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Abstract

In recent years, the development of high throughput DNA microarray technology has
enabled biologists to study cellular activities through measurement of gene expression
levels. Such measurements are proving invaluable in understanding the development
of diseases such as cancer and in piecing together the systems of regulation that ex-
ist between genes. However, the analysis of such data is non-trivial as the number
of genes measured in one sample is typically far greater than the number of samples.
When presented with such data, many standard data analysis and machine learning
techniques are either inappropriate or become computationally infeasible. Therefore,
the development of novel algorithms and techniques that can efficiently extract useful
information from such datasets is crucial in realising the full potential of microarray
technology. The aim of this thesis is to investigate the ability of existing techniques and
invent new methods to analyse these datasets. Firstly, we will introduce a novel gener-
ative, probabilistic model that is able to decompose microarray data into a set of latent
processes. This model overcomes some of the unrealistic assumptions implicitly made
by standard unsupervised learning techniques such as clustering. Investigations using
several real-life microarray datasets show that the algorithm is able to find meaningful
structure in the data and is able to uncover processes of real biological significance.
Secondly, we will develop a methodology that enables experimentalists to predict how
many microarrays are required to obtain a certain generalisation error when using clas-
sifiers to classify between various cellular states. This provides a rigorous procedure for
determining whether it is worth taking more measurements to improve performance.
It also provides an insight into the difficulty of the classification problem being consid-
ered and can be used to compare the efficiencies of different experimental measurement
techniques. Finally, we investigate the problem of inferring regulatory networks from
microarray data and assess the potential of an existing machine learning technique
in this area. This final section corresponds to work in progress and points to many
interesting directions for future research.
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CHAPTER 1

INTRODUCTION

1.1 <¢DNA MICROARRAYS

Proteins are essential components of all living organisms. As well as making up the
major structural component of cells they also act as catalysts, initiating a wide range
of reactions and processes. The ability to measure the presence and abundance of
proteins in a particular cell under certain conditions is a central goal of molecular
biology. Such knowledge would provide a very detailed description of the behaviour
of organisms at a cellular level and would in turn lead to a better understanding of
various diseases and possible treatments. Microarrays allow us to take such measure-

ments. To understand how, we must first briefly review the process of protein synthesis.

The so called central dogma of molecular biology was first suggesed by Frances Crick in
the 1950s. Basically it states the following: DNA makes RNA makes protein. It is now
known that although the complete picture is rather more complicated, this original

assumption is generally correct and is certainly sufficient for this introduction.

This synthesis process involves three distinct steps - translation, splicing and transcrip-

tion. We will now briefly describe these three processes in turn

e Transcription During this stage, the double stranded DNA is unwound and
the information in one of the strands is copied into complementary preliminary

messenger RNA.
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e Splicing The splicing stage involves extracting the coding regions from the gene
(known as ezons) from the non-coding regions (introns). The fact that the cod-
ing regions of the gene are non-continuous creates a demanding problem in the

discovery of the different genes in the genome.

e Translation The final stage involves translating the now continuous stretch of
genomic material into a string of amino acids to produce the protein. Each set
of three consecutive bases (a codon) codes one particular amino acid. It is worth
noting that as there are only 20 amino acids and 43 unique codons, this coding

process is rather redundant.

The quantity of preliminary messenger RNA that is being transcribed by a particular

gene is broadly referred to as the expression level of that gene.

There are many factors that can regulate the abundance of a particular protein in a
given cell. For example, in one case the respective gene may not be expressed whilst
in another case it may be intensively expressed. Also, the speed of production varies
for different proteins, as does the half-life of the mRNA and the protein. This suggests
that the relationship between the quantity of mRNA and the abundance of that par-
ticular protein is non-trivial. However it is widely accepted that measuring the level of
mRNA gives us a reasonable insight into the protein abundances. This measurement

can be performed using microarrays, the analysis of which is the subject of this thesis.

There are two main forms of microarray in general use; Spotted microarrays and
Oligonucleotide microarrays, both of which rely on the same binding property of DNA.
DNA and RNA are examples of nucleic acids, one characteristic of which is their ten-
dency to form double stranded molecules through complementary base pairing. The
best known example of this is the double helix structure of human DNA molecules first
suggested by Watson and Crick in the early 1950s [78]. This tendency of nucleic acids
to form double stranded molecules is known as hybridisation and plays an important
role in the measurement of mRNA abundance. Let us consider one specific gene and
its mRNA product. Given a sample of this mRNA, it is possible to reverse transcribe

it to single stranded complimentary DNA (cDNA) which would hybridise to a single

2



1.1. CDNA MICROARRAYS

strand of the gene’s original DNA. It is this hybridisation that underlies the operation

of microarrays.

A spotted microarray consists of a small slide onto which the DNA sequences of the
genes to be measured are printed in pre-defined location (spots). Each spot contains
many copies of the sequence of one gene. mRNA is then extracted from the cell of
interest and a separate control cell. Reverse transcription is used to transform the
mRNA molecules into cDNA molecules. The two samples are then labelled with flu-
orescent dyes (often visualised as red and green although not actually visible to the
naked eye) and are then washed over the slide and left to hybridise for a set period of
time. Once this time has elapsed, the slides are rinsed and are ready to be analysed.
The dyes are excited individually by a laser and for each spot, a fluorescence reading
can be made for both colours. The ratio of these readings provides us with a relative
level of expression for our sample with respect to the control. For example, if for a
particular gene there is much more mRNA in our sample relative to the control, the
dye corresponding to our sample will fluoresce much more than the dye for the control
and we will have a high ratio. These ratios are normally logged (base 2) to preserve

the symmetry between over and under expression.

Oligonucleotide arrays use a slightly more complicated procedure, but do not need
a separate control sample and hence provide absolute rather than relative expression
values. For each gene that is being measured, 20 small sections of the gene’s DNA are
printed at various locations around the array (these are referred to as perfect match
(PM) probes). Next to each of these, the same sequence is printed but with the middle
base switched (mismatch (MM) probes). As with the spotted arrays, our sample is
labelled with a fluorescent dye and washed over the array. Various algorithms exist to

combine these 40 probe values into one expression value (for example [1]).

The problem of transforming an image file showing all of the dots and their fluorescence
values, to a dataset for further analysis is in itself an interesting area for research.

Recently, various machine learning techniques have been used in this area. For example,

3
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Lawrence et L [41] use a Bayesian approach to improve the procedure of extracting
expression values from spots in spotted arrays. Milo et al [49] suggest a probabilistic
approach to extracting expression values from Oligonucleotide arrays. Although it
would be very interesting in the future to augment such approaches with downstream
analysis, this thesis will focus just on the downstream analysis and take the data as

given.

1.2 AIMS OF MICROARRAY ANALYSIS

At this point it is worthwhile being a bit more specific about the aims of microarray
analysis. We will introduce several such aims below - this is by no means an exhaustive

list.

1.2.1 Identification of differentially expressed genes

One of the original and main uses for microarrays is in discovering differentially ex-
pressed genes. An obvious application is the identification of bio-markers corresponding
to various disease states. For example, we may have gene expression measurements for
some healthy prostate cells and similar measurements from tumour cells. Genes that
have consistent differential expression across these two groups may be ultimately useful
for diagnosis or help find possible drug targets. In a more short term outlook, they will
likely be interesting targets for future biological research and their identification may

help to unravel the complex biological processes responsible for diseases such as cancer.

It is also interesting to find genes whose expression varies as the result of cellular
processes (e.g. cell division) or as a result of exposure to some external stimulus. For
example, in the seminal paper of Spellman et al [71], some 800 yeast genes that appear
to be involved in the cell cycle are identified through microarray analysis. Gasch et al
[22] investigated yeast genes whose expression varied when the sample was exposed to

various sudden changes in condition such as heat shock.

4
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1.2.2 Cellular Classification

One area of microarray analysis that has certainly drawn a lot of attention from the
machine learning community is cellular classification. Here we are interested in whether
it is possible to use the gene expression measurements to classify samples into groups
such as healthy/tumour or relapse/non-relapse. Apart from the obvious diagnostic
tools that could be developed from such classifiers (impractical presently due to the
high cost of data generation) they can also be used to identify differentially expressed
genes. For example, Li et al [44] used a Bayesian classifier that enforced sparsity over
features (i.e. genes) and found subsets of genes that gave very good classification

performance and hence were interesting candidates for future investigation.

1.2.3 Disease subtype identification

Unsupervised techniques such as clustering have been used to identify tentative sub-
types in groups of samples that were previously thought of as being homogeneous. For
example, Alizadeh et al [4] identified previously unknown sub-types of lymphoma by
using hierarchical clustering on gene expression data. Bhattacharjee et al [6] performed
a similar analysis of lung carcinomas. Such sub-types, that may be hard to distinguish
in a traditional manner, can correspond to very different clinical outcomes. For exam-
ple, these may be different reactions to various forms of treatments and hugely different

survival rates (for example, see [4], figure 5 and [6], figure 4).

1.2.4 Inference of gene regulatory interactions

A possible use of gene expression data that has recently started to receive more interest
is the reverse engineering of so called genetic regulatory networks. These networks
describe the regulatory interactions between various genes. In simplistic terms, the
protein produced by one gene can bind to the promoter region of another gene, causing
a change in its transcription. Learning the structure of such networks is one of the
great challenges of functional genomics. Knowledge of the relationships between genes
is crucial in finding possible targets for new drugs. We will discuss the task of inferring

regulatory networks in more detail later in chapter 6.
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1.3 STANDARD MACHINE LEARNING APPROACHES

In this section, we will look at some of the machine learning techniques that have been
used previously in the analysis of microarray data. These approaches can be placed into
two categories - supervised techniques and unsupervised techniques. We will deal with
these categories separately below. Some of this work has previously been published in
[65].

1.3.1 Unsupervised Techniques

Clustering algorithms are possibly the most widely used machine learning algorithms
for the analysis of microarray data. Such algorithms find a partitioning of the data
samples that is in some way optimal. A seminal paper in this area was published by
Eisen et al [16] where the use of hierarchical clustering for discovering structure in mi-
croarray data was investigated. The software made available with this paper and the
speed and intuitive nature of this technique have made it very popular. The technique
proceeds in a recursive manner, at each stage combining the two data points (genes
or cell samples depending on whether we are interested in finding similarly expressed
genes or samples) that are the closest with respect to some distance metric (for example
Euclidean distance or Pearson correlation). The combined points are then considered
to be an individual point and the process is repeated. There are several methods for
combining points, see [16] for details. We will give more information on hierchichal

clustering in chapter 4.

Other unsupervised techniques have been used in this area with limited success. We

will review some of them in chapter 4.

1.3.2 Supervised Techniques

The main supervised learning technique that has been used is classification. Typically
microarray datasets have a large number of features and a small number of examples.
Thus, for example, the prostate cancer dataset of Singh et al [69] consists of 50 normal

and 52 tumour samples with 12600 features each. Given that the data can therefore
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be viewed as a sparse set of points in a high-dimensional space (corresponding to a
large number of features), it is not surprising that binary class datasets of this type are
usually linearly separable: a hyperplane can readily be found which correctly separates
both classes. This suggests a preference for simpler algorithms. For example, the
perceptron algorithm and its variants can efficiently handle linearly separable problems
and can readily be used with these datasets. However, other factors are important. For
example, in addition to assigning a class label to a new test point, it would be worth
stating a confidence measure too. For some classifiers a confidence or probability
measure is given and this will be an advantage in practical applications. A large
number of classification algorithms could potentially be used, ranging from discriminant
methods, to Gaussian Processes and classification trees. In this section we will only
describe two popular choices for illustration: k-nearest neighbours and perceptrons.
Support vector machines (SVM’s) are also a popular choice for classifying microarray
data and will be used extensively in this thesis. Therefore, we overlook them here and

give a detailed introduction in the next chapter.

K-nearest neighbour classifiers

One of the simplest classifiers available is k-Nearest Neighbours (KNN). This classifier
requires no training and the class of a new point is simply predicted to be the most
common class among the k£ nearest neighbours. In its simplest form and for binary

classification with y; = 1, the decision function is:

Y = sign Z Yi (1.1)

tlzieK
where K is the set of neighbours closest to the new point, x. This method can easily

be extended to multi-class classification with the class of a new point determined by

the consensus of its neighbours.

The set of nearest neighbours is determined by a distance metric that is usually the
Euclidean distance in input space. Generally it is best to scale the influence of each

neighbour depending on distance from the new point. This is easily accomplished by

7
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multiplying the class label of each neighbour by a weighting term, e.g. the reciprocal
of the distance between the points. k-nearest neighbours was introduced in 1951 and
since then there have been many extensions and variations proposed. One variation
is the probabilistic nearest neighbour model (see e.g. [29]): not only does this assign
a probability to the predicted label but it also automatically calculates the value of &

resulting in a fully autonomous classifier.

Perceptron classifiers

The perceptron is a simple and effective classifier which can readily handle linearly
separable datasets (Fig. 1.1). Indeed, using the idea of kernel substitution that will
be introduced in chapter 2, it can also handle non-linearly separable datasets. The
perceptron convergence theorem states that the perceptron algorithm will converge on
a solution after a finite number of passes through the dataset, provided a solution
exists. If x; are the feature vectors and z are binary-valued outputs then the decision

function is:

z = sign(w - x; + b). (1.2)

and the learning task is to find a weight vector w and bias b such that training fea-
ture vectors x; map correctly to the corresponding labels y;. This is achieved using
an iterative training process with multiple passes through the data using the weight

changes:

Aw = y;x; H [y; (W - x; + )] (1.3)

where H () is the Heaviside Step function, we use y; = +1 and the bias b can be found
by adding an extra component (say 0) to the feature vectors fixed at zo = +1 and with
the bias given as b = wgy. The weight vector is therefore only corrected by an additive
factor y;x; if the decision function gives the wrong label z on presentation of the ¢th

feature vector.

From (1.2) we see that the separatrix in the decision function is the linear hyperplane

8
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Fig. 1.1: In input space a linear classifier finds a hyperplane separating the two classes

w -x + b = 0 depicted in Figure 1.1. In an alternative view (the geometric dual)
hyperplanes become points and points become hyperplanes (Figure 1.2). This alter-
native representation gives insights about the solution found for both the perceptron
and SVMs. In this dual representation we have a version space inside which each point
represents a possible hyperplane correctly separating the datapoints in the original in-
put space (Figure 1.1). The boundaries of version space derive from the data-points.
The iterations of the perceptron algorithm can be viewed as a trajectory which termi-
nates inside version space starting from outside if the initial weights do not classify the
training data correctly. Unfortunately, this indicates that the solution can be biased
since it can depend on the starting point and the order of presentation of the patterns
in (1.3). In addition, there is no simple way of implementing a confidence measure
for class prediction with the perceptron. In the next chapter, we will describe SVM
classifiers which have a unique solution independent of the order of presentation - in

addition a confidence can be assigned to the class label.
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Fig. 1.2: For the dual representation of Figure 1.1 datapoints become hyperplanes and
hyperplanes correctly separating the data become points inside the version space (pictured,
version space can be open in general). Thus the iterations of the perceptron algorithm
corresponds to a trajectory into version space (shown) where the algorithm terminates with

zero training error.
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1.4 THESIS OUTLINE

In chapter 2 we introduce the Support Vector Machine, a machine learning algorithm
that is used extensively in chapter 5. We also present results from a study of relapse

versus non-relapse classification for Wilms tumours.

Chapter 3 gives some background in the area of probabilistic models that is required

for chapter 4.

Chapters 4 and 5 contain the main contributions of this thesis. Chapter 4 introduces
a novel algorithm for the analysis of microarray data - Latent Process Decomposition.
This work was performed in collaboration with Mark Girolami and Rainer Breitling
at the University of Glasgow and has been accepted for publication [64] as well as
appearing as a poster presentation at RECOMB 2004 [63].

Chapter 5 introduces a methodology for inferring relationships between classification
performance and sample size when using Support Vector Machines to classify tissue
samples. This work was performed in collaboration with Sayan Mukherjee et al (MIT)

and has previously been published in [51].

Chapter 6 describes work done in the Bioinformatics Research Centre at the University
of Glasgow on the inference of genetic regulatory networks. It investigates the potential
of two machine learning algorithms in this application. Although results are presented,
this essentially represents work in progress and opens up many interesting questions

and directions for future research.

Finally, we present a conclusion and some future research directions.
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CHAPTER 2

SUPPORT VECTOR CLASSIFICATION

2.1 INTRODUCTION

Kernel methods is a relatively new area in machine learning with its origin firmly
rooted in statistical learning theory. Support Vector Machines are perhaps the most
well known kernel method and are the approach we will mainly be interested in here.
Support Vector Machines (SVM’s) have been applied relatively successfully to a variety
of (mainly classification) learning tasks (for many examples, see [2]). In bioinformatics,
they have proved very useful in the classification of gene expression datasets due to the
fact that their complexity and generalisation ability tends to be limited by the number
of training samples and not their dimensionality (the largest gene expression datasets
currently available have the order of hundreds of samples but tens of thousands of

features).

Consider the following learning process. We have an empirical data set

(-Thyl):"':(fmaym) € X X {:I:l} (2'1)

where X is some space from which the x; are assumed to have been sampled and y; is a
label denoting which class (+1 or -1) z; belongs to. For example, each of our examples
x; may correspond to the expression levels for a set of genes in some particular sample.
The task of classification is to create some rule or hypothesis from this training data

so that, given un-labelled patterns we can make some estimate or inference as to their
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label. In other words, if an un-labelled pattern x is in some way similar to one of our
training patterns x; then it is likely that the unknown label y of x will be similar to
the known label y; of z;. In order to do this, we need some notion of similarity in X" -
we require some function that, given two patterns in X, z; and x; returns a real value
that is a measure of their similarity. We shall call this function a kernel and denote it
by

k(wi, 25). (2.2)

A very widely used kernel function is simply the dot or scalar product - the sum of
the pairwise products of the elements in z; and z;. In the case where the two vectors
have been normalised to have length 1, this function computes the cosine of the angle
between them. One of the main benefits of kernel methods is that we can perform
our classification task in any space, so long as we can calculate the dot product of our
patterns in that space. We do not actually require an explicit functional mapping from

our input space into this new feature space.

However, let us introduce SVM’s in their simplest form - that is, the similarity measure
is the dot product in the original (input) space. Consider the two dimensional data
shown in figure 2.1. We wish to find a linear separating hyperplane (in this case, simply

a line) that separates the one class from the other of the form
w-x+b=0 weR’ bER (2.3)
where ’.” denotes the dot product. This will results in a decision function of the form
f(x) = sign(w -x +b) (2.4)

If the data is linearly separable (i.e., if it is possible to separate the classes perfectly

with a straight line), the following two constraints are implied

w-x;+b>0 V{i:y;, =+1} (2.5)
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L+

Support Vector /

— F

Separating
Hyperplane

Fig. 2.1: A toy two dimensional classification problem separated by a linear hyperplane.

and
w-x;+b0<0 V{i:y; =—-1}. (2.6)

Due to the use of the sign function, the decision function will be invariant under any
positive re-scaling of its argument. Therefore, we can re-scale w and b such that the

closest points to the hyperplane on either side satisfy
wex; +0) =1 (2.7)
and hence can re-write our constraints as
yi(w-x;+0) >1 Vi. (2.8)

As can be seen in 2.1, if the classes are linearly separable there must exist an infinite
number of different hyperplanes that perfectly classify the training data - that is, they

will all minimise the empirical risk, defined as

Renpl) = -3~ 51 () — il (29)

However, it is unlikely that they will all perform equally well when presented un-seen
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data - i.e. they may not all minimise the true risk

RIf) = [ 51760 ~ ylo(x,)dxdy. (210)

It is in the method of choosing one hyperplane from this infinite set where many learn-
ing algorithms differ. SVM'’s choose the one single hyperplane that maximises the
distance between the hyperplane and the closest points on either side - the margin.
This solution is well grounded in statistical learning theory [76] and, as we shall see,

leads to a convenient learning formulation.

Considering one of the closest points from each class (say x; and x3) in 2.1, we can
algebraically calculate the margin () by projecting the vector (x; —x3) onto the vector
normal to the hyperplane: w/||w||

w 2

7= 00 0) TG = Tl 1)

Hence, maximising the margin is equivalent to

minimise 3 |/w|[?

(2.12)
subject to y;(w-x; +b) > 1, Vi

This optimisation problem can be formulated as a Lagrangian where we introduce a

Lagrangian multiplier o; (such that o; > 0) for each of the m constraints
1 m
L(w,b, ) = §||w\|2—iz:1:ai(yi(w-xi+b) —1) (2.13)

which must be minimised with respect to w and b and maximised with respect to c.
At the solution, the derivatives of the Lagrangian with respect to w and b must vanish.

Hence,
SL(w,b =
i=1

ow
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and

OL(w,b, ) Zm
6b O =1 azyz ( 5)

Substituting these two expressions into our Lagrangian leaves us with a dual optimi-

sation problem over the Lagrange multipliers «;.

m 1 m
L(a) = Zai 35 Z Q0 Y YK - X (2.16)
i=1

=1

which must be maximised subject to

o; >0, Vi, and Zaiyi =0. (2.17)

i=1
There are several important points arising from this optimisation formulation. Firstly,
it is simply a bounded quadratic programming task and could be expressed as the

following .
La)=c'a+ iaTHa (2.18)

where ¢ = 1 (i.e. a vector of ones) and (H);; = —y;y,(x;-x;). Therefore, it has a unique
solution which can be easily computed using any one of a number of widely available
packages. Secondly, if a solution exists, we know that the following constraints must
be met

yi(w-x;+0) >1, Vi (2.19)

and for the closest patterns to the separating hyperplane, this inequality must be an
equality by definition. Therefore, from our primal formulation (2.13) which we must
maximise with respect to «;, patterns that are not the closest to the hyperplane must

have a; = 0. Now, recall that our decision function is based on the sign of

f(x)=w-x+b (2.20)
and at our solution,
W= Z QG YiX; (2.21)
i=1

19



CHAPTER 2. SUPPORT VECTOR CLASSIFICATION

and b can be calculated from

1 m m
b=—-1| max i (X;-X;) | + min o (X 0 X . 2.22
2 [{iyi——l} (; i ])> {ilyi=+1} ( ! el ])>] (2.22)

Substituting 2.21 into 2.20 leaves us with the following decision function for an un-

labelled pattern x

f(x) = sign [Z oy (X - x) + b (2.23)

so patterns that are not the closest patterns on either side of the hyperplane will
have no bearing whatsoever on the classification of new points. Intuitively this makes
sense - our choice of separating hyperplane was based on maximising the margin which
would obviously only be dependent on the closest points on each side. These closest
points with a; > 0 are known as the Support Vectors. Finally, notice that in both
our minimisation and decision function, the patterns only appear inside dot products.
Therefore, it does not matter in which space we perform our classification as long as we
are able to compute the dot product in that space. For this reason, the dot products
are often replaced with the more general kernel function k(x;,x;). It is beyond the
scope of this document to go into appropriate kernel methods in much detail - indeed,
most applications of SVM’s to gene expression data have used the most basic linear
kernel (the dot product in the original, input space) as the data tends to be separable
and therefore with no other prior knowledge of the problem, the simplest solution is
likely to be the best. There are two important feature that a kernel function must

satisfy, that is, it should be positive definite

Definiton 1 A real m x m matriz K is positive definite if
25 €ici K 2 0
forallc; e R

and symmetric - K;; = Kj;.

Two popular kernel functions are radial basis functions (RBF’s) with width o

k(xi, x;) = exp {—M} (2.24)

202
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and n'* order polynomials

k(xi,x;) = ((x; - x5) +1)" (2.25)

2.2 EXTENSIONS TO THE STANDARD MODEL

2.2.1 Soft Margins

So far, we have only considered data that are linearly separable in the feature space.
Mislabelled data or data points badly corrupted by noise could cause the algorithm to
fail. One way to overcome this is to slightly loosen our original constraints with the
addition of positive slack variables &; to allow data points to lie on the wrong side of
the hyperplane or inside the margin band. Our original constrained minimisation 2.12

now becomes

minimise  i||lw||?+C 3 &
Bl ; (2.26)
subject to yi(w-x;+b) >1-&, & >0 Vi

which, when the derivations above are repeated leads to maximising 2.16 subject to

m
0<aq; <C Vi, and Zay =0 (2.27)

i=1
where C effectively controls the trade-off between maximising the margin and min-
imising the number of training errors. One intuitive way of thinking about this is that
the higher its respective a; value the more influence a given training point has on the
final solution. The box constraint now imposed on «; limits this effect and hence the

impact of outlying points.

2.2.2 Multi-Class Classification

So far we have discussed binary classification, however, some tasks will involve multi-
class prediction. A number of methods have been proposed for performing multi-
class prediction with SVMs but few are demonstrably better than using a set of ‘one-

against-all’ classifiers (this approach can be used for perceptrons too). ‘One-against-all’
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classifiers have the drawback that several members of the set may respond to a given
input. As an alternative it is possible to use a series of binary classifiers in a tree
[56] (Fig. 2.2) to determine the outcome, and this method works satisfactorily if the

number of classes is small.

