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Abstract

We present a new computational technique1 which enables the probabilistic analysis of cDNA mi-
croarray data and we demonstrate its effectiveness in identifying features of biomedical importance. A
hierarchical Bayesian model, called Latent Process Decomposition (LPD), is introduced in which each
sample in the dataset is represented as a combinatorial mixture over a finite set of latent processes,
which are expected to correspond to biological processes. Parameters in the model are estimated using
efficient variational methods. This type of probabilistic model is most appropriate for the interpre-
tation of measurement data generated by cDNA microarray technology. For determining informative
substructure in such datasets the proposed model has several important advantages over the standard
use of dendrograms. Firstly, the ability to objectively assess the optimal number of sample clusters.
Secondly, the ability to represent samples and gene expression levels using a common set of latent
variables (dendrograms cluster samples and gene expression values separately which amounts to two
distinct reduced space representations). Thirdly, in constrast to standard cluster models, observa-
tions are not assigned to a single cluster and thus, for example, gene expression levels are modeled via
combinations of the latent processes identified by the algorithm. We show this new method compares
favourably with alternative cluster analysis methods. To illustrate its potential we apply the proposed
technique to several microarray datasets for cancer. For these datasets it successfully decomposes
the data into known subtypes and indicates possible further taxonomic subdivision in addition to
highlighting, in a wholly unsupervised manner, the importance of certain genes which are known to
be medically significant. To illustrate its wider applicability we also illustrate its performance on a
microarray dataset for yeast.
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1 Introduction

In recent years there has been a large growth in the volume of microarray data. Machine learning tech-
niques have been very useful in extracting information from these datasets. For example, unsupervised
techniques such as hierarchical cluster analysis have been used to indicate tentative new subtypes for
some cancers [1, 6] and to identify biologically relevant structure in large datasets. Using class labels,
supervised learning methods will have an increasingly important role to play in indicating the detailed
subtype of a disease, its expected progression and the best treatment strategy.

1A software implementation, datasets, and supplementary information are available at http://www.enm.bris.ac.uk/lpd/
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Cluster analysis is the most common data analysis method used throughout the microarray literature.
Generation of a dendrogram allows the inference of possible group structure within the data and thus the
identification of related samples or functionally similar genes. A weakness of clustering by dendrogram
is that there is no natural way to objectively assess the most probable number of structures which
underlie the data. Probabilistic model-based clustering can overcome this problem and clustering based
on mixtures of multivariate Gaussians has been proposed in [9], for example. However, as the number of
features (gene probes) typically far exceeds the number of samples the estimated within-class covariances
will be singular. Therefore extensive gene selection is a pre-requisite to any probabilistic model-based
clustering and in [9] a further level of feature extraction is required to obtain a sufficiently low-dimensional
subspace within which the clustering is performed. For the purposes of biological interpretation it would
be better if group structure could be identified using the original set of genes probed in the microarray
experiment with the model used to identify those genes responsible for the group structure. We will show
that this is achieved naturally by the model proposed in this paper.

The main assumption underlying most clustering methods, whether dendrogram-based or probabilis-
tic, is that a sample or gene is assigned exclusively to one class only. While this may be appropriate
if mutually exclusive classes are inherent in the data, this assumption would not be valid if a number
of biological processes interact to influence a given gene expression level, for example. Alternatively, a
sample might validly share some characteristics with two or more sample clusters. It is therefore best to
obtain models which are not restricted by this mutual exclusion of classes assumption.

Models overcoming this mutual exclusion assumption have already been proposed in the literature.
An example is the Plaid Model of Lazzeroni and Owen [8] which allows for overlaps between clusters.
Another example is a model recently proposed by Segal et al [10], in which a probabilistic relational
model (PRM) for gene expression is developed. PRM is shown to successfully identify known biological
processes and provides improved interpretability over comparable methods [10]. However, PRM requires
an estimation algorithm which, in its exact form, is NP-hard and so various heuristics are required to
make the model estimation tractable.

In this paper we will present a new approach to the analysis of microarray data which is motivated
by the above considerations and adopts the Latent Dirichlet Allocation (LDA) approach to data mod-
elling [2]. We have called the method Latent Process Decomposition with a process defined as a set of
functionally related datapoints (samples or genes). We use the term process, rather than cluster, because
a sample or gene can have partial membership of several processes simultaneously, in contrast to many
cluster analysis approaches, as discussed above.

Latent Process Decomposition has linear computational scaling in the number of genes, arrays and
processes. It is able to provide a representation of microarray datasets which simultaneously reflects group
structure across samples and genes as well as the possible interplay between multiple processes responsible
for measured gene expression levels. Furthermore it has advantages over alternative approaches such as
the use of dendrograms, mixture models [9], Naive Bayes and other approaches. In section 2 we will
outline the method, with full derivation and pseudocode listings given in the Appendix, while in section
3 we will outline performance on medical and biological datasets. We have implemented LPD in Matlab
and C++ and this code is freely available at http://www.enm.bris.ac.uk/lpd.

2 Latent Process Decomposition

2.1 Model Specification

In probabilistic terms the data generation process for a tissue sample can be described as follows (Figure
1(b)): for a complete microarray dataset a Dirichlet prior probability distribution for the distribution of
possible processes is defined by the K dimensional parameter α. For a tissue sample a, a distribution θ
over a set of mixture components indexed by the discrete variable k is drawn from a single prior Dirichlet
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distribution. Then, for each of the G features g (generally uniquely mapping to genes), we draw a process
index k from the distribution θ with probability θk which selects a Gaussian defined by the parameters
µgk and σgk. The level of expression ega for gene g from sample a is then drawn from the k’th Gaussian
denoted as N (ega|k, µgk, σgk). This is then repeated for each of A tissue samples. It can be easily seen
that this generative process ensures that each sample has its own specific distribution of processes and
that each measured level of gene expression in the sample is obtained by repeatedly sampling the process
index from the sample-specific Dirichlet random variable θ, thus allowing the possibility of a number of
processes having an effect on the measured levels of gene expression.

