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Abstract

Background: We present a variational Bayesian approach to inference in aprobabilistic model for microarray
gene expression data. The algorithmic approach efficientlymaximises the probability of the model given the
data and provides an unbiased indication of the most probable number of processes or soft clusters in the data.
Compared to hierarchical cluster analysis, the method has anumber of practical advantages such as an objective
assessment of the number of soft clusters in the data, the ability to handle missing values and the ability to provide
a confidence measure for process membership.
Results: We describe the method and its implementation. We compare the method to a previous variational
graphical model, proposed by the authors, and argue that model selection is improved. As examples, we apply the
algorithm to microarray datasets for breast cancer, prostate cancer and leukemia. The most detailed application
is to breast cancer with a comparative study across 7 microarray datasets. We particularly focus on one subtype
indicated by the method (the basaloid subtype) where it delineates a common genetic signature across all these
datasets and it suggests a therapeutic target.

1 Background

Unsupervised learning methods have been extensively used for finding informative structure in microarray data and
they have lead to the discovery of putative subtypes for a variety of cancers [2, 7, 28]. Hierarchical cluster analysis
is commonly used for this purpose. However, probabilistic methods are a very attractive alternative. For example,
whereas hierarchical cluster analysis is often performed separately on samples and genes, amounting to two distinct
reduced space representations of the data, samples and genes can be modelled using a single explanatory space
using probabilistic techniques. As we will see, probabilistic techniques can provide an objective measure of the
number of clusters present and they can readily handle missing values. As Bayesian approaches favour simpler
models, this approach can avoid overfitting due to noise in the data. For many cluster analysis methods there is an
implicit mutual exclusion of clusters assumption. For example, for dendrograms, a sample is presumed identified
with one sub-tree group. With probabilistic methods it is possible to relax this assumption and allow membership of
several clusters simultaneously. Thus, in many biologicalcontexts, it may be unreasonable to assume that samples
belong to mutually exclusive clusters. For this reason, probabilistic models which relax this mutual exclusion of
classes assumption have been introduced into the bioinformatics literature recently [17, 23]. A further advantage of
relaxing the mutual exclusion of classes assumption is thatwe can derive probabilities of membership of specific
clusters. For cancer applications, for example, it would beimportant to gear future treatments to specific subtypes
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and thus a confidence measure for subtype membership carriesimportant diagnostic information. Since cluster has
a connotation of exclusive assignment to one group we will use the wordsprocessor soft clusterin this paper.
Given these motivations, there has been significant recent interest in the use of probabilistic methods for clustering
microarray data [14, 15, 22]. Typically these methods use a large number of variables and so graphical models
are often used to visually indicate dependencies between variables - the probabilistic graphical model in Figure
1 illustrates the method proposed here, for example. For probabilistic approaches involving Bayesian inference a
critical task is the computation of themarginal likelihoodwhich plays an important role since it enables model
selection. Unfortunately, the marginal likelihood is difficult to compute and a range of techniques have been
proposed to handle this problem such as annealed importancesampling [24], path sampling [18] and a number of
MCMC based methods [10]. In this paper we will use variational methods [4, 5, 20] in which a lower bound on
the marginal likelihood is computed using an efficient algorithmic technique. Thus, in a previous comparison of
a variational method versus MCMC [12], the variational method appeared both computationally efficient and able
to generate a good model with some consistency across microarray datasets. Variational Bayesian methods have
been used with microarray data before. For example, a variational Bayesian mixture modelling approach has been
considered by Teschendorff et al [30]. However, the model wepropose here is more flexible than a mixture model
since each sample is identified with a unique mixture over processes whereas, for a mixture model, each sample is
identified with one individual mixture component.
The approach we propose is motivated by Latent Dirichlet Allocation [8, 9] and we refer to it as Latent Process
Decomposition or LPD since each sample is represented as a combinatorial mixture over a set of latent processes.
In Rogers et al [27] we used a variational Expectation Maximisation (EM) approach in which the likelihood is
lower bounded using Jensen’s inequality. There are two variants to this former approach: one based on a maximum
likelihood approach (ML LPD) and the other a maximum a posteriori approach (MAP LPD). In this paper we
introduce a variational Bayesian approach to inference, which is as fast and efficient as these earlier methods but
which is fully Bayesian enabling determination of the full posterior distribution. An important practical advantage
of the proposed method over ML and MAP LPD is an improved strategy for model selection, i.e. the determination
of the number of clusters or processes underlying the data. Specifically, the new method has an inbuilt mechanism
for model selection and there is no need to do a computationally intensive cross-validation study.
Aside from improved model selection, an important further motivation for the proposed algorithm has been to
corroborate earlier discoveries. For example, in section 3.2, we show that the algorithm can isolate a subtype of
primary breast carcinoma (thebasal-likeor basaloidsubtype). Furthermore, it achieves a good alignment across
7 microarray breast cancer studies in the determination of the top-ranked genes distinguishing this subtype from
other subtypes. The highlighted genes are biologically significant and in a parallel paper with cancer researchers
[11], expression knockdown of an indicated target gene, using short interferring RNAs, has lead to induced loss of
viability of more than50% of tumour cells.
The paper is organised as follows. The method we propose is outlined in the next Section and in Section 3 we
will illustrate the use of the method with three applicationstudies to breast cancer, prostate cancer and leukemia.
In Appendix A we outline the general variational Bayes’s approach to provide further background to the method.
Since the approach is mathematically defined in the next Section, a reader with a biological interest may wish to
proceed to the Section 3 for examples of data analysis with this method.