1/3

172 2/3

1 2 3

Fig. 2.2: A multi-class classification problem can be reduced to a series of binary classifica-

tion tasks (represented by the top two levels in the tree).

2.2.3 Confidence Measure

If used for predicting diagnostic categories, for example, it is useful to have a confidence
measure for the class assignment in addition to determining the class label. An SVM
with linear kernel does have an inbuilt measure of confidence that could be exploited
to provide a confidence measure for the assigned class, i.e. the distance of a new point
from the separating hyperplane (Figure 2.1). A test point a large distance from the
separating hyperplane should be assigned a higher degree of confidence than a point

which lies close to the hyperplane.

The task of mapping this distance to probabilities has been solved in various ways.
Here, we concentrate on one particular method, proposed by Platt [57]. Recall that
the output of an SVM, before thresholding to +1, is given by
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f(z)=h(z)+b (2.28)

where:
h(z) = Z yio; K (x4, 2) (2.29)
We use a parametric model to fit the posterior probability P(y = 1|f) directly. The

choice of parametric function for the posterior is the sigmoid (for more details see [57]):

1
~ 1+exp(Af + B)

Py =1[f) (2.30)
with the parameters A and B found from a training set (f;,y;). Define t; as the target

probabilities:
it
2

i.e. using y; € {—1,1} we have t; € {0,1}. We now minimise the log likelihood of the

t;

(2.31)

training data:

min |— Zt log(pi) + (1 = t;)log(1 — p;) (2.32)

where p; is simply (2.30) evaluated at f;. This is a straightforward 2-dimensional
minimisation that can be solved using any one of a number of optimisation routines.
Once the sigmoid has been found using this training set, we can use (2.30) to calculate
the probability that a given test point belongs to each class. One question remains:
how do we construct a training set to fit the sigmoid. The obvious choice would be
the examples from the training set that were used to train the classifier. However, the
training process biases the outputs for the support vectors to be £1 which is a very
unlikely value for a new test point. However, for a linear SVM, the number of support
vectors is usually reasonably low and so the bias should not be too severe. Therefore,
it is generally acceptable to use the values from the training set to fit the posterior
sigmoid. Figure 2.3 shows the training values and fitted sigmoid from a microarray
dataset for ovarian cancer [66]. Note that no points are present in a large band between

+1 and —1, due to the use of a hard margin and the data being linearly separable.
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Probability of membership of one class
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Fig. 2.3: Probability of membership of one class (y-axis) versus distance from the hyperplane.
The plot shows the training points and fitted sigmoid for an ovarian cancer data set [66]. A

hard margin was used which explains the absence of points in the central band.

2.2.4 Feature Selection

One characteristic of microarray data is that the number of features is usually very
large and typically of the order of tens of thousands, often approximating the set of
known genes in size. If a broad search is being pursued, the vast majority of these
features are likely to be irrelevant for a given classification task and ideally we would
like to remove them. Feature selection has two benefits. Firstly, large numbers of
irrelevant features effectively inject noise into the classification task and can destroy
generalisation, as we will illustrate later with an example. Secondly, from the viewpoint
of interpretation, feature selection also highlights the most relevant features or genes
in the data. Two general approaches may be used: filter methods in which features
are scored individually (e.g. using statistical methods) prior to use of the classifier,
and wrapper methods in which the algorithm uses an internal procedure to eliminate

redundant features.
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Filter Methods

The choice of filter method can amount to a prior assumption about the way in which
the significance of individual features are ranked. Roughly speaking, filter methods
can be viewed as falling into two groupings - those measures more influenced by the
consistency of the difference between classes and those more influenced by magnitude
differences. For example, the set of ratios (1.1,1.1,1.1,1.1) is consistently different from
the set (0.9,0.9,0.9,0.9) and features in both can be separated by a simple threshold
(1.0). On the other hand there is a significant difference in the means of the set of
ratios (1.0,1.0,5.0,5.0) and (1.0,1.0,0.1,0.1) even though the first two members of each
set are the same. As for classification algorithms there are a large number of methods
which can be employed. In this section we will therefore describe three commonly
used approaches: the Mann-Whitney test and the TNoM score, the Fisher and Golub
scores and the t-test (which also comes in many variants). To give an impression of
their performance we will also evaluate these scores on a new dataset from cancer
research. Statistical scoring based on ranking will be most influenced by consistency
of a difference. If all values belonging to one class are ranked higher than all members
of the other class this is determined as an improbable event even if the means of
both classes do not differ a great deal. For example, for binary classification, the
Mann-Whitney U test provides a measure of the difference between the medians of
two populations [62] based on ranking. For a particular feature, two populations are
determined from the expression ratios of the two distinctly labelled sample sets. The
aim of the test is to estimate the probability that the two populations were drawn from
an identical distribution. If this probability is very low, the feature is consistent with
the class labels and will be significant. We start by combining the samples from the two
classes and ranking them in numerical order. Each sample is then ranked with a value
equal to its position in the line (i.e. a rank between 1 and (n; +ny) where n; and ny are
the number of samples in classes 1 and 2.). If expression ratios are tied, they are given
the average rank. The ranks for each of the two sample sets are summed. If the sums
are R; and Ry, we now calculate the U statistic from U; = nyny + 0.5n1(ny + 1) — Ry
and Us = ning + 0.5ny(ny + 1) — Ry. Choosing the smaller of U; and U, as the test

statistic U we calculate z = (U — py)/oy using:
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(2.33)

ning \/nan(nl +ny+1)
Hu = oy =

2 12

z is a normally distributed random variable (N(0,1)) and hence it is straightforward
to determine the probability: the lower the probability the more significant the feature

for discriminating the two classes.

Designed specifically for microarray datasets the Threshold Number of Mis-classifications
(TNoM) score [5] is closely related to ranking scores and will give a similar feature rank-
ing to the Mann Whitney test, for example. We calculate the TNoM score by finding
the best classification performance possible for the given feature. For the m values of

the feature z; (components of the feature vector) and label y; we evaluate:

TNoM = min > H[y; (az; +b)] (2.34)

i=1
thus we count an error every time y; # sign(az; + b). Since the argument inside the
Heaviside step function is invariant under an arbitrary positive rescaling we can set
a = 1 and evaluate the score using a 1-dimensional minimisation on b. If we are able to
find a threshold such that all values above it belong to one class and all below belong to
the other, then the TNoM score is 0. If the best threshold involves one misclassification
the TNoM score is 1, etc. Given a particular class distribution we can also calculate the
probability of getting a feature with any particular TNoM score. We can then compare
the cumulative distribution function of the TNoM scores for a microarray dataset with
the theoretical scores for a null model (i.e. purely random data) and thus determine
if there is a significantly high number of low (i.e. good) scoring features compared to
random occurrence and therefore if the data carries a significant information load. For
example, in Figure 2.4 we give a plot of the cumulative distributions for an ovarian
cancer data set [66]. Here, the curve determined from the ovarian cancer dataset lies
considerably to the left of the theoretical curve expected for purely random data, sug-

gesting a large number of discriminating features and significant information content.

The second family of feature scoring techniques has more of an emphasis on the dif-
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Fig. 2.4: TNoM cumulative score curves for an ovarian cancer dataset [66]. The z-axis is
TNoM score and y axis is the proportion of the total number of features. The left-hand
curve corresponds to actual scores and the right-hand curve to the theoretical score for a null
(random) model. As the curve from the actual scores lies significantly to the left this means

the data contains a significant information content.

ferences in magnitudes of the expression values between classes. Thus if we derive the
means and standard deviations for the samples in each class, a good discriminating
feature would have a large separation between the means and small standard devia-
tions. If we define the means of the samples in the two classes as p; and po and their
standard deviations as o1 and oy, the Fisher (F) and Golub (G) scores are defined as

follows

(11 — p2)? ey ]

2.35
0% + o2 o1+ 0y (2.35)

The final score we will consider is the well-known t-test for the difference between
means of two populations. We calculate the means and variances (u;, po, 0% and o3)

for the two classes and then a weighted average of the two variances, with

@ = (= Doi+ (= 1)oy (2.36)
ny+ng —2
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and a test statistic ¢ using

M1 — U2

n1 n2

t= (2.37)
from which a probability measure can readily be obtained from the Student’s distribu-

tion.

Wrapper Methods - Recursive Feature Elimination

Rather than a prior scoring of features we could use a procedure within the algorithm to
eliminate redundant features. As an illustration we will consider one method for SVMs
which removes irrelevant features during the training process. When using a linear ker-
nel, we noted that the weight vector for an SVM can be expressed as w = > | y;04X;.
The smallest absolute value of the weight vector will have least influence in the decision
function and will therefore be the best candidates for removal. For the Recursive Fea-
ture Elimination (RFE) method proposed by Guyon et al [25], the SVM is trained with
the current set of features and the best candidate feature for removal is identified via
the weight vector. This feature is removed and the process repeated until termination.
One disadvantage of this method is that the process will be slow if there are a large
number of features (typically the case for modern high density microarrays), though
features could be removed in batches, of course. The algorithm can be terminated if
the test error is logged throughout and passes through a minimum though, for SVMs,
theoretical criteria such as LOO bounds (which estimate generalisation performance)
can also be used [34]. This approach is general and can be applied to the weights

generated using the perceptron algorithm, for example.

Aside from RFE there are a number of other approaches where feature selection is
implemented directly within the algorithm. For example, with Bayesian approaches
a Bayesian prior can be incorporated into the design of a classifier favoring sparse
solutions, i.e. there is an explicit preference for a solution with a very limited number
of features (this is known as Automatic Relevance Determination (ARD), see [52]).

Bayesian ARD algorithms for this purpose have been developed and work well with
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microarray datasets [44].

Feature Selection: A case study

To illustrate the above we will demonstrate how these techniques have been applied
to a new dataset for predicting relapse versus non-relapse for a paediatric malignancy
(Williams et al [80]). This represents novel work performed in collaboration with Kathy
Pritchard-Jones at the Institute for Cancer Research. In this study cDNA microarrays
were used with an approximately balanced dataset of 27 samples. Normalisations were
implemented using a pre-existing software package [30] based on the Statistics for Mi-

croarray Analysis (SMA) R package of Speed et al [31].

A Support Vector Machine with linear kernel was used with filter methods for the
feature selection. Recursive elimination of features was not used because of the large
number of features (17790). Given the small size of the dataset leave-one-out (LOO)
appears the best first strategy for evaluating the test error. During evaluation of the
test error the 26 examples in the training set change with every leave-one-out rotation.
Consequently, to derive a fair test statistic, the statistical scores were determined for
each of the 27 evaluations on the test point without incorporating it into the computa-
tion of the score. In Figures 2.5, 2.6 and 2.7 we show the LOO test error (y-axis) versus
number of top-ranked features (z-axis) remaining for Fisher, Mann-Whitney and t-test
scoring of features. All three scores indicate prediction is poor if all the features are
used. However, good prediction is achievable with a small number of features. Thus for
the Fisher score the minimal LOO test error is 5/27, for Mann-Whitney 4/27 and for
the t-test 1/27. For 9-fold cross-validation with 1000 random reshufflings of the order
we get a 6.4+ 1.2% precentage test error with 3 features remaining. These results indi-
cate prediction of relapse can be achieved, though any final confirmation would await
evaluation on de novo data and biological confirmation of the genes used. If, as here,
prediction can be achieved with the expression profile of a small set of genes then the
result is interesting but should be viewed with caution. If a set of genes have highly
correlated expression then only one member may be needed for building a successful

predictor (the rest are effectively redundant), though this gene may not be as signifi-
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Fig. 2.5: The number of LOO test errors (y-axis) versus number of top-ranked features (-
axis) remaining with feature-ranking by the Fisher score for predicting relapse or non-relapse.
For 4 or fewer features a non-zero training error appears and the test error rises from the

minimum of 5/27.

cant as some of the others. If, for example, the expression pattern of a particular gene
is associated with positional effects (e.g. when a biologically significant over-expressed
gene is located in a region of the genome that has become duplicated in tumour cells),
other genes that are not relevant to tumour outcome may be co-regulated by the same
mechanism. Their apparent relevance only derives from their position in this genomic
region. Consequently the significance of genes should be evaluated by other methods

independently of the feature selection used by the classifier.
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Fig. 2.6: The number of LOO test errors (y-axis) versus number of top-ranked features
remaining (z-axis) with ranking of features by the Mann-Whitney score [62]. The minimum

LOO test error improves on the Fisher score in Fig. 2.5 with a minimum of 4/27.
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Fig. 2.7: The number of LOO test errors (y-axis) versus number of top-ranked features
remaining (z-axis) with ranking of features by the t-test. The minimum LOO test error was
1 from 27 with 3-5 features remaining. With 2 features remaining a non-zero training error
was recorded. The minimal test error is lower than for Fisher (Fig. 2.5) and Mann Whitney

[62] (Fig. 2.6) and the curve is noticeably smoother.
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CHAPTER 3

PROBABILISTIC MODELS

3.1 PROBABILISTIC MODELLING

Kernel methods and particularly Support Vector Machines introduced in the previous
chapter represent just one method for inferring information from data. An alternative
to such non-parametric approaches is to try and model in some way the process that
originally generated the observed data. For example, in a simple binary classification
task, rather than trying to construct some kind of decision boundary it may be more
sensible and provide more information to try and model in some way the two disparate
data sources. Data can then be classified by evaluating which of the two sources was

more likely to have produced it.

Probability theory provides a rigorous framework to perform such modelling and gener-
ally one can classify probabilistic learning methods into one of two categories - Bayesian
and frequentist. To illustrate the difference between these two approaches, consider the
challenge of trying to predict the outcome of tossing a coin of unknown properties. The
frequentist’s viewpoint would be interested in using observations to calculate a single
quantity - the probability of Heads. This would be achieved by simply looking at the
proportion of heads in our observations. This single probability could then be used
directly to predict the outcome of a future coin toss. The Bayesian on the other hand,
rather than considering a single value for the required probability would encode belief
in the value through a probability distribution. Observations would be used to update

this distribution and predictions would be based on its expected value. More precisely,
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CHAPTER 3. PROBABILISTIC MODELS

let @ correspond to the probability of interest, i.e. p(head) and let X = x; ...z, be our
observations (z; = 1 if the outcome of the i*" toss was a head and 0 otherwise). The

frequentist approximation to € would be calculated as

1 n
—=%u, 1
’ ni:1x )

whilst the Bayesian would first specify a prior distribution over # and then update

this, using Bayes rule to give a posterior distribution

p(X[0)p(6) _ _ p(X[0)p(0)
p(X) Jop(X10)p(6)d6

p(0]X) = (3-2)
where p(6) is the prior distribution over the values of # and p(X'|f) is known as the
likelihood and can be thought of as how likely it would be to observe the data that we
have, given our hypothesis (¢). To predict the value of an unknown observation, Z, an

expectation is taken with respect to this posterior distribution
pal) = [ p(al6)p(0])ds (53)
6

Notice that we can perform our posterior update iteratively - for example, having seen
n observations, we could use the current posterior as the prior for the next observation
P(@0ir|0)p(O]1, - -, ,)

0 ny n = ’ 4
p(0|z1, ..., Tn, Tpy1) fap(xn+1|9)p(9‘$1,---:xn)dg o0

Figure 3.1 shows how the posterior is iteratively updated from a uniform prior for
three observations (head, head, tail). One of the benefits of the Bayesian approach is
how it avoids over-fitting the model to the training data through the use of the prior
distribution. For example, after the first two observations (both heads) in the example
above, the Bayesian prediction of an observation being heads would be 0.75 whilst the

frequentist approach would assign a probability of 1.

Unfortunately, in most useful examples, the integrals in 3.2 and 3.3 are analytically

intractable and have to be approximated via numerical methods - for example, sam-
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Fig. 3.1: Evolution of the posterior probability for the coin tossing problem as observations

are received. In this case, the observations are head, head, tail.

pling from the appropriate distribution. In large problems, these methods also become
infeasible and various approximations are made. Two common methods are maximum
likelihood (ML) and maximum a posteriori (MAP). Maximum likelihood finds the sin-
gle parameter that maximises the likelihood term in 3.2 whilst the MAP solution is the
single parameter value that gives the maximum of the posterior distribution p(6|X),

equivalent to maximising the numerator of 3.2 as p(X) is not parameter dependent.

3.2 GRAPHICAL MODELS

Graphical models provide a means of visualising probabilistic models. Figure 3.2 shows

A B

Fig. 3.2: Graphical representation of a simple probabilistic model

a very simple graphical model corresponding to the distribution P(A, B) of the two
random variables A and B. Following Heckerman [27] (albeit with a slightly simpli-
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fied model) A could represent the binary variable start denoting whether or not a car
will start. In this case, B might represent whether or not there is fuel present in the
tank. Clearly, any useful probabilistic model will be considerably more complicated
than this and it may seem daunting to consider dealing with joint distributions over
large numbers of variables. However, it is likely that by exploiting conditional inde-
pendencies between variables we can greatly simplify most models. Graphical models

provide a means of visualising these conditional independencies. Figure 3.3 shows how

Fig. 3.3: Graphical representation of a conditional probabilistic model

dependencies between variables are represented. The flow of information is represented
by the direction of the arrow so, in this example, our belief in A is dependent on our
knowledge of B. In our trivial car example, this is equivalent to the assumption that
the probability of the car starting is dependent on whether or not there is any fuel in
the tank. This particular dependency defines the following decomposition of the joint
probability P(A, B)

P(A,B) = P(A|B)P(B). (3.5)

Consider the slightly more complicated model shown in figure 3.4. This corresponds

to the following decomposition of the joint distribution
P(A,B,C,D,E)=P(E|D,C)P(C)P(D|A, B)P(A)P(B). (3.6)

We say that variable F is conditionally independent on A and B as, although there
is obviously a dependency between them, it is a dependency through the variable D.

Hence, conditioned on a value of D, F can be considered independent of A and B.

As well as random variables, any real model will also consist of observable variables.
These are shown in our graphical representation as shaded circles. For an example,

see figure 3.5. Notice also the plate in this diagram. The plate is a helpful way of

36



3.3. VARIATIONAL INFERENCE

Fig. 3.4: Graphical representation of a conditional probabilistic model

describing repeated sampling. Figure 3.6 shows a graphical model without plates and
the corresponding plates diagram. The plate explicitly states the assumption that the
N variables Ay, ..., Ay are conditionally independent and identically distributed given
B. For a more detailed introduction to graphical models, see [36]. In figure 3.5, N
data points have been observed and the model being used assumes that they were
all drawn independently from the distribution defined by the node A - for example,
the observed values may all be from R! and A may define a one dimensional normal
distribution. A possible inference task would be to try and infer the parameters of this
normal distribution from the observed data. In the next section we will discuss one of

the possible methods for performing such inference.

3.3 VARIATIONAL INFERENCE

In this section we briefly introduce the use of variational methods to learn parameters
in graphical models. For a more detailed introduction, the reader is referred to [35].
As discussed previously, any probabilistic graphical model we might be interested in

is likely to consist of observable variables, hidden or latent variables and parameters.
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N

Fig. 3.5: Graphical representation of a conditional probability model with observed node

and repeated sampling.

Fig. 3.6: The concept of plates to represent repeated sampling in graphical models. The

model shown here on the right is a shorthand way of depicting the model on the left.

Given a particular model structure, we are interested in using observed data to infer
suitable values for the parameters in question. In some cases, we will be interested
in a fully Bayesian approach whilst in others we may, due to reasons of complexity
or suitability be satisfied with single valued estimates of our parameter values. Vari-
ational methods can be used to do both. The main feature of such techniques is the
introduction of variational distributions over latent variables, the use of which enables
strict lower and upper bounds to be placed on distributions of interest. Ideally these
bounds would be much easier to optimise than the distributions themselves, leading to

accurate, tractable, approximations of the true distributions.

One method that we shall use later in this thesis is using variational methods to find

maximum likelihood parameter values. Recall that the maximum likelihood solution
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is that set of parameter values that maximises the quantity p(X'|f) where X is some
set of observed data and 6 represents the parameters in the model. For simplicity,
we will often consider the natural logarithm of this quantity and we shall treat it as a
function of the parameters, £(#). Now, given a graphical model with observed variables
X = {x1,...,X,}, latent variables y and parameters 6, this likelihood is given by the

following

L=logP(X|0) = ZlogP (x;]0) = Zlog/ (x;ly, 0)P(y)dy (3.7)

where the integral would be replaced by a sum for discrete latent variables. We have
also used the assumption that the data are independent and identically distributed
(iidd). We wish to maximise this quantity with respect to €, however this is far from
straightforward due to the potential coupling of the parameters induced by the log-
arithm of the integral (or sum). However, by introducing any distribution over the

latent variables, we can lower bound this quantity as follows

;1ngP(xi,y\9)dy Z log [ Qy(y) C;y“:")e)
P(xi,y]6) 3.8
> Z ny log Qy(y) (328)
= E’(Q, 0)

where we have made use of that fact that log is a concave function and used Jensen’s

inequality

Definiton 2 Jensen’s inequality. For any concave function f,

F(Bpz)[2]) = By [ f(2)]

where the expectation Ey,)[f(2) = [ f(2)

We now wish to maximise this bound with respect to both () and #. This may seem
more complicated than simply maximising it with respect to # but the fact that the
log has moved inside the summation has considerably simplified matters. We can also

take advantage of the following observation. Setting Qy(y) = P(y|x;,0), leads to the

39



CHAPTER 3. PROBABILISTIC MODELS

following
& X;,y|0
£(Q, zl J P(ylxi,0) log paX3dy
= 3 J Pylxi, 6) log P(xil6)dy (3.9)
= 5(9)
i.e., our inequality has become an equality. Hence, we can employ the following iterative
procedure
QL arg max £'(Q,0) (3.10)
0"t arg max L£(Q,0). (3.11)

Since after each () update, our inequality is in fact an equality, i.e. £ = L and
given that the () update doesn’t change 6, we can guarantee that these iterations can-
not possibly lead to a decrease in L. This iterative update scheme is a form of the
Expectation-Maximisation (EM) algorithm [11, 7] where the maximisation with respect
to () is the E-step and maximisation with respect to € is the M-step. It is well known

that this guarantees at least convergence to a local extrema.

In many cases, it may not be possible to evaluate the posteriors over the latent variables
for the Q update. Notice however, that maximisation of £ with respect to @ is

equivalent to minimising

/Qy logP ‘(Z’)o)d (3.12)

that is, the Kullback-Leibler (KL) divergence between @) and the required posterior.
Although it may not be possible to analytically solve this minimisation, given a sensible
choice of variational distribution (and one which factorises over the latent variables) it
should be possible to differentiate with respect to the parameters of () and iterate the

resulting fixed point equations.
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Fig. 3.7: Graphical representation of mixture model

3.4 EXAMPLE - GAUSSIAN MIXTURES

To illustrate the methods introduced in this chapter, we will look at the example of
inferring the parameters of a simple Gaussian mixture. The task is as follows, given
a set of d-dimensional data vectors X = {x;,...,x,} we wish to find the density p(x)
from which they were produced where we assume that the density function is a mixture

of IC multi-variate Gaussians, that is

K
p(x) = mN (x|, Zi). (3.13)
k=1
To simplify the analysis, we will make the naive-Bayes assumption. That is, there is
no dependency between the d dimensions and hence the covariance matrices have only
diagonal entries. We will denote the vector of these diagonal values as o.
Figure 3.7 shows the corresponding graphical model. Our x; variables are observed

and the k’s are hidden. The model describes the following generative process

e Foreachi=1,...,n
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— Sample a component &k from 7

— Sample x; from N (py, o).

A Bayesian might argue that a better model would include a Dirichlet prior distribution
on 7r and also suitable priors on the p, and o parameters. However, it is unnecessary

in this illustrative example.

