Class Prediction with Microarray Datasets

Simon Rogers{, Richard D. Williamsi and Colin Campbellf
TAdvanced Computing Research Centre,
University of Bristol, BS8 1TR, United Kingdom

IDept. of Paediatric Oncology, Institute of Cancer Research,
Sutton, SM2 5NG, United Kingdom

Abstract

Microarray technology is having a significant impact in the biologi-
cal and medical sciences and class prediction will play an increasingly
important role in the use and interpretation of microarray data. For
example, classifiers could be constructed indicating the detailed sub-
type of a disease, its expected progression and the best treatment
strategy. In this chapter we outline the main stages involved in the
development of a successful class predictor for microarray datasets, in-
cluding data normalisation, the different classifiers which can be used,
different feature selection strategies and a method for determining how
much data is required for a classification task given an initial sample
set. We illustrate this process with both public domain datasets and a
new dataset for predicting relapse versus non-relapse for a paediatric
tumour.

1 Introduction

Microarray technology enables the simultaneous determination of the expres-
sion levels of thousands of genes. This has opened up a wealth of opportuni-
ties which could revolutionise our understanding in many areas of biological
and medical research. cDNA and oligonucleotide microarrays have been used
for a number of purposes. For example, in cancer research, comparisons of
expression profiles have been used to find genes consistently over- or under-
expressed in a tumour relative to a normal sample. In a comparison of

1 INTRODUCTION 2

samples drawn from multiple sclerosis lesions and normal tissue, microarrays
highlighted a number of over-expressing genes associated with the immune
response [9]. As an auto-immune disease this is to be expected. However, a
further set of genes with unanticipated relevance was also found to be associ-
ated with the disease. In a study of schizophrenia, microarrays were used to
compare expression profiles from different areas of the brain. For cells in the
prefrontal cortex this highlighted the under-expression of genes associated
with functioning of the pre-synaptic juntion [16].

Apart from discovering the significance of individual genes, collective ex-
pression profiles can give new insights. For example, cluster analysis has
been used to detect previously unrecognised tumour subcategories. Alizadeh
et al [6] analysed lymphoma tissue samples and found evidence for two pre-
viously unrecognised subtypes of this disease. These subtypes had distinct
expression profiles at the molecular level and patients belonging to the two
subclasses had different clinical prognoses. Similarly Bhattacharjee et al [7]
and Sorlie et al [14] have identified subtypes of lung and breast cancer.

A further important application of microarray technology is class predic-
tion. For cancer applications, classifiers could be built which may reliably
indicate subtype, invasiveness potential, expected progression and the best
treatment strategy. This could have important clinical consequences. For
example, for prostate cancer, tumours can range from indolent to aggressive
and microarray technology could be used to predict where on this range a
new sample lies. If an indolent tumour type is reliably indicated, invasive
treatment could be avoided and replaced by regular surveillence.

In this chapter we will discuss the main issues arising in the use of mi-
croarray data for class prediction. To build a successful classifier we first
need to prepare and normalise the data. Performance of the classifier can be
affected by the methods used for handling missing values or poor readings
and by our use of normalisation within and between slides. Thus, in section 2
we will start by briefly discussing these issues with illustrations from real-life
datasets. In section 3 we will discuss different types of classifiers which can
be used with microarray datasets, the use of feature selection and methods
which implement a confidence measure for the class assignment. For some
classification tasks the available data may be insufficient in size to construct
a classifier with good generalisation. Thus in section 4 we will consider the
dependence of generalisation ability on sample size and how we may use the
currently available data to determine how much data is required to achieve
a given prediction performance. We will focus on cDNA and oligonucleotide

2 DATA PREPARATION AND NORMALISATION 3

arrays though related technologies such as small molecule or protein microar-
rays can pose similar class prediction problems.