2 A Variational Bayes Approch to LPD

With variational methods [32] a bound on probabilities is constructed via the introduction of variational distribu-
tions. There are two distinct approaches to variational inference. The first is most similar in motivation to the
standard Expectation Maximisation (EM) algorithm and provides an iterative procedure to generate maximum
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Figure 1: A Graphical Model Representation for the Variational Bayesian Latent Process Decomposition model
proposed in this paper.Edg denotes the expression value for geneg in sampled, � will give the average gene
expression for a subgroup and� is an inverse variance (these determe distributions as illustrated in Figure 5)v, m,b anda are hyperparameters on these variables,Zdg is a hidden variable giving the label of geneg in sampled, �d
gives the mixing over subgroups for sampled and� is a dirichlet parameter: the probability of�d given� is given
by a Dirichlet distribution defined by this hyper-parameter. All square boxed variables are hyper-parameters for
which we estimate a point value. We have not given the indicesof variables outside the central plate.

likelihood (ML) or maximum a posterior (MAP) point estimates. The bound is introduced using Jensen’s inequal-
ity. This bounded likelihood can be maximised by iteratively updating the maximum likelihood solution of the
model parameters and the maximum likelihood solution of thevariational distribution until convergence. As is the
case with the EM algorithm, variational inference will givea point estimate of the posterior distribution.
In keeping with the Bayesian methodology, the second approach to variational inference attempts toexplain away
any latent uncertainty in the model by integrating out all hidden nodes. This is formulated by constructing a
bound based on the negative free energy of the system and maximising this bound. Among the first authors to
adopt this approach was Attias [3]. One advantage of a variational Bayesian approach over the ML and MAP
algorithms is that model comparison can be performed more easily. Specifically there is an inbuilt mechanism for
penalising over-complex models. For the ML and MAP methods acomputationally wasteful cross validation study
is required. This involves setting aside a certain percentage of the data and then estimating the parameters on the
remaining data. A model accuracy score is then found from thelikelihood of the left-out data.

2.1 Variational Bayes LPD

In Appendix A we outline the general methodology of the variational Bayes approach. The probabilistic graphical
model we consider is illustrated in Figure 1. Experimental observations areEdg denoting the expression value
for geneg in sampled. � and� (an inverse variance) are model parameters and they will determine a posterior
distribution modelling gene expression values (see Figure5 for an illustration). The posterior distribution for these
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model parameters are governed by hyper-parametersv, m, b anda. There are two hidden variables:Zdg is a
hidden variable giving the label of geneg in sampled, while �d gives the mixing over subgroups for sampled. �k
is a dirichlet parameter, governing this distribution, with k the process index. If the�k are uniformly valued there
is uniform mixing but a small value relative to the others indicates fewer members in that group. We will useK to
denotes the number of processes, andG andD similarly denote number of genes and samples. Given the graphical
model in Figure 1, the joint likelihood of the observed dataE and the latent variables�;Z, is then:p(E;�;Zj�) =Yd p(�dj�)Yg p(Zdgj�d)p(Edg j�g ; �g; Zdgj�d) (1)

whered is the sample index,g the attribute index andk labels the process. Furthermore, we make the following
distributional assumptions in keeping with earlier models[27]:p(�dj�) = � (Pk �k)Qk �(�k) Yj ��j�1j (2)p(Zdg = kj�d) = �dk (3)p(Edgj�g ; �g) = N (Edg ;�g; �g) =r�g2� exp ��0:5�g(Edg � �g)2� (4)

where� is the inverse variance. Thus we assume an approximate normal distribution for the microarray data
presented later, a Dirichlet distribution for�d, while �dk denotes the probability of a labelk for sampled. We can
extendZdg to ak dimensional vector of zeros except for a 1 in the location of the originalZdg (henceZdg will be
represented byZdg;k). The joint likelihood in equation (1) can then be re-expressed as:p(E;�;Zj�) =Yd p(�dj�)Yg;k [p(Zdg;kj�d)p(Edgj�g ; �g ; Zdg;k)℄Zdg;k
and the log joint likelihood is:log p(E;�;Zj�) =Pd;k(�k � 1) log �dk +Pd log (Pk �k)�Pk log �(�k)+Pd;g;k Zdg;k �log �dk � 0:5�gk(Edg � �gk)2 + 0:5 log�gk� (5)

We endow the model parameters with prior distributions, andgive the form of the distributions for the latent
variables as p(�) � Ygk N (�gk ;m0; v0) (6)p(�) � Ygk �(�gk ; a0; b0) (7)p(Zj�) � Ydgk �Zdg;kd;k (8)p(�j�) = Yd p(�dj�) � Dirihlet(�) (9)
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wherev0, like our previous�, is an inverse variance and where:�(�gk ; a0; b0) = �a0�1gk exp(��gk=b0)=(ba00 �(a0)) (10)

We need to take expectations of the log likelihood given in equation (5) with respect to the approximate posterior
distributionsq(�), q(�), q(�) andq(�). The approximate posteriors are assumed to factorise and have the formq(�) = Yd q(�d) �Yd Dirihlet( ~�d) (11)q(�) � Ygk N ( ~mgk ; ~vgk) (12)q(�) � Ygk �(~agk;~bgk) (13)q(Z) � Ydgk rZdg;kdg;k (14)

Note thatq(�) does not have a definite form. This is because the Dirichlet distribution does not have a sim-
ple conjugate prior. Leaving out the parameter of interest and taking expectations with respect to the posterior
distributionsq(: : :) of all the remaining parameters we have equations (15) to (19).hlog p(E;�;Zj�)i�;�;�;� =Pd;g;k Zdg;k [hlog �dki+ 0:5hlog�gki�0:5h�gki(E2dg � 2Edgh�gki+ h�2gki) ℄ (15)hlog p(E;�;Zj�)iZ;�;�;� =Pd;k(h�ki � 1) log �dk +Pd;g;khZdg;ki log �dk=Pd;k(h�ki � 1 +PghZdg;ki) log �dk (16)hlog p(E;�;Zj�)i�;Z;�;� = �0:5Xd;g;khZdg;kih�gki(�2gk � 2Edg�gk) (17)hlog p(E;�;Zj�)i�;Z;�;� =Pd;g;khZdg;ki h�0:5�gk(h�2gki � 2Edgh�gki+E2dg)+0:5 log�gk℄ (18)hlog p(E;�;Zj�)i�;Z;�;� =Xd;k (�k � 1)hlog �dki (19)

