-7) are chosen as conjugate to the ddrasponentials so that the parametric form §¢©)
remains the same. Having derived the general form of theedostistributions we apply it to the LPD model
represented in Figure 1 and this gives the approximate postgiven in Section 2.1.

Appendix B: Evaluation of the L ower Bound

It is useful to be able to evaluate the free energy tét®@®) given in equation (A-4). Firstly this acts as a test of
correct implementation as is should increase with eachtiter of the algorithm until convergence. Secondly it
can be used as a comparative measure to determine the optimber of components in a mixture distribution.

F(©) = [q(®)q(0)q(Z)log LEEZ)d@dAIZ — K L(q(O)||p(O))
= (log p(E, 8, Z|©))6, 7,6, — (10g(4(8)))e — (log(4(Z)))z (A-8)
— [ q(®)log [%] L)

Evaluating the elements of the bound given in equation (A-8)

<10gp(Ea 9, Z7 |6)>9,Z,p,ﬁ,a = Zd,k(<ak> - 1)<10g 0dk>
+(log (32 a))
— > log ()
A-9
+ 2 d gk Tdg.k [(108 Bar) (A-9)
—O.Sagkbgk (Egg — 2Edgmgk + m;k + ]./ng)
+0.5(T(agr) + logbgr,)]
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(log(q(0)))e = > (G — 1){log fr)

dk
(log(a(Z))z =) Tagk 10g g,k
dgk

The KL(q(®)||p(®)) term decomposes into three terms for the paramete®set {u,3,a}, these can be

analytically evaluated making use of the same identities Were needed in evaluating the expectations earlier.

Here, we shall quote the standard results for KL divergeasagven in [26].

For the parameteu, p(p) ~ [, N (1gr; mo,vo) andg(p) ~ [T, N (irgr, Dgr).
KL(g(w)|lp(w) = ¥, 0.51og 22 4 0.50, [mgk +m3 41/ vg — ngkmo] —0.5 A10)

= [0.510g Yk 40500 [mgr — mo]® + 0.5 [—0 - 1”

where we have grouped the corresponding terms to dkidw= 0 when the parameters from the two distributions

are equal. For the paramef@yp(8) ~ [1,, I'(Bgk; ao, bo) andq(B) ~ [1,4, T (g, bgr)

KL@B)Ip(B) = Xy [ (agr — 1)¥(age) —logbyr — dgr —logT(agr)

- P A-11
+logT'(ag) + ag logbo — (ag — 1)(¥(agk) + logbyr) + % ] ( )

Again we shall group the terms to show tlia, = 0 when the parameter from the two distributions are equal.

KL@@Bp(B) = X1 [ (agk — a0)¥(agk) + ao(logby — logbr)

A-12
+1logT'(ag) —logI'(agr) + dgr [?Tk - 1] ] ( )
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