2 Data preparation and normalisation

Successful data preparation obviously plays a crucial part in the construc-
tion of a reliable classifier since the experimental process can introduce seri-
ous artefacts in the data. The pre-processing steps required will depend on
the experimental procedure used. For example, different procedures will be
required for spotted cDNA and synthesised oligonucleotide microarrays (for
example, for Affymetrix arrays most of the normalisations described below
are commonly implemented by supplied data analysis software). In this sec-
tion we will only sketch some of the main problems which can appear. We
will assume that the ith slide in a microarray can be represented as a vector
x; with an associated class label ;. The vector x; has component attributes
or features derived from the measured expression level of each spot on the
microarray. Thus a feature may have a direct association with a particular
gene or an expressed sequence tag (EST), or it may correspond to a replicate
measurement or a probe with no known associations. Depending on the ex-
perimental procedure, it is common practice to first take the log of the data.
Thus, for a cDNA array, suppose we derive expression ratios for a two chan-
nel experiment with one channel the control and the second derived from the
sample of interest. For a doubling of expression over control the ratio is 2.0,
whereas for a halving of expression the ratio is 0.5. The base 2 log of these
ratios are 1.0 and -1.0 respectively, introducing a symmetry between over-
and under- expression.

Next we need to normalise the dataset to adjust for any effects due to
the experimental process rather than the biology. For cDNA microarrays, for
example, there may be uneven hybridisation of dyes across the slide. This
can give large scale systematic deviations in the data which negatively impact
on eventual performance of the classifier. One approach is to determine
a 2-dimensional Lowess (Loess) surface [26, 22] through the data to find
any abnormal trends and correct the data values using this surface. The
Lowess surface is a locally weighted polynomial regression surface with a
low-degree polynomial fitted to a subset of the data around each point and
the coefficients for this polynomial are found using a weighted least squares

2 DATA PREPARATION AND NORMALISATION 4

procedure which gives most weight to points nearest the point of interest. A
global Lowess correction has the possible drawback that a localised cluster of
differentially expressed genes could be biologically significant, but they could
be modified by this spatial trend adjustment. Alternative strategies include
step-wise print-tip and scaled print-tip normalisations [17].

Apart from uneven hybridisation of the dyes, the dyes themselves may
have different dynamic ranges. In Figure 1 we show a plot (from breast
cancer) for a cDNA microarray in which two fluorescent dyes, Cy3 and Cy5,
were used for the control and experimental signal of interest. Unfortunately
these dyes can be detected by the scanner with different efficiencies. In Figure
1 there is a systematic deviation away from the y=z line as the intensity
is increased. A variety of strategies have been proposed to correct for this
problem. One of the simplest is to rotate the data clockwise by 45°, determine
a one dimensional Lowess curve through the data, correct for any systematic
deviation and counter-rotate the data. Alternatives are available such as the
use of dye-swapping replicate measurements.

35000

+ o+t
30000 | .
4, *
L+
25000 - . i{ﬁ -
S +
3 PR I
S gt
e L +
% - -+
i 20000 ety)
= R o
S + o+
= R + + =
S - - A
2 15000 55 4
3 X e
s B e o
3 Rl S
w e =3
e +tgf‘
10000 ﬂ*ﬁt
-
» -+
i
N
5000 |-
n
- +
N
o
0 5000 10000 15000 20000 25000 30000

Expression values: sample

Figure 1: The different dynamic range of the dyes in this cDNA experiment
leads to a systematic deviation with increasing intensity (illustrated by a
deviation from the y = x line). This is a relatively mild instance: in some
cases the deviation can be substantial.

Having normalised data within-slide, the next step is to normalise the
data between slides. The implicit scale and variability within each slide

3 CLASSIFICATION TECHNIQUES 5

can also make a difference. Again there are a variety of ways to normalise
data between slides. For example, housekeeping genes (with expected little
variability between slides) could be used to normalise the data. As a simple
statistical approach, the median absolute deviation is a robust measure of
variability in the data. For a given slide ¢ with median d the median absolute
deviation is the median of the differences |z1; — d|, |zo; — d|, etc where xy; is
the first measured attribute, x9; is the second, etc. We therefore normalise
variability by applying a global rescaling of all the attribute values per slide
to standardise the median absolute deviation across all slides.

After image processing there are usually poor readings from some spots
on the slide. Suppose the combined dataset is presented with columns cor-
responding to different samples and rows corresponding to different features.
Rows with discardable or missing values could simply be deleted from the
subsequent analysis - however, this means we may not use the corresponding
gene, and it could be important. If the number of good readings in a row
is sufficiently high we could choose to retain the row and impute the small
number of poor or missing entries. There is a large body of literature on
statistical methods for handling missing values. However, one straightfor-
ward method (KNN-impute) is to select a set of K features each of which
has an expression profile (row) similar to the row containing the missing or
discarded entry. Weighting by similarity of expression profile, we calculate
and use the weighted average of the K most similar rows as the new en-
try. Troyanskaya et al [15] report that using the 15 most similar rows gave
the lowest error for the range of datasets they considered. Generally it is
good practice to flag missing and poor readings and avoid their use in the
intra-slide and inter-slide normalisations mentioned above.