With the exception of�, these expectations take the form of simply the meanE(X)), second momentsE(X2)
orE(log(X)) with expectation over a well formed posterior, and can be evaluated analytically in a standard way.
Below we give their values with no working (see [26] for more details):

5



hlog �dkiq(�) = 	(~�dk)�	(Xk0 ~�dk0) = log ~�dk (20)hZdg;kiq(Z) = rdg;k (21)h�gkiq(�) = ~agk~bgk (22)hlog�gkiq(�) = 	(~agk) + log~bgk (23)h�2gkiq(�) = ~m2gk + 1=~vgk (24)h�gkiq(�) = ~mgk (25)

For the latent variableZ, combining equations(15) and (A-6) we haveq(Z) =Ydgk rZdg;kd;k =Mult(Z; rdg;k) (26)rdg;k / ~�d;k exp h�0:5~agk~bgk(E2dg � 2Edg ~mgk + ~m2gk + 1=~vgk) + 0:5(	(~agk) + log~bgk)i (27)

For the latent variable�, combining equations (16) and (A-5) we haveq(�) / Dirihlet � �����h�ki+Xg rdg;k! /Ydk �h�ki+Pg rdg;kd;k =Ydk �~�dkd;
For model parameters, from equation (A-7)q(�) / exp(hp(E;�;Zj�)i)p(�). Thus for the posterior distribu-
tion of the meansq(�):q(�) /Ygk N  �gk;Pd rdg;kEdgPd rdg;k ; ~agk~bgkXd rdg;k!�N (�gk ;m0; v0)
For a product of Gaussians the inverse variances are additive, hence:q(�) /Ygk N (�gk ; ~mgk ; ~vgk)
where ~vgk = v0 + ~agk~bgkXd rdg;k~mgk = 1vgk "v0m0 + ~agk~bgkXd rdg;kEdg#
For the posterior distribution of the Dirichlet parameterq(�)p(�) /Ygk �a0�1gk exp���gkb0 �
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q(�) /Ygk �0��; 0:5Xd rgd;k ;"0:5Xd rdg;k((Edg � ~mgk)2 + 1=~vgk)#�11A� �(�; a0; b0)q(�) �Ygk �(�gk ; ~agk;~bgk)
where ~agk = a0 + 0:5Xd rdg;k1~bgk = 1b0 + 0:5Xd rdg;k �(Edg � ~mgk)2 + 1=~vgk�
The iterative equations of interest for the latent variableparameters are therefore~�dk = h�ki+Xg rdg;k (28)rdg;k / ~�d;k exp h�0:5~agk~bgk(E2dg � 2Edg ~mgk + ~m2gk + 1=~vgk) + 0:5(	(~agk) + log~bgk)i (29)

where~�d;k is found from (20).rdg;k can be interpreted as the probability that geneg in sampled is generated by
processk and hence should be normalised overK. For the hyper-parameters:~vgk = v0 + ~agk~bgkXd rdg;k (30)~mgk = 1~vgk "v0m0 + ~agk~bgkXd rdg;kEdg# (31)~agk = a0 + 0:5Xd rdg;k (32)1~bgk = 1b0 + 0:5Xd rdg;k �(Edg � ~mgk)2 + 1=~vgk� (33)

These update equations are in-line with expectations. The Dirichlet parameter~�dk is made up of aprior mean
count and a number of observations. Similarly the parameters ~vgk , ~mgk, ~agk, ~bgk all decompose into the form�new = �prior + �data for a general parameter�.
2.2 Implementation