The likelihood of our training data X" is given as follows

L(p, o, ) Zlongk Hp Tij| kg Okj)- (3.14)
=1

As discussed previously, the log outside the sum makes straight maximisation of this
quantity with respect to the various parameters infeasible. For this reason, we introduce
the training sample specific set of multinomial variational distributions Q subject to

the following two conditions
n

p(Q) = ][ r(@) (3.15)

=1

i.e. they are factorisable over the training samples and

K
d Q=1 (3.16)
k=1

they sum to 1 over the C mixture components. Hence, we can view QQ;; as the posterior
probability that x; was produced by mixture component k. We can add these new

variables to our likelihood and lower bound it as follows

L(p,o,7) = log Z le 1:[ p(xm‘,ukwak])

Ms ||M:

v

K

lz@iklog{é—fk (]
=1 j=

L'(p,o,m Q).
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We can maximise this lower bound by iterating the fixed point equations obtained
by taking partial derivatives with respect to the various parameters. The obtained

updates are given by (details in appendix B)

d
™ 11 N (@45 pis, Ok)
Qik = = (3.18)
K
kZ urs l N(xij\ukfj,okfj)]
’:1 J

e

1

I

1
T = EZQZ’C (319)
i=1
Z Qikxm
pj = T (3-20)
; Qik
> Que(wij — pis)?
o = . (3.21)
Z Qik
=1

As an example, consider the data shown in figure 3.8. This data was drawn from the
mixture model shown in figure 3.9. The model was initialised as follows. The means
were drawn from mean zero isotropic Gaussians with variance of 1, the variances were
set to 1 and the mixture coefficients, 7 were set to 1//K where K in this case was set to
4. The above iterations were then used until the algorithm converged (approximately
25 iterations). The learned probability density can be seen in figure 3.10. In this
example, for a given training set, it is possible to exactly evaluate the true likelihood
and lower bound at every iteration. The evolution of the likelihood can be seen in figure
3.11. The solid (red) line corresponds to the true likelihood and the dashed (black)
line to the lower bound. As required, both curves always increase and the lower bound

is always below the true likelihood.
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Fig. 3.8: Example data used to train mixture model.

Fig. 3.9: Actual probability density for mixture model example.
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Fig. 3.10: Learned probability density for mixture model example.
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Fig. 3.11: Evolution of likelihood (solid, red line) and likelihood lower bound (dashed, black

line) versus the number of training iterations for the Gaussian mixture example.
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CHAPTER 4

LATENT PROCESS DECOMPOSITION

4.1 INTRODUCTION

In this chapter, we will introduce a new method named Latent Process Decomposition
(LPD) - a generative probabilistic model for the analysis of microarray data. We will
demonstrate the power of LPD on several different microarray datasets. This work is
currently under submission [64] and was presented as a poster at RECOMB 2004 [63].

4.2 MOTIVATION

One of the main aims of microarray data analysis is clustering similar genes and/or sam-
ples. There are many reasons for doing this. Finding clusters of similar expression in the
same tumour type can lead to the discovery of important sub-classes within tumours.
For example, Alizadeh et al [4] analysed lymphoma tissue samples and found evidence
for two previously unrecognised sub-types of the disease. Similarly, Bhattacharjee et
al [6] identified sub-types of lung cancer and Sorlie et al [70] discovered sub-types in
breast cancer. These sub-classes may correspond to new, previously un-seen diseases
or correlate with survival statistics or reaction to treatment. Hence, discovering these
classes and the genes that are differentially expressed across them can provide excellent
pointers for future research directions. On the other hand, clustering together similar
genes also has potential benefits. Many known genes still have unknown function and
by clustering together similar genes it is possible to infer function by association, i.e.

by the function of other genes expressing similarly. Also, genes expressing similarly
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over a range of experimental conditions are likely to be regulated by the same parent

genes and such groups of genes may be useful in inferring regulatory networks.

Probably the most popular technique for performing such cluster analysis is the use
of hierarchical clustering, for example, see [16]. This approach recursively joins the
most similar data points until only one point remains and the resulting connections are
illustrated using a dendrogram as can be seen in figure 4.1(b). The points are indexed
along the z-axis whilst the y-axis gives the measure of similarity, the higher the value,
the less similar the data. Looking at this dendrogram, it would seem reasonable to
make the assumption that 2 clusters exist in the data as we have two distinct sets of
points with small intra-cluster distance and large inter-cluster distance. FEffectively,
what we have done to draw this conclusion is horizontally cut the dendrogram at a
particular height leaving us with a number of disjoint point sets. Therefore, we could
make the cut at any height and end up with any number of clusters between 1 and the
number of data points. In this example, it is reasonably obvious from the dendrogram
that a cut should be made giving two clusters, but with real data this will not be
so easy. This slightly subjective method for determining the number of clusters in a
dataset is one of the weaknesses of methods such as hierarchical clustering.

Another weakness of standard cluster analysis techniques is the fact that points are
generally assumed to belong to only one cluster. In the case of clustering genes this
is likely to be a poor assumption. Often genes belong to many functional classes and
in a time-series experiment, the effects of these different functions may be visible at
different stages. Therefore, restricting genes to only one class may make the clustering
more straightforward but ignores the intricate nature of the underlying system. When
clustering samples, it is also unreasonable to assume one cluster per sample. Take, for
example, the task of clustering different tumour samples. The tumours are dynamic
entities, they evolve with time and defining hard boundaries between different tumour

types or stages is unrealistic.

One final criticism of standard cluster analysis techniques is their lack of transparency.

In our simple example above, our data is just two dimensional and hence we can learn
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Fig. 4.1: Example dendrogram and data used to create it

a lot from it by simply visualising it. From 4.1(a), it is obvious that there are two
clusters and also that both features can discriminate reasonably well between them.
In a typical microarray experiment, we may have a few thousand features and hence
visualisation (at least in the original space) is not possible. Also, many of the features
will be noisy and not participate in our clustering. The information regarding which
features are causing the observed clustering cannot be directly extracted from a den-
drogram. Often this means that the user has to resort to ad hoc techniques such as

aligning together clusters of samples and genes by eye.

Some attempts have previously been made to overcome these shortcomings. For exam-
ple, Martoglio et al [47] used a variational independent components analysis approach
to analyse ovarian cancer data. Rather than assigning each gene to one gene cluster,
genes were allowed to participate in many different expression profiles with varying
degrees. MacLachlan et al [48] introduced a mixture of factor analysers approach to
clustering (in the sample space). However, due to the much larger number of features
than samples, quite extreme pre-processing was required to reduce the dimensional-
ity. Lazzeroni and Owen’s Plaid model [42] is one of the best known attempts at a

more flexible clustering method. This model essentially clusters both genes and sam-
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ples simultaneously and each sample/gene can belong to any number of clusters. The
microarray data is assumed to be made up from a number of separate layers, where
genes/samples can either belong to a layer or not. Therefore, each layer is essentially
a cluster of both genes and samples. Segal et al [67] suggested some weaknesses with
this approach and proposed a model consisting of a number of cellular processes where
the measured expression value for a gene in a particular array is given as the sum of
the activity level in this array of each process identified with this gene. This model
has one particularly appealing property. Genes can belong to any number of clusters,
including zero - i.e., it is possible to simply not classify a gene as belonging to any of
the discovered processes. This model is generally considered to be the state of the art

in this area and as such we will use it later as a comparison with LPD.

4.3 LATENT DIRICHLET ALLOCATION

The latent process decomposition model described in the next section is inspired by
the Latent Dirichlet Allocation (LDA) model proposed by Blei et al [8]. LDA was
introduced as a novel model for modelling text documents. The model consists of IC
latent topics, each of which is defined by a multinomial distribution over the possible
words in the vocabulary. Each document p of P is assumed to have been produced
from a number of these different topics by the following process. Firstly, draw the
multinomial distribution € from the the Dirichlet D(a). This multinomial is the dis-
tribution over topics that will be used to generate this document. For each word wy,,
in this document, draw a topic k& from @ with probability 6, and then sample the word
from the kth multinomial, 8;. Using the graphical notation defined in 3.2, the LDA
model is shown in figure 4.2, where P is the number of documents in the corpus and N
is the number of words in each document (note that this N can vary across different

documents).

Microarray data is continuous and so the original LDA model is unsuitable. However,
the one crucial feature that we wish to keep from the LDA formulation is this repeated

sampling for each feature in each data example. This means that the data examples
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Fig. 4.2: Latent Dirichlet Allocation plates diagram

can truly belong to more than one topic (i.e. cluster). In our application, this type of
re-sampling could, for example, correspond to genes performing different functions as

time progresses in time series experiments.

Therefore, we need to define a new topic that suits continuous microarray data. Ob-
servations of the data (after it has been logged) suggests it is distributed in a roughly
Gaussian manner. The Gaussian distribution is also useful as analytically it tends to
be easier to handle than many other distributions - for example, it is possible to get
closed form solutions for its maximum likelihood parameters - something not possible
with say a gamma distribution. We therefore define our new topic (which we shall call
a process) as a set of one dimensional Gaussians, one for each array (or gene, if we are
performing our analysis in sample space). As with the LDA model, this means that
genes/samples can belong to more than one process (i.e. cluster). The probabilistic
nature of the model enables comparison between models (through likelihood values)
allowing us to evaluate the most probable number of processes K. Finally, the nature
of the processes means that they can easily be compared to discover genes differen-

tially expressed across different samples. In the following sections, we will describe the

o1



CHAPTER 4. LATENT PROCESS DECOMPOSITION

model in more detail, show how the parameter values can be learned and discuss the

performance of the algorithm on several microarray datasets.

4.4 MODEL DESCRIPTION

Consider the following generative procedure for generating the expression values for a
gene. Firstly, sample @ from the Dirichlet D(ex). Then for each array a = 1,..., A
sample an element k£ with probability 6. For this array, a, sample an expression value
from N (fiax, 0ar). This generative process is depicted graphically in figure 4.3. As
can be seen from the figure, the only major difference between LPD and LDA is in
the process definitions which in this case are the Gaussian means and variances and
for LDA were the multinomials. It should also be noted that we are being slightly
liberal with our graphical representation. Strictly speaking, the model parameters o,
o and p are random variables and we should define prior distributions over their values
(for example, the process mean vectors may be considered as K samples from an A

dimensional Gaussian).

o O

O O-

Fig. 4.3: Latent Process Decomposition plates diagram
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We have discussed the generative procedure in gene space. That is, we sample from
the Dirichlet for each gene and then sample A expression values. Therefore, this model
is comparable to clustering together similar genes based on their expression profiles
over the different arrays. We can also switch the model around by sampling from the
Dirichlet for each array and then sampling G expression values. This is comparable to
clustering together cell samples based on their expression profiles over the genes. Both

methods have potential uses and later we will present results for both.

4.5 LEARNING

4.5.1 Uniform Priors - Maximum Likelihood

Unlike a more standard machine learning task where we might wish to create a model
that can be used to predict some quantity or event given some input data, we are
more interested here in analysing and extracting information from the available data.
Therefore, the normal concern of over-fitting is not really appropriate and we can
be satisfied with a straightforward maximum likelihood or MAP approximation to
parameter values. Recall that for a set of parameters, H and data X', Bayes rule tells
us that

P(H|X) x P(X|H)P(H) (4.1)

where P(X|H) is known as the likelihood and P(#) the prior on our parameters H.
We are interested in finding the set of parameters # that maximises P(H|X) (the
MAP solution). In the case of a uniform (and hence uninformative) prior, this is the
maximum likelihood solution. We will begin by deriving the maximum likelihood and
then extend this to the MAP solution. The expression we are interested in maximising
is

logp(G|p, 0, ) (4.2)

(note, that as a shorthand, we have used G to represent the dataset consisting of
the expression for all of the genes and the total number of genes in summations etc
- it should be obvious from the context which applies) which is factorised over the

individual genes as follows (note, in all derivations, we will assume the analysis is
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being done in gene space - the conversion to the sample space essentially involves

swapping the a and g indices)

g
logp(G|p, o, a) =Y logp(glp, o, ). (4.3)

g9=1

Marginalising over the latent variable @ allows us to expand this expression as follows
log (G 1. &, ) Zlog / (91,7, 0)p(6]et) 6. (14)

Using Jensen’s inequality as described in section 3.3, if we introduce a set of gene

specific variational distributions -,, we can lower bound this likelihood as follows

g
logp(Gli,0.0) = >-log [ plolu 7. 0)p(6la)dd (45)
¢ p(6l)p(6817,)
= ;log@/p(g\u,me) (O,) a6 (4.6)
g
p(6la)
> Z@/p 6lv,) log{ (9/p,0,0) (0\79)}‘“9 (4.7)
= L(p0,0,7). (4.8)

We also have the following conditional independence over the arrays

A
p(glp, o,0) = [ [ plegalps o, 6) (4.9)

a=1

where ey, is the observed expression level of gene g in array a. Substituting this into

our expression for £’ gives

£ _\ / = p(6]c)
poo,a,y) =Y [ p(0lv,)log Hp(egalu,cr,e)pwh) d (4.10)
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which can be marginalised over our second latent variable k as follows

p(0|a)
p(0]7,)

A K
L(po,a,7) = Z / (017,) log{lep(ega|uak,oak>

a=1

}do (4.11)

Introducing a second set of variational distributions, Qugr subject to D>, Qugr = 1 We

can further bound this expression to move the log inside the summation

g 0 . 0
L(p,o o,y = Z/p(om 10g{H [Zp €galHaks Oak) ZQQ Zk] p(0la) }do
ag

i p(0]v,)

A K
> Z / Z Zp(@\’Yg)Qagk log {P(egam(zk, Uak) Qi];k ﬁ((g‘i)) } e

These variational multinomials may be thought of as the posterior probability of the

expression value for gene g in array a having been produced by process k.

Expanding the log term and removing unnecessary summations and integrals, we can

write this bound out fully as

g

> logp(glp, 0. a) >
g=1

M=

p(0]v,) logp(8|a)d6

i
— O —

M=

p(8]v,) logp(8|v,)d6

Q
Il
—

+
M=
(] °
M=

Qagk logp(ega‘/«['aka Jak)

Q
Il
—
IS
Il
—
=
Il
_

+
Mm
M=
M=

/ Qagkp(e"yg) log deO
[C]

<
I
—
o
Il
—
ES
Il

1

MQ
M) =
M=

Qagk: log Qagk- (412)

<
I
—
o
Il
—
=~
Il
—
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As described in section 3.3, we can take partial derivatives of this bound with respect to
our model and variational parameters to give update equations guaranteed to increase
the likelihood. Derivation details are given in appendix C and they result in the

following set of updates for our variational and model parameters

p(€galttak; Oak) eXp{Ep(O\’yg) [log 0]}

Qage = % (4.13)
kZ P(egaltlars Oarr) exp{Epa}, ) [log Op ]}
=1
A
Yok — QO + Z Qagk (414)
a=1
g
; Qaglcega
e (4.15)
Z Qagk
g=1
g
Z_:l Quagk(€ga — Hak)
o = (4.16)
Z Qagk
g=1

where
E:D(Olvg)[loggk] = /p(9|'yg)10g0kd0
e

= U(ygk) — \I’(Z Vgs)-

The update for @ does not have a convenient closed form solution and so second order

methods are required. Details of this procedure are given in appendix C.2.3.

4.5.2 Informative Priors - MAP

In the previous section, we derived a series of update equations, guaranteed to find
at least a local maximum of the likelihood. We will now extend this result to the
MAP solution by incorporating informative priors. For example, a suitable prior on

our means may be a zero mean Gaussian. This reflects our belief that most genes
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will be uninformative and will have expression values around zero. For the variance,
we may wish to define a prior that helps us to avoid over-fitting. Over-fitting may
occur when Gaussians contract onto a single data point causing poor generalisation
in addition to numerical instability. With sensible choices of prior, extension of our
previous derivation to the MAP solution is straightforward. Our combined likelihood

and prior expression is (assuming a uniform prior on «)

p(p, o, a/G) x p(G|p, o, a)p(p)p(o). (4.17)

Taking logarithms of the right hand side, we can formulate our problem as

o, 0,p=argmax logp(Glu, o, a) +logp(p) +logp(o). (4.18)

Therefore, we can simply append these two additional terms onto our previous bound.
Noting that they are functions only of p and o (and any associated hyper-parameters),
we can conclude that they will only change the updates for u,, and o4. Let us assume

the following priors

P(tar) x N(0,0,) (4.19)
p(02,) oc exp {—U—} (4.20)

i.e. a zero-mean Gaussian for the means and an improper prior (i.e. it doesn’t integrate
to 1 over its domain) for o2, that gives zero weight to o2, = 0 and asymptotically
approaches 1 as o, approaches infinity. Plots of these priors can be seen in figure 4.4
where 0, = 0.1 and s = 0.1. Adding these to our original bound, we now have to

differentiate the following expression to obtain updates for pq; and o,

g
Z Qagk logp(egamaka Oak) +10g p(ftak) + logp(agk). (4.21)

g=1
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0‘5 0‘8 1 0 0‘1 0‘2 0‘3 0‘4 0‘5 U‘G 0‘7 0‘8 0‘9 1
(a) Prior for pgap (b) Prior for o2,

Fig. 4.4: Example priors for LPD pu,; and o4, parameters

Performing the necessary differentiations, we are left with the following new updates

g
O-Z Z Qagk €ga
g=1

Hak = g (4'22)
ng + 0-121 Z Qakg
g=1
g 2
Z Qagk(ega - ,U'alc) +2s
o2, = . . (4.23)
Z Qagk
g=1

These expressions clearly show the effect of the priors. In 4.22, we see that we now
have a dependency on both o7, and 7. In the limit of o7, — oo, we effectively have
a uniform prior and we recover exactly our original update. In the opposite limit of
a;f — 0, we find that p,, — 0 as we would expect. In 4.23, the prior is effectively
putting a lower bound on the value of 6%,. As s — 0 the prior approaches a uniform

distribution over all positive reals and we recover our original o2, update.
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4.6 LIKELIHOOD COMPUTATION

To compare performance between models and to assess the convergence of a given
model, it is important to be able to compute the likelihood p(G|u, o, a). In order
to do this, we need to marginalise over our latent variables £ and @ i.e., we need to

calculate

g A K
logp(G|p, 0, ) =) log / [HZp(egaluak,oak)Hk p(6|a)de. (4.24)
g=1 Ie)

a=1 k=1

Unfortunately, the calculation of the integral is not analytically tractable and so we are
forced to resort to an approximation technique. Many methods exist for approximating
expectations such as this. If sampling from the respective distribution is straightfor-
ward, we can simply take a large number of samples and approximate our expectation
with the mean value using these samples. If sampling is not straightforward, meth-
ods such as importance sampling and rejection sampling can be used to approximate
the expectation. Markov-chain Monte-Carlo approaches (for example, the Metropolis-
Hastings algorithm) can also be used to generate samples that can then be used to

empirically approximate the expectation.

In this case, we require samples from a Dirichlet, p(@|c). It is possible to sample from
such a distribution by sampling from £ independent gamma distributions with param-
eters  and then normalising the result. Hence we can use the first method described

above.

Let 67 denote the kth component of the nth sample of 8 from p(@|ax). If we take N

samples in total, we can approximate our likelihood as follows

g 1 N TA K
L~ Z log N Z H Zp(egamak, oar)0p | - (4.25)
g=1 n=1 La=1 k=1

In our investigations we found that of the order of 1000 samples gave a very stable

likelihood value.
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4.7 ALGORITHM AND IMPLEMENTATION DETAILS

4.7.1 Parameter Initialisation

From 4.13 we can see that in order to update Qg We need values of pq, oor and ygi.
The former two quantities, we initialise to the array means and standard deviations
respectively. The ~y,, values were initialised to positive random numbers. With the
means and standard deviations uniform over the k processes, if the v, values were
also uniform, the algorithm would be immediately caught in a local maximum and no

learning would take place.

4.7.2 Numerical Stability

There are several situations which could cause the algorithm to lose numerical stability.
Firstly, the problem of over-fitting. If a Gaussian contracts onto a single point, its
standard deviation will shrink to zero and its p.d.f. will approach oo. To get around
this, we apply a lower bound to the value of o2, (generally, this will not be a problem
if a MAP solution is used and a suitable prior has been placed on ¢Z.). The choice
of the value of this bound is reasonably important as too low a value and numerical
problems will persist and too high a value will over-constrain the model and prevent it
from fitting to the data. Secondly, in the update for Qug (4.13) we occasionally find
that we begin to reach the limits of the machines precision and both the numerator and
the denominator approach zero. To get around this, we add a small constant (1072%)
to each value in Q before normalisation (i.e., before performing the division in 4.13).
Finally, when calculating the likelihood, we have to compute a product over the arrays
a. For a large number of arrays, this soon becomes smaller than the machine precision.
However, we are ultimately interested in the logarithm of this product and so we can

overcome this problem with a standard numerical technique, described in appendix F.

4.7.3 Decomposing over genes or arrays?

All of the derivations thus far have concerned decompositions over genes. That is, we

are interested in clustering together genes. This type of analysis is sensible where we
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have data from some form time series experiment (for example, the Spellman yeast
data [71] that we look at below). However, in the cancer examples discussed below,
we are interested in decomposing over arrays - i.e. being able to distinguish between
cancer sub-types and identifying genes that are differentially expressed across these
types. It is trivial to switch between these two different forms of analysis. Practically,
we simply transpose our data matrix. Mathematically, we swap the gene and array

indexes.

4.7.4 Algorithm Pseudo code

Data: Read the data e
oa+—1

Initialise p and o
v «— rand()
while iterations < maxlterations do
Update: @ as in equation (4.13)
Update: « as in equation (4.14)
Update: p as in equation (4.15 or 4.22)
Update: o2 as in equation (4.16 or 4.23)
if 02 < tol; then
‘ o? = toly
end
while |aye — ga| > toly do
Olpew < Qg — H(aold)ilg(aold)
where g and H are given in appendix C.2.3
end
Determine the likelihood (see below)

end

Algorithm 1: Latent Process Decomposition algorithm. We used a tolerance
tol; = 107° to avoid Gaussians collapsing onto a single point, and tol, = 1010 for
the o updating.
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Given: e, u, 0, «
Take N samples 6" from the Dirichlet distribution p(8|c)
Determine the likelihood from equation 4.25

Algorithm 2: Determining the likelihood for LPD

4.8 EXPERIMENTAL RESULTS

We will illustrate the performance of LPD on two forms of microarray dataset. The first
are cancer datasets and we are interested in the ability of LPD to distinguish between
various tissue classes. The second dataset types are time series datasets for yeast
(Saccharomyces cerevisiae) and we are interested in finding processes that correspond

to known biological processes.

4.8.1 Prostate

Our first cancer dataset comes from a study of prostate cancer by Dhanasakera et al
[13] and consists of 54 samples with 9984 features (we used their complete dataset
(i.e., with samples from all sources), corresponding to fig 8 in the supplementary in-
formation of [13]). The data consists of 14 samples for benign prostatic hyperplasia
(BPH) - a non cancerous swelling of the prostate, 3 normal adjacent prostate (NAP),
1 normal adjacent tumour (NAT), 14 localised prostate cancer (PCA), 1 prostatitis
(PRO) (inflammation of the prostate) and 20 metastatic tumours (MET). The ability
to be able to distinguish between local and metastatic tumours is an important one
and therefore discovery of genes that are expressed differently across them is crucial.
The inclusion of BPH samples in this dataset is also worth mentioning. It is a difficult
task to distinguish between (non-cancerous) BPH and prostate cancer (PCA) but it is
obviously crucial in the treatment required. Using this dataset, we will illustrate the
difference in performance between uniform and informative priors and compare LPD

to hierarchical clustering.

In figure 4.5 we can see how the held-out likelihood (in all experiments, these values

are the average of 10-fold cross validation and bars show standard error) changes as
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KC, the number of processes is increased, when we train with the maximum likelihood
technique. We see that the likelihood peaks at IO = 4 processes. Figure 4.6 shows a
typical decomposition of the prostate data into four processes. Each column represents
an array and each row a process. The bars correspond to the normalised « values and
represent the responsibility of a process to that particular array. These can be thought
of as analogous to cluster memberships. Remember that we are decomposing over ar-
rays and not genes and so each column in figure 4.6 corresponds to an array. From
figure 4.5 we can see that there is some distinction between the metastatic samples
(process 4) and the rest (processes 1, 2 and 3), however it is far from clear and hence
would not be terribly useful if the labels were not known! Figure 4.7 shows the result
of clustering this data with a dendrogram, using average linkage and and the euclidean
distance measure. From the dendrogram, we can see that although some local structure
has been identified (i.e, a lot of adjacent samples are of the same type) globally, the

separation between the known classes is poor.

-2000 - q

—-4000 - b

-6000 b

-8000 - q

—10000 - q

—-12000 - q

—-14000 L L L L
0 5 10 15 20 25

Fig. 4.5: Held-out likelihood (z-axis) versus the K for the prostate dataset with no parameter

priors.

This poor performance may be due to the fact that we have used all 9,984 genes in

the original dataset. It is fair to assume that even though the condition of the tissue
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Fig. 4.6: K = 4 process decomposition of the prostate dataset. Each column corresponds
to a sample whilst each row corresponds to a process. Bars are Ep(gha)[Bk] - and reflect the

responsibility of that process to that particular array.

from which the samples were taken is quite variable across the sample types, the actual
number of genes that will be differentially expressed is only going to be a small fraction.
Therefore, it is likely that the interesting differences are being swamped by random
(noise induced) differences in the remainder of the dataset. The most simple way of
overcoming this problem is to rank the genes based on their variance across samples
and use just those with the highest variance. This may seem a rather naive approach
but remember that we cannot use our prior class knowledge and the only real belief we
have is that genes varying only slightly across samples are unlikely to be interesting.
Inclusion of genes with only small variations may well be detrimental to analysis as
variations are just as likely to be due to noise as they are actual biological effects. The
cross validation plot using just the 500 most varying genes can be seen in figure 4.8.
We can see from this plot that there appears to be a peak at K = 4 processes and
a decomposition into KX = 4 processes can be seen in figure 4.9. The LPD has now
managed to distinguish well between the four major classes. We can see from 4.9 that
the BPH samples are concentrated in process 1 along with the prostatitis, the local

tumours (PCA) in process 2 and the metastatic samples in processes 3 and 4. Figure
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55

50

45t

40

351

30

25

Fig. 4.7: Result of hierarchical clustering on all prostate data, using average linkage and

euclidean distance.