3 Classification Techniques

Typically microarray datasets have a large number of features and a small
number of examples. Thus, for example, the prostate cancer dataset of Singh
et al [13] consists of 50 normal and 52 tumour samples with 12600 features
each. Given that the data can therefore be viewed as a sparse set of points
in a high-dimensional space (corresponding to a large number of features), it
is not surprising that binary class datasets of this type are usually linearly
separable: a hyperplane can readily be found which correctly separates both
classes. This suggests a preference for simpler algorithms. For example, the

3 CLASSIFICATION TECHNIQUES 6

perceptron algorithm and its variants can efficiently handle linearly separa-
ble problems and can readily be used with these datasets. However, other
factors are important. For example, in addition to assigning a class label to
a new test point, it would be worth stating a confidence measure too. For
some classifiers a confidence or probability measure is given and this will
be an advantage in practical applications. A large number of classification
algorithms could potentially be used, ranging from discriminant methods,
to Gaussian Processes and classification trees. In this section we will only
describe three popular choices for illustration: k-nearest neighbours, percep-
trons and Support Vector Machines (SVMs).

3.1 K-nearest neighbour classifiers

One of the simplest classifiers to use is k-Nearest Neighbours (kKNN). This
classifier requires no training and the class of a new point is simply predicted
to be the most common class among the £ nearest neighbours. In its simplest
form and for binary classification with y; = £1, the decision function is:

y = sign (> y@-> (1)
iz, €K

where K is the set of neighbours closest to the new point, x. This method
can easily be extended to multi-class classification with the class of a new
point determined by the consensus of its neighbours.

The set of nearest neighbours is determined by a distance metric that is
usually the Euclidean distance in input space. Generally it is best to scale
the influence of each neighbour depending on distance from the new point.
This is easily accomplished by multiplying the class label of each neighbour
by a weighting term, e.g. the reciprocal of the distance between the points.
k-nearest neighbours was introduced in 1951 and since then there have been
many extensions and variations proposed. One variation is the probabilistic
nearest neighbour model (see e.g. [4]): not only does this assign a probability
to the predicted label but it also automatically calculates the value of k
resulting in a fully autonamous classifier.

3 CLASSIFICATION TECHNIQUES 7

3.2 Perceptron classifiers

The perceptron is a simple and effective classifier which can readily handle
linearly separable datasets (Fig. 2). Indeed, using the idea of kernel substi-
tution mentioned below, it can also handle non-linearly separable datasets.
The perceptron convergence theorem states that the perceptron algorithm will
converge on a solution after a finite number of passes through the dataset,
provided a solution exists. If x; are the feature vectors and z are binary-
valued outputs then the decision function is:

z = sign(w - x; + b). (2)

and the learning task is to find a weight vector w and bias b such that
training feature vectors x; map correctly to the corresponding labels y;. This
is achieved using an iterative training process with multiple passes through
the data using the weight changes:

where H(6) is the Heaviside Step function, we use y; = 1 and the bias b
can be found by adding an extra component (say 0) to the feature vectors
fixed at o = +1 and with the bias given as b = wy. The weight vector is
therefore only corrected by an additive factor y;x; if the decision function
gives the wrong label z on presentation of the ¢th feature vector.

t o+

Figure 2: In input space a linear classifier finds a hyperplane separating the
two classes

From (2) we see that the separatrix in the decision function is the linear
hyperplane w - x + b = 0 depicted in Figure 2. In an alternative view (the

3 CLASSIFICATION TECHNIQUES 8

geometric dual) hyperplanes become points and points become hyperplanes
(Figure 3). This alternative representation gives insights about the solution
found for both the perceptron and SVMs. In this dual representation we have
a version space inside which each point represents a possible hyperplane cor-
rectly separating the datapoints in the original input space (Figure 2). The
boundaries of version space derive from the datapoints. The iterations of the
perceptron algorithm can be viewed as a trajectory which terminates inside
version space starting from outside if the initial weights do not classify the
training data correctly. Unfortunately, this indicates that the solution can be
biased since it can depend on the starting point and the order of presentation
of the patterns in (3). In addition, there is no simple way of implementing
a confidence measure for class prediction with the perceptron. Next we will
describe SVM classifiers which have a unique solution independent of the
order of presentation - in addition a confidence can be assigned to the class
label.