We can now outline the method in full (demonstration software is available [1]). First we need to fixh�ki in (28)
andv0, m0, a0 andb0 in (30-33). Forh�ki = �k=Pj �j , we can assume the same prior on all the processes.
Distributed on a simplex we therefore assume�k = 1, for all k and henceh�ki = 1=K, whereK is the number
of processes. Thus, in the numerical experiments below, the�k are fixed throughout, though we can consider a
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more general class of models where there are also hyperparameters on�k. In the experiments below we used a
linear translation of the data to give zero mean and unit variance and thus priors with hyperparametersm0 = 0:0
andv0 = 1:0 are suitable choices. For the priors on� (the inverse variance or precision,� = 1=�2), we note from
equation (7) that the standard conjugate prior is a Gamma distribution. Since the mean of a Gamma distribution(�(�; a; b) as defined in (10)) isab and the variance isab2 we useda0 = 20:0, b0 = 0:05 giving a mean of1 and
a variance of0:05. This gives a fairly peaked distribution near1. We experimented with alternative choices for
these hyperparameters but found the results were quite robust. From equations (32,33) we see that the choice ofa0 andb0 gives a lower bound of~agk and~bgk and hence they implicitly act as smoothing terms. For example, by
avoiding~agk = 0 we avoid a singularity in the digamma function in the update (29).
Having defined starting values and supplied the dataEdg (denoting the expression value of geneg in sampled),
we then iteratively update~�dk andrdg;k and the hyperparametersf~vgk; ~mgk; ~agk;~bgkg until convergence. For
many microarray experiments there may be missing values or poor quality readings which should be discarded.
If the expression value for geneg in sampled is absent then we discard the correspondingd contributions in the
summations overd in the update equations (28-33): for example, therdg;kEdg product term is discarded for the
given sampled in the update for~mgk in (31).
Having iterated the algorithm until the stopping criterionis satisfied, we derive the resulting model from the final
values of latent variable parameters and hyper-parameters. ~�d;k quantifies the extent to which sampled came from
processk. From the final values of the hyper-parameters we can also estimate posterior distributions: an example
of a posterior distribution of means is given in Figure 5 for two genesFOXA1andTFF3 and the interpretation of
these distributions and relation to the point estimate density estimates of ML and MAP LPD is described in Section
3.2. To determine these posterior distributions we use~mgk which gives the mean of the distribution for geneg
in processk. From equation (22) we can also estimate the inverse variances in the posterior distribtion from the
product of~agk and~bgk. Using these means and variances we can also derive statistical scores to rank differentially
expressed genes. For example, there is significant under-expression in process 4 in Figure 5(a) and hence this gene
is distinguished by a high Fisher score in comparison to processes 1-3.
In Appendix A we give a general description of the variational Bayes method. Specifically, the idea behind the
method is to maximise the evidence for the model (p(Data)) by maximising an expression called the free energyF (�), which is a lower bound on the log of the evidence, see (A-3). In Appendix B we give an expression for
this lower bound. Since the free energy should increase witheach iteration this provides a useful check on correct
implementation and a stopping criterion for convergence (when the incremental change in the free energy is below
a tolerance).
From equation (A-7) we also note that VB LPD method presentedhere has an inbuilt model selection mechanism.
Specifically, the second term inF (�) is a Kullback-Leibler divergence between the approximate posterior and
prior over parameters. As more processes are added the KL-divergence term will increase, causing the free energy
to fall. The KL-divergence thus penalises complexity: the free energy increases until it passes through a peak as
the KL-divergence penalises overcomplexity. Figures 4(a)and 6(a) are two examples.
The original ML LPD and MAP LPD [27] has a similar graphical representation to Figure 1 but without the
hyper-parameters on the model variables. These two methodshave no inbuilt method for penalising model over-
complexity. ML LPD can simply overfit (Figure 2(a) is an example), while for MAP LPD there is a prior to
avoid over-complex models. Either way, a cross-validationstudy using held-out data is necessary to determine
the correct model complexity to use. As an approach to model selection, this has disadvantages. Firstly, we are
setting aside some data to perform the cross-validation study: for VB LPD no such data is set aside. Secondly,
the cross-validation study is computationally wasteful. Thirdly, for MAP LPD there is the question of what type
of prior should we use to avoid over-complex models. Finally, there is the potential for bias. If we calculate the
probability of the model given the data it will be much lower for a simple model fitting complex data, as opposed
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to a complex model fitting simple data. Hence, there is the possibility that the likelihood doesn’t start to fall rapidly
enough after passing through the correct model complexity to use.

3 Results

3.1 Introduction

In this section we will demonstrate the above method on threeapplications in cancer informatics, specifically,
identification of the genetic signature of the basaloid (basal-like) subtype of primary breast carcinoma, the identifi-
cation of possible subtypes of prostate cancer and the identification of subtypes of leukemia. We will compare with
hierarchical cluster analysis, generally the method of choice in the original data analyses. We will also compare
and contrast with the original ML and MAP LPD algorithms.

3.2 Example 1: identifying the genetic signature of the basaloid subtype of primary
breast cancer.

In a previous study [12] we investigated possible subtypes of primary breast carcinoma using ML and MAP LPD
across 3 microarray datasets for breast cancer (principally of invasive ductal type). To differ from our earlier inves-
tigation, we will extend this study to a further 4 microarraydatasets and focus on one subtype, demonstrating that
the proposed method can successfully delineate the geneticsignature of a subtype across a number of microarray
studies. This example will also serve to illustrate the advantages of VB LPD over ML or MAP LPD. For our
earlier study using ML and MAP LPD, we considered the datasetof Sorlieet al [28] consisting of 115 primary
breast carcinoma samples (we used the 534 genes selected in their study). The corresponding ML LPD maximum
likelihood curve is established using hold-out cross validation and it is given in Figure 2(a). As the number of
processes increases, the likelihood curve passes through apeak. Prior to this peak underfitting occurs, whereas
after the peak overfitting occurs: the algorithm would construct an over-complex model given the sample size and
extent of noise in the data. The MAP solution is very similar except that the likelihood plateaus after 4 processes
since further model complexity is not required. Thus the peak indicates that a 4 process model is most appropriate
and, with a 4 process decomposition, samples can be identified with particular processes. The patients so identified
have very different clinical outcomes: in Figure 2(b) we give the survival curves for patients identified with these
4 processes (for more details see Carrivicket al [12]).
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Figure 2: Log-likelihood curve (left) and Kaplan Meier plot(right) using ML LPD for the dataset of Sorlieet al
[28]. Figure 2(a) gives the log-likelihood (y-axis) versus number of processes (x-axis), while Figure 2(b) gives the
the fraction not expired from the disease (y-axis) versus number of months (x-axis) for a 4 process decomposition.

This analysis suggested a minimum one indolent and three aggressive subtypes. The most aggressive process 4 has
the most distinctive profile and, with one exception, the patients belonging to this process are identified with the
basaloid subtype of breast cancer found by Sorlieet alusing hierarchical cluster analysis [28]. The density curves
for two top-ranked genes distinguishing this process,TFF3 andFOXA1, are given in Figure 3. Expression values
associated with samples belonging to particular processesare given below the plot and the given density curves
model the distribution of this data.
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Figure 3: Density curves derived using MAP LPD and expression values for two genes,FOXA1andTFF3, for the
Sorlieet al [28] dataset. Expression values are below the curves with� indicating expression values for samples
belonging to process 4 and the other symbols indicating expression values for samples belonging to other processes.
The density curves model extent of data present on a given range. ThusFOXA1andTFF3 underexpress in the
most aggressive process 4 identified in Figure 2(b).