This is a biologically more realistic representation than the mixture model which underlies all forms
of clustering, see Figure 1(a), where only one process or class is responsible for all the measured gene
expression, thus disregarding gene-specific differences in effect (µgk) and noise (σgk) or the sample-specific
interaction of various processes.
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Figure 1: Graphical Model Representations of LPD

2.2 Learning with Uniform Priors: the Maximum Likelihood solution

For a model with a set of parameters, H, and data D, Bayes’s rule gives

p(H|D) ∝ p(D|H)p(H) (1)

where p(D|H) is the likelihood and p(H) is the prior on our parameters H. We are interested in finding
the set of parameters H that maximises p(H|D) (the maximum posterior or MAP solution). In the case
of a uniform (or uninformative) prior, this is the maximum likelihood solution. We will begin by deriving
the maximum likelihood solution and then extend this to a non-uniform (or informative) prior in section
2.3. The log-likelihood of a set of A training samples is:

log p(D|µ,σ, α) (2)

which can be factorised over individual samples as follows:

log p(D|µ, σ, α) =
A∑

a=1

log p(a|µ, σ, α). (3)

Marginalising over the latent variable θ allows us to expand this expression as follows
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log p(D|µ, σ,α) =
A∑

a=1

log
∫

θ

p(a|µ, σ,θ)p(θ|α)dθ. (4)

where the probability of the sample conditioned on the means, variances and process weightings can
be expressed in terms of its individual components giving the following

log p(a|µ,σ, α) = log
∫

θ

{ G∏
g=1

K∑

k=1

N (ega|k, µgk, σgk)θk

}
p(θ|α)dθ (5)

where N (a|k, µ, σ) denotes a normal distribution in process k with mean µ and standard deviation σ.
Variational inference can be employed to estimate the parameters of this model and full details are given
in the Appendices. A lower bound on (5) can be inferred by the introduction of variational parameters
and the following iterative update equations provide estimates of the two variational parameters Qkga

and γak

Qkga =
N (ega|k, µgk, σgk) exp [ψ(γak)]∑K

k′=1N (ega|k, µgk′ , σgk′) exp [ψ(γak′)]
(6)

γak = αk +
G∑

g=1

Qkga (7)

for given αk and where ψ(z) is the digamma function. The model parameters are obtained from the
following update equations:

µgk =
∑A

a=1 Qkgaega∑A
a′=1 Qkga′

(8)

σ2
gk =

∑A
a=1 Qkga(ega − µgk)2∑A

a′=1 Qkga′
(9)

The update rule for the Dirichlet model parameter αk is found from the derivatives of the α dependent
terms in the likelihood [2]. Thus the αk are modified after each iteration of the above updatings using a
standard Newton-Raphson technique (see [2] Appendix A.4.2, and the Appendix of this paper for further
details).

The generative process described above for samples can equally be used over genes (the features). In
probabilistic terms: for each gene g a Dirichlet random variable is sampled, then for each experimental
condition a an index is drawn with probability θk, and then the expression level ega is sampled from the
appropriate Gaussian with mean and variance µak, σak respectively. Note that representing genes in this
manner only requires a change of indices in the parameters which simply amounts to a transpose of the
expression matrix. We will give one example of a decomposition over genes (the yeast cell cycle dataset)
later in section 3.2.1.

2.3 Learning with Non-Uniform Priors: the MAP solution

In the previous section, we derived a set of update equations, guaranteed to converge to a local maximum
of the lower bound on the likelihood. We now extend this argument to the MAP solution with informative
priors. A suitable prior on the means could be a Gaussian distribution with zero mean. This would
reflect a prior belief that most genes will be uninformative and will have log-ratio expression values
around zero (i.e. they are unchanged compared to a reference sample). For the variance, we may wish
to define a prior that penalises over-complex models and avoids overfitting. Overfitting may occur when
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Gaussian functions contract onto a single data point causing poor generalisation and numerical instability.
With a suitable choice for the prior an extension of our previous derivation to the full MAP solution is
straightforward. Our combined likelihood and prior expression is (assuming a uniform prior on α):

p(µ, σ,α|D) ∝ p(D|µ, σ,α)p(µ)p(σ). (10)

Taking the logarithm of both sides we see that the maximisation task is given by:

α,σ, µ = arg max
α,σ,µ

log p(G|µ, σ,α) + log p(µ) + log p(σ). (11)

Thus we can simply append these terms onto our bound on (1). Noting that they are functions of µ
and σ only (and any associated hyper-parameters), we conclude that these terms only change the update
equations for µak and σak. Let us assume the following priors:

p(µgk) ∝ N (0, σµ) (12)

p(σ2
gk) ∝ exp

{
− s

σ2
gk

}
(13)

i.e. a zero-mean Gaussian for the means and an improper prior for σgk (i.e. not integrating to unity
over its domain) which gives zero weight to σgk = 0 and asymptotically approaches 1 as σgk approaches
infinity. Plots of these priors can be seen in Figure 2 where σµ = 0.1 and s = 0.1.
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Figure 2: Example priors for LPD µgk and σgk parameters

Adding these to our original bound, we now have to differentiate the following expression to obtain
updates for µgk and σgk

A∑
a=1

Qgka log p(ega|µgk, σgk) + log p(µgk) + log p(σgk). (14)

Performing the necessary differentiations, we are left with the following new updates
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µgk =
σ2

µ

A∑
a=1

Qgkaega

σ2
gk + σ2

µ

A∑
a=1

Qgka

(15)

σ2
gk =

A∑
a=1

Qgka(ega − µgk)2 + 2s

A∑
a=1

Qgka

. (16)

These expression clearly show the effect of the priors. In (15), we see that we now have a dependancy
on both σ2

gk and σ2
µ. In the limit of σ2

µ → ∞, we effectively have a uniform prior and we recover our
original update equations for the maximum likelihood solution. In the opposite limit of σ2

µ → 0, we find
µgk → 0 as we would expect. In (16), the prior is effectively putting a lower bound on the value of σ2

gk.
As s → 0 the prior approaches a uniform distribution over all positive reals and we recover our original
σ2

gk update.