4.10 shows the result of performing hierarchical clustering on this reduced data set
(again with average linkage and using euclidean distance). Although the dendrogram
manages to split metastatic from the rest successfully, the difference between PCA and
BPH is still very unclear and it is very difficult to infer from this dendrogram just how

many clusters are present.

The other advantage of LPD over standard clustering techniques is the ease at which
information can be extracted from the learnt model. In this prostate example, we may
be interested in finding out which genes are most differentially expressed between the
local cancer (PCA) and the metastatic samples. The following score can be used to
rank genes under this criteria

7 = Mo = gl (4.26)

\/ 0%+ 02

where ¢ and j correspond to the two processes being compared. Genes ranking highly
will be those with large separation between their means and small standard deviations
- corresponding to genes whose values fall into two disjoint clusters. A list of the top 10
ranking genes based on this score can be seen in table 4.1. Plots of the mixture densities

defined by the latent processes and the actual data values for three of these genes can
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Fig. 4.8: Held-out likelihood (z-axis) versus the K for the top 500 genes in the prostate

dataset with no parameter priors.

be seen in figure 4.11. These three plots show that the extracted genes appear to be
able to distinguish well between local cancer and metastasis and importantly, have
been highlighted as significant without the use of the class labels. Investigations into
these genes (Dr. Jeremy Clark, private correspondence) show that they are interesting
candidates for future examination. For example, CTGF is a gene that is induced
by growth-factors or certain oncogenes. Its respective protein binds to integrins and
modulates the invasive behaviour of certain human cancer cells [9]. Similarly, it has
been reported [18] that tumour angiogenesis ' and growth are critically dependent on
the activity of EGR1.

Ithe creation of blood vessels
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Fig. 4.9: Normalised 7y, values for the prostate dataset. Using the 500 most varying genes

and no parameter priors.

‘ Rank ‘ Name ‘ Z ‘
1 translocating chain-associating membrane protein (TRAM) | 4.243369
2 early growth response 1 (EGR1) 4.131861
3 connective tissue growth factor (CTGF) 3.579336
4 osteoglycin (osteoinductive factor, mimecan) (OGN) 3.339221
5 golgi membrane protein (GP73) 3.202468
6 butyrate response factor 1 (EGF-response factor 1) (BRF1) | 3.074948
7 ribosomal protein L5 (RPL5) 2.985735
8 dopachrome delta-isomerase, tyrosine-related protein 2 | 2.929469

(DCT)
9 pericentriolar material 1 (PCM1) 2.877109
10 sprouty (Drosophila) homolog 4 2.755093

Tab. 4.1: Top 10 genes separating localised prostate from metastatic prostate cancer. Genes
are ranked by Z.

It is obvious from 4.8 that as we increase the number of processes, the model begins
to over-fit quite dramatically to the training data. This is to be expected with the

maximum likelihood solution as we are allowing the model too much freedom by not
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Fig. 4.10: Result of hierarchical clustering on top 500 prostate genes, using average linkage

and euclidean distance.

penalising complexity. To overcome this, we can incorporate the priors discussed in
section 4.5.2. Using values of 02 = 0.1 and s = 0.01, we get the likelihood versus
K plot given in figure 4.12. We see from this plot that rather than fall away as the
number of processes increases, the likelihood remains reasonably constant. Figure 4.13
provides an explanation for this behaviour. This is a decomposition of the prostate
data (top 500 genes) into I = 10 processes with no parameter priors. Given that the
estimated optimum number of processes is 4, we might expect the model to severely
over-fit as indeed it does. However, if we introduce priors with oﬁ =0.1 and s = 0.5
we obtain the decomposition seen in figure 4.14. We observe that the decomposition
is over just four processes, with the remaining six empty. This is potentially a very
useful property as, given a suitable value for this prior we no longer need to decide
on an exact number of processes. Also notice that the decomposition is much cleaner
as a result of incorporating the prior. This suggests that the crossover between the
processes in 4.9 is due to noise rather than interesting sub-structure. Also, note that
the metastatic samples are falling across two processes. This split is due to the samples

coming from two separate sources.
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(a) Early growth response (b) Connective tissue (c) Dopachrome delta-
(EGR1) growth factor (CTGF) isomerase, tyrosine-
related protein 2 (DCT)

Fig. 4.11: Inferred density plots for 3 genes separating localised prostate cancer (PCA,
process 2) from the metastatic samples (MET and M, process 4) in Figure 4.9. Actual data
values are shown below the mixtures, separated by class with circles representing values from
localised prostate cancer and crosses representing values from metastatic prostate cancer

samples.

Although it appears that we can avoid our cross-validation over the number of pro-
cesses if we have the correct prior parameters, this still leaves us with the choice of the
prior parameters. Investigations show that the mean parameter has negligible effect
and can be set at something in the order of 0.1. This leaves s, the variance parameter.
A cross validation over s for the top 500 genes in the prostate data can be seen in figure
4.15. We notice a peak at s = 0.1. We cannot be too confident in this due to the large
error bars but it does reasonably suggest a peak somewhere between 0.05 and 0.5. It
may appear that we have gained very little in moving from the cross-validation over
processes to that over s but arguably this is not the case for two reasons. Firstly, we
are dealing with a small number of samples and hence by removing some samples for
cross-validation, we could easily be removing a substantial portion of one particular
class, suggesting a bias towards under-estimating the number of classes present. The
variance parameter on the other hand is a measure of noise that should be class inde-
pendent and hence should be the same regardless of whether the full data set is being

used or not. Also, the number of processes present will be dependent on the particular
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Fig. 4.12: Held-out likelihood (z-axis) versus the K for the top 500 genes in the prostate

dataset with parameter priors as given in section 4.5.2 (red) and without (blue).

data set and could vary greatly depending on the subject of the investigation. On
the other hand, the noise present is a result of the experimental procedure and we
may expect the optimum value of s to vary very little across data sets. Indeed, in the

following sections, we shall see that this is the case.

Finally, we have used likelihood as our measure of model performance. One issue
that we have not yet explored is how do these likelihood values compare with those
for different (possibly simpler) models. The most obvious model to compare with is
a standard Gaussian mixture. The main difference between LPD and the Gaussian
mixture is the repeated sampling for each feature in LPD allowing multiple processes
to interact to produce one sample. Due to the large number of features involved, it is
computationally infeasible to use a Gaussian mixture with full covariance matrices. We
shall constrain the matrices to be diagonal (equivalent to Gaussians aligned with the
coordinate axis). This Naive Bayes Gaussian mixture is identical to the model derived
in appendix B. Figure 4.16 shows the likelihood for the top 500 prostate genes using
maximum likelihood (i.e. no priors) for LPD and Naive Bayes. We see that Naive-Bayes

begins over-fitting immediately, suggesting only 2 clusters in the data. LPD rises above
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Fig. 4.13: K = 10 process decomposition of prostate data, using top 500 genes without

parameter priors.

Naive-Bayes to a peak at K = 4 processes before dropping towards the Naive Bayes
curve as K increases. Although the difference in likelihood is not huge, it is significant
(with respect to standard error) and the suggestion of only 2 clusters by Naive Bayes
is misleading. Note that we have used the maximum likelihood approach to training
LPD here to give the fairest comparison with Naive Bayes which is also trained by
maximum likelihood. It is also worth noting the relative sizes of the error bars. For
Naive Bayes, it is possible to calculate the likelihood ezactly whereas with LPD we must
take samples from the Dirichlet. The error bars for the two methods are certainly of
the same order, suggesting that most variation is due to the cross-validation procedure

and allowing us to be confident in our LPD likelihood approximation method.
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Fig. 4.15: Held-out likelihood as a function of s (the variance prior parameter) for the top
500 genes in the prostate data.

Fig. 4.14: K = 10 process decomposition of prostate data, using top 500 genes with param-

eter priors. o
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Fig. 4.16: Held-out likelihood for maximum likelihood LPD (red) and Naive-Bayes (blue)

for various value of K.
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4.8.2 Lung Cancer

The lung cancer dataset [21] consists of 73 gene expression profiles from normal and
tumour samples with the tumours labelled as squamous, large cell, small cell and
adenocarcinoma. 10-fold cross validation was performed for values of K between 2
and 20 with and without parameter priors and the results are shown in figure 4.17.
As with the prostate, we notice that the introduction of the priors avoids over-fitting
and causes the likelihood to plateau. In [21] the authors identified 7 clusters in the
data - with the adenocarcinoma samples falling into three separate clusters with strong
correlation with clinical outcomes. For their ordering (which we will follow) samples
1-19 belong to adenocarcinoma cluster 1, samples 20-26 belong to adenocarcinoma
cluster 2, samples 27-32 are normal tissue samples, samples 33-43 are adenocarcinoma
cluster 3, samples 44-60 are squamous cell carcinomas, samples 61-67 are small cell

carcinomas and samples 68-73 are from large cell tumours.
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Fig. 4.17: Hold-out likelihood (y-axis) versus K (z-axis) for the lung cancer dataset with

(red) and without (blue) parameter priors.

As in the previous section, the plateau of the likelihood when using priors suggests
that we are using more processes than exist in the data and additional processes are

being left empty. Cross-validating over s results in figure 4.18 and we can see a peak
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at somewhere between 0.3 and 0.5. This corresponds reasonably closely to the peak

found for the prostate data in the previous section.
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Fig. 4.18: Held-out likelihood as a function of s for lung data.

The results presented in the previous section suggest that the use of the prior is cer-
tainly worthwhile. From the prior (red) curve in figure 4.17, I = 10 seems reasonable.
Using the algorithm to decompose the data into 10 processes we observe the normalised
v, values seen in figure 4.19. The samples are in the order in which they are presented

in the original paper [21].

First we observe that the clustering by dendrogram is accurately reproduced by latent
process decomposition. One notable difference is that the last two entries for the small
cell carcinoma grouping are placed with the adenocarcinoma cluster 2 by latent process
decomposition with high values of probability (close to one). For the original cluster-
ing by dendrogram these two samples are two adenocarcinomas inaccurately placed by
the dendrogram in a cluster with small cell carcinomas. This difference is therefore in
favour of latent process decomposition and it is also important : the treatment regime
for small cell tumours is distinct from that for non-small cell lung cancers (i.e. adeno-
carcinomas, squamous and large cell tumours) with a pronounced initial susceptibility

to chemotherapy. For latent process decomposition we find that the adenocarcinoma
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cluster 1 is decomposable into processes 1 and 2 and the squamous cell carcinomas
are decomposable into processes 5 and 6, both of which have little commonality with
any other tumour types in the dataset. This strongly suggests further taxonomic de-
composition into subtypes. However, this possibility should be treated with caution:
decomposition into sub-processes could also mirror the different stages of a particular

subtype, for example.

In [21] genes were extracted from the data in a supervised approach that distinguished
well between the different adenocarcinoma clusters. We can perform the same task
directly from the latent process model without employing knowledge of class labels as
we will now illustrate. Suppose that we are interested in the difference between process
1 in figure 4.19 and process 4 (these 2 processes have been chosen as they correspond to
clusters defined in [21] and hence we can compare with their interpretation - the same
method could obviously be applied to any pair of processes.). The Z score introduced
in the previous section gives a measure of the difference between two normal distribu-
tions. Table 4.2 shows the top ten genes ranked by their difference across processes 1
and 4 (adenocarcinoma 1 and adenocarcinoma 3). Of these top genes, numbers 1, 2
and 10 were explicitly mentioned in [21] as being significant. Importantly, and unlike
n [21], these features have been extracted with no prior knowledge of the class mem-

berships?.

Finally, as with the prostate analysis, we should use the held-out likelihood to compare
the LPD method with Naive-Bayes. Again, we will use the maximum likelihood method
to train both models to ensure a fair comparison. The results can be seen in figure
4.20. As with prostate, we see that although the difference between the two methods

is small, LPD tends to over-fit less quickly as K increases.

2For a more complete list and comparisons between other processes see
http://www.enm.bris.ac.uk/1lpd
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Fig. 4.19: Normalised ~y, values for 10 process decomposition of the lung cancer data. Each

column corresponds to one sample and each row corresponds to one component of 6.

‘ Rank ‘ Name ‘ VA ‘
1 ESTs Hs.11607 2.5462
2 Solute carrier family 7, member 5 2.1824
3 Transmembrane, prostate androgen induced RNA 1.8716
4 Trophinin associated protein (tastin) 1.8706
5 Fructose-1,6-bisphosphatase 1 1.7742
6 Epididymal secretory protein (19.5kD) 1.7589
7 Phosphofructokinase, platelet 1.7040
8 ESTs Hs.76728 H00660 1.6998
9 Solute carrier family 2, member 1 1.6893
10 Protein tyrosine kinase 7 1.6774

Tab. 4.2: Top lung genes, ranked by Z.
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Fig. 4.20: Held-out likelihood for maximum likelihood LPD (red) and Naive-Bayes (blue)

for various value of K.
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4.8.3 Lymphoma

Finally we considered the Lymphoma dataset of Alizadeh et al [4] which consists of 96
samples of normal and malignant lymphocytes. In this study the authors used samples
from diffuse large B-cell lymphoma (DLBCL), the most common form of non-Hodgkin’s
lymphoma in addition to including data for follicular lymphoma (FL), chronic lympho-
cytic leukemia (CLL) and other cell types. In Figure 4.21 we show the hold-out likeli-
hood with 10-fold cross validation with and without priors on the parameters. Using
K = 10 we can cross-validate over different values of the variance prior parameter s,

the results of which can be seen in figure 4.22.
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Fig. 4.21: Cross-validation over the number of latent processes without priors (blue) and

with priors (red).

As with the lung results in the previous section, when a prior is used, the cross-
validation procedure across the number of processes does not give a defined peak. It
tends to plateau and as such, gives a minimum number of processes to use. In this case,
this minimum is around ten processes. A decomposition into K = 10 processes (using
the value of s that gave the maximum in figure 4.22) can be seen in figure 4.23. The
samples are presented in the same order as [4] with samples 1 to 16 largely consist of
DLBCL with samples 1 and 2 consisting of two DLBCL cell lines (OCI Ly3 and Ly10)
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Fig. 4.22: Hold-out likelihood for lymphoma data versus s, the variance prior parameter.

while 10 and 11 are tonsil germinal cell samples. Samples, 17 to 47 consist of DLBCL,
samples 48 to 57, 58 to 63 and 65 to 70 consist of blood B and other samples, sample
64 is the OCI Lyl cell line, sample 71 is a single DLBCL sample placed in with this
general cluster of blood B and other tissues, samples 72 - 80 are follicular lymphoma
(FL), samples 85 to 95 are CLL and 96 is a lone DLBCL sample. The decomposition
agrees well with the structure obtained using a dendrogram [4]. The breaking up of the
DLCL samples into several processes suggests some sub-structure, something which is
backed up by discussion in [4]. It is also worth looking at some of the areas where LPD
and dendrograms differ. For example, sample 71 (DLCL) is now partly grouped with
the other DLCL samples and not the FL samples as it was with the dendrogram. Also,
process 6 appears to bring together the OCI samples, something which the dendrogram
failed to do.

Finally, as with the previous examples, in figure 4.24 we compare the held out likelihood
for LPD with that for the Naive-Bayes model. As in the previous examples, we see
that LPD does not over-fit as quickly and suggests a greater number of processes than
the naive-Bayes model. It also gives a higher maximum value, suggesting it is better

suited to this particular data.
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4.8.4 Yeast Cell Cycle

The first yeast data set we shall use is the yeast cell cycle data set of Spellman et
al [71]. The aim of this study was to investigate which yeast genes showed periodic
expression changes during the cell cycle. Microarrays were used that covered the whole
of the yeast genome - some 6200 genes. Note that for this dataset, we are performing

the decomposition in gene space.

Figure 4.25 shows how the held-out likelihood varies with K for the maximum likelihood
LPD, Naive-Bayes clustering (as described in appendix B) and the model proposed by
Segal et al [67]. We can see that LPD gives significantly higher likelihood than either
of the other two methods. It is worth noting that the cross-validation on the Segal
model does not go over the same range as for the other two models. Each gene/process
combination in the Segal model is described by a single binary variable - i.e. 1 if that
gene belongs to that process, 0 otherwise. Therefore, assigning genes to processes re-
quires a search through all 2X combinations; something that rapidly becomes infeasible
as the number of processes is increased. Various heuristics could be used to arrive at
an approximation, however, they could not possibly improve the solution and as such
it was not necessary to use them to increase the number of processes above 10. Figure
4.25 shows that for this dataset between 5 and 10 processes give the highest predic-
tive likelihood. From the well-characterized biology of the experiment we expect one
process corresponding to each of the known cell cycle phases (G1, S, G2, M, MG1,
as defined in the original paper [71]) plus a small number of ”classifying” processes

distinguishing between the four different synchronisations used in the experiment.

Figure 4.26 shows the ten processes defined by LPD. It can easily be seen that processes
1 and 3 represent ” classifying” processes that characterise alpha factor/elutriation syn-
chronisation and cdc15 synchronisation respectively. Processes 2, 4, 6, and 8 correspond
to cycling processes and each can be uniquely mapped to one of the major cell cycle
phases by reference to the biological information given in [71] (highlighted in fig. 4.26).
The fifth cell cycle phase, G2, which is very short in exponentially growing yeast cul-

tures, is not recovered as a distinct process but can easily be obtained by the linear
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Fig. 4.25: Cross validation on yeast cell cycle data for LPD (top curve), Naive Bayes (middle

curve) and the Segal model (bottom curve).

combination of the adjacent S and M phases (not shown). The remaining processes (5,
7,9, and 10) seem to be dominated by noise and experimental artifacts (particularly in
process 7). This emphasises that the identification of the most parsimonious number
of latent processes is an extremely useful feature of the LPD approach. This would
be even more important in experiments without previous knowledge of the underlying
process structure, where the identification of the really informative processes would

not be as easy as in the present test case.

From a biological point of view it is particularly noteworthy that the cycling pro-
cesses were identified without any prior reference to the time-series structure of the
experiment. The original publication used Fourier transformation to determine the
expression peaks of cyclically expressed genes and Pearson correlation with known cell
cycle-regulated genes to assign them to cell cycle phases. In the case of LPD, the same
can be achieved by reference to the gene-specific variational parameter vy,. This is
shown in figure 4.27, where the expression of a classical G1 phase marker gene (cyclin
CLN2) is indeed represented most strongly by process 2, which according to fig. 4.26

corresponds to peak expression in G1.
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Figure 4.28 shows a more complex example of the power of this approach. The histone
genes, which code for the main protein component of chromosomes, are known to be
most strongly expressed in S phase, when new chromosomes need to be assembled.
Indeed, fig. 4.28 shows that expression of one representative histone (H1) is dominated
by the S phase-specific process 8 (compare fig. 4.26). However, there are also significant
contributions by processes 2 and 6 (G1 and M phase) and the measured expression
profile (solid line in fig. 4.28, lower panel) shows clearly that this specific histone has a
much broader expression range that extends well beyond S phase. This is not entirely
unexpected as the production of histone proteins should well precede the replication
of DNA that defines S phase.

84



4.8. EXPERIMENTAL RESULTS
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Fig. 4.26: The ten processes identified by LPD of the yeast cell cycle. The cycling processes

can be seen to be peaking in the various phases of the cell cycle as highlighted on subplots

2,4, 6 and 8. The four different synchronization methods are indicated at the top.
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CLN2 - YPL256C

Fig. 4.27: The expression levels of the G1-specific cyclin CLN2 YPL256C peaks in G1 phase
(lower panel, solid line). The dotted line is the sum of the mean for each process weighted
by the value of the gene specific variational parameter for each process (top bar chart). In
this case it can be seen that the second process profile (G1 phase) is indeed dominant for this

gene.

86



4.8. EXPERIMENTAL RESULTS

HHO1- YPL127C

Fig. 4.28: The expression levels of the histone H1 gene (YPL127C) peaks in S phase (lower
panel, solid line). The dotted line is the sum of the mean for each process weighted by the
value of the gene specific variational parameter for each process (top bar chart). In this case
it can be seen that a combination of the second, sixth and eighth process profiles is required
for this histone. This combination corresponds to the G1, M and S phase processes identified
by LPD (figure 4.26).
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4.8.5 Yeast Environmental Stress

For this example we have used the yeast dataset of Gasch et al. [22]. In this study
c¢DNA microarrays were used to determine temporal alterations of yeast gene expression
levels in response to a variety of environmental changes such as heat shock, hydrogen
peroxide, amino acid starvation, etc. 142 samples were analysed with whole-genome

microarrays. Figure 4.29 shows that the highest predictive likelihood is obtained using
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Fig. 4.29: Cross validation on yeast shock data for LPD (red) and Naive Bayes (blue).

between 10 and 15 processes. Fig. 4.30 illustrates the processes for X = 15. It can
be seen that this number of processes is probably too large, as several of them appear
to be very noisy and partially redundant (e.g. processes 4, 5, 6, and 11). This again
highlights the importance of being able to identify the most parsimonious number of
processes by LPD. However, it is also obvious that even with the large number of pro-
cesses a number of them clearly dominate certain types of experiment. E.g., process 9
is strongly “induced” during the entry into stationary phase. It can also be seen that
the same process contributes significantly to the late stages of nitrogen starvation as
would be expected based on the biology of the experiment: Stationary phase is char-

acterised by the depletion of resources including nitrogen.
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In fact, many experimental conditions in this dataset are best described by a com-
bination of processes, while several processes contribute to a variety of experimental
conditions. Again this is expected biologically: All the experimental treatments in this
study involve stressful conditions. Many of the stresses will affect a number of general
processes (such as starvation or protein denaturation). On the other hand, the intense
stress will affect each sample in various aspects of its biology. Such an observation
would not be easily possible based on standard clustering results. Furthermore, just as
in the cancer studies, the probabilistic representation provided by LPD could directly
be used to identify the specific genes that dominate each of the distinct types of stress

response.
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Fig. 4.30: The variational parameters for a fifteen-process LPD of yeast environmental
stress. The ticks on the horizontal axis correspond to the following experimental conditions
in order; heat shock, sorbitol, H202, menadione, DTT, DTT-2, diamide, sorbitol-2, osmotic
stress, amino acid starvation, nitrogen depletion, diauxic shift, stationary phase,stationary

phase-2,dby,msn2, carbon source, cold stress, cold stress-2.
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4.9 LPD FORMULATION FOR CESH

4.9.1 CESH - a brief introduction

Microarrays allow us to measure the expression levels of thousands of genes simulta-
neously and as we have discussed previously, this has been shown to be very useful in
classifying tumours and predicting clinical behaviour. However, there are drawbacks to
the microarray method. Firstly, the data collection process is both time consuming and
expensive. Although this has not stopped its extensive and succesful use in research,
it currently renders it impractical as a diagnosis tool. Secondly, as we describe in this
thesis, the analysis and interpretation of thousands of noisy data points is far from

trivial.

CESH (Comparative Expressed Sequence Hybridisation) [45] has been developed as a
rapid expression profiling technique. Rather than measuring the expression of particu-
lar genes, expression is measured directly from the chromosomes, identifying regions on
the chromosome that correspond to differential gene expression. As with microarray
experiments, we require a control sample as well as our sample of interest and these
are labelled with different dyes and hybridised to normal chromosomes. The ratio of
dye intensities is then used as a measure of expression. If a particular region has sig-
nificantly high expression, it is labelled +1, significantly low —1 and everything else
is labelled 0. The measurement process is significantly faster than that for microarray
data and the dimensionality of the data produced is roughly a factor of 10 less than
standard microarray experiments. CESH also has the added advantage that only very
small quantities of RNA are required and so the technique is particularly useful for

small samples.

This descrete form of data is obviously not suited to the LPD formulation that we
have described thus far. However, in our full expanded bound on the log likelihood
(equation 4.12) we can see that p(egq|ftgr, 0gx) only appears in one term and hence only
has an effect on the updates for its own parameters and the update for Q)4x,. Addition-

ally, the Qux, update (equation 4.13) makes no explicit assumptions about the form of
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P(€galttgk, ogr). Therefore, we can plug-in a new parametric form and derive new fixed

point iterations.