Figure 3: For the dual representation of Figure 2 datapoints become hyper-
planes and hyperplanes correctly separating the data become points inside
the version space (pictured, version space can be open in general). Thus the
iterations of the perceptron algorithm corresponds to a trajectory into version
space (shown) where the algorithm terminates with zero training error.

3.3 Support Vector Machines

Support Vector Machines (SVM’s) [25, 2, 3] have also been used extensively
for classification of microarray data. For binary classification, the motivation
for this approach comes from theorems in learning theory which show that
good generalisation does not depend on the dimensionality of the space (the

3 CLASSIFICATION TECHNIQUES 9

number of features used) but on maximising the margin or closest distance
between the separating hyperplane and closest points on both sides (these
are the support vectors, Figure 4). For m vectors x; each with n features and
corresponding labels y; the task of maximising the margin is provably equiv-
alent to maximising the following function with respect to the parameters
Qg

m 1 m
W(a) =2 ai— 5 > ciayy;(xi - ;) (4)
i=1 ij=1
subject to the constraints
a; >0 > iy = 0. (5)
i=1

This is a standard constrained quadratic programming problem and can
therefore be solved using any one of a number of readily available packages.
Since quadratic programming is involved there are no local minima and the
learning process always converges to the global minimum (the unique solution
described above). For class prediction with microarrays one advantage is that
learning is dependent on the number of samples m and not on the number
of features (generally the larger number), hence learning is rapid.

3 CLASSIFICATION TECHNIQUES 10

Separating
Hyperplane

Figure 4: The SVM solution amounts to finding a separating hyperplane with
maximal distance (margin) between itself and the closest points of each class
on both sides (these are the support vectors).

The weight matrix in (2) is given by w = >, a,y;x;, and if the values
of a; are determined at the optimum of (4,5) the decision function is:

f(z) = sign (i yioi (X - z) + b) (6)

=1

on presentation of a new input z, and where the bias b is determined from:

1
=73 Lum %1y (Z iy (x) ity (Z i (x)] -

In the solution only some of the a; values will be non-zero: these cor-
respond to support vectors. Points further away have no influence on the
orientation of the separating hyperplane, hence o; = 0 and they make no
contribution in the decision function. The spectrum of a-values also carries
information about the importance of particular datapoints in the training
set, hence enabling data cleaning. In particular a large «; relative to the
others can indicate an outlier with undue influence on the orientation of the

3 CLASSIFICATION TECHNIQUES 11

separating hyperplane. For an early leukaemia microarray dataset [8] a mis-
labeled datapoint was detected this way, with subsequent correction of the
diagnostic category.

Non-separable datasets. SVMs (and perceptrons) can readily handle non-
separable datasets by kernel substitution. For SVMs good generalisation does
not depend on the dimensionality of the space so mapping non-linearly sepa-
rable data to a higher dimensional space (called feature space) can be imple-
mented without loss of predictive ability. In a higher (or infinite) dimensional
space linear separability by a hyperplane can be achieved. In the objective
function (4) the datapoints, x; only appear inside an inner product. Thus
the mapping into feature space involves a mapping of the inner product:

x; — O(x;) therefore X; - X; — o(x;) - 9(x;) (8)

and feature space must necessarily be an inner product or Hilbert space. It
is not necessary to define the functional form of the mapping ¢(x;) as it is
implicitly defined by the choice of mapped inner product or kernel function:
K(x;,x;) = ¢(x;) - ¢(x;). Only certain choices for the kernel function are
allowed (Mercer’s conditions must be satisfied [25, 2]). One example of a
possible kernel function is the RBF kernel:

K (x;,%;) = exp {_”X_XJ”Q} (9)

202

Given the choice of kernel function, learning a dataset for binary classifi-
cation amounts to finding «; which maximise the objective function:

m 1 m

Wa)=> a;— 3 > oy K (xi.x5) (10)
i=1 ij=1

subject to the constraints (5). Once the optimal solution has been found,

the decision function for a new point z is given by the sign of

1) = > ek) +b (1)