2.4 Computing the Likelihood and Parameter Initialisation

Once the model parameters have been estimated, we can calculate the likelihood for a collection of
samples A′ using:

L =
A′∏

a=1

∫

θ

{ G∏
g=1

K∑

k=1

N (ega|k, µgk, σgk)θk

}
p(θ|α)dθ (17)

where we estimate the expectation over the Dirichlet distribution by averaging over N samples drawn
from the estimated Dirichlet prior p(θ|α)

L ≈
A′∏

a=1

1
N

N∑
n=1

{ G∏
g=1

K∑

k=1

N (ega|k, µgk, σgk)θkn

}
. (18)

Before iteratively updating Qkga, γak, µgk, σ2
gk and αk various parameter values need to be initialised.

In the numerical experiments reported below the process mean values µgk were initialised to the mean
expression value across the data set for each gene. Similarly, the variances σ2

gk were set to the variance
of their respective genes. The αk values were initialised to 1 for all k and the variational Dirichlet
parameters γa were initialised to a positive random number.

3 Numerical Experiments

To evaluate the performance of Latent Process Decomposition (LPD) we applied it to four microarray
datasets. For the first three datasets (prostate, lung and lymphoma cancer) we show that LPD compares
favourably with other cluster analysis methods, including dendrograms and Naive-Bayes, in its ability to
classify samples. In the fourth example for the yeast cell cycle [11], we show that LPD can generate a
rich, biologically relevant description of complex experiments. In these numerical studies the only pre-
processing was to take the logarithm of the data values (base 2) if this had not already been performed
by the originators of the dataset. Any likelihood calculations were approximated by (18) where samples
from p(θ|α) were taken by using k independent samples from gamma distributions with parameters αk

and then normalising the result to sum to 1. The algorithm performs EM-like updates of the variational
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and model parameters. As such, convergence is guaranteed, although only to a local maximum of the
training likelihood and not to the global maximum. Therefore, any analysis given below corresponds to
the best solution (in terms of the likelihood) achieved over several starts with different initial γa values.

When estimating the best value of K for a particular dataset, an N -fold cross-validation procedure was
used. This consisted of randomly partitioning the data into N subsets, one of which would be removed
before training and then used to calculate the likelihood. Each of the N subsets would be left out in turn
and the N likelihood values would be averaged to give the estimate of the true value.

3.1 Prostate cancer dataset

Our first cancer dataset comes from a study of prostate cancer by Dhanasekaran et.al [4] consisting of 54
samples with 9984 features (we used their complete dataset corresponding to Figure 8 in the supplemen-
tary information of [4]). This dataset consists of 14 samples for benign prostatic hyperplasia (labelled
BPH), 3 normal adjacent prostate (NAP), 1 normal adjacent tumour (NAT), 14 localised prostate cancer
(PCA), 1 prostatitis (PRO) and 20 metastatic tumours (MET). We will use this dataset to compare
performance with uniform priors and non-uniform priors and to compare Latent Process Decomposition
with hierarchical cluster analysis.

Figure 3(a) shows the result of hierarchical cluster analysis using a dendrogram with average linkage
and a Euclidean distance measure. Although some local structure can been identified, we see that the
dendrogram gives a poor separation between known classes (in line with results presented in Dhanasekaran
et al [4]). However, the number of differentially expressed genes can be expected to be small relative
to the total number of genes. As an unsupervised method we cannot use prior class knowledge but we
can use a prior belief that genes varying little across samples are less likely to be interesting. Hence to
investigate the impact of feature selection we ranked genes based on variance across samples and used
the subset of features with highest variance. Figure 3(b) shows the corresponding result for performing
hierarchichal clustering on this reduced data set. Although the dendrogram manages to split metastatic
from the rest successfully, the difference between PCA and BPH is still unclear and it is very difficult to
infer from this dendrogram just how many clusters are present.
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Figure 3: Result of hierachichal cluster analysis on the prostate dataset, using average linkage and a
Euclidean distance measure.
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In Figure 4 (lower and descending curve) we give the hold-out log-likelihood versus K, the number
of processes, with a uniform prior and using the top-ranked 500 features. The log-likelihood peaks at
about K = 4 processes,after which a model with uniform prior overfits the training data as we increase
the number of processes. This is to be expected with a maximum likelihood approach as we are allowing
the model too much freedom by not penalising complexity. To solve this problem we can incorporate
the informative priors discussed in section 2.3. We will discuss the determination of the parameters
in these priors shortly. However, to illustrate performance we give the log-likelihood versus K plot in
Figure 4 (top, level curve) using values of σ2

µ = 0.1 and s = 0.1. We see that the log-likelihood remains
approximately constant as the number of processes is altered, rather than descending as K increases.
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Figure 4: Hold-out log-likelihood (y-axis) versus the K (x-axis) using the top ranked 500 genes in the
prostate cancer dataset using a non-uniform prior as given in section 2.3 (upper, level curve) and a
uniform prior (lower, descending curve) as described in section 2.2.

Figure 5(a) provides an explanation for this behaviour: this is a decomposition of the prostate data
into K = 10 processes with a uniform prior (and using the top 500 genes ranked by variance). Given
that the estimated optimum number of processes is 4, we might expect the model to severely overfit, as
indeed it does. However, if we introduce priors with σ2

µ = 0.1 and s = 0.5 we obtain the decomposition
seen in Figure 5(b). We observe that the decomposition is over just four processes, with the remaining
six processes empty. This is very useful since, given suitable values for the prior parameters, we do not
need to decide the exact number of processes. We also notice that the decomposition is much cleaner.
For example, the metastatic samples (MET) have no overlap with localised prostate cancer (PCA) and
the benign and normal samples indicating they are a distinct state.
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(a) With a uniform prior.
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(b) Using a non-uniform prior with σ2
µ = 0.1 and

s = 0.5.