The CESH data is discrete and has three possible states - normal, over-expression and
under-expression. Therefore, the most obvious choice of distribution is a multinomial
across these three states. If we define a 3 element binary vector v¢, to denote the state
of region g on array a as [1,0, 0] if the region is under-expressing, [0, 1, 0] if it is normal

and [0, 0, 1] for over-expressing then we have the following form for our probabilities

3
P(Vga|Pgk) = H(p;k)%a (4.27)
i=1
where we have used the superscript to denote particular elements of a vector. Our new

parameters, pzk represent the probability that region g is in state ¢ in process k.

Following an identical procedure to the gaussian LPD described previously (decom-
posing over arrays and not genes), our updates for these parameters are obtained by

differentiating the following expression
g A K 3
) MMTERINERY) oP) (429
g=1 a=1 k=1 i=1

where the Lagrangian multiplier A has been introduced to ensure that the summa-
tion constraint over the multinomial probabilities is satisfied. Differentiating this with

respect to p_f]k and re-arranging results in the following update

(4.29)

A )
) 221 Qagkv_;a
a=
p;k = A

2:21 Qagk
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The only other change in the updates is in the equation for )44. Trivially, this becomes

P(Vga|Pgr) exp{Ep(a)y,)[log Ok]}

Qugt = — (4.30)

kgl P(Vga|Pgi') eXp{Ep(Ol”rg) [log 6]}
and similarly, the likelihood approximation becomes

g | M [A X .
L~ Z log N Z [H ZP(WJP?;U%] : (4.31)

g=1 n=1 La=1 k=1

Everything else remains unchanged.

Figure 4.31 shows how the held-out likelihood varies as K is increased from 2 to 10
for soft tissue sarcoma samples. Unlike the curves for the microarray data, we do not
observe a single well-defined peak, rather the likelihood is reasonably flat until IC = 4
processes and then the begins to drop suggesting the model is over-fitting. A I =4
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Fig. 4.31: Held-out likelihood versus K, the number of processes for the CESH data.

process decomposition of the CESH data can be seen in figure 4.32. We can see that

some of the class structure present in the data has been uncovered but the results
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Fig. 4.32: K = 4 process decomposition of the CESH data. 1 corresponds to Leiomyosarcoma

samples, 2 to Liposarcoma and 3 to Malignant Fibrous Histiocytoma.

are far from convincing. Unfortunately, due to the present lack of CESH data, it is
impossible to say whether or not this poor performance is due to the choice of model or
volume of data and when more data becomes available it will be an interesting research
direction. As with the gaussian LPD model, it may be beneficial to place priors on
the model parameters. In this case, given that the parameters are multinomials, the
priors would be Dirichlets. Again, these enhancements to the model will be interesting
to persue when more data becomes available. The details of the changes to the update

equations required to incorporate such priors are given in appendix E.

4.10 CONCLUSIONS

In this chapter, we have presented a new framework (LPD) for the analysis of mi-
croarray data. We have argued that this new method overcomes the limitations of
standard clustering techniques - for example, the restriction of data points to single
structures, the inability to objectively assess the number of clusters in the data and
the lack of transparency. Using datasets from various forms of cancer and the yeast

(Saccharomyces Cerevisiae) we have demonstrated how, in an unsupervised manner,
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LPD is able to successfully extract biologically relevant genes and processes. LPD is
not restricted to microarray data. The manner in which the assumed probabilistic form
decouples from the rest of the expressions allows any particular form to be used, so
long as it results in tractable updates. This is demonstrated with the description of a
model that could be used for CESH data. Finally, there are several ways in which the
basic LPD model could be enhanced. One possible extension is the use of a mixture
of Dirichlet priors rather than an individual one. Details of such a model are given
in appendix D. Experimentation showed that such a model didn’t offer any real im-
provement over the original model. However, as more data becomes available it may

be worth returning to.
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CHAPTER 5

ESTIMATING SAMPLE SIZE

REQUIREMENTS

5.1 INTRODUCTION

In recent years, the application of machine learning algorithms to DNA microarray
data to perform cellular classification for various tumour types has been shown to have
both statistical and clinical significance. For example, investigations into leukemia
[23], lymphoma [68], brain cancer [58], lung cancer [6] and the classification of multiple
primary tumours [60, 59, 81] have shown how classification and clustering algorithms
have been able to distinguish between different classes of samples and even discover
previously unknown disease subtypes. Given a particular DNA microarray dataset
and having performed this initial classification, it is reasonable to question how much
improvement in performance could be obtained if more data were available - given a
current training set size p and generalisation error €, how big a training set p do we need
to obtain €. In other words, is it worth embarking on a larger study including more
samples to improve classification or make the results obtained more rigorous. The
ability to answer such a question potentially offers the experimentalist huge savings in

both time and money. This work aims to address the following questions
1. For a given number of samples, how significant is the performance of the classifier?

2. If the results are significant, can we predict the performance of the classifier when

presented with additional samples and will this performance improve?
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3. With new alternatives to microarrays becoming available, is it possible to compare

them with microarrays to discover which is more efficient?

In this chapter, we present the following novel work (published in [51]). Firstly, we
develop a simple methodology for assessing the significance of a particular classification
result. An inverse power law model is then constructed to model the error-rate as a
function of the training sample size. This model can then be used to extrapolate the test
error for larger sample sizes. Power calculations [3] are a standard way of estimating
sample-size requirements, however, there are two reasons why they are not applica-
ble here. Firstly, they rely on the assumption that the samples are independently
drawn from a Gaussian distribution. Clearly, this is not applicable here. Secondly,
they address the problem of determining the level of confidence in an empirical error

estimate whereas we are interested in how the error rate may decrease given more data.

It is important not to confuse this with the problem of calculating the confidence in a
particular error rate as described in [3] and [24] which compute bounds or estimates of
the deviation of the test error from its expected value as a function of the number of
samples. There have also been other studies more specific to microarrays which analyse
variations due to factors that can be addressed by experimental design or by the use of
replication [73, 37, 38]. Also, [43] looked at how replication and sample size can increase
the power of ANOVA models. However, none of these examples are particularly useful
in determining the future performance of a classifier when presented with more samples.
We will introduce a method that will enable us to predict dependence of generalisation
on sample size and test this method on eight different cancer data sets representing
a large spectrum of classification tasks. These range the from the relatively straight-
forward task of discriminating different tumour types to the more challenging task of
predicting the outcome of treatment. We shall see that this difference in classification

difficulty will be reflected in the number of training samples required for low error rates.

In the following section, we will motivate our learning model from a statistical me-
chanics perspective. In section 3 we will introduce our significance test for error rates.

In section 4 we present results obtained from the eight benchmark data sets whilst

98



5.2. A STATISTICAL MECHANICS MOTIVATION

in section 5 we use our methodology to compare the classification performance of mi-
croarrays with that of a new experimental technique - Comparative Expressed Sequence

Hybridisation (CE SH). In the final section we present our conclusions.

5.2 A STATISTICAL MECHANICS MOTIVATION

The probability approximately correct (PAC) formulation to learning theory enables
bounds to be derived on the number of training samples required to obtain generalisa-
tion error less than some arbitrarily small value e with probability greater than some
arbitrarily large value §. However these bounds tend to be very general and, as they
are derived in a worst case sense, tend to be far too pessimistic to be of any practical
use. For example, following Mitchell [50], we can derive the following bound. We wish
to determine the minimum number of training patterns p that, with probability greater

than ¢, give a generalisation error less than €. We make the following assumptions

e We are trying to learn a hypothesis ¢ from some set C given independent training

samples drawn from some stationary distribution D.
e Our choice of learning algorithm defines some finite hypothesis space H.
e Our learning algorithm is consistent - it is able to fit the training data perfectly.

Now, we define the version space as the subspace of all hypothesis in H that are
consistent with the training data. All consistent hypothesis that have error less than
€ must lie inside this version space. Therefore, we can restate our problem as that of
finding the number of training examples required such that there are no hypothesis in
the version space with error greater than e. A version space that contains no hypothesis
with error greater than e is known as e-exhausted. Haussler [26] proved that the

probability that the version space is not e-exhausted is less than or equal to

|H| exp{—ep}. (5.1)

We will now sketch the proof of this theorem, for a more detailed description, the

reader is referred to [50].
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The version space is not e-exhausted if there is at least one hypothesis h with error
greater than e that is consistent with all p training examples. The probability of a
hypothesis h that has error greater than € being consistent with a random training ex-
ample is at most (1 — €). Therefore the probability that it is consistent with p of them
is bounded above by (1 — €)?. Now, let us assume that & hypothesis exist with error
greater than e. Obviously, £ < |#| and therefore the probability of the version space
not being e-exhausted is upper bounded by |H|(1 — €)?. Using the standard inequality
that if 0 < € < 1, (1 — ¢) < exp{—¢}, the probability that the version space is not

e-exhausted is less than or equal to |H|exp{—ep}.

Now, we would like to bound this quantity so that the probability of failure (i.e. version

space not e-exhausted) is below some pre-determined quantity 9.
|H| exp{—ep} < 4. (5.2)

Solving this for p gives us )
p> z(ln |H| + In(1/6)). (5.3)

Such bounds tend to be very pessimistic due to the |H| term as realistically £ << |H]|.
Therefore, although theoretically, such bounds are very useful, in a practical sense they

are likely to be far too vague.

The alternative approach is taken from statistical mechanics. Statistical mechanics
is a field of theoretical physics used to model complex systems with large numbers
of variables composed of many interacting entities. In particular, the thermodynamic
limat of statistical mechanics enables us to simulate performance for small sample sizes
relative to the number of tunable parameters. This approach has been successfully
applied to a number of neural network models and learning algorithms (for example
[14, 55, 17]) and we will briefly describe the overall methodology with respect to the

linear perceptron as introduced above.
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Consider the following formulation of the learning problem. We have a teacher T and
a student S with the same parametric form. The goal of any learning (specifically
for classification) algorithm is the following: given a set of training examples and
corresponding labels from the teacher, train the student such that it gives optimal
performance (i.e. agrees with the teacher) on further, unseen examples. For illustration,
consider the linear perceptron (we will assume that the bias term has been included
in the weights). We are interested in learning a set of weights w € RY (where N is
the dimensionality of our input space plus the bias) which will provide the following
decision function

y; = sign(w - x;). (5.4)

As this set of weights is the only tunable parameter in both our teacher and our stu-
dent, for convenience, we will denote the teacher’s weights by T and the student’s by
w. We are interested in obtaining a functional mapping between the number of train-

ing patterns and the generalisation error of the student.

The argument inside the sign function in 5.4 is invariant under any positive re-scaling
of the weight vector, i.e. w — Aw for any A > 0. Hence, we can implicitly fix a scale
by, for example, selecting w? = N, where N is the input dimensionality. Theoretically,
given a set of training patterns X', the easiest way to set the weights of our student, w
is to simply pick a student at random from the version space (the space of all students
consistent with the teacher over the training patterns) - Gibbs learning. When a new
training pattern is presented, some of the weight vectors inside this version space may
become inconsistent with the teacher and the size of the version space will decrease. As
this space decreases, the average student will overlap more and more with the teacher
and hence the generalisation error will drop. Therefore, if we can obtain an expression
for the size of the version space after say p patterns, we can obtain an approximation

for the generalisation error.

For a particular weight vector, w, teacher T and data set X = x,...,x, the following
indicator function returns 1 iff the output of the student perceptron is consistent with

that of the teacher perceptron for all data points in the set
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o) )] e

where 6(z) = 1 if z > 0 and 0 otherwise. Therefore, the volume of the version space

Vp for a particular set of p patterns and a particular teacher is

= L) o

where 0(z) = 1 if z = 0 and 0 otherwise.

Taking the expectation of this quantity with respect to the training patterns and pos-
sible teachers, and then taking the limit N — oo we obtain the so called annealed
approximation. In this limit it can be shown that the version space is dominated by
weight vectors with one particular value of generalisation error (see Engel [17] p. 16
for more details). Therefore we have an approximation for the generalisation error as
a function of sample size, p. However, this approximation is not particularly accu-
rate. By taking the expectation of V}, with respect to the training samples and possible
teachers, we have calculated the mean of a product of many random variables. Such
products generally have distributions with very long tails such that the mean and most
probable value (mode) do not coincide - i.e., they are not self-averaging. This problem
is overcome by finding the expected value of InV}, and then exponentiating the result.
Taking the logarithm leaves us with a sum over random variables, something that is

generally self-averaging.

Calculation of E[InV}] is far from trivial and relies on the so-called replica trick. This

allows us to transform our problem from one of calculating E[ln V] to one of calculating

E|lV'* -1
lim i_
n—0 n

(5.7)

Further details of the use of the replica trick to perform this calculation are beyond

the scope of this thesis and the reader is referred to [17] for details.
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5.2. A STATISTICAL MECHANICS MOTIVATION

The method described above for Gibbs learning can be extended to other perceptron
learning algorithms. In the large 8 limit (8 = p/N), Opper et al [55] found that the
generalisation error of an optimal perceptron scales as 0.5p~! (as the value of N is
fixed, we can assume the functional dependence on the number of patterns rather than
(). Similarly, the Bayes optimal classifier (corresponding to the student at the centre
of mass of the version space) scales as 0.44p~* ([54]). For the Adaline rule, we get a
scaling of 0.24p~'/? and Hebb scales as 0.40p—'/? (see [77] for a good review). Hence it
appears that the dependence on p is approximately ap @ (where « approaches 1 for the
more efficient rules) and this looks like a good basis for our functional form. However,

there are still issues that need to be addressed:

e These solutions are for the perceptron and not our algorithm of interest - the

Support Vector Machine.

e These relationships are in the large 8 limit so they hold when the number of
patterns is much greater than the number of features - clearly not the case with

microarray data.

e They assume a perfect teacher - i.e., the training samples presented are noise

free.

The first issue is easily overcome. Dietrich et al [15] argue that a linear support vector
machine has the same generalisation error dependence as the linear perceptron. We
can rather subjectively overcome the second issue as follows. In the large 8 limit, the
generalisation performance can be extracted explicitly, as we have seen. In the small
limit, we have to resort to numerical techniques to extract a model of the behaviour.
When this is done, we find that the best fit of our chosen functional form gives us a
very good fit. Figure 5.1 shows the numerical solutions for a range of 8 values and
also the best fit of our functional form. As can be seen from the figure, the two curves
coincide and the fit is very good over a large range of 5 values and not just in the large
B limit. We can also overcome the final issue. The effect of adding white noise to the
training examples suggests that we will never be able to obtain perfect performance.
This is equivalent to adding a constant term to our function that determines the best

error rate achievable.
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0.25

Fig. 5.1: Theoretical solution for various values of 8 and best fit curve of the form ap™* +b.

To summarise, the arguments presented above, lead us to the following functional form

relating sample size and generalisation error
e(p) =ap™+0b (5.8)

where e(p) is the expected error rate after presentation of p examples, a is the learning
rate, « is the decay rate and our noise term b is the Bayes error - the minimum error
rate achievable. These constants will change for datasets of different difficulties and
levels of noise and so we will proceed by using empirical error rates from each dataset

for various sample sizes to fit the parameters of the model.

5.3 METHODOLOGY

In order to fit our error model to particular datasets, we need to build classifiers of
various sample sizes to evaluate the required empirical errors. This is achieved through
sub-sampling of our complete dataset of size P into a training set of size p and a test set
of size P —p. This is repeated 7T times for each sample size p. The average error across
these 717 realisations is used as our error estimate and the 25th and 75th percentiles are

used to define an error envelope. This average is an un-biased estimate of the true error
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- see appendix A for details. The 25th and 75th percentiles are used in place of the vari-

ance because the variance tends to be optimistically biased - see appendix A for details.

Before we can fit our model to these empirical errors, we need to assess whether or
not they are statistically significant. This is particularly important for small sample
sizes; without enough samples, the classifier will not be able to learn any structure and
is effectively random. We can evaluate this significance by comparing the measured
error with the error obtained by random classifiers realised by training with the same
input vectors but permuted labels. For each of our 7T} realisations of size p, we perform
T, permutations of the labels to give Ty random errors. For each size p we can now

construct the following empirical distribution for the random error

T T>

P;‘an(x) — T11T2 Z Z 0(:5 - ep,i,j) (59)

=1 j=1

where 0(z) =1 if z > 1 and 0 otherwise. The significance of the classifier is then given
by Pj"(p), which is the percentage of random classifiers with error rate smaller than
€p, Where e, is the average error of the actual classifier. It is informative to illustrate
this with a small fictitious example. A dataset was created with P = 200 and N = 100
features. The first two features were separable Gaussians whilst the remaining 98 were
noise. With 77 = 1 and 75 = 100, the actual error and random error distributions were
calculated for p = 5 and p = 50. The random distributions can be seen in figures 5.2
and 5.3 respectively. The actual errors for the two values of p were 0.4205 and 0.1467
corresponding to significances of 0.2 and 0. Throughout this investigation we will use
a significance level of 0.05 as our cutoff - that is, we will assume a classifier is learning
something if its performance is better than that of a random classifier at least 95% of
the time. In this example, we can conclude that the classifier becomes significant for p
between 5 and 20.

Once we have significant errors for a range of p values, we can fit our mean and 25th

and 75th percentile curves. Recall that our chosen functional form is

e(p) =ap™® +b. (5.10)
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Fig. 5.2: Empirical distribution of random errors for classifiers using just 5 training points
(out of 200) from the toy dataset. The z-axis gives the error rate and the y-axis gives the

probability that the error is less than . The red circle gives the error rate without permuting
the labels

Fitting the parameters of this from a training set of {(pi,é€p,),.-., (pr,€p,)} pairs is

found by minimising

min Y (ap;® +b—¢,,)° (5.11)

a,a,b 4

subject to
a,a,b > 0. (5.12)

This optimisation is not straightforward as there are many minima. However, the
problem becomes convex when b is fixed. Therefore, with b fixed, we can take logs and

solve the equivalent problem

T

min ¥ (log(a) — alog(p;) + log(b — &,,))? (5.13)

a’a)b .

subject to the same constraints. To find the full solution we simply solve this problem

for various values of b and then perform a line search.
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Fig. 5.3: Empirical distribution of random errors for classifiers using 50 training points
(out of 200) from the toy dataset. The z-axis gives the error rate and the y-axis gives the
probability that the error is less than . The red circle gives the error rate without permuting
the labels

Therefore, our complete methodology for a two-class problem is:
1. Sub-sampling and significance testing

(a) Sub-sampling

i. For a dataset D, with P,, and P,, samples from classes 1 and 2 respec-
tively, select 10 training set sizes pi,...,pj,...,Ppio over the interval
[10, P — 10].

ii. For each training set size, randomly sample p; samples from class 1 and
class 2 subject to the requirement that % == %' Repeat this T times.

Call the ™ train test split for size p, Sp;.

iii. Train and test a classifier on each split dataset S,; and call the corre-

sponding error ey.

(b) Permutation test
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i. For each of the Sp; train test splits, randomly permute the training
labels T5 times. Call these new datasets i
ii. Train a classifier on each of these datasets and evaluate its error. Call
this error ey
(c) Significance Calculation
i. For each training set size p, construct the empirical distribution defined
by 5.9.

ii. From this distribution function, evaluate the smallest value of p for

which a significance level of s is achieved (typically s = 0.05).
2. Learning Curve Generation

(a) For each p above the minimum p calculated above, calculate the mean error
e, and the 25th and 75th quantiles.

(b) Using the set {(p1,€p,);---, (Pr, €p,)} of sample sizes and average errors, fit

the learning curve by

(c) In the same manner, using the set of sample sizes and quantiles, fit the

curves corresponding to the 25th and 75th quantiles.

5.4 APPLICATION TO CANCER CLASSIFICATION PROB-
LEMS

To illustrate the procedure described in the previous section, it has been applied to
eight different cancer classification problems. These problems fall into two broad cat-
egories - discrimination between tumour morphologies (e.g, tumour versus normal or
between different diseases) and predicting treatment outcomes. The former is generally
considered an easier classification task. As such, we find that statistical significance
is reached for small sample sizes and therefore even the smaller of these datasets are
sufficiently large to enable construction of a learning curve. The latter problems tend
to be much harder and require presentation of many more samples to reach statistical

significance. Sadly, the number of samples in the dataset is often barely larger than the
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number required to reach significance and therefore the number of points that can be
used to fit the curve is very small. In these cases, it can be useful to relax the method-
ology slightly and fit the curve with points that are not statistically significant. Results
obtained in this manner should be treated with caution although may still be useful
in an exploratory context. Although it didn’t happen for any of the eight datasets
here, it is possible that statistical significance will never be reached with the samples
available. This may be due to the difficulty of the problem and with more samples,
significance could be reached. However, it may also be that the measurements being
taken do not convey the information required to perform the classification. Either way,
fitting a learning curve is irrelevant as it is not clear whether any learning is in fact
taking place. Indeed, it is not clear whether any learning could ever take place. In
the next few sections, we describe and interpret the results obtained for each of our
eight datasets. Table 5.2 summarises the learning curve parameters obtained for each

dataset and table 5.3 comments on the results obtained.

‘ Dataset ‘ 25th Quartile ‘ Mean ‘ 75th Quartile ‘
Cancer vs. normal 4.7% 7.3% 8.9%
Leukemia, AML vs. ALL 0.6% 2.5% 3.4%
Colon, Cancer vs. normal 4.8% 9.0% 12.4%
Ovarian, Cancer vs. normal 0.03% 1.2% 1.8%
Lymphoma, BLBC vs. Follicular 0% 0.9% 1.5%
Brain, outcome 14.5% 16.1% 23.8%
Lymphoma, outcome 11.2% 17% 24.3%
Breast, outcome 24.3% 32.3% 40.4%

Tab. 5.1: Extrapolated error rates at 400 samples
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‘ Dataset a ‘ o ‘ b
Cancer vs. normal 25th quantile | 1.89 | -0.63 | 0.003
Mean 1.42 | -0.52 | 0.0010
75th quantile | 1.17 | -0.43 | 0.000
Leukemia, AML vs. ALL 25th quantile | 39.8 | -2.3 | 0.0006
Mean 0.771 | -0.65 | 0.009
75th quantile | 0.884 | -0.6 | 0.010
Colon, Cancer vs. normal 25th quantile | 0.439 | -0.37 | 0.00
Mean 0.480 | -0.28 | 0.00
75th quantile | 0.500 | -0.23 | 0.00
Ovarian, Cancer vs. normal 25th quantile | 10.7 | -1.76 | 0.00
Mean 0.736 | -0.69 | 0.00
75th quantile | 0.995 | -0.67 | 0.00
Lymphoma, BLBC vs. Follicular | 25th quantile | 8.99 | -2.48 | 0.00
Mean 0.57 | -0.70 | 0.001
75th quantile | 0.671 | -0.64 | 0.00
Brain, outcome 25th quantile | 1.06 | -0.37 | 0.004
Mean 1.12 | -0.33 | 0.006
75th quantile | 0.980 | -0.24 | 0.00
Lymphoma, outcome 25th quantile | 1.23 | -0.41 | 0.008
Mean 0.943 | -0.30 | 0.01
75th quantile | 0.872 | -0.21 | 0.00
Breast, outcome 25th quantile | 0.532 | -0.14 | 0.01
Mean 0.485 | -0.07 | 0.01
75th quantile | 0.429 | -0.01 | 0.00

Tab. 5.2: Summary of learning curve parameters
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Dataset Size Size ‘Was Maximum | Actual | Extrapolated | Difference | Comments
for curve size used | error error
stat. fitted in fit
sig. with sig.
data
Cancer vs. nor- | 280 15 yes 210 7.0% 8.6% 2.6% A low error rate is achieved and exatrapolation
mal is reasonably accurate. Suggests error rates
< 0.07 are achievable with > 400 samples.
Leukemia, 73 10 yes 35 0.0% 5.6% 5.6% A low error rate is achievable, extrapolation is
AML vs. ALL quite pessimistic.
Colon, Cancer | 62 10 yes 50 16.3% 15.2% 1.1% Error rate of 0.16 is achieved, dataset is large
vs. normal enough for accurate extrapolation. Lower er-
ror rates < 0.09 may be achievable with > 400
samples.
Ovarian, Can- | 54 10 yes 40 5.6% 4.8% 0.8% Low error rate is achieved, extrapolation is ac-
cer vs. normal curate. It may be possible to get ~ 0 error for
larger dataset sizes.
Lymphoma, 53 5 yes 40 1% 4.7% 0.7% Low error rate is achieved and extrapolation
BLBC vs. is accurate. Additional samples may reduce
Follicular error to ~ 0.
Brain, outcome | 60 45 no 40 22% 29.6% 7.6% Dataset is too small for problem difficulty.
Learning curve is inaccurate but suggests er-
ror rates < 0.14 may be possible with > 400
samples.
Lymphoma, 58 50 no 40 23% 29.5% 6.5% Dataset is too small for problem difficulty.
outcome Learning curve is inaccurate but suggests pos-
sible error rates < 0.17 with > 400 samples.
Breast, 78 65 no 70 30% 36.3% 6.3% Dataset is too small for problem difficulty.
outcome Learning curve is inaccurate but suggests error

rates < 0.32 with > 400 samples.