In Figure 4(a) we give the free energy curve using the VB LPD method proposed in this paper. The curve peaks
at 4, suggesting this is the correct number of processes to use, in agreement with the ML LPD likelihood curve.
Later, though, we will present examples where the peaks differ and VB LPD may give a more unbiased estimate
for model selection. In Figure 4(b) we give the corresponding Kaplan-Meier plot for VB LPD using a 4 process
decomposition. The top ranked genes distinguishing the most aggressive process 4 are given in Table 1 for VB
LPD and, as for MAP LPD,TFF3 and genes expressing forkhead box transcription factorsFOXA1andFOXC1
are prominant. The 19 process 4 samples are identified with the 19 basaloid samples of breast cancer described by
Sorlieet al [28]. In Figure 5(a) we plot the posterior distributions forFOXA1andTFF3, derived using VB LPD.
The proposed variational Bayes algorithm is more informative than ML and MAP LPD. Thus in Figure 3 MAP
LPD uses point estimates for the density estimator means andvariances whereas VB LPD gives the full posterior
distribution: a wide spread in the peaks in Figure 5 would indicate that a range of models fit the data well and the
density estimations in Figure 3 would be unreliable.
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Figure 4: Free energy plot (left) and Kaplan Meier plot (right) for the dataset of Sorlieet al [28] using the varia-
tional Bayes method. These plots may be compared with Figure2(a) and 2(b). The peak in the free energy is more
pronounced than the result in Figure 2(a). The decomposition leads to a similar Kaplan Meier plot to Figure 2(b).

−3 −2 −1 0 1 2 3
0

1

2

3

4

5

6

7

8

4

2

3

1

(a) FOXA1

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

4

2

1

3

(b) TFF3

Figure 5: The distribution of means for two selected genes: these distributions indicate the reliability of the point
estimates of the means found using MAP LPD and given in Figures 3(a) and 3(b) for comparison.

In a similar fashion to our earlier paper, Carrivicket al [12], we also used VB LPD with the 49 sample breast
cancer dataset of Westet al [34] and the dataset of van t’veeret al [31] with 78 samples. In Table 1 we show
the genetic signatures matching the Sorlieet al basal signature (for Westet al we have used time-to-metastasis to
match processes, but for van’t veeret al there was no survival data and the match is by correlated signature). So
far, we find that VB LPD confirms the results of Carrivicket al [12]. However, to extend the study and to show
that the method can successfully identify the genetic signature of a subtype across a large number of datasets, we
will consider 4 further microarray datasets for breast cancer. These recent studies all use the Affymetrix Hu133A
GeneChip and hence we will use them as a composite dataset of 614 breast carcinoma samples rather than use
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them individually (the 4 component datasets are Yanget al with 28 samples [36], Farmeret al with 49 samples
[16], Pawitanet al with 251 samples [25] and Wanget al with 286 samples [33]). The free energy plot is given in
Figure 6(a) and the peak is now at 5. Though Figures 2(a) and 4(a) suggested 4 subtypes this result is in line with
expectations: as we increase the sample set size the effectsof noise are averaged out, model parameters are better
estimated and a more detailed partitioning is achieved. Though this further partitioning affects the other subtypes
(principally process 2), the basaloid subtype is distinct and unchanged if we use a 4 process or 5 process model
(we will discuss this shortly with the results presented in Table 1). In Table 1 we give the top 20 ranked genes
distinguishing the basaloid subtype using a 5-process split for this composite dataset. We observe that the large
majority of these genes overlap with the top 20 genes listed for the previous 3 studies for Sorlieet al, Westet al
and van t’ veeret al. In line with our remark that increasing dataset size reduces the effect of noise, we observe
that the composite dataset, as the largest dataset, has the greatest alignment with the Sorlieet al, Westet al and
van t’veeret al signatures, whereas the smallest dataset, Westet al with 49 samples, has least commonality with
the other datasets. Of course, if we had decided to use these 4datasets individually, rather than as a composite
dataset, the observed gene ranking alignment is weaker because of the enhanced effects of noise. In our earlier
comment on 4 versus 5 subtypes we mentioned that the genetic signature of this basaloid subtype is very robust.
In Table 1 we also give the matching signature if we had used an8 process split: a process with the same signature
is apparent. This specific signature and failure to resolve into components with an increasing number of processes
may indicate a single underlying cause for the genesis of this subtype.
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(a) Free Energy plot for the composite dataset
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Figure 6: The free energy plot (left) for the composite dataset of 614 samples suggests 5 subtypes for breast cancer.
The most aggressive subtype is the basaloid subtype and it ischaracterised by a highFOX-ratio (right). Figure
6(b) gives the ratio ofFOXC1overFOXA1following linear rescaling of the data to zero mean and unit variance.
TheFOX-ratiosare so high for the basaloid subtype that we have logged the ratios so they can be easily visualised
on the same plot:+ give non-basaloid samples and� the basaloid samples as identified by MAP LPD.

It is therefore possible to claim that the basaloid signature is apparent across 7 microarray studies and it appears
quite specific. Among the genes in the basaloid signature,FOXA1appears to play a pivotal role. It features in
the top three positions for Sorlieet al, Westet al and the composite dataset (it was absent from the van t’ veer
et al dataset). Indeed its importance is apparent from some of theother genes in the list: the X box-binding
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Sorlie et al West et al Van t’ Veer et al Composite (5-split) Composite (8-split)
TFF3 CRIP1 VGLL1 FOXA1 FOXA1
XBP1 XBP1 AGR2 AGR2 MLPH
FOXA1 FOXA1 TFF3 XBP1 FLJ20174
GATA3 CEBPD ESR1 MLPH AGR2
B3GNT5 HSPA8 CA12 FLJ20174 CA12
GALNT10 GATA3 DSC2 CA12 AK127020
FBP1 RARA NAT1 GATA3 AR
DSC2 CRYAB EST AK127020 DSC2
FOXC1 GATA3 CDH3 CA12 XPB1
FOXC1 FBP1 FOXC1 CA12 CA12
FLT1 KRT18 SCUBE2 GATA3 GABRP
FOXC1 MSN AR AR GATA3
GATA3 TCEAL1 Corf7 TFF3 CA12
SLC11A3 SCNN1A SLC7A2 ABAT GATA3
SLC11A3 NSEP1 GABRP FBP1 TFF3
MGC27171 CDH3 EST DSC2 ANP32E
NAT1 BF XPB1 GATA3 ELF5
MRPS14 TFF3 BCMP11 CA12 ABAT
LOC51313 Hu. clone 23948 VAV3 TFF1 GATA3
MGC10710 FSCN1 EST GABRP CA12