Figure 5: K = 10 process decomposition of the prostate cancer dataset using the top 500 genes. The
peaks represent the confidence in the assignment of the a’th sample to the k’th process using γak.

Although we can avoid overfitting with correct parameters for the prior, this still leaves the question
of the correct choice of these prior parameters. Our numerical investigations across different datasets
indicated that the mean parameter, σµ, had negligible effect and we typically set this parameter to
0.1. However performance did depend on s, the variance parameter. In Figure 6 we plot from a cross
validation study of the log-likelihood versus s for the 500 top-ranked genes in the prostate dataset. We
notice a peak at s = 0.1 though any choice for s on the range 0.1 and 0.5 appears satisfactory.
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Figure 6: Hold-out log-likelihood (y-axis) as a function of the variance prior parameter s (x-axis) using
the top 500 features in the prostate dataset.
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It may appear that we have gained very little by moving from cross-validation over processes to
one over s but arguably this is not the case for two reasons. Firstly, we are dealing with a small
number of samples and hence by removing some samples for cross-validation, we could easily remove a
substantial proportion of one particular class, suggesting a bias towards under-estimating the number of
classes present. The variance parameter on the other hand is a measure of noise that should be class
independent and hence should be the same regardless of whether or not the full data set is being used.
Also, the number of processes present will be dependent on the particular data set and could vary greatly
depending on the given study. On the other hand, the contribution made by noise is a consequence of
the experimental procedure and we may expect the optimum value of s to vary very little across data
sets. Indeed, in the following sections, we shall see that this is the case.

One advantage of LPD over standard clustering techniques is the ease with which information can
be extracted from the derived model. In this prostate cancer example, we could be interested in finding
those genes most differentially expressed between localised prostate cancer (PCA) and the metastatic
samples (MET), for example. The following score can be used to rank genes:

Z =
|µgi − µgj |√

σ2
gi + σ2

gj

(19)

where i and j correspond to the two processes being compared. Genes ranking highly will be those
with large separation between their means and small standard deviations - corresponding to genes whose
values fall consistently into two distinct clusters. In Table 1 we give a list of the 10 top-ranked genes based
on this score. Plots of the mixture densities defined by the latent processes and the actual data values
for three of these genes can be seen in Figure 7. These three plots show that the extracted genes appear
to distinguish well between localised cancer and metastasis and importantly, have been highlighted as
significant without the use of the class labels. An investigation of these genes (Dr. Jeremy Clark, personal
communication) indicates that some of them are potentially significant for cancer biology. For example,
CTGF is an immediate-early gene induced by growth factors or certain oncogenes. The expressed protein
binds to integrins and modulates the invasive behaviour of certain human cancer cells [3]. Similarly it has
been reported [5] that tumour angiogenesis and tumour growth are critically dependent on the activity
of EGR1.

Rank Name Z

1 translocating chain-associating membrane protein (TRAM) 4.243369
2 early growth response 1 (EGR1) 4.131861
3 connective tissue growth factor (CTGF) 3.579336
4 osteoglycin (osteoinductive factor, mimecan) (OGN) 3.339221
5 golgi membrane protein (GP73) 3.202468
6 butyrate response factor 1 (EGF-response factor 1) (BRF1) 3.074948
7 ribosomal protein L5 (RPL5) 2.985735
8 dopachrome delta-isomerase, tyrosine-related protein 2 (DCT) 2.929469
9 pericentriolar material 1 (PCM1) 2.877109
10 sprouty (Drosophila) homolog 4 2.755093

Table 1: Top 10 genes separating localised prostate from metastatic prostate cancer. Genes are ranked
by Z.
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Figure 7: Inferred density plots for 3 genes separating localised prostate cancer (PCA, process 2) from the
metastatic samples (MET, process 4) in Figure 5(b). Actual data values are shown below the mixtures,
separated by class with circles representing expression values for localised prostate cancer and crosses
representing values for metastatic prostate cancer samples.

We have used the likelihood as our measure of model performance. One issue that we have not yet
explored is how these likelihood values compare with those for alternative, and possibly simpler, cluster
analysis methods. The most obvious comparison is with a standard Gaussian mixture model. The main
difference between LPD and a Gaussian mixture model is the repeated sampling for each feature in LPD
allowing each sample to be represented by a combination of processes.

Due to the large number of features involved, it is computationally infeasible to use a Gaussian
mixture model with full covariance matrices and thus we shall constrain the matrices to be diagonal
(equivalent to Gaussians aligned with the coordinate axis). Figure 8 shows the log-likelihood curves
using maximum likelihood (i.e. no priors) for LPD and Naive-Bayes. We see that Naive-Bayes begins
overfitting immediately, suggesting only 2 clusters in the data. LPD rises above Naive-Bayes to a peak at
K = 4 processes before dropping towards the Naive-Bayes curve as K increases. Although the difference
in the log-likelihood is not huge, it is statistically significant, given the error bars, and the suggestion
of only 2 clusters from Naive-Bayes is misleading. Note that we have used the maximum likelihood
approach for training LPD to give the fairest comparison with Naive-Bayes which is also trained by
maximum likelihood. It is also worth noting the relative sizes of the error bars. For Naive-Bayes, it is
possible to calculate the likelihood exactly whereas with LPD we must take samples from the Dirichlet.
The error bars for the two methods are certainly of the same order, suggesting that most variation is due
to the cross-validation procedure thus allowing us to be confident in our LPD likelihood approximation
method.
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Figure 8: Hold-out log-likelihood (y-axis) for maximum likelihood LPD (upper curve) and Naive-Bayes
(lower curve ) for various value of K (x-axis). The top 500 features are used for both models.