Tab. 5.3: Summary of results and comments
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5.4.1 Tumour versus Normal tissue

The first dataset is ([59]) consists of 16,063 expression measurements for 280 samples.
180 of these samples are from different primary tumours (for example, prostate, lung
etc) and 100 healthy samples from the same tissues. A Support Vector Machine (SVM)
(see chapter 2 for details and references) with a linear (i.e. dot product) kernel was
used. We used all of the 16,063 features in the numerical experiments. Using our

significance test, we find that statistical significance is reached at 15 training samples.
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@ LOO error
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Fig. 5.4: Learning curves for the normal versus tumour data as different numbers of training

samples are used.

We are now able to create our learning model for this dataset. Error rates were es-
timated for 9 different values of n (n = 30, 40, 50, 60, 80, 90, 130, 170, 210) as well as a

leave-one-out error computed using all of the 280 samples.

Different numbers of these sizes were then used to construct learning curves to investi-
gate how the learning curve estimates improve as the size of the training set increases.
Four curves were created using a) the error rates for all training set sizes, b) the first

8 training set sizes, ¢) the first 6 training set sizes and d) just the first 4 sizes. The
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Fig. 5.5: Learning curve and empirical data for tumour versus normal data. Learning curve

has been learnt with all possible sample sizes.

resulting curves are shown in figure 5.4 along with the leave one out error with all 280
samples. As expected, as more and more training set sizes are used to fit the curve,
the model improved - i.e. the predicted error rate at 279 training samples approaches
the leave one out error. When all sizes are used, the actual leave-one-out error is only
approximately 2% less than the the predicted error. A plot of the learning curve ob-
tained when all sample sizes are used, and the empirical data that was used to fit the
curve can be seen in figure 5.5.
When all training set sizes are used to construct the curve, the fitted error rate expres-
sion is given by

e(p) = 1.42p~ %% 4+ 0.0098. (5.14)

For the 25th and 75th quantiles, the respective curves are given by

ess(p) = 1.89p~ %% + 0.0032 (5.15)
ers(p) = 1.17p~%* + 0.000. (5.16)

We can draw several conclusions from these curves. Firstly, the decay rate « is ap-

proximately 0.5 suggesting that this problem is reasonably difficult to learn. However,
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Fig. 5.6: Learning curves for the leukemia morphology data. Red circles show the empirical
error rates, the black curve gives the mean error curve, the blue curves show the 25th and

75th percentiles and the green square shows the LOO error.

the Bayes error terms are very close to zero suggesting that given enough samples,
very good performance is possible. The size of the envelope defined by the quantiles
is approx +2% indicating that the model is reasonably accurate. Approximations for
larger sample sizes can be obtained by substituting the required values of n into the

curve equations. For example, for n = 400 we have

e(400) = 7.3% (5.17)
e95(400) = 4.7% (5.18)
er5(400) = 8.9%. (5.19)

Therefore, the achievable error using 400 samples is 7.3 &+ 2.6%.

5.4.2 Leukemia morphology

In this dataset [23] we have 48 samples of acute lymphoblastic leukemia (ALL) and
25 samples of acute myeloid leukemia (AML). For each sample, we have 7,129 ex-

pression values. The classifier used was a Support Vector Machine with a linear
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Fig. 5.7: Learning curves for the leukemia morphology data. Red circles show the empirical
error rates, the black curve gives the mean error curve, the blue curves show the 25th and

75th percentiles and the green square shows the LOO error.

kernel and all 7,129 of the features were used. The sizes of training sets used were
n = 10,15, 20, 25, 30, 35 and only 5 samples were required to reach our 5% statistical
significance level. Figure 5.6 shows the empirical error values and the learning curves

for this dataset. The learning curve estimated from the empirical errors is
e(p) = 0.7706p~ "% 4 0.009. (5.20)

The decay and learning rates in this example show that the classifier learns more quickly
than in the previous example. This, coupled with the smaller number of samples
required to reach significance suggests a much easier problem. In fact, as can be seen
from the 25th quantile in figure 5.6, it is possible to get zero test error at about 73
samples. The quantile envelope is a lot larger than in the previous dataset - probably

due to the fact that we are using a much smaller range of data set sizes to fit our model.
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Fig. 5.8: Learning curves for the leukemia morphology data. Red circles show the empirical
error rates, the black curve gives the mean error curve, the blue curves show the 25th and

75th percentiles and the green square shows the LOO error.

5.4.3 Colon cancer

The colon cancer dataset [53] consists of 22 normal samples and 40 samples correspond-
ing to malignant tissue. For each sample, we have 2,000 expression values. Unlike most
other datasets, this data was subjected to the following pre-processing step - firstly, the
natural logarithm was taken and then an hyperbolic-tangent function was applied to
reduce the influence of outliers. This step was applied by the originators of the dataset.
Again, the classifier used was a Support Vector Machine with a linear kernel and all
2,000 features were used. Estimates of errors at n = 10, 15, 20, 25, 30, 35, 40, 45, 50 and
the learning curves along with the leave-one-out error are shown in figure 5.7. Our 5%
significance level is achieved at approximately 10 samples and the functional form of
the fitted learning curve is

e(p) = 0.4798p 277, (5.21)
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Fig. 5.9: Learning curves for the lymphoma morphology data. Red circles show the empirical
error rates, the black curve gives the mean error curve, the blue curves show the 25th and

75th percentiles and the green square shows the LOO error.

5.4.4 Ovarian cancer

This dataset [66] consists of 24 samples from healthy ovarian tissue and 30 from ma-
lignant tissue. There are 1,536 expression levels for each sample. Pre-processing for
this dataset involved adding 1 and then taking the natural logarithm of the expression
values. All 1,536 features were used and the classifier was again a linear Support Vector
Machine. As with colon cancer, statistical significance was reached at approximately
10 samples and n = 10, 15, 20, 25, 30, 35, 40 training sets were used to fit the learning

curve. Figure 5.8. The error function is given as

e(p) = 0.7362p 06864, (5.22)

5.4.5 Lymphoma morphology

The final morphology dataset [4] consists of 24 diffuse large B-cell lymphoma sam-
ples and 12 samples of follicular and chronic lymphocyptic. Each sample has 18,432

measured expression values and the data was pre-processed by taking the log, of each
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Fig. 5.10: Learning curves for the brain treatment outcome data. Red circles show the
empirical error rates, the black curve gives the mean error curve, the blue curves show the

25th and 75th percentiles and the green square shows the LOO error.

expression value. This is a standard technique as it preserves the symmetry between
over and under expression. A linear support vector machine was used to classify the
data and all 18,432 features were used. Training set sizes of n = 10, 15, 20, 25, 30, 35
were used and significance was reached for n > 5. Figure 5.9 shows the empirical errors

and learning curves for this dataset. The learning curve is given by

e(p) = 0.57p~ %™ 4 0.0006. (5.23)

5.4.6 Brain cancer treatment outcome

This dataset consisted of samples from patients with childhood medulloblastomas [58].
39 of the samples were from patients who reacted favourably to treatment (still alive
after two years) whilst the other 21 were from patients with a poor treatment outcome.
For each sample, 7,129 expression values were available. A linear support vector ma-

chine was used with 150 features chosen by the radius-margin criteria [10]'. Training

L The set of features is chosen to be that set that minimises the radius margin bound on the number
of leave-one-out errors
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Fig. 5.11: Learning curves for the lymphoma outcome data. Red circles show the empirical
error rates, the black curve gives the mean error curve, the blue curves show the 25th and

75th percentiles and the green square shows the LOO error.

sizes of n = 20, 25, 30, 35, 40 were used to estimate errors.

Statistical significance was reached with 45 training samples - almost the entire dataset,
and a larger size than the sizes for which the error rate was estimated. Therefore, we
cannot use the methodology as described so far. However, we can cautiously apply a
learning curve to the non-significant values as can be seen in figure 5.10. As one might
expect, the learning curve is quite inaccurate - it overestimates the leave-one-out error

by about 7%. The learning curve is given by

e(p) = 1.115p~ %% 4 0.006. (5.24)

5.4.7 Lymphoma treatment outcome

The samples making up this dataset all came from patients with diffuse large cell
lymphoma (DLCL) [68]. 32 of the samples were from patients with successful treatment
outcomes whilst the other 26 samples were from patients with poor treatment outcome.

Each sample consists of 7,129 expression values. A linear support vector machine was
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Fig. 5.12: Learning curves for the leukemia morphology data. Red circles show the empirical
error rates, the black curve gives the mean error curve, the blue curves show the 25th and

75th percentiles and the green square shows the LOO error.

used with 150 features again chosen by the radius-margin criteria [10]. Training set
sizes of n = 20, 25,30, 35,40 were used. As with the Brain cancer data, statistical
significance was not reached until nearly all of the data set was used (in this case,

n = 50). The learning curve is shown in 5.11 and it is given by
e(p) = 0.9431p~ %27 4+ 0.01 (5.25)

as expected, the curve is not very accurate and overestimates the error at 57 samples

(i.e. the leave-one-out error) by 9%.

5.4.8 Breast cancer treatment outcome

The final dataset contains expression levels of 34 samples from patients with breast
tumours that metastasized within five years of disease onset and the remaining 44 from
patients that were disease free for at least five years [75]. Each sample consisted of
24,624 expression values and again, a linear support vector machine was used to classify.

Sample sizes of n = 10, 20, 30, 40, 50, 60, 70 were used and statistical significance was
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achieved at approximately 65 samples. Again, true use of our methodology is not
possible but we can fit the learning curve using all values as above. The learning curve
can be seen in 5.12 and it can be seen from this plot that the curve is not particularly
accurate - overestimating the leave-one-out error by more than 6%. The functional

form of this curve is given by

e(p) = 0.4852p~ %073 4 0.01. (5.26)

5.5 USING LEARNING CURVES TO COMPARE EXPERIMEN-

TAL METHODS

In the previous section we investigated how our methodology could be used to predict
classification performance. Here we use it to compare classification performance be-
tween data generated with microarrays and that generated with a new experimental
technique, CESH [45]. For a brief introduction to the CESH technique, see 4.9.1. This
work has previously been published in [46] and a more comprehensive description of
the CESH method and the datasets used can be found there.

5.5.1 CESH v Microarray

Unfortunately, as it is such a new technique, the volume of CESH data available is
small compared to that for microarray. Also, there are no datasets available where
samples from the same tissues have been analysed using both microarrays and CESH.
This makes direct comparison between the two methods impossible. However, we can
compare projected error rates for CESH with those results obtained in the previous

section to get some idea of how much performance we are losing with the CESH method.

We applied our methodology to three CESH datasets. The first consisted of classifying
between rhabdomyosarcomas, leiomyosarcomas and prostate cancer, the second looked
at the sub-classification of rhabdomyosarcomas into alveolar and embryonal and the fi-

nal dataset involved predicting the treatment outcome of patients with Wilms tumours.
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Table 5.4 shows the learning curves and predicted error rates obtained in these in-
vestigations. Comparison of these values with those in the previous section shows us
that the performance with CESH is comparable to that obtained using microarrays.
Although far from conclusive, this is a very promising result and suggests that creating

and analysing further CESH datasets would certainly be worthwhile.

Dataset a o' b e(400)
Rhabdo, Leio, Prostate | 1.172 | -0.575 | 0 | 3.739 x 102
Alveolar vs. embyonal | 0.655 | -0.321 | 0 | 9.572 x 1072

Wilms outcome 0.747 | -0.544 | 0 | 2.869 x 1072

Tab. 5.4: Learning curves and error approximations for the CESH datasets.

5.6 CONCLUSIONS

In this chapter, we have introduced a novel methodology for estimating the statisti-
cal significance of microarray classification and predicting classification performances
if larger datasets were available. To illustrate its use, we have applied it to eight mi-
croarray datasets depicting two distinct problems. The first five datasets involved mor-
phological classifications - e.g. tumour versus non-tumour or discrimination between
different tumour types. The second set involved predicting the outcome of treatments.
From the results of the analysis, it can be seen that the inverse power law for modelling
generalisation as a function of sample size fits the empirical errors reasonably well. Par-
ticularly for the morphology examples, the error extrapolation is quite accurate whilst
for the treatment outcome, the accuracy decreases although results are still useful in
an exploratory sense. This decrease in performance is most likely due to the increased
complexity of the problems and limited dataset sizes. As one might expect, the more

training set sizes used to fit the learning curves increases their accuracy.

It is generally thought that the differences between classes in morphological classifica-

tion problems are much greater than those in the treatment outcome problems. This
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is shown in our results through the number of samples required to reach statistical
significance. In the morphological examples, significance was always easily reached
with 10-20 samples whereas in the outcome examples, 40-50 examples were typically
required. To be able to extrapolate reasonably well, the morphological datasets typ-
ically required 30-40 training samples while the treatment outcome problems would

typically need somewhere in the region of 75-100 samples.

Learning curves for the outcome problems were generally characterised by decay rates
close to zero whilst for the morphology problems, these values tended to be greater than
0.5 - again reinforcing the view that treatment outcome problems are harder to learn.
Along with the Bayes error, these decay rates can be used to compare the difficulty
of the problems. Figure 5.13 shows Bayes error versus the decay rate for the datasets
used here. Although the number of datasets studied is relatively small, we see that the
treatment outcome problems (blue) tend to be situated towards the right of the plot
and have higher inverse decay rates. This demonstrates the increased difficulty present

in these problems.

15
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Fig. 5.13: Bayes error rate (z-axis) versus inverse of decay rate (y-axis) for morphology

problems (red) and treatment outcome problems (blue).
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To summarise, our proposed methodology provides reasonably accurate predictions of
data set size requirements for cancer classification problems. In this sense, it can be
used as a rule-of-thumb when designing an experiment or be used once an experiment
has been completed to get an idea of whether or not it is worthwhile collecting more
data. It can also be used to evaluate the relative complexity of a classification task
and give some indication of how much noise is present in the data. In all of our
examples, we have used the support vector machine as our classifier but there is no
reason why the methodology presented could not be applied to any one of a number of
different classification algorithms and there is no reason to limit this approach to simply
classifying microarray data. Evaluating the learning curves for a variety of algorithms
and data types would provide useful insights into the efficiencies of both the algorithms
and the data types. Finally, we have used a new expression measurement tool (CESH)

to show how the learning curve methodology can be used to compare different data

types.
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CHAPTER 6

INFERRING REGULATORY NETWORKS

6.1 INTRODUCTION

The continued development of high-density microarrays in recent years is leading to
an explosive growth in gene expression data. This data provides measurements of the
expression of thousands of genes simultaneously and promises to be a very important
tool in furthering the understanding of organisms at a cellular level. Most analysis
of microarray data thus far has been interested in discovering differentially expressed
genes and grouping cell samples based on their expression profiles. For example, Bhat-
tacharjee et al [6] used hierarchical clustering to cluster microarray measurements for
various human lung carcinomas and from this clustering discovered previously unknown
sub-types and genes that were differentially expressed between them. Spellman et al
[71] used microarrays to discover 800 yeast genes that are regulated by the cell cycle.
Recently, however, there has been a shift towards trying to understand how the syn-

thesis of proteins is regulated and how this synthesis is affected by external stimuli.

Regulation can occur at most of the distinct stages present in protein synthesis. How-
ever, the transcription of mRNA is possibly the most influential and is itself affected
by proteins that bind themselves to the promoter regions upstream of particular genes.
Such complex interactions between groups of genes and the proteins they synthesise
are generally described as genetic regulatory networks. It is such networks that we
are interested in reverse engineering from the levels of mRNA measured in microarray

experiments.
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The standard approach to modelling a known network is through sets of coupled dif-
ferential equations. These equations describe how the concentrations of the various
products evolve over time. Although probably the most realistic model of the actual
reactions taking place, such a model requires knowledge of the network structure and
the various reaction rates. At the other end of the spectrum, the most simple approach
is to cluster genes by their expression profiles. Genes with similar expression profiles
are likely to regulate each other or be regulated by another shared parent gene. A
major drawback of this approach is that it is impossible to infer any notion of causality

- which gene is regulated and which gene is regulating.

There is a growing body of literature that takes a middle ground between these two
extreme levels of detail. Friedman et al [19] was the first such attempt and used the
framework of Bayesian networks to model regulatory networks in yeast. Due to the
small number of arrays relative to the number of genes, a bootstrapping procedure
was used to extract features (i.e. regulatory interactions) prominent in the data. The
work provided some promising results but the authors concluded that in order to infer
networks from expression data alone, much larger datasets were required. Other, more
complicated Bayesian network models have been proposed. For example, Rangel et al
[61] introduce the concept of a set of hidden state variables, producing a Kalman filter
type model. Some non Bayesian network approaches have also been proposed. Yeung
et al [82] used singular value decomposition to produce a family of possible networks
and then performed a robust regression step to extract the best one (in terms of spar-
sity). Similar methods have also been proposed by Weaver et al [79] and Zak et al
(83, 84].

Some of these publications evaluate their algorithms on real data although this does
not make objective assessment very easy as knowledge of the true network is incom-
plete or not known at all. One in particular that stands out is that of Husmeier [32] in
which the author evaluates the performance of his Bayesian network model on realistic

simulated data and is therefore able to make objective conclusions. We will follow this
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procedure in this chapter. A useful review of various approaches for reverse engineering

regulatory networks can be found in [12].

With a few exceptions, approaches based on Bayesian networks have required that
the expression data be discretised. This is in contrast to e.g. [82] where the network
is inferred directly from the continuous expression data. There are several inherent
problems with the discretisation step. Firstly, it is not clear how many discrete states
should be used. Too few and too much information could be lost. Too many can make
the task of learning the Bayesian network infeasible. On the other hand, most models
for continuous data proposed so far have been based on explicitly linear formulations
- i.e. the expression of a particular gene is modelled as a linear combination of the
expression of the genes that regulate it. This type of model will therefore only be able

to capture dependencies between genes that are close to being linear.

Another important issue is that of sparsity. Biologically, it is thought that regulatory
networks are sparse. That is, the number of genes regulating any particular gene is
small. In a Bayesian network framework, this sparsity can be easily introduced in the
form of a prior on the number of connections into a particular gene. In fact, such a
prior assumption can make the learning task considerably more straightforward as the
space of possible networks is reduced. For most of the continuous models proposed, it
is not obvious how to obtain such sparsity. Ad hoc techniques such as pruning network
connections have been proposed but without knowledge of the network structure, it
is unclear at what level a threshold should be set. In this chapter, we propose two
separate approaches that crucially both work directly with continuous expression data.
Firstly, we look at a recently proposed sparse Bayesian algorithm that provides a linear
network and we then investigate a possible nonlinear distribution that would enable a

continuous, nonlinear Bayesian network approach.

The remainder of this chapter is organised as follows. In the next section, we provide
a very brief introduction to Bayesian networks. In section 3 we introduce the Bayesian

network model that we shall use to model regulatory networks. Section 4 introduces
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the linear regression model used and section 5 introduces the simulated network from
which we shall create data. Test results are presented in section 6. Section 7 describes
a possible nonlinear conditional distribution and in section 8 we finish with some con-
clusions. As mentioned in the introduction, this chapter represents work currently in
progress and although some results are presented it is primarily a pointer to future

research directions.

6.2 BAYESIAN NETWORKS

Bayesian networks provide a representation of the joint probability distribution over a
set of random variables. This representation consists of two components. A directed
acyclic graph (DAG), the vertices of which correspond to the random variables and a
set of conditional probability distributions that describe the behaviour of each variable

given its immediate parents.

The structure of the graph describes the conditional independency relationships present
in the distribution. Edges connect parents with their children and given its set of
parents, a particular child node is conditionally independent of all other (i.e. those not
belonging to the set of its parents) nodes. The conditional independence properties of
a distribution over a set of random variables X = [X7,..., X,,] allow us to factorise it
into the following product form

n

P(Xy,...,X,) = | [ P(XiPay) (6.1)

=1

where Pa; defines the set of nodes that are parents of X;.

It is important to note that more than one graph can imply the same set of condi-
tional independence relationships. Graphs that imply the same relationships are said
to belong to the same equivalence class. This equivalence class can be described by
a partially directed graph (PDAG) where directed edges correspond to directed edges

that appear in all members of the equivalence class an undirected edges correspond to
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edges that appear in all members but not always in the same direction.

6.2.1 Training Bayesian Networks

The task of training a Bayesian network varies greatly, depending on the characteristics
of the training data and of the distribution being modelled. In our case, the training
data is complete and the structure (i.e. the set of regulatory parents for each gene) is
unknown. Once a form for the conditional distributions has been chosen, the training
process amounts to performing a search over possible structures. Generally, this will
involve defining a scoring function for candidate structures and then finding the struc-
ture that optimises this score. One popular scoring function is based on the posterior
probability of a graph given the training data (if no prior knowledge is imposed on
the structure of the graph, maximising this score is essentially a maximum likelihood

approach).

An important property of the conditional independences in the distribution is that
the score used to evaluate the suitability of different graphs is generally decomposable
to the sum of the local contributions from each node. That is, we can optimise the
local structure around each node (i.e. its set of parents) individually. This property is
highly desirable in the task of inferring regulatory networks as it means that we can
decompose the problem of finding a complete network into one of finding the best set

of parent genes for each gene.

6.3 A BAYESIAN NETWORK MODEL FOR REGULATORY

NETWORKS

We wish to be able to reverse engineer regulatory networks from observed expression
data. In modelling a regulatory network with a Bayesian network, we treat the ex-
pression level of each gene as a random variable and hence a node in our network. As

described earlier, a Bayesian network is made up of a DAG and a set of conditional
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probability distributions. Unfortunately, a DAG cannot include any cyclic loops, some-
thing that is commonly found in regulatory networks. To overcome this problem, we
use a dynamic Bayesian network. This requires duplication of each node where one set
of nodes represents the expression at a certain time ¢ (i.e. the input) and the other set
represents the expression at time ¢ + 1 (the output). It is worth briefly discussing the
notion of time. The training samples need not belong to some complete time series -
one of the implicit assumptions that we have made is that each input/output pair is
independently and identically distributed. Hence, the pairs could correspond to points
in some time series or could be just the results of samples under different conditions,

for example, the result of gene knockout experiments.

We must now define the form of the conditional probability distributions. In order to
make this choice, we must decide whether we wish to use continuous expression val-
ues, or discretise them. Discretisation causes a loss in information and also opens up
several new questions - how many discrete states should be defined over the range of
the values? Too few and we may not be able to capture the behaviour of the network.
Too many and the number of parameters in our network will increase such that the
computations required will become infeasible. For these reasons we choose to work

with continuous values.

The choice of continuous values implies that once we decompose our problem into the
task of inferring several local networks, we are left with what is essentially a regression
problem for each gene. In the proceeding sections we will always consider just one
local network - i.e. we are interested in finding the network connections and hence the
potential parents of one particular gene. This would then be repeated for each gene to

obtain the complete network.

6.3.1 A Linear, continuous conditional distribution

Following Friedman et al [19], we begin by looking at the most simple form of regression
model for our conditional distributions. For the expression of a particular gene, y, we

assume the following functional form for its expression at time ¢ given the expression
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of the other genes (its parents, in Bayesian network terms) z; (j = 1...n) at time
t — 1. Notice that if we are considering gene j then z; is actually y at ¢ — 1 but we

have introduced the x notation to avoid the need for time and gene indices.
n
y = ijxj +e (6.2)
j=1

where w; is the strength of the connection between into our gene from gene j. Ideally
we would like a sparse solution reflecting the fact that each gene is only regulated by a
small fraction of the total number of genes and hence many of the w; terms will be zero.
In Bayesian network terms, we can define the set of parents of our current gene Pa to
be the set of all genes j for which w; > 0. The € term models the measurement noise
and, modelling this as a zero mean Gaussian, with variance o2, implies the following

distribution for y.
y ~ N(wix,o?) (6.3)

where N (a,b) represents a normal distribution with mean @ and variance b. We have

also introduced the vector notation of x = [z1,...,7,]7 and w = [wy, ..., w,|T.

More generally, if we have T' observations of the expression of the genes, we can consider

the following multi-variate distribution
y ~ N (X w, 0’I) (6.4)

where y = [y,...,yr]’ and X = [xy,...,x7].