Table 1: The top-ranked genes distinguishing the basaloid subtype of breast cancer. Genes given in bold are
common in the top 20 genes across more than one study. The composite dataset of 614 samples is taken as one
study (see text). The composite dataset is derived from 4 datasets [16, 25, 33, 36], using the Affymetrix U133A
chip. If these datasets are used individually poorer gene rank alignment is achieved due to the enhanced effects of
noise. The genetic signature of the basaloid subtype is veryrobust: the peak in the free energy suggest 5 subtypes.
However, if we choose 8 subtypes instead (right hand column)the same signature is retrieved with one process
(see text). Note: (a) multiple entries for a gene in a column (e.g. FOXC1andGATA3under Sorlie et al) come
from different probes for the same gene, (b) absense of a genein a column can stem from the fact it is absent
from the dataset e.g.FOXC1is listed under Sorlieet al and van t’ veeret al but was absent from Westet al and
the composite dataset, (c) For the composite dataset (5-split) the genes ranked below position 20 are, in order:
DACH1, ESR1, ANP32E, MCCC2, KRT18, ABAT, GALNT6, INPP4B, SCUBE2, NAT1, (d) ESTis an expressed
sequence tag.
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protein 1,XBP1, is believed to be regulated byFOXA1[13] as is the trefoil factorTFF1 [6], a close relative of
TFF3. The biological importance ofFOXA1is also apparent from some recent results reported in the literature: a
substantial number of estrogen response elements (EREs) have associated binding sites forFOXA1[13, 21]. In our
earlier study [12] we found tumour samples fromBRCA1mutation carriers were exclusively associated with the
basaloid subtype and FOXA1 and BRCA1 proteins coregulate cell cycle inhibition [35]. FOXA1is a member of the
forkhead box family of transcription factors, as is a secondhighly ranked gene: the developmental geneFOXC1.
The latter regulatesDACH1 and the transforming growth factor TGF� [29, 38]. FOXA1underexpresses in the
basaloid subtype whereasFOXC1overexpresses. Indeed, if we evaluate the Pearson correlation coefficient for all
possible gene pairings in the Sorlieet aldataset, the pairingFOXA1andFOXC1has the highest anticorrelation (for
this reason the ratio ofFOXC1overFOXA1appears a useful marker of the basaloid subtype, see Figure 6(b)). In a
parallel paper [11] we report results on knockdown of expression byFOXC1using small inferring RNAs (siRNA)
for a breast cancer cell line (BT549) which has a similar highFOXC1:FOXA1ratio as discussed here. We report
loss of viability of more than50% of cancer cells within 72 hours as a result. Thus the proposedmethod appears
to have correctly highlighted a significant target.

3.3 Example 2: identifying subtypes of prostate cancer.

For our second example we consider the prostate cancer dataset of Glinsky et al [19]. These authors used a
selected set of recurrence predictor genes and a training set of 21 tumours to evaluate prediction of recurrence
versus non-recurrence on a further set of 79 tumours. In our case we will use all these samples, starting from the
original dataset (12,625 probes), to determine any subtypes of prostate cancer. Specifically we are interested in
determining if there are subtypes with differing frequencyof recurrence or non-recurrence. This is a very important
problem since currently there are no reliable methods for separating indolent from aggressive prostate cancers with
the recognition that most prostate cancer patients have indolent subtypes which are overtreated. Using ML LPD
we give the likelihood curve in Figure 7(a) and the corresponding clinical outcomes in Figure 7(b). The likelihood
curve suggests 3 processes with quite different clinical outcomes: two subtypes appear to be heading toward a
plateau with no disease recurrence, while the third subtypeappears very aggressive with inevitable recurrence.
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Figure 7: For ML LPD the log-likelihood curve (left) suggests 3 subtypes. The clinical outcomes are distinct with
one processes having disease recurrence for all patients within 60 months, whereas the other two processes appear
to head toward a plateau with no recurrence. There are 21, 44 and 12 patients in processes 1, 2 and 3 respectively.

In Figure 8(a) we show the free energy curve for the dataset ofGlinskyet al for VB LPD, with the corresponding
clinical outcomes depicted in Figure 8(b).
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Figure 8: Free energy curve and disease recurrence plot for the prostate cancer dataset of Glinskyet al [19]. As for
Figure 7(b) a drop in Figure 8(b) indicates disease recurrence and a star indicates the patient remains in the survey
without recurrence. There are 47 patients in process 1 and 31in process 2.

Interestingly, the peak is now at 2 with a clear split into twogroupings, one with a very high probability of
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recurrence and a second grouping with a milder form of the disease. Earlier we remarked that the ML and MAP
LPD model could over-estimate the number of processes and this may be an instance where this occurs.