3.2 Lung cancer dataset

The lung cancer dataset [6] consists of 73 gene expression profiles from normal and tumour samples with
the tumours labelled as squamous, large cell, small cell and adenocarcinoma. 10-fold cross validation
was performed for values of K between 2 and 20 with and without parameter priors and the results
are shown in Figure 9. As for the prostate cancer example, we notice a non-uniform prior avoids over-
fitting and causes the log-likelihood to plateau. In [6] the authors identified 7 clusters in the data -
with the adenocarcinoma samples falling into three separate clusters with strong correlation with clinical
outcomes. For their ordering (which we will follow) samples 1-19 belong to adenocarcinoma cluster 1,
samples 20-26 belong to adenocarcinoma cluster 2, samples 27-32 are normal tissue samples, samples 33-
43 are adenocarcinoma cluster 3, samples 44-60 are squamous cell carcinomas, samples 61-67 are small
cell carcinomas and samples 68-73 are from large cell tumours. For this example and the following dataset
(for lymphoma) features selection was found to have little effect so we give the analysis without feature
selection.
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Figure 9: Hold-out log-likelihood (y-axis) versus K (x-axis) for the lung cancer dataset with (upper, level
curve) and without parameter priors (lower, descending curve).

As in the previous section, the plateauing of the log-likelihood with a non-uniform prior suggests that
we are using more processes than are necessary and additional processes are left empty. The onset of a
plateau in the log-likelihood indicates the minimum number of processes to use and K = 10 would seem
reasonable. The cross-validation study over s is given in Figure 10 and we can see a peak between 0.3
and 0.5. This is approximately the same peak value found for the prostate cancer dataset.
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Figure 10: Hold-out log-likelihood (y-axis) as a function of s (x-axis) for the lung cancer dataset.

In Figure 11 we use LPD to decompose the data into 10 processes with the bars representing the
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normalised γak values (equivalent to Ep(θ|γa)[θ]) and expressing the confidence in the allocation of the
a’th sample to the k’th process. The samples are in the order in which they are presented in the original
paper [6].

First we observe that the clustering by dendrogram is accurately reproduced by latent process de-
composition. One notable difference is that the last two entries for the small cell carcinoma grouping are
placed with the adenocarcinoma cluster 2 by latent process decomposition with high values of probability
(close to one). For the original clustering by dendrogram these two samples are two adenocarcinomas
inaccurately placed by the dendrogram in a cluster with small cell carcinomas. This difference is therefore
in favour of latent process decomposition. For latent process decomposition we find that the adenocar-
cinoma clusters 1 and 2 decompose across processes 1 and 2 and adenocarcinoma cluster 3 is almost
exclusively represented by process 4. There are rare instances of adenocarcinoma placed in processes
9 and 10. The normal samples (process 3) and large cell tumours (process 8) are very distinct. The
squamous cell carcinomas are decomposabled into processes 5 and 6, both of which have little com-
monality with any other tumour types in the dataset. This might suggest possible further taxonomic
decomposition into subtypes. However, this possibility should be treated with caution: decomposition
into sub-processes could also mirror the different genetic stages of a single subtype, for example.

In Garber et al [6] the class labels were used to extract genes which distinguished well between the
different adenocarcinoma clusters. Using the Z-score described in the previous section we give the top
ten ranked genes distinguishing processes 1 and 4 (adenocarcinoma 1 and adenocarcinoma 3) in Table
2. Of these top genes, numbers 1, 2 and 10 were discussed in [6] as being significant for cancer biology.
Also, the biological relevance of the detected genes is highlighted by the internal consistency of the list:
two antagonistic proteins of sugar metabolism and a variety of transmembrane proteins (including two
solute carriers) dominate the picture. Importantly, and in constrast to Garber et al [6], these features
have been extracted with no prior knowledge of class membership 2.
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Figure 11: Normalised γak values for a 10 process decomposition of the lung cancer data.

Finally, as for the prostate cancer study, we can use the hold-out log-likelihood to compare LPD with
Naive-Bayes. Again, we will use the maximum likelihood method to train both models to ensure a fair
comparison. The results can be seen in Figure 12. Although the difference between the two methods is
small, LPD tends to overfit less quickly as K increases.

2For a more complete list and comparisons between other processes see http://www.enm.bris.ac.uk/lpd
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Rank Name Z

1 ESTs Hs.11607 2.5462
2 Solute carrier family 7, member 5 2.1824
3 Transmembrane, prostate androgen induced RNA 1.8716
4 Trophinin associated protein (tastin) 1.8706
5 Fructose-1,6-bisphosphatase 1 1.7742
6 Epididymal secretory protein (19.5kD) 1.7589
7 Phosphofructokinase, platelet 1.7040
8 ESTs Hs.76728 H00660 1.6998
9 Solute carrier family 2, member 1 1.6893
10 Protein tyrosine kinase 7 1.6774

Table 2: Top lung genes, ranked by Z.
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Figure 12: Hold-out log-likelihood (y-axis) for maximum likelihood LPD (top curve for K = 5) and
Naive-Bayes (bottom curve for K = 5) for various value of K (x-axis).

3.3 Lymphoma cancer dataset

Next we consider the Lymphoma dataset of Alizadeh et al [1] which consists of 96 samples of normal
and malignant lymphocytes. In this study the authors used samples from diffuse large B-cell lymphoma
(DLBCL), the most common form of non-Hodgkin’s lymphoma in addition to including data for follicular
lymphoma (FL), chronic lymphocytic leukaemia (CLL) and other cell types.

Determining the hold-out log-likelihood versus K with 10-fold cross-validation we find overfitting
with a maximum likelihood solution while the log-likelihood plateaus after K = 10 suggesting this is the
smallest number of processes to use for a good fit to the data. Using K = 10 we can cross-validate over
different values of the variance prior parameter s and the results are shown in Figure 13.
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Figure 13: Hold-out log-likelihood (y-axis) versus the variance prior parameter, s (x-axis), for the lym-
phoma dataset.