The learning task now involves using the observed data to infer the weight vector w.
Notice that this includes both learning steps described above for Bayesian networks.
Using Bayes law, we can compute a posterior distribution of these weight values given
the observed data

p(D|w, 0”)p(w)

PIWID.7) = T Blw, o7 p(w)dw (6:5)

where p(w) reflects our prior belief in the values of the weights and we use D to
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represent the whole dataset. p(D|w,o?), when viewed as a function of w for fixed
training data is often called the likelihood, and assuming that all training examples are

independently and identically distributed can be factorised as follows
T
p(D|w, %) H P(Ym|W, 0%, Xp). (6.6)
m=1

If we make no prior assumptions about weight values (i.e. p(w) = 1) we can find a
closed form solution for the value of w that maximises the log of equation 6.5. Due to
the quadratic term in the likelihood, this solution is simply the least squares solution
and is given by

= (XXT)"'Xy. (6.7)

As there are no prior restrictions on the values in w, it is often found that such a
solution is prone to severe over-fitting and typically, all weight values will be non-zero.
For example, see figure 6.3. Therefore our parent set Pa will include all possible genes
and we have inferred a fully connected network that provides little information. This
can be partially avoided by putting a prior on w that penalises large weight values and

hence favours simpler, smoother functions. A suitable prior is a zero mean Gaussian
p(wla) ~ N(0,a7") (6.8)

where, for future simplicity, we have defined the accuracy a which is equivalent to the

reciprocal of the variance.

As all distributions are Gaussians, we can still find a closed form solution for equation
6.5
w = (XX + o) ' Xy. (6.9)

This particular form of solution will prevent over-fitting. Generally however, the so-
lution will still include many weights that are close to zero and hence our parent set
Pa will still include all possible genes. For example, see figure 6.4. Sparsity could be

achieved by pruning all weight values that are close to zero. However, it is not clear at
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which level the weights should be pruned. As we prune weights, we are removing edges
from our Bayesian network and changing our representation of the joint distribution.
Therefore, it would seem that the choice of threshold is crucial. It would be far more
convenient if this sparseness could be achieved automatically during model training.

We will see how this can be achieved in the next section.

6.3.2 Sparse Bayesian Regression

The standard method for learning connections in a Bayesian network is based upon
starting with a random structure, evaluating a scoring function and then make greedy
changes to the structure - i.e. changes that most increase the scoring function. van
Someren et al [74] used such an approach with the form of model discussed above.
Incorporating sparseness in this system is trivial as it amounts to simply putting a
limit on the number of edges entering a particular node and only evaluating possible
changes to structure that do not cause a violation of this constraint. However, there
are problems with this method. Firstly, the greedy search routines can fall into local
minima. This can be overcome by using less-greedy approaches (e.g. accepting changes
that decrease the score with non-zero probability) or by sampling networks from the
posterior distribution. Secondly, the problem in its exact form is known to be NP-hard.
Imposing a prior on the number of edges into a particular node significantly reduces
the search space but it still rapidly becomes infeasible as the number of genes reaches
the order of thousands - something common in current microarrays. However, we no-
tice an interesting parallel between this structure determination problem and the fast

marginal likelihood maximisation algorithm proposed by Tipping and Faul [72].

Recall that in the last section we overcame the problem of over-fitting by introducing a
Gaussian prior distribution on the weights of our network. We can extend this idea to
introduce sparseness by using a separate Gaussian prior for each weight (i.e. potential

parent gene), each with it’s own accuracy parameter ;. Assuming independence across
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the genes we can take the product of these individual priors to give
p(wler) = [ [ p(wile) (6.10)
i=1

where p(w;|o;) = N (w;]0,;'). We are now interested in evaluating the following

posterior probability of our weight vector w

plylw,o)p(w|a)
p(yle, 0?)

p(wly, a,0%) = (6.11)
where we have omitted the dependence on X for clarity. Again, because all of the
distributions are Gaussian, this posterior is also Gaussian with mean and covariance
given by

Y= A+ XTX)! p=022X"y (6.12)

where A is a diagonal matrix of the «; values. We could extend this model by ap-
plying prior distributions to the «; but as these distributions will be non-Gaussian,
we can no longer obtain a tractable posterior. Therefore, Tipping and Faul suggested
approximating them with point estimates obtained my maximising the log marginal
likelihood

o

log p(y|ex, 0?) = log / p(y|w, 0?)p(wle)dw. (6.13)

—0o0
Again, all of these distributions are Gaussians and so again, we can obtain this likeli-

hood in closed form which can be maximised with respect to . This form is
1
logp(y|ex, 0%) = _§[T log 27 + log |C| + yTC™'y], (6.14)

where
C =0T+ XA X", (6.15)

When we perform this optimisation, we observe that many of the «; values approach
infinity. This suggests that the corresponding posterior distributions for the w,; are
very sharply peaked at zero and hence this particular candidate parent gene can be

pruned from the model.

134



6.3. A BAYESIAN NETWORK MODEL FOR REGULATORY NETWORKS

The individual priors on the weights provides us with the required sparsity but at what
cost? In computing the marginal likelihood during optimisation, we must invert C,
an operation of O(n3). When we have a large number (n) of genes, this becomes an
enormous computational burden. To overcome this, Tipping and Faul noticed that the
marginal likelihood covariance C could be decomposed into separate components for

each «; (i.e., each gene) as follows

C = oI+ Z ozj’lxjxjr + o txx] (6.16)
J#i
= C_;+a; 'xx] (6.17)

where C_; represents the covariance matrix with gene 7 removed. Substituting this into
equation 6.14 we find that it is possible to decompose the log marginal likelihood into
additive contributions from the individual o; components. For a more description, the
reader is referred to [72]. Essentially, we can define a sparsity factor s; and a quality

factor g; for each of our potential parents as follows
s =x:Cllx; ¢ =x Cy. (6.18)

Analysis of the decomposed likelihood reveals that it has a unique maximum with

respect to each individual «;, defined as follows

if ¢7 > s; (6.19)

2 S”

a; = oo, if ¢ <s;. (6.20)

The implications of these results is that if gene i is currently a parent (i.e. a; < 00)
but ¢? < s; then we should remove gene ¢ from the parent set in order to increase the
marginal likelihood (i.e. set a; to 0o). Secondly, if gene 7 is not currently a parent (i.e.
a; = 00) but ¢7 > s;, we should add it to the model by setting o;; = s2/(¢? — s;). Using
these straightforward update rules, we are able to add and remove genes to the set of

parents whilst always increasing the marginal likelihood until convergence.
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6.3.3 Sequential Sparse Learning Algorithm

Following [72], we can formalise the above results into the following algorithm

1

10.

11.

Initialise o2.

. Start with a single candidate parent x;, and set «; as follows

1]

1=y 12/ 1%l = o

a; = (6.21)

Compute s; and g; for all n possible parents.
Select a new candidate parent x; from all n possible parents.

Calculate 0; = ¢? — s;.

. If0; > 0 and o; < oo (i is already a parent), re-estimate «;.

If 6; > 0 and o; = oo (i is not already a parent), add x; to the set of parents and

calculate «;.

. If §; < 0 and o; < oo, then i is currently a parent but should be removed, so

remove Xx; from the parent set and set «o; = oo.
Update s,, and g,.
If convergence has been reached, continue to step 10, otherwise, return to step 4.

Calculate g and ¥ using the final parent set.

More details and steps that can be taken to improve the efficiency of the algorithm can
be found in [72].

6.4 SIMULATED NETWORK

In order to evaluate and compare the performance of particular models, we follow the

example of Husmeier [32] and generate data from a simulated network. Although not
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as realistic as using genuine expression data, this method has several advantages, most
importantly that we know exactly what the network structure is that we are trying
to model and hence can objectively evaluate and compare different models. We use
the same network topology as Husmeier - a 12 gene network inspired by a small yeast
sub-network, investigated by Friedman [19]. The network topology can be seen in

figure 6.1. In this figure, each node represents a gene, solid edges represent activating

Fig. 6.1: Simulated network from [32]

regulations (and ’exclusive or’ type regulations (in the case of the inputs to SVS1))
and dotted lines represent inhibitory regulations. Source genes (i.e. genes with no
inputs) are shaded in gray. It will be easier in our analysis to refer to each gene by its
node number rather than its name. A list of the genes with their corresponding node
numbers can be seen in table 6.1. Husmeier used this network to generate discrete
data. However, we are interested in continuous data and so have to modify the data
generation process. To do this, we randomly choose two steady state values for each
gene. The state a gene is in will stochastically depend on the state of its parents. For
example, CLN1 will be in its higher state with probability 0.9 if CLN2 is in its higher

state (see [32] for more details). The expression value for a particular gene is then
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drawn from a Gaussian distribution with mean equal to the current steady state level

for that gene.

Gene | Number
RNR3 1
CLN1 2
SRO4 3
RAD51 4
CLB2 5
MYO1 6
ACE2 7
ALK1 8
MNN1 9
CLN2 10
SVS1 11
CDCbh 12

Tab. 6.1: Genes and their associated node numbers.

6.5 RESULTS

Figures 6.3, 6.4 and 6.4 show graphically the weight matrices generated when least
squares, regularised least squares (least squares with single Gaussian prior) and the
sparse Bayesian approach are applied to a 100 sample time series generated from the
simulated network. In each figure, absolute weight values have been plotted as it is not
easy to visualise both positive and negative weights on the same figure. The position of
the actual connections are shown in figure 6.2. In all diagrams, the rows (i.e. up-wards
from left to right) correspond to the weights into a particular gene. =~ We notice that
all three methods seem able to find these actual connections. However, it is in the
number of false connections (false positives) that the sparse Bayesian approach comes
out on top. We see that the sparse Bayesian approach manages to recover almost all of
the actual connections with only two or three false positives. This is in comparison to
the least squares and regularised least squares approaches that have false positives in

almost every position. This distinction is incredibly important in inferring regulatory
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Fig. 6.2: Actual network connections for 12 gene simulated network given in figure 6.1
For ease of visualisation, absolute weight values are shown. The ith row corresponds to the

weights into gene ¢ from the other genes.

networks as we do not need to set any pruning threshold or use any bootstrap proce-

dures to extract the significant edges.

If we do use an adhoc pruning procedure in an attempt to prune the false positives
present in the least squares and regularised least squares approaches we can investigate
whether it is possible to re-create the correct network from these methods, given the
correct choice of threshold. Receiver operator characteristics (ROC) curves can be
used to evaluate the performance of such a system where we are trying to balance the
number of true positives and the number of false positives. To create such curves, we
first count the number of true positive (TP), false positive (FP), true negative (TN)
and false negative (FN) edges. We then calculate the sensitivity = TP/(TP+FN)
and the complimentary specificity = FP/(TN+FP) and plot the resulting values. The

larger the area under the resulting curve, the better the performance of the model. We
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Fig. 6.3: Network weights inferred using least squares for 100 time points from the simulated
network. For ease of visualisation, absolute weight values are shown. The ith row corresponds

to the weights into gene ¢ from the other genes.

can also evaluate the performance of a model by its highest value of sensitivity (y axis)
for 0 complimentary specificity (x axis) as this is the highest number of correct edges
we can recover with no false edges.

We can see such ROC curves for the three methods, over various data set sizes in
figures 6.6, 6.7, 6.8 and 6.9. Firstly, we notice that the performance of all three systems
decreases as the number of time points is decreased. It should also be pointed out that
the sparse Bayesian ROC curves are not terribly informative as they are generally the
result of only one or two points, due to the very low number of small weights. We
also notice that the sparse Bayesian approach is almost always superior to the other
approaches in the number of true positives recovered with no false positives. The fact
that the least squares and regularised least squares approaches are able to get a higher
number of true positives than the sparse Bayesian approach should always be taken in

the context of the number of false positives and also the fact that in order to get this
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Fig. 6.4: Network weights inferred using regularised least squares for 100 time points from
the simulated network. For ease of visualisation, absolute weight values are shown. The ith

row corresponds to the weights into gene ¢ from the other genes.

performance, some adhoc threshold needs to be set. To re-iterate this point, figure 6.10
shows the actual networks inferred by these models. The first one shows the network
inferred by sparse Bayes. Comparison of this with figure 6.1 shows that all of the true
connections are there except the ones between SVS1 and CDC5 and CLN2. In addition
to this there are two additional connections - one between CDC5 and CLB2 and one
between CLN1 and SVS1. Compare this with the second network that shows the
result for regularised least squares with no thresholding and the difference is striking.
Applying various thresholding values, we see the networks in the final two figures. In
the first, the threshold has been set to 0.2 (that is, any weight value whose absolute
value is below this is set to zero). Some structure has been recovered but there are a
lot of false connections. Increasing the threshold to 0.4, we observe the final network.
The structure around CDC5 has been recovered but little else. This example makes

it clear how difficult it would be to select such a threshold level, without knowing in
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Fig. 6.5: Network weights inferred using the sparse Bayesian approach for 100 time points
from the simulated network. For ease of visualisation, absolute weight values are shown. The

1th row corresponds to the weights into gene ¢ from the other genes.

advance what the topology of the network was.

6.6 A NON-LINEAR CONDITIONAL DISTRIBUTION

Let us investigate the results presented in the previous section more thoroughly. Specif-
ically, why the sparse Bayesian approach performed so well but always failed to infer
the connections into SVS1. The model used to create the data for this particular gene
is different to that used for all the others. This has two inputs and Husmeier modelled
this using an exclusive-or like relationship, i.e. the gene would be expressing if either
one of its parents was expressing but not if both were. XOR is a non-linear function
and our sparse Bayesian approach is based around a linear model. Therefore, it is
not surprising that the model always failed to capture these dependencies. Previously,

various people have tried to overcome this problem by capturing the non-linearities
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(a) LS (b) RegLS (c) Sparse Bayes

Fig. 6.6: ROC curves for 100 time points
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Fig. 6.7: ROC curves for 50 time points

using an explicit non-linear formulation. For example, Imoto et al [33] and Kim et al
[39] replaced the weighted linear representation with a weighted set of splines. The
major drawbacks of such a parametric approach is that firstly we do not know what
the correct parametric form is and secondly, the number of parameters that we need
to learn from the data is increased dramatically. The sparse Bayesian algorithm de-
scribed above can easily be kernelised and hence could be used to model a wide range of
possible nonlinear functions. However, kernelising the algorithm results in sparsity in

our training points (i.e. time points) and not features, making this approach unsuitable.

For these reasons, we propose using a semi-parametric approach based on the Parzen

Window density estimator. The potential benefits of such an approach are that we
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(a) LS (b) RegLS (c) Sparse Bayes

Fig. 6.8: ROC curves for 30 time points
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Fig. 6.9: ROC curves for 15 time points

do not have to assume any particular form for the conditional distributions and only
a minimal number of parameters have to be inferred from the available data. This
method was introduced in the context of continuous, non-linear Bayesian networks by
Hoffman and Tresp [28].

The Parzen Window method for empirical density estimation involves placing an isotropic
Gaussian over each training point and then using the summation over all of these in-
dividual Gaussians as the estimate of the density. Therefore the width parameter for

the Gaussians is the only parameter that needs to be set.

Recall that in the Bayesian network formulation, we require the distribution for the
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variable of interest conditioned on its parents. Denoting by Pa the set of parents, we
can express this conditional distribution (using the product law) as follows

ply|Pa) = 2T (6.22)

p(Pa)
We approximate the densities on the numerator and denominator with Parzen windows
using our 7 training points
T
_ Y ply, Paly’, Pa)

P = T p(Paipa) .

where all densities are Gaussians, with variance oZ.

Following Hoffman and Tresp,
we need to define a prior on the number of connections in the network to induce the

required sparsity. They suggest the following form
p(F) = exp(—akF) (6.24)

where FE is the number of edges, or can be thought of as the size of Pa.

The Sparse Bayesian algorithm described in the previous sections was developed around
the basic linear regression model. This meant that given values for the hyper-parameters,
all distributions of interest (and particularly the marginal likelihood) were Gaussians
or convolutions of Gaussians and hence were analytically tractable. Using the Parzen
window conditional distribution, this is no longer the case and we must resort to some
kind of heuristic search over the possible network structures. In order to do this, we
must define a network scoring function that we will aim to optimise. The scoring func-
tion that we will use here can be thought of as a form of likelihood measure. As for
the sparse Bayesian approach, we consider each individual gene in turn and assume we
have T' training samples. The T expression values of the gene of interest are collated
into a vector y and we use Pa to denote the current set of parents of this gene. For

example Pai is the expression of the 7th parent in the tth training example. The score
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we aim to maximise for each gene is then given as follows

p(y,Pala) = p(y|Pa, a)p(Palc). (6.25)

Taking logs, we obtain the following expression that we wish to maximise with respect

to the members of the set of parents

T T
logp(y,Pala) = ZlogZN(yT\yt,UZ) H N (Pa’|Pal, 0?) (6.26)
T=1 t=1

icPa
T T o
- Zlogz H N (Pal|Pal, 0?) (6.27)
=1 t=1 ;cPa
— TaF. (6.28)

In order to search over possible structures, we first begin with all possible genes in the
parent set. We then repeat the following iteration: Find the single change in the set
(i.e. addition or removal of a parent) that gives the largest increase in the likelihood
score and make this change. Once all candidate changes cause a decrease in the score,

stop.

This greedy search is only guaranteed to reach a local minimum of the likelihood score
and as such is not guaranteed to provide the best solution. However, many meth-
ods exist to improve such a strategy. For example, simulated annealing [40] could be
used where changes that decrease the likelihood are accepted with non-zero probability.
Generally, the literature on inferring regulatory networks using Bayesian networks has
concentrated only on greedy search strategies. Investigating the possible improvements

of a non-greedy method would be an interesting direction for future research.

There are also issues to be addressed regarding finding optimal values for the two
hyper-parameters o (the prior constant) and o (the variance of the Gaussians that
make up the Parzen window). In their original paper, Hoffman and Tresp [28] do not
mention how to set this o value but do suggest a cross-validation procedure for o2.

Some form of cross-validation procedure could be used, where some training samples
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are left out and are used to generate an un-biased approximation of the likelihood.
However, it is likely that due to the small number of arrays, data will be at a premium
and such a procedure is impractical. Therefore, at the moment, these two issues are

still open and will be addressed in future work.

In order to evaluate whether this non-linear conditional distribution is able to infer the
connections missed by the linear model we have evaluated its performance using data
from the same simulated network. The result for 30 time points and o = 0.25 can be
seen in figure 6.11. We observe from this figure that the two connections that were
always missing from the linear model are now present (the two connections into gene
11). This result looks very promising but it is worth remembering that this was achieved
using hand-picked values of the two hyper-parameters and without knowledge of the
actual network, this would not be possible. However, we are mainly interested here
in whether or not this form of conditional distribution could discover these particular
non-linearities and, as mentioned earlier, a rigorous method for choosing values of these

hyper-parameters is a direction for future research.

6.7 (CONCLUSIONS

In this chapter we have investigated the problem of inferring regulatory networks from
continuous expression data. We have looked at two possible algorithms. Firstly, the
sparse Bayesian algorithm of Faul and Tipping that provides the desired sparsity but
will never be able to capture nonlinear relationships in the data. In an attempt to
overcome this inherent linearity, we have investigated the possibility of using a nonlin-
ear conditional distribution based on the standard Parzen window approach to density
estimation. This approach was able to infer the nonlinear relationships present in our
simulated network but has several drawbacks that need to be overcome. The values of
two hyper-parameters have to be inferred and it is presently unclear how this could be
done given that the number of training points (i.e. microarrays) is generally very small
making cross-validation out of the question. All testing has been done on simulated

data from a small network suggested by Husmeier [32] and not on any real expression
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data. It is generally believed [19] that the size of current microarray datasets is in-
sufficient to perform the task of inferring regulatory networks. Generally, experiments
involving real data have produced results of questionable biological significance and
the lack of knowledge of the actual underlying networks makes it very hard to truly
evaluate the performance of a particular algorithm. Simulated data overcomes this
problem although it is fairly obvious that simulating data in such a manner consider-
ably simplifies the problem. Experiments with real datasets are an important direction

for future research.
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(a) Sparse Bayes

(c) RegLs$, threshold = 0.2 (d) RegLS, threshold = 0.4

Fig. 6.10: Inferred networks from the various models, with 100 time points and various

threshold values
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Fig. 6.11: Connections learned by Bayesian network with nonlinear conditional distribution

with 30 training points.
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CHAPTER 7

CONCLUSION AND FUTURE
DIRECTIONS

In this thesis, we have investigated various methods for the analysis of high dimensional
microarray data. In this final section we will recap the work described in each chapter
and reiterate the conclusions drawn. In addition, we will describe interesting future

work directions.

7.1 LATENT PROCESS DECOMPOSITION

Firstly, Latent Process Decomposition - a generative probabilistic model that is able
to extract biologically significant information from expression data. The LPD model
inspired by the LDA model proposed by Blei et al [8] that modelled text documents
as combinations of latent topics. In this chapter, we suggested an alternative to this
bag of words style topic that would be applicable to microarray data. To demonstrate
the power of LPD, we presented results on a variety of microarray datasets - several
from cancer research where LPD was able to distinguish between various tumour types
and two time series datasets for yeast where LPD was able to uncover real biological
processes. The experimental results from this method appear very promising. Cur-
rently, LPD is being used to analyse new datasets, particularly those from breast and
prostate cancer in collaboration with the institute for cancer research. In addition to
this, various improvements to the basic LPD formulation are being developed. Most

significantly, the brief investigation in this thesis on priors for the parameters suggested
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that the performance of the algorithm could be enhanced by sensible choices of priors

and their associated hyper-parameters.

The prior we have provided for the variances was improper - that is, it does not in-
tegrate to 1 over its domain. Although this resulted in nice, tractable updates it is
somewhat restrictive. For example, we may wish to incorporate a prior that penalises
under-complexity as well as over-complexity. In addition to this, a proper prior allows
us to use sampling approaches to learn the parameters of the network. Although the
variational lower-bound optimisation approach appears to provide reasonable solutions
within a reasonable amount of time (simulations generally take of the order of a few
minutes), it is unclear how good a bound we are optimising. Given a proper prior, a
sampling approach such as Metropolis Hastings could be used to sample from the pos-
terior distribution over parameters. Implementation of a sampling method is currently
being investigated. It is unclear how practical it will be given the very large number
of parameters. There is one further advantage of a sampling based approach. Taking
samples from the posterior would enable us to approximate the normalising constant in
the Bayesian formulation - the evidence. This quantity can be used in model selection
and may prove to be a more useful in evaluating /C, the number of processes than the

currently implemented cross-validation techniques.

In appendix D we introduce the LPD model with a prior consisting of a mixture of
Dirichlet’s. Potentially, this provides the model with far greater flexibility. Although
experiments with this prior on microarray data showed it to give little improvement
over the standard, single Dirichlet prior, it may well prove useful when larger datasets

become available.

Another possible extension to the LPD model is to augment it with a model for an-
other form of biological data. For example, many probabilistic methods exist to model
the DNA bases found in the upstream regions of a gene (the regions where proteins
bind and affect transcription). Potentially, combining the LPD expression model with

such sequence data would result in a model that could not only find genes that were
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similarly expressed, but also confirm whether or not these genes were co-regulated.

Finally, we briefly introduced an LPD model that would be suitable for discrete data
such as that generated by CESH. Presently, there is not enough data available to real-
istically determine the potential of this model. However, more CESH data is becoming
available and so this too will be an interesting avenue for future research. This also
opens up the question of suitable priors for the multinomial parameters - something

that is touched upon briefly in appendix E.

7.2 ESTIMATING SAMPLE SIZE REQUIREMENTS

In this chapter, we introduced a novel methodology for assessing the significance of
a particular classification performance and predicting how many microarray samples

would be required to obtain a particular classification performance.

The proposed methodology first used a significance test based on random re-shufflings
of the training labels to determine how many training samples were required to be able
to classify at a significance level of 95%. Then, empirical error measurements were used
to fit a learning curve that explained the relationship between the number of training

samples and the generalisation error. This curve had the form
e(p) =ap™@+0b (7.1)

where a is known as the learning rate, « is the decay rate and gives an indication of
the difficulty of the problem at hand. Finally, b is the Bayes error - the lowest error

rate achievable.

There are several reasons why an experimentalist may wish to use such a methodol-
ogy. Firstly, it provides a rigorous manner for determining whether or not a particular
classification result is significant. Secondly, it enables the experimentalist to predict
ahead to see how much the generalisation will improve given more training samples -

this type of analysis could help decide whether collecting more samples is worth the
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considerable time and expense that would have to be expended.

Comparison of the learning curve parameters for different datasets gives an indication
of the difficulties of the various classification problems and also allows the comparison
of the noise levels present. In the experimental results presented here, we are able to
support the belief that classifying between various tumour types or between tumour
and normal samples is a much easier problem than classifications based on clinical data

- for example, whether or not a patient suffers a relapse.

Particularly worth mentioning is how the method can be used to compare between
different experimental techniques. So far only a comparison between microarrays and
CESH has been performed but as more techniques are developed it will be interest-
ing to compare their efficiencies in this manner. It would be interesting to perform a
comparison between spotted and Oligonucleotide arrays - the design of Oligonucleotide

arrays should make them less susceptible to noise, to what degree is this the case?

We are currently seeing an increase in the use of high throughput proteomic experi-
ments. Such parallel measurement of protein abundances could in the future become
a replacement for the mRNA measuring microarrays. After all, the protein is the
end product and is what we are mainly interested in; mass spectrometry (the most
widely used technique in proteomics) is also several orders of magnitude cheaper than
microarray experiments. A comparison between the discriminatory power of the two
approaches would be useful - such an analysis could readily be performed using the

methodology described above.