If there is no mapping to feature space then (4,5) apply and we have a
linear kernel.
Multi-class classification. So far we have discussed binary classification,
however, some tasks will involve multi-class prediction. A number of methods

3 CLASSIFICATION TECHNIQUES 12

have been proposed for performing multi-class prediction with SVMs but few
are demonstrably better than using a set of ‘one-against-all’ classifiers (this
approach can be used for perceptrons too). ‘One-against-all’ classifiers have
the drawback that several members of the set may respond to a given input.
As an alternative it is possible to use a series of binary classifiers in a tree
(Fig. 5) to determine the outcome, and this method works satisfactorily if
the number of classes is small.

1/3

1/2 2/13

Figure 5: A multi-class classification problem can be reduced to a series of
binary classification tasks (represented by the top two levels in the tree).

Soft Margins. Microarray datasets are typically noisy. An SVM could
potentially fit the data well, including the noise, leading to a decrease in pre-
dictive accuracy. Noise can be handled using a soft margin and two methods
are possible. For an L;-soft margin, the optimisation task (4,5) is the same
as before except the constraint «; > 0 is replaced by C' > «; > 0 where C' is
the soft margin parameter, while for the Lo-soft margin the optimisation task
is (4,5) except a small positive quantity A is added to the kernel diagonal i.e.
K(x;,%x;) — K(x;,%x;) + A . For most microarray datasets the use of a soft
margin can lower the test error. However, a priori we do not know how much
noise is present in the data nor the best value for C' or A, though a numerical
cross-validation study (see below) might help to determine the appropriate
setting. Without a soft margin and enforcing maximal separation between
hyperplane and closest points (Fig. 4) the solution is known as a hard margin

3 CLASSIFICATION TECHNIQUES 13

classifier.

Confidence measures. If used for predicting diagnostic categories, for
example, it is useful to have a confidence measure for the class assignment
in addition to determining the class label. An SVM with linear kernel does
have an inbuilt measure of confidence that could be exploited to provide a
confidence measure for the assigned class, i.e. the distance of a new point
from the separating hyperplane (Figure 4). A test point a large distance from
the separating hyperplane should be assigned a higher degree of confidence
than a point which lies close to the hyperplane.

The task of mapping this distance to probabilities has been solved in
various ways. Here, we concentrate on one particular method, proposed by
Platt [21]. Recall that the output of an SVM, before thresholding to +1, is
given by

f(z) = h(z) +b (12)

where:
h(Z) = Z yiOéiK(Xi7 Z) (13)

We use a parametric model to fit the posterior probability P(y = 1|f)
directly. The choice of parametric function for the posterior is the sigmoid
(for more details see [21]):

1
1+ exp(Af + B)

Py =1]f) (14)

with the parameters A and B found from a training set (f;,y;). Define t; as
the target probabilities:

oyt
2

ti (15)

ie. wusing y; € {—1,1} we have t; € {0,1}. We now minimize the log
likelihood of the training data:

min |— Zti log(pi) + (1 — t;) log(1 — p;) (16)

3 CLASSIFICATION TECHNIQUES 14

where p; is simply (14) evaluated at f;. This is a straightforward 2-dimensional
minimisation that can be solved using any one of a number of optimisation
routines. Once the sigmoid has been found using this training set, we can
use (14) to calculate the probability that a given test point belongs to each
class. One question remains: how do we construct a training set to fit the
sigmoid. The obvious choice would be the examples from the training set
that were used to train the classifier. However, the training process biases
the outputs for the support vectors to be +1 which is a very unlikely value
for a new test point. However, for a linear SVM, the number of support
vectors is usually reasonably low and so the bias should not be too severe.
Therefore, it is generally acceptable to use the values from the training set
to fit the posterior sigmoid. Figure 6 shows the training values and fitted
sigmoid from a microarray dataset for an ovarian cancer dataset [12]. Note
that no points are present in a large band between +1 and —1, due to the
use of a hard margin and the data being linearly separable.

1

Probability of membership of one class

I I
-2 -15 -1 -0.5 0 0.5 1 15
Margin

Figure 6: Probability of membership of one class (y-axis) versus margin. The
plot shows the training points and fitted sigmoid for an ovarian cancer data
set [12]. A hard margin was used which explains the absense of points in the
central band.