A decomposition into K = 10 processes (using the value of s that gave the maximum in Figure 13)
can be seen in Figure 14. The samples are presented in the same order as Alizadeh et al [1] with samples
1 to 16 largely consisting of DLBCL with samples 1 and 2 consisting of two DLBCL cell lines (OCI Ly3
and Ly10) while 10 and 11 are tonsil germinal cell samples. Samples, 17 to 47 consist of DLBCL, samples
48 to 57, 58 to 63 and 65 to 70 consist of blood B and other samples, sample 64 is the OCI Ly1 cell line,
sample 71 is a single DLBCL sample placed in with this general cluster of blood B and other tissues,
samples 72 - 80 are follicular lymphoma (FL), samples 85 to 95 are CLL and 96 is a lone DLBCL sample.
The decomposition agrees well with the structure obtained using a dendrogram [1]. Decomposition of the
DLCL samples into several processes suggests sub-structure supporting the discussion in [1]. LPD and
the dendrogram do differ, e.g. sample 71 (DLCL) is now partly grouped with the other DLCL samples
and not the FL samples in contrast to the dendrogram. Also, process 6 brings together the OCI samples
which was not achieved by the dendrogram.
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Figure 14: K = 10 process decomposition of the lymphoma data.
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Finally, in Figure 15 we compare the hold-out log-likelihood for LPD with that for the Naive-Bayes
model. As in the previous examples, we see that LPD does not overfit as quickly and suggests a greater
number of processes than the Naive-Bayes model. It also gives a higher maximum value, suggesting it is
better suited to this particular dataset.
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Figure 15: Hold-out log-likelihood (y-axis) as a function of K (x-axis) for maximum likelihood LPD and
the Naive-Bayes Gaussian mixture model.

3.4 Yeast Cell Cycle Dataset

For the next example we have used the yeast cell cycle dataset of Spellman et al. [11]. In this study
the authors investigate which yeast genes show periodically varying expression levels during cell cycle
progression, using whole-genome microarrays covering approximately 6200 genes. Using a cross-validation
study of log-likelihood versus s with a non-uniform prior, we found the curve achieved its peak value at
s = 0 suggesting that a non-uniform prior was not of benefit. Thus the results in this section are presented
using the maximum likelihood solution of section 2.2. In contrast to the previous three examples we will
now decompose over genes rather than samples (see end of section 2.2). In Figure 16 we perform a
comparison of the log-likelihood curves versus K for three methods and in all cases LPD gives the best
solution for these datasets.
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Figure 16: Comparison of the log-likelihood (y-axis) versus K (x-axis) for LPD (top curve) and a Naive-
Bayes mixture model (middle curve). We have additionally made a comparison with a Bayesian Network
model introduced by Segal et al [10] (bottom curve) which represents process membership over genes
rather than samples.

Figure 16 compares the predictive likelihood for LPD, Naive-Bayes and a Bayesian network model
introduced by Segal [10]. Segal’s model decomposed the data into a set of processes where each gene’s
membership of each process is defined by a separate binary variable. Each process has an activity value
defined for each array. The expression value for a particular gene in a particular array is assumed to be
Gaussian where the mean is the sum of the activities for each process to which this gene belongs. This
method is considered to be state-of-the-art and as such we have included it in our comparisons. One
problem with Segal’s method is that estimating the binary membership parameters exactly is NP-hard
and so for values of K greater than 10, it becomes very time consuming. It is for this reason that the
likelihood curves for Segal’s method stops at K = 10 processes in Figure 16. Various heuristics exist to
estimate these variables but given the relative difference in log-likelihood between this and the other two
methods, it seemed unnecessary to implement them.

While the previous datasets for cancer mainly demonstrate the performance of LPD in categorising
data, this cell cycle data can reveal the biological usefulness of the identified latent processes and their
combinations in any given sample. In this respect, LPD is able to provide a far richer picture than
is available from a simple clustering approach. Figure 16 shows that for this dataset between 5 and 10
processes give the highest predictive likelihood. From the well-characterized biology of the experiment we
expect one process corresponding to each of the known cell cycle phases (G1, S, G2, M, MG1, as defined
in the original paper [7]) plus a small number of “classifying” processes that distinguish between the four
different synchronization methods that were used in the experiment. Figure 17 shows the ten processes
defined by LPD. It can easily be seen that processes 1 and 3 represent “classifying” processes that
characterise alpha factor/elutriation synchronization and CDC15 synchronization respectively. Processes
2, 4, 6, and 8 correspond to cycling processes and each of them can be uniquely mapped to one of
the major cell cycle phases by reference to the biological information given in [7] (highlighted in Figure
17). The fifth cell cycle phase, G2, which is very short in exponentially growing yeast cultures, is not
recovered as a distinct process but can easily be obtained by the linear combination of the adjacent S
and M phases (not shown). The remaining processes (5, 7, 9, and 10) seem to be dominated by noise
and experimental artefacts (particularly in process 7). This emphasises that identification of the most
parsimonious number of latent processes is an extremely useful feature of the LPD approach. This would
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be even more important in experiments without previous knowledge of the underlying process structure,
where the identification of the really informative processes would not be as easy as in the present test
case.

Figure 17: The ten processes identified by LPD for the yeast cell cycle. The cycling processes peak
in the various phases of the cell cycle as highlighted on subplots 2, 4, 6 and 8. The four different
synchronization methods are indicated at the top. Our numbering convention is odd numbers starting
from the top subfigure for the left-hand subfigures and even numbers starting from the top for the
right-hand subfigures.

From a biological point of view it is particularly noteworthy that the cycling processes were identified
without any prior reference to the time-series structure of the experiment. The original publication used
a Fourier transformation to determine the expression peaks of cyclically expressed genes and Pearson
correlation with known cell cycle-regulated genes to assign them to cell cycle phases. In the case of LPD,
the same can be achieved by reference to the gene-specific variational parameter γgk. This is shown in
Figure 18, where the expression of a classical G1 phase marker gene (cyclin CLN2) is indeed represented
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most strongly by process 2, which according to Figure 17 corresponds to peak expression in G1.

Figure 18: The expression levels of the G1-specific cyclin CLN2 YPL256C peaks in G1 phase (lower
panel, solid line). The dotted line is the sum of the mean for each process weighted by the value of the
gene-specific variational parameter for each process (top bar chart). In this case it can be seen that the
second process profile (G1 phase) is indeed dominant for this gene.