3.4 Example 3: identifying subtypes of leukemia.

As a last example, we applied the variational Bayes method toan oligonucleotide microarray dataset from 360
patients with acute lymphoblastic leukemia (ALL) [37]. ALLis known to have a number of subtypes with variable
responses to chemotherapy. In many cases fusion genes are implicated in the genesis of the disease. For the
Yeohet al [37] dataset samples were drawn from leukemias with rearrangements involvingBCR-ABL, E2A-PBX1,
TEL-AML1, rearrangements of MLL gene, hyperdiploid karyotope (morethan 50 chromosomes) and T lineage
leukemias (T-ALL). The free energy is plotted in Figure 9(a) with a peak suggesting 5 subtypes.
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Figure 9: The free energy curve (left) for the Leukemia dataset of Yeohet al gives a peak at 5 processes. For
the decomposition diagram (right) samples 1-15 areBCR-ABL, 16-42 areE2A-PBX1, 43-106Hyperdiploid> 50,
107-126MLL, 206-248T-ALL, 249-327TEL-AML1, 328-335Group23and 127-205 are labelled asOthers. E2A-
PBX1, T-ALL, TEL-AML1and the hyperdiploid samples are very distinct groupings. The lack of distinction with
the other groups probably explains the free energy peak at 5 rather than a higher level of partitioning.

In section 2.2 we mentioned that~�d;k quantifies the probability that sampled is generated by processk, and
in Figure 9(b) we give a decompostion diagram using~�d;k (the peaks give the probability that sampled is in
processk). We see that the subtypes forE2A-PBX1, T-ALL, TEL-AML1and the hyperdiploid samples are very
distinct groupings.BCR-ABLandMLL are less distinct groupings which may explain why the peak isat 5 and
not higher (with the decomposition diagram we allowed for 8 processes, with more processes the remainder are
left empty). For the middle group (which the original authors marked asOthers) we find some peaks suggesting
a connection with known groupings with some evidence for twonew groupings. A dendrogram was presented
by Yeohet al (their Figure 1), however, it only uses the top 40 genes most highly correlated with the 7 proposed
class distinctions, with these genes being selected by a chi-squared statistic. This effectively creates a supervised
learning problem. With no such use of class label information the corresponding dendrogram has a more difficult

17



interpretation (see Supplementary Information [1]).

4 Discussion

In this paper we have used the established variational Bayesapproach to develop a method applicable to Latent
Process Decomposition [27]. The method has advantages overhierarchical cluster analysis, such as a common
explanatory space for samples and genes and the ability to handle missing values, for example. Compared to
our earlier ML and MAP LPD methods [27], the method proposed here has advantages such as improved model
selection and the fact that we obtain a full distribution over model parameters rather than point estimates of the
density estimation (see captions to Figures 3 and 5, for example). More generally, as a Bayesian method, any
assumptions or prior beliefs about the data are explicit. This is an important advantage over other data analysis
approaches where implicit assumptions could be wholly inappropriate, hence degrading performance. As an ex-
ample, hierarchical cluster analysis uses an implicit mutual exclusion of classes assumption (a sample is presumed
identified with a unique grouping in a dendrogram), whereas no such assumption is made with LPD (a sample can
be represented as a combinatorial mixture over processes).The use of inappropriate implicit assumptions could
explain reported discrepancies between different data analysis methods and different studies whereas we can find
reasonable agreement across datasets (e.g. for the basaloid example in Section 3.2).
Though these advantages justify the proposed approach, probabilistic methods have possible future advantages
which may further strengthen this approach. Thus, microarray technology is intrinsically noisy, disrupting rank
scoring of genes between different studies. Apart from increasing the size of datasets, another way to reduce the
effects of noise is to incorporate more information from disparate types of data. Approaches such as hierarchi-
cal cluster analysis are ill-suited for incorporating other types of information, such as sequence data or pathway
information. On the other hand, different types of data can usually be encoded into probabilistic constructs and
consequently these types of techniques open an interestingavenue to information integration in the future. In
general, medical data can be expected to be noisy and inexactthus justifying probabilistic approaches. For hier-
archical cluster analysis, for example, samples are identified with groupings which reflect underlying subtypes,
but no probability of membership of a subtype is indicated. On the other hand, probabilistic methods can give
a confidence measure for class membership (e.g. in Figure 9(b) the peaks indicate degree of confidence in the
class assignment). For these and other reasons, they will have important advantages in the future interpretation of
medical data.

Appendix A: The Variational Bayes Method

In this Appendix we briefly summarise the general methodology for Variational Bayesian (VB) inference. VB
seeks to find a lower bound on the evidencep(Data), in a tractable form to be maximised. Approximations are
made to the posterior distributions of all hidden and model variables so that they can be marginalised (integrated
out). At each iteration of VB it is the hyperparameters, rather than parameters, that are updated. Thus, compared
to the ML or MAP LPD we presented previously [27], the emphasis is shifted a step upwards. The probabilistic
graphical model is presented in Figure 1. From this Figure there are two hidden nodesZ and� and a set of
parameters�. In the applications we consider microarray expression data and henceE is used to denote the data.
The evidence of some datap(E) can be written as a ratio of the joint distribution (with respect to some variables)p(E;�;�;Z) and the posterior distribution of these variables given thedatap(�;�;ZjE).p(E) = p(E;�;�;Z)p(�;�;ZjE) (A-1)
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The log of this is written as: log p(E) = log p(E;�;�;Z)� log p(�;�;ZjE) (A-2)

Let us introduce an approximation to the posterior distributions of all model and hidden variablesq(�;�;ZjE).
If we take expectations of expression (A-2) with respect to this approximate posteriorq(�;�;ZjE), the left hand
side remains unchanged as this is independent of�, � andZ.log p(E) = Z q(�;�;ZjE) log p(E;�;�;Z)d�d�dZ � Z q(�;�;ZjE) log p(�;�;ZjE)d�d�dZ
Multiplying p(E;�;�;Z) top and bottom byq(�;�;ZjE) and separating the terms we can now writelog p(E) = F (�) +KL(q(�;�;ZjE)jjp(�;�;ZjE))
where F (�) = Z q(�;�;ZjE) log p(E;�;�;Z)q(�;�;ZjE) d�d�dZ
As the KL divergence is strictly greater than zero, we can nowsay thatlog p(E) � F (�) (A-3)