7.3 INFERRING GENETIC REGULATORY NETWORKS

In this chapter, we have investigated the problem of inferring the regulatory interac-
tions between genes from microarray data. Most attempts to do this in the literature
have involved discretisation of the expression data and then the training of a Bayesian

network. It is far from clear how many levels the data should be discretised into and
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where these levels should be. Therefore, we would like to be able to infer regulatory
interactions from the original, continuous data. To this end, we investigated the sparse
Bayesian regression algorithm of Tipping and Faul [72] which removed the need for a
computationally expensive topology search. Such a search rapidly becomes infeasible as
the number of genes in the investigation increases beyond small, un-realistic networks.
However, the sparse Bayesian regression algorithm is inherently linear and cannot be

expected to uncover more complicated, nonlinear relationships between genes.

There are many possible directions for future work in this area. The sparse Bayesian
algorithm (also used in the context of microarrays by Li, Campbell and Tipping [44])
looks like it may be useful in this context although its inherent linearity may be a
limiting factor. Unfortunately there is no obvious way to extend this elegant algorithm
to a more flexible, nonlinear model. The Parzen window approach gets around the
linearity problem but requires returning to a more ad hoc search procedure to find the
network structure. This scales very badly and seriously questions whether or not it
would be genuinely useful. Other nonlinear forms are possible. For example, Gaussian
process priors could be used for the conditional distributions [20], however the struc-

ture determination problem is still present.

Using a kernel expansion in the sparse Bayesian algorithm does enable the network
to model almost any nonlinear function. However sparsity is now achieved in train-
ing samples and not network connectivity. We are currently investigating using this
method but weighting each possible parent in the kernel function and performing an
additional optimisation over these weights. In this context, the sparse Bayesian algo-
rithm provides sparsity over training (time) points. It is unclear whether or not this is
a sensible thing to do, as the number of potential training points is already limited. It

is currently too early to present any results from this investigation.

Various other open issues still exist. Experiments have been done with synthetic data -
how do these algorithms perform when presented with real array data? Apart from the

fact that a lot of real regulatory interactions are unknown, this opens other issues such
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as whether or not the algorithms can scale up to the large number of genes present. If
they can, will the number of samples required scale up in a similar fashion? Finally, is
it possible to use other forms of data as well as expression data? This could include
anything from prior knowledge in the form of partial networks that are well understood

to using sequence data to help narrow the search over possible parents.
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APPENDIX A

Bi1AS PROPERTIES OF LEAVE-P-OUT

ESTIMATORS

A.1 THE MEAN OF THE LEAVE-P-OUT ESTIMATOR IS UN-

BIASED

Statement 1. The expected error of the leave p out procedure is an unbiased estimate

of the expected error of the classifier trained on N — p examples. i.e.

E[Ly(21,...,2n)] = E[Q(2, f(2n-p))] (A1)
where »
Ly(21, .. ) = % 3 Qs flew ) (A2)

and Q(z;, f(2n—p)) is the error on z; for a classifier trained on the data with p samples

removed and z = (x,y), i.e. it denotes a pattern-label pair.
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APPENDIX A. BIAS PROPERTIES OF LEAVE-P-OUT ESTIMATORS

Proof. The proof is given for the case of p = 1, extending it to p > 1 is straightforward

E[+Li(z1,...,28)] == [ 1:221 Q(zi, f(zn-1))dP(21) ...dP(2zn)
=5/ %(Q(zz‘, f(zn_1))dP(2;))dP(z1) ...dP(zi_1)dP(ziy1) - . . dP(2n)
= % g: E[Q(2;, f(2v-1))]

(A.3)
so, the estimate is un-biased and the more sub-samples we perform, the more accurate

the error estimate becomes.

A.2 THE VARIANCE s BIASED

Statement 2. The variance of the leave-p-out estimator is less than or equal to the
variance of a classifier trained on N — p samples and tested on an independent sample

- i.e. it is biased and generally optimistic

ViLy(z1;- -5 2n)] S VIQ(z, f(an—))] (A.4)

where V|[z] denotes the variance of z.

Proof. Again, we describe the leave-one-out proof, the extension to leave-p-out is

straightforward. The variance for training sets of size N — 1 is

VIQ(z fzn-p))] = ElQ(z f(2n-p))"] — (B[Q(z, f(an-p))])" (A.5)

The variance of the leave-one-out estimator is given as

v

% Z ti] (A.6)
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A.2. THE VARIANCE IS BIASED

where
ti :Q(Zi,f($1,...,$i_1,$i+1,...,l‘N)). (A7)

(ve) |- (s

but from section A.1 we know that we can re-write the second term, giving

We can re-write A.6 as

1 & ’
1% ~ Zti] ) (A.8)

i=1

1
— t.
P

v

1 N
N2t

(% Zh) ] ~ (EQGSav)). (A9

Now, we can write

7 Zﬁ 7 Zt it ] (A.10)

i£]

{2

which, if the ¢; and ¢; are assumed to be iid, gives

G Zt) -F [tﬁ o Nﬂ = E[Q(z f(an-))’) (A1)

However, our ¢; and t; variables are not iid so

N’- N,
;tt <E[ 7 } (A.12)
Therefore
<%Zt) ) (E %Zt) < E[Q(z, f(zn-p))*] = (B[Q(2, f(zn-p))])*

(A.13)

as required.
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APPENDIX B

NAIVE-BAYES (GAUSSIAN MIXTURE

The likelihood of our training dataset X = {x1,...,x,} is given by

L(p.o.m) zlogzm . o).
=1

Introducing n training sample specific variational distributions @); such that

we can lower bound this likelihood as follows

n

L(p,o,m) Z og Z le H P(Zij| s Tk5)

| \%

:L K d
; 2_: Qix log {5— l;[ (mij|llzkj,0-kj)}

L(p,o,m Q).

Expanding the various log terms allows us to expand the bound thus

Il
M=
M=
O

EI(IJ’7 077‘-7 Q)

ik log

~
Il
MR
£
I
—

|
NE
M=
O

ik lOg sz

-
Il
—
B
Il
—

Qik og N (45|t On5)

+
=
M=
Ma

~
Il
—_
=
Il
_
<
Il
—

—_
-~J
—_

(B.4)



APPENDIX B. NAIVE-BAYES GAUSSIAN MIXTURE

where we have used the naive-Bayes assumption to factorise the multivariate Gaussians.
The variational-EM algorithm introduced in section 3.3 describes how we can increase
the likelihood by iteratively maximising with respect to the variational and model
parameters whilst keeping the others fixed. To obtain an update equation for the
variational parameters, we need to take partial derivatives of £’ with respect to Q;,
set to zero and solve for (Q;;. To ensure the summation constraint over ();; is enforced,
we must also introduce a suitable Lagrangian term and multiplier ()). i.e., we need to

take partial derivatives and solve the following expression

no K d K
Z Z Qix log m, — Qix log Qi + ZQik log N (2351 g Ukj)] - A (Z Qir — 1)
=1

=1 k=1 k=1

as follows

d
=0=logm, — (log Qs + 1) + Z log NV (@ij| ik, okj) — A (B.6)

Jj=1

oL
0Qik

Solving for A and then @);; results in the following update

d
e [T N (@ij| g, oks)
Qi = =1 . (B.7)
K d
[ | N(xijmk’jaak’j)]

D T

k'=1

j=1

We proceed in a similar fashion to derive updates for the three sets of model parameters.
Firstly, m; which only appears in the first term in the bound. Adding a Lagrangian

term to ensure ), m = 1, we are left with the following expression to differentiate and

solve
n K K
D) Qirlogm — A (ZM) (B.8)
i=1 k=1 k=1
S0,
oL 1 &
57Tk 0 Tk ZQ k ( 9)

=1
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giving the following update
1 n
Mg = ﬁZQz‘k- (B.10)
i=1

Finally, the Gaussian means and variances only appear in the final term in the bound.

Inserting the form of the Gaussian pdf into this expression we have

S S afuef ) Cop e

i=1 k=1 j=1 2105

Partial derivatives with respect to p; and oj; lead to the following two updates

Z QikTij
pry = (B.12)
i_zl Qik
> Quk(wij — pwg)?
op; = : (B.13)

So, starting with an initial guess of the various parameter values, we can increase the
likelihood by iterating the following two steps. Firstly, update variational parameters
with B.7 (E-step). Secondly update model parameters with B.10, B.12, B.13 (M-

step).
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APPENDIX C

LPD UPDATE DERIVATIONS

Our lower-bound on the likelihood is given by

g
> logp(glp, o, @)

g=1

M=

p(0]v,) logp(0|a)d6

i
— O —

M=

p(0]v,) logp(8]v,)d6

Q
Il
—

M‘-Q
)= °©
M=

Qagk logp(ega‘/'baka Jak)

Q
Il
—
IS]
Il
—
B
Il
—

M‘-Q
] =
M=

/ Qagkp(e")’g) log 0,,d0
(C]

Q
Il
—
IS]
Il
—
B
Il

1

MQ
M) =
M=

Qagk 10g Qagk .
1

<
Il
—
s]
Il
ES
Il
—

As described in section 3.3, we can take partial derivatives of this with respect to the

variational and model parameters to obtain iterative updates that are guaranteed to

increase the likelihood. We will now deal with the variational and model parameters

in turn.
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C.1 VARIATIONAL PARAMETERS

C.1.1 Qg

Qagr appears in terms 3, 4 and 5 of the bound. Isolating these and removing summa-

tions over a, g and k, we are left with the following

K
Qagk log p(ega|,uaka Uak) + Qangp(Ohg) [log ek] - Qaglc log Qagk —A (Z Qagk - 1) (Cl)
k=1

where we have added the Lagrangian multiplier A to ensure the summation constraint

on Qg is satisfied. Taking partial derivatives gives

oL"
5Qagk

= log p(€ga|tak; Tar) + Ep(aly,)[log O] — (log Qagr, +1) — A = 0. (C.2)
Solving for A and substituting leads to the following expression for Qg

P(eyaltat, 70x) exp { Ey(orr, [log 0]

Qagk = K< . (03)
Z p(ega‘/«['ak’a Uak’) exXp {EP(0|7g) [log le]}
k=1
where
K
Ep(opy,) 108 0] = () — T (D 745)- (C.4)
7j=1

and ¥(z) is the digamma function - the first derivative of the log gamma function.

C.1.2 Ygk

Yo appears in terms 1, 2 and 4 of the bound. Isolating these terms and removing

summations over g and k leaves

A
/ p(6ly,) 1og p(6] )46 — / p(6],) log p(B17,)d0 + " Qugsp / (8,) log 6,6,
®
o a=1

(C]

(C.5)
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C.1. VARIATIONAL PARAMETERS

Consider the first term in C.5. Substituting in the parametric form for the Dirichlet

p(0|x) leaves us with the following
Zk 10“/1C - ap—1
p(0l7,) logp(8la)dd = [ p(Bly,)log { —A=L— He
o Hk y Ta) k=1

= logCq + [ p(0]7,) ( ak—l)long) de
k=1

@\

K

= logCqy + Z(ak -1) /p(e\’yg) log 6,.d0
k=1 )

K
= logC(a +Z ar — 1) [ (vgr) nyg]
k=1

where

I (Zk:1 ak)
Cla) = === "7, C.
( ) Hf_ﬂr(ak) ( 6)

Similarly,

K
/ p(6]7,) 10gp(6]7,)d8 = log C(v,) + 3 (106 — 1)[¥(,s) Zm (C.7)
o k=1

Therefore, C.5 becomes (removing summations over g and k& wherever possible)

A
log C(a) —log C(v,) + (ak — Yok + Z Qagk) (Vo) Z Ygi)l (C.8)
a=1

Taking partial derivatives with respect to 4 gives

sc
= (Oék Yok + Z Qaglc) [‘Ij 7916 Z r)/g] (Cg)

6’ng a=1
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where W'(z) is the tri-gamma function, the second derivative of the log gamma function.

For positive real z, ¥'(z) is monotonically decreasing. Therefore, given that . > 0,

K
\I',(Z Yoi) < V' (Vgr) (C.10)
7j=1
and hence
W (vgr) Z ) (C.11)

Therefore, we have
A
(ak — Yo+ Y Qagk> =0 (C.12)
a=1

and so

A
Yok = Ck + Z Qagk- (013)
a=1

C.2 MODEL PARAMETERS

C.2.1 g

lak appears in term 3 of our bound. Extracting this term, and removing summations

over a and k leaves us with
g g
1 (6 a — Mak)2
Qagr 10g p(€galttak, Oar) = Q klog{—exp {—97 . (C.14)
g; ag ga|Ma a ; ag ,_271'0' 20_2k
Taking partial derivatives with respect to pqr leaves
g

oL" ,uka
S =3 Quu e =0, (C.15)
a g=1
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Therefore, we have the following update for py,

g
Z Qagkega

g

S (C.16)
Z Qagk
g9=1

Hka =

C.2.2 o2

As with e, 02, only appears in term 3 of the bound. Taking partial derivatives of

C.14 with respect to o4 gives

S
5,“(1]9

g g
1 1
= 5 D Qugk + p > Qukglega — tra)” = 0. (C.17)
g=1 g=1
This leads to the following update for o2,

g
Z_: Qaglc (ega - Mak)z
o2 = . (C.18)

Z Qagk
g=1

C.2.3 (0773

oy appears only in the first term of the bound. Expanding this term gives and removing

summations over k£ where possible gives us

g
(logF Zoz] —logI'(ag ) Z ar — 1)V () Zyg] (C.19)
g=1

Unfortunately, there is no closed-form solution for oy and so we have to resort to second

order techniques. Following, [8] we use a Newton-Raphson technique given by

anew — aold _ H—lg (CQO)
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where g has elements 6/0c; and H has elements §/dc;c;. Taking first derivatives of

our expression with respect to oy gives us the following

" K g K
= = U ay) — GW(e) + Y (wmw S m)) (2

(S(l’k

Differentiating again, with respect to «; gives us the following

K

= Hy, =GV (> 0)) — 6, GV (o) (C.22)

=1

52£//
50./in

where d;; = 1 iff i = k£ and 0 otherwise.

We can perform this iteration until some suitable convergence criteria is met. For large
values of K we may wish to avoid the repeated inversion of the Hessian, H. This can

be achieved by noting that H is of the following form
H=h"T+ 1417 (C.23)

i.e. a constant value, a plus a vector h on the diagonal (I is the identity and 1 is a

matrix full of ones). The matrix inversion lemma states
(A+XBX") ' =A" - A XB '+ XA X)TIXTAT (C.24)

Therefore, the inverse of the Hessian is given by

(h7T) 1117 (h7T)"!

H'=(hTT) "' - C.25
i (©.25)

If we multiply this by g we get the following update vector for a
u, = (H'g); = g"i; ‘ (C.26)
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where g; is given above, h; = ¥'(;) and

K
e [ h.
= %%g’é/ = (C.27)
a~ .

j=1"%j
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APPENDIX D

LPD WITH MIXTURE OF DIRICHLET
PRIORS

In this appendix, we introduce a slight variation on the original LPD model. Recall that
in our original model, for each data point (gene or cell sample, depending on the type
of analysis being performed) we sampled a multinomial from a Dirichlet distribution
with parameters a. It may be that for heterogeneous data, a single Dirichlet is not
flexible enough to capture complicated structure present. For this reason, we have
extended the basic model from a single Dirichlet prior to a mixture prior. The graphical
representation of this can be seen in figure D.1. We must now sample a prior component
m from a multinomial b which selects the Dirichlet from which we sample our 8. The

rest of the model remains unchanged.

If we have M prior components, the likelihood of a dataset of G genes and A arrays is

M

g g
> “logp(glb, p, o, ) = Zlogzbm/ p(gle, p,o)p(Olex,)d6  (D.1)
g=1 m o

g:l =1

M
Introducing a set of sample specific multinomials R, such that > R,,, =1 and then
m=1
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5 LA

Fig. D.1: Plates diagram for the LPD with mixture of Dirichlet priors model

using Jensen’s inequality we can lower bound this quantity

g
Y logp(glb, p,0,0) >

9=1

Ma
Mz

R4 log by,
1

£~}
I}
3
I

|
Ma
Mz

Ryglog Ry (D.2)

Il
—

m

Rpglog { [gp(glex, p, o)p(Bla,,)d6} .

1

Q
Il
—_

Mk

_|_

m

Introducing variational, gene specific Dirichlet’s 4y, we can perform a similar operation
to bound the final term

M g
Zl Ryglog{ [op(9la, p, o)p(6| e, )dO} > ZlEp(em)[logp(g\a,u, o)]
m= g=

+ Zg: f} RpgEp(g)y,)[log p(0| )] (D.3)

g=1m=1

g
— 21 Ep(9)y,) [log p(0]7,)]
g:

where redundant R,,, and ) _ terms have been removed. One final set of variational
parameters (g, are introduced such that ), Qgge = 1 to the first term above. These

parameters can be thought of as the posterior distribution over the different processes
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for each g and a. Jensen’s inequality can be used one final time to give the following

bound on this one term

g G A K
ZlEp(awg)[lng(gm,lh U)] 2 231 zzlkz: nga log[ (6ga|k,Uakaaak)]
= =1a=1k=1
! .‘Ig A K
- Z Z Z nga log nga (D4)
g=1la=1k=1
G A K
+ Z Z Z Q Ep(ﬂ\’yg)[log ok]

Q
Il
—
o
Il
—
ES
Il
—

Combining these three bounds into one gives the following

g

AV4
Ma
Mg

2, logp(glb, p,0,0) 2 2, >, Fimg log brn
B 6 M
- Z Z ng log ng
g=1m=1

|
Ma
t=

p(07) 108 P(6]7,)]

Q
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—

+
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Mx

ngEp(ghg)[]ng(mam)] (D.5)
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D.1 MODEL PARAMETERS

The process mean and variance parameters ji,, and o2, only appear in the 5th term

above. This term can be expanded as follows

G A K A K
alO eaka akrOa alO
;;g@m gp(g | Hak k) gzz:lazz:lkz::l kg g|:\/27rak:| D
g A K (D.6)
Z Z Z ]C (ega*gak)
g=la=1k=1
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Taking partial derivatives of this expression with respect to pqr and o4, setting the

results to zero and solving yields the following updates

g
Z:l ngaega
o = (D.7)
Z nga
g9=1
g 2
Z:l nga (ega - Nak)
o} =& . (D.8)

g
Z nga
9=1

The mixture component priors b, only appear in term 1 of the likelihood bound.
Adding a suitable Lagrangian to ensure ) b, = 1, taking partial derivatives and

solving yields the following iterative update

Q|

g
1
b ==Y _ Rumg. (D.9)
g=1

The «,,, parameters only appears in term 4 of the above bound but partial differenti-
ation of this term with respect to a,,; reveals that a simple iterative procedure is not
possible and a second order technique is required. The vector of first derivatives has

the following components

g g
9 =19 owm) = W(ekm)] D Rg + D Rung[¥(D_vgr) = ¥(y)]  (D.10)

and the Hessian

g
Hiy = [W(3 arom) = 506, 1) ¥ ()] 3 o (D.11)

9=1

A Newton-Raphson technique can now be used, as described in Appendix C.
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D.2 VARIATIONAL PARAMETERS

Firstly, Qrga appears in terms 5, 6 and 7 of the bound. Taking these terms, remov-
ing summations over k, ¢ and @ and adding a Lagrangian to satisfy the summation

constraint we have
nga logp(ega‘ka Hak) aak) nga IOg nga + nga p(8]7g) [log ek Z nga 1 D12)

taking partial derivatives wrt (04, and setting to zero gives

0 = logp(egalk, ttaks Oak) — (108[Qkga] + 1) + Epo)y,)[log O] — A (D.13)
solving for A and re-arranging gives the following update for Qg

p(ega |k, Hak Oalc) exp[Ep(9|'yg) [log ch]]

Qrga = ; (D.14)
Z p(eg’a‘ka Hak, Uak) eXp[Ep(G\'yg/)[log gk]]
g'=1
where
Ep(0]v,)[log 0] = ¥ (vgr) — Z Vgs)- (D.15)

Now, 7g,. This variable appears in terms 3, 4 and 7. Extracting these terms and

removing summations over k£ and g leaves

M
—Ep(o1r) 108 2(817,)] + Y RingEp(s1,)[l0g p(6] )] +Znga p(075)[108 Ok]. (D.16)
m=1 a=1

Now,

K
Ep(6l logp(617,)] = folos | {5223 + o~ 1 loglel| 6l s
K
= log | [2229] + 3 (9t — 1) Epiap,l0g 0] (D.17)

= tog [MZ9] + 3" (30 — DI () — ¥, 745
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APPENDIX D. LPD WITH MIXTURE OF DIRICHLET PRIORS

and similarly for the p(6|a) term. Therefore, the relevant terms simplify to the follow-

ing (again, omitting unnecessary summations and non -y, terms)

M g
(mz::l ngamk — Yok + gz:; nga) [ ’ng Z /7_(]] IOg [%} (D18)

Taking partial derivatives with respect to 74 and setting to zero leaves

0= ( S Rt =20+ i nga) W (p0) — T, 0]

D.19
W) — (T 7] (B-19)
+[¥(vgr) — \I’(Z] Vo))
Giving the following update for v,
M g
Yok = Z ngamk + Z nga- (DQO)
m=1 g=1

Finally, R,,, appears in terms 1, 2 and 4 of the bound. Extracting these, removing
summations over m and g and adding a Lagrangian to ensure ) R,,, = 1 we are left

with the following
M
Ring10g by — Ring 108 Ring + RingEyp91) [0(8]atm)] = A Ring — 1). (D.21)
m=1

Taking partial derivatives with respect to R,,, and setting to zero leaves us with
0 = log by, — (log[Rumg] + 1) + Epgy,) [P(0]0tm)] — A (D.22)

Solving for A and re-arranging gives us the following update for R,,,

b exp{Ep(g ,)[log(p(0] )]}
szl brmy eXP{Ep(G\”rg) [log(p(0|ctm)]}
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where

exp{Ey(g|,)[log(p(0|an)]} = HZ(Z’E%'“ XP{Z[ omik — 1) (¥ (vgk) ngg } (D.24)

As with the standard LPD model, these updates can be used iteratively to find a local

maximum of the likelihood.
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APPENDIX E

A PRIOR FOR THE DISCRETE LPD

To avoid overfitting, we can place priors on the multinomial paramaters of our descrete
LPD model. As the parameters are multinomial distributions, a suitable form of prior
is a Dirichlet distribution. In a similar manner to when we added the priors to the
standard LPD model, we find that the derivation remains mainly unchanged with only

changes in the parameter and () updates.

The term of our original bound concerned with the paramater updates is given by
A K
> 2D Qugrlogp(Vealpgr)- (E-1)
a=1 g=1 k=1
Incorporating our prior term, this becomes
A G K
333" Qusos [ plvaalplptplip (€2
a=1 g=1 k=1

where p(p|n) is Dirichlet, with paramaters 7, sensible values of which would be 1.

Introducing a set of gene and process specific Dirichlets - Az, we obtain the following

lower bound on the above quantity

SANkS p(p|n)
ZZZQagk/Pp p|A) log [p(vga|p)p(p|)\)] dp. (E.3)

a=1 g=1 k=1
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We can proceed as in all the other derivations by taking partial derivatives with respect
to the various parameters to obtain fixed-point iterative updates. Omitting the details,

the p update is replaced by the following update for the new variational Dirichlets

A
Z Qagkvgai
a=1

2_:1 Qagk

and the update for the variational multinomial paramaters (0,4, becomes

exp{D_; Vgai ¥ (Agi) — V(325 Agks) ]} exp{¥(Var) — V(325 Vas)}
> XD Vgai[V(Agrri) — V(325 Agri)1} exp{ (Yar) — ¥ (32, Vag) }

Qagk = (E.5)
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APPENDIX F

LPD NUMERICAL TRICK

When evaluating likelihood values for LPD, we are faced with the sum of a product of

where ();; may involve another summation. The problem is in evaluating the product.

the following form

This is often over genes and so can involve a product over thousands of small numbers
that rapidly approaches the machine precision. However, as we are ultimately inter-
ested in the log of this quantity, we can perform the following trick. Firstly, we can
insert an exponential and a log between the summation and the product, converting

the product into a summation of logs.

logz exp {Z log Qij} . (F.2)
i J
This summation of logs is now tractable so we are left with
logZexp G- (F.3)

Obviously, we cannot directly evaluate exp (; but we can make use of the identity

exp(A + B) = exp(A) exp(B) to give

exp K

logz exp{G + K} (F.4)
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which leads to

1

log {Z exp(Gi + K)} -K (F.5)

which we can evaluate, given a suitable choice of constant K. Given that the (; values
will all be negative, a suitable choice is — max[(;] so that in effect we are moving all ;

values up so that the maximum value is 0.
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