Figure 19 shows a more complex example of the power of this approach. The histone genes, which
code for the main protein component of chromosomes, are known to be most strongly expressed in
S phase, when new chromosomes need to be assembled. Indeed, Figure 19 shows that expression of
one representative histone (H1) is dominated by the S phase-specific process 8 (compare Figure 17).
However, there are also significant contributions by processes 2 and 6 (G1 and M phase) and the measured
expression profile (solid line in Figure 19, lower panel) shows clearly that this specific histone has a much
broader expression range that extends well beyond S phase. This is not entirely unexpected as the
production of histone proteins should precede the replication of DNA that defines S phase.
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Figure 19: The expression levels of the histone H1 gene (YPL127C) peaks in S phase (lower panel, solid
curve). The dotted line is the sum of the mean for each process weighted by the value of the gene-specific
variational parameter for each process (top bar chart). In this case it can be seen that a combination of
the second, sixth and eighth process profiles is required for this histone. This combination corresponds
to the G1, M and S phase processes identified by LPD (Figure 16).

4 Conclusion

Our experimental results strongly indicate that latent process decomposition is an effective technique for
discovering structure within microarray data. It has several advantages over the use of dendrograms or
simple clustering: unambiguous determination of the number of processes via cross-validation using a
hold-out (predictive) likelihood. In addition the model uses a shared latent space with the same explana-
tory variables for both samples and genes. Overfitting can be effectively controlled using a non-uniform
prior, in contrast to many cluster analysis methods. Also several processes can be simultaneously com-
bined to determine gene expression levels so that the relationship between processes is more transparent.
LPD has significant advantages over other cluster analysis methods, for example, models based on a
mixture of Gaussians [9]. With the latter models genes must be pre-selected followed by another level
of feature extraction due to the rank deficiency of the estimated covariance matrix in the original space.
This is not required in the approach advocated here. Given the large number of features used by mi-
croarray datasets there is a redundancy of information. For this reason we found that feature selection
can sometimes improve the performance of the model. For lung and lymphoma datasets we used no
feature selection but for the prostate cancer and cell cycle datasets we used the top 500 and 1000 genes
as selected by variance spread. Feature selection in this context is an avenue for further research.
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5 Appendices

In this appendix we will give a full derivation of the LPD model. We will outline the derivation of the
maximum likelihood solution given in section 2.2: the generalisation to a non-uniform prior is straight-
forward and outlined in section 2.3. The likelihood of a set of A training samples is as follows

A∏
a=1

p(a|µ, σ,α) =
A∏

a=1

∫

θ

p(a|µ, σ,θ)p(θ|α)dθ (20)

where the probability of the sample conditioned on the means, variances and process weightings can
be expressed in terms of its individual components giving the following

A∏
a=1

p(a|µ, σ, α) =
A∏

a=1

∫

θ

{ G∏
g=1

K∑

k=1

N (ega|k, µgk, σgk)θk

}
p(θ|α)dθ. (21)

For a concave function f(x) Jensen’s inequality states that f
(
Ep(z)[z]

) ≥ Ep(z)[f(z)] where Ep(z) =∫
zp(z)dz for continuous z. Thus introducing a set of sample-specific variational Dirichlets p(θ|γa) we

can derive a lower bound on the log-likelihood

A∑
a=1

log p(a|µ, σ, α) ≥
A∑

a=1

Ep(θ|γa)

[
log

{
p(a|µ,σ, θ)

p(θ|α)
p(θ|γa)

}]
(22)

where

Ep(θ|γa) [f(θ)] =
∫

θ

f(θ)p(θ|γa)dθ (23)

A set of variational parameters Qkga are now introduced such that
∑

k Qkga = 1 for bounding
p(a|µ,σ, θ) in the above inequality. These parameters can be regarded as the posterior distribution
over the different processes for each g and a. Jensen’s inequality can then be used again to give the
following additional bound

A∑
a=1

log p(a|µ, σ, θ) ≥
K∑

k=1

A∑
a=1

G∑
g=1

Qkga log
{N (ega|k, µgk, σgk)θk

Qkga

}
(24)

Combining these bounds into one gives the following
∑

a log p(a|b, µ, σ) ≥ ∑
a Ep(θ|γa)[log p(θ|α)]

−∑
a Ep(θ|γa)[log p(θ|γa)]

+
∑

a

∑
g

∑
k Qkga logN (ega|k, µgk, σgk)

−∑
a

∑
g

∑
k Qkga log Qkga

+
∑

a

∑
g

∑
k QkgaEp(θ|γa)[log θk]

(25)

5.1 Model Parameters

The process mean and variance parameters µgk and σ2
gk only appear in the 3rd term of (25). This term

can be expanded as follows

∑
a

∑
g

∑
k Qkga logN (ega|k, µgk, σgk) =

∑
a

∑
g

∑
k Qkga log

[
1√

2πσ2
gk

]

−∑
a

∑
g

∑
k Qkga

(ega−µgk)2

2σ2
gk

.
(26)
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Taking partial derivatives of this expression with respect to µgk and σgk, setting the results to zero
and solving yields the following updates

µgk =
∑

a Qkgaega∑
a Qkga

(27)

σ2
gk =

∑
a Qkga(ega − µgk)2∑

a Qkga
. (28)

The α parameter only appears in term 1 of (25) but partial differentiation of this term with respect
to αk reveals that a simple iterative procedure is not possible and a second order technique is required.
Term 1 can be written

∑
a

Ep(θ|γa)[log(p(θ|α)] =
∑

a

Ep(θ|γa)

[
log

{
Γ(

∑
k αk)∏

k Γ(αk)

}
+ log

∏

k

θ
(αk−1)
k

]
(29)

Thus, differentiating this expression we get

gi = A [ψ (α)− ψ (αi)] +
A∑

a=1

[ψ (γia)− ψ (γa)] (30)

from which we can derive the corresponding Hessian

Hij = ψ′ (α)− δijAψ′ (αi) (31)