Equality holds whenKL = 0, i.e. the approximate posteriorq and true posteriorp coincide. This is the case when
our approximation becomes exact. The idea behind a variational Bayes approach is to maximise the evidence by
maximisingF (�). We shall now make an important assumption about the posterior. We assume that it factorises
into separate terms, such thatq(�;�;ZjE) = q(�)q(�)q(Z) where the dependence onE is implied. By writingp(E;�;�;Z) = p(E;�;Zj�)p(�) we can now expandF (�) asF (�) = Z q(�)q(�)q(Z) log p(E;�;Zj�)p(�)q(�)q(�)q(Z) d�d�dZ
Thus by expanding and integrating outq(�) andq(Z)F (�) = Z q(�)q(�)q(Z) log p(E;�;Zj�)q(�)q(Z) d�d�dZ �KL(q(�)jjp(�)) (A-4)

In equation (A-4) the first term is an averaged likelihood andthe second term�KL(q(�)jjp(�)) is a measure of
thedistancebetween approximate posterior and prior over parameters, since this term increases with the number
of parameters it can be seen as a penalising term for over complex models. Indeed it has been shown that in certain
situations this reduces to the Bayesian information criteria (BIC) and the Minimum Description Length (MDL)
(see [3] for further details).
To maximiseF (�) in equation (A-4) we take zeroed gradients (functional derivatives in this case) with respect to
the approximate posteriorsq(�), q(�) andq(Z).ÆF (�)Æq(�) = Z q(�)q(Z) log p(E;�;Zj�)q(�)q(Z) d�dZ � Z q(�)q(�)q(Z)q(�) d�dZ = 0
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Z q(�)q(Z) log p(E;�;Zj�)d�dZ � 1� log q(�) Z q(�)q(Z)d�dZ � Z q(�)q(Z) log q(Z)d�dZ = 0
As the densitiesq(: : : ) integrate to one we can writeq(�) / exp �Z q(�)q(Z) log p(E;�;Zj�)d�dZ� (A-5)

Analogously q(Z) / exp �Z q(�)q(�) log p(E;�;Zj�)d�d�� (A-6)

For any of the model parameters,ÆF (�)Æq(�) = Z q(�)q(Z) log p(E;�;Zj�)q(�)q(Z) d�dZ � log p(�)q(�) � 1 = 0
so q(�) / exp�Z q(�)q(Z) log p(E;�;Zj�)d�dZ� p(�) (A-7)

Equations (A-5) to (A-7) give the approximate posterior distributions for the latent variables and model parameters.
They can be interpreted as the posterior taking the form of the exponential of the averaged log likelihood over all
remaining variables. Thus all uncertainty is integrated away. The posterior forms ofq(�), q(�) andq(Z) are
determined directly from the optimisation via equations (A-5) to (A-7). In the case of model parameters, the prior
distributions in (A-7) are chosen as conjugate to the derived exponentials so that the parametric form forq(�)
remains the same. Having derived the general form of the posterior distributions we apply it to the LPD model
represented in Figure 1 and this gives the approximate posteriors given in Section 2.1.

Appendix B: Evaluation of the Lower Bound

It is useful to be able to evaluate the free energy termF (�) given in equation (A-4). Firstly this acts as a test of
correct implementation as is should increase with each iteration of the algorithm until convergence. Secondly it
can be used as a comparative measure to determine the optimalnumber of components in a mixture distribution.F (�) = R q(�)q(�)q(Z) log p(E;�;Zj�)q(�)q(Z) d�d�dZ �KL(q(�)jjp(�))= hlog p(E;�;Zj�)i�;Z;�;�;� � hlog(q(�))i� � hlog(q(Z))iZ� R q(�) log h q(�)p(�)i d� (A-8)

Evaluating the elements of the bound given in equation (A-8):hlog p(E;�;Z; j�)i�;Z;�;�;� =Pd;k(h�ki � 1)hlog �dki+hlog �(Pk �k)i�Pk log �(�k)+Pd;g;k rdg;k [hlog �dki�0:5agkbgk(E2dg � 2Edgmgk +m2gk + 1=vgk)+0:5(	(agk) + log bgk)℄ (A-9)
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hlog(q(�))i� =Xdk (~�dk � 1)hlog �dkihlog(q(Z))iZ =Xdgk rdg;k log rdg;k
TheKL(q(�)jjp(�)) term decomposes into three terms for the parameter set� = f�;�;�g, these can be
analytically evaluated making use of the same identities that were needed in evaluating the expectations earlier.
Here, we shall quote the standard results for KL divergencesas given in [26].
For the parameter�, p(�) �QgkN (�gk ;m0; v0) andq(�) �QgkN ( ~mgk ; ~vgk).KL(q(�)jjp(�)) =Pgk 0:5 log vgkv0 + 0:5v0 hm2gk +m20 + 1=vgk � 2mgkm0i� 0:5=Pgk h0:5 log vgkv0 + 0:5v0 [mgk �m0℄2 + 0:5 h v0vgk � 1ii (A-10)

where we have grouped the corresponding terms to showKL = 0 when the parameters from the two distributions
are equal. For the parameter�, p(�) �Qgk �(�gk ; a0; b0) andq(�) �Qgk �(~agk;~bgk)KL(q(�)jjp(�)) =Pgk [ (~agk � 1)	(~agk)� log~bgk � ~agk � log �(~agk)+ log�(a0) + a0 log b0 � (a0 � 1)(	(~agk) + log~bgk) + ~agk~bgkb0 ℄ (A-11)

Again we shall group the terms to show thatKL = 0 when the parameter from the two distributions are equal.KL(q(�)jjp(�)) =Pgk [ (~agk � a0)	(~agk) + a0(log b0 � log~bgk)+ log�(a0)� log �(~agk) + ~agk h~bgkb0 � 1i ℄ (A-12)
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