αnew = αold −H(αold)−1g(αold) (32)

where H(α) is the Hessian matrix and g(α) is the gradient. For i, j = 1, . . . ,K their components are
given by:

gi = A [ψ (α)− ψ (αi)] +
A∑

a=1

[ψ (γia)− ψ (γa)] (33)

Hij = ψ′ (α)− δijAψ′ (αi) (34)

where γa =
∑K

j=1 γjc, α =
∑K

k=1 αk and ψ′ (θ) is the trigamma function. Since the Hessian matrix is
of the form

H = diag(h) + 1z1T , (35)

matrix inversion can be avoided [2] and the ith component of the correction in the iterative update
rule can be found from

(H−1g)i = (gi − r)/hi (36)

where

r =




k∑

j=1

(gj/hj)


 /(z−1 +

k∑

j=1

h−1
j ) (37)
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5.2 Variational Parameters

Firstly, Qkga appears in terms 3, 4 and 5 of (25). Taking these terms, removing summations over k, a
and g and adding a Lagrangian to satisfy the summation constraint we have

Qkga logN (ega|k, µgk, σgk)−Qkga log Qkga + QkgaEp(θ|γa)[log θk]− λ(
∑

a

Qkga − 1) (38)

taking partial derivatives with respect to Qkga and setting these to zero gives

0 = logN (ega|k, µgk, σgk)− (log[Qkga] + 1) + Ep(θ|γa)[log θk]− λ (39)

solving for λ and re-arranging gives the following update for Qkga

Qkga =
N (ega|k, µgk, σgk) exp[Ep(θ|γa)[log θk]]

A∑
a′=1

N (ega′ |k, µgk, σgk) exp[Ep(θ|γa′ )[log θk]]
(40)

where

Ep(θ|γa)[log θk] = Ψ(γak)−Ψ(
∑

j

γaj). (41)

Now the γak variable appears in terms 1, 2 and 5 of the above bound. Extracting these terms and
removing summations over k and a leaves

−Ep(θ|γa)[log p(θ|γa)] + Ep(θ|γa)[log p(θ|α)] +
∑

g

QkgaEp(θ|γa)[log θk]. (42)

Now,

Ep(θ|γa)[log p(θ|γa)] =
∫
∆

log
[

Γ(
P

k γak)Q
k Γ(γak) +

∑
k(γak − 1) log[θk]

]
p(θ|γa)dθ

= log
[

Γ(
P

k γak)Q
k Γ(γak)

]
+

∑
k(γak − 1)Ep(θ|γa)[log θk]

= log
[

Γ(
P

k γak)Q
k Γ(γak)

]
+

∑
k(γak − 1)[Ψ(γak)−Ψ(

∑
j γaj)]

(43)

and similarly for the p(θ|α) term. Therefore, the relevant terms simplify to the following (again,
omitting unnecessary summations and non-γak terms)

(
αk − γak +

∑
g

Qkga

)
[Ψ(γak)−Ψ(

∑

j

γaj)]− log
[
Γ(

∑
k γak)∏

k Γ(γak)

]
(44)

Taking partial derivatives with respect to γak and setting these to zero leaves
(

αk − γak +
∑

g

Qkga

)
[Ψ′(γak)−Ψ′(

∑

j

γaj)] = 0 (45)

giving the following update for γak

γak = αk +
∑

g

Qkga. (46)
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5.3 Pseudocode Listings

Data: Read the data e
α ←− 1
Initialise µ and σ (see below)
γ ←− rand()
while iterations ≤ maxIterations do

Update: Q as in equation (6)
Update: γ as in equation (7)
Update: µ as in equation (8) or (15)
Update: σ2 as in equation (9) or (16)
if σ2 < tol1 then

σ2 = tol1
end
while |αnew − αold| > tol2 do

αnew ←− αold −H(αold)−1g(αold)
where g and H are given in equations (33) and (34) respectively

end
Determine the log-likelihood (see equation (18))

end

Algorithm 1: Latent Process Decomposition algorithm. We used a tolerance tol1 = 10−5 to avoid
Gaussians collapsing onto a single point, and tol2 = 10−10 for the α updating.

Parameter Initialisation. From (6) we can see that in order to update Qkga we need values for µgk,
σgk and γak. The first two are initialised to the array means and standard deviations respectively. The
γak values were initialised to positive random numbers since, with the means and standard deviations
uniform over the K processes, uniform γak values would place the algorithm in a local minima of the
likelihood and training could not proceed.
Numerical Stability. There are several points where the algorithm could potentially lose numerical
stability. If a Gaussian contracts onto a single point, its standard deviation will shrink to zero and
its probability density function will approach ∞. To avoid this, we apply a lower bound to the value
of σ2

gk. The choice of the value of this bound is important since, if the value is too low, numerical
problems will persist, while if it is too high it would over-constrain the model and prevent it from fitting
the data. For the update equation for Qkga we find a second possible source of instability. From (6)
we occasionally find that we reach the limits of machine precision and both the numerator and the
denominator approach zero. To circumvent this, we added a small constant (10−100) to each value in Q
before normalisation (i.e. before performing the division in (6)). Finally, when calculating the likelihood,
we have to compute a product over the g. For a large number of genes, this product soon becomes smaller
than the machine precision. However, we are ultimately interested in the logarithm of this product (the
log-likelihood) and so we can perform the following numerical trick to avoid a problem. Namely we
observe that the expression we wish to evaluate is of the form log

∑
i

∏
j Rij . This can be rewritten

log[
∑

i exp ξi] = log[
∑

i exp{ξi + K} exp(−K)] = log[
∑

i exp(ξi + K)]−K, if ξi =
∑

j log Rij , which can
be readily evaluated given a suitable choice for K. Given that the ξi values will all be negative, a suitable
choice is −max[ξi] so that we are effectively incrementing all ξi values so that the maximum value is 0.
Following the implementation of these precautions the algorithm is robust.
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