4 FEATURE SELECTION 15

3.4 Evaluating the test performance.

With a sparse population of points in a high-dimensional space, for most
microarray datasets it is not difficult finding a separating hyperplane and
therefore achieving zero training error. Zero training error and separability
do not guarantee a low test error (it is possible to construct classifiers which
can learn a training set with zero error but exhibit no generalisation ability).

For biological datasets (e.g. for yeast) there may be sufficient data for
large training and test sets. However, for medical applications (e.g. cancer)
this may not be the case and the paucity of samples can pose a problem. The
standard approach to evaluating the test error is to use n-fold cross validation
in which the dataset is split into (n — m) training points and m test points
with possible multiple resampling to establish a mean and standard deviation
for the test error. The limiting case is leave-one-out (LOO) cross-validation
with (n—1) training points and 1 test point, with the single test point rotated
successively through the data. LOO cross-validation gives the most unbiased
estimate of the test error, it is least influenced by individual samples and most
representative of performance for the distribution as a whole. However, LOO
cross-validation can, depending on classifier, give a low bias but high variance
solution which will be sub-optimal in terms of generalisation performance (see
[22] for a detailed discussion). This bias-variance tradeoff can be handled
using n-fold cross validation and n = 5 and n = 10 have been suggested as
possible balanced estimates for many classifiers [22].

4 Feature selection

One characteristic of microarray data is that the number of features is usually
very large and typically of the order of tens of thousands, often approximating
the set of known genes in size. If a broad search is being pursued, the vast
majority of these features are likely to be irrelevant for a given classification
task and ideally we would like to remove them. Feature selection has two
benefits. Firstly, large numbers of irrelevant features effectively inject noise
into the classification task and can destroy generalisation, as we will illustrate
later with an example. Secondly, from the viewpoint of interpretation, feature
selection also highlights the most relevant features or genes in the data. Two
general approaches may be used: filter methods in which features are scored
individually (e.g. using statistical methods) prior to use of the classifier,

4 FEATURE SELECTION 16

and wrapper methods in which the algorithm uses an internal procedure to
eliminate redundant features.

4.1 Filter Methods

The choice of filter method can amount to a prior assumption about the
way in which the significance of individual features are ranked. Roughly
speaking, filter methods can be viewed as falling into two groupings - those
measures more influenced by the consistency of the difference between classes
and those more influenced by magnitude differences. For example, the set of
ratios (1.1,1.1,1.1,1.1) is consistently different from the set (0.9,0.9,0.9,0.9)
and features in both can be separated by a simple threshold (1.0). On the
other hand there is a significant difference in the means of the set of ratios
(1.0,1.0,5.0,5.0) and (1.0,1.0,0.1,0.1) even though the first two members of
each set are the same. As for classification algorithms there are a large
number of methods which can be employed. In this section we will therefore
describe three commonly used approaches: the Mann-Whitney test and the
TNoM score, the Fisher and Golub scores and the t-test (which also comes
in many variants). To give an impression of their performance we will also
evaluate these scores on a new dataset from cancer research.

Scoring by ranking. Statistical scoring based on ranking will be most in-
fluenced by consistency of a difference since if all values belonging to one class
are ranked higher than all members of the other class this is determined as an
improbable event even if the means of both classes do not differ a great deal.
For example, for binary classification, the Mann-Whitney U test provides a
measure of the difference between the medians of two populations [5] based
on ranking. For a particular feature, two populations are determined from
the expression ratios of the two distinctly labelled sample sets. The aim of
the test is to estimate the probability that the two populations were drawn
from an identical distribution. If this probability is very low, the feature is
consistent with the class labels and will be significant. We start by combining
the samples from the two classes and ranking them in numerical order. Each
sample is then ranked with a value equal to its position in a line (i.e. a rank
between 1 and (n; +nsg) where n; and ny are the number of samples in classes
1 and 2.). If expression ratios are tied, they are given the average rank. The
ranks for each of the two sample sets are summed. If the sums are R; and
Rs, we now calculate the U statistic from U; = ning 4+ 0.5n1(ny + 1) — Ry

4 FEATURE SELECTION 17

and Uy = nyns + 0.5n3(ny + 1) — Ry. Choosing the smaller of U; and Us as
the test statistic U we calculate z = (U — py) /oy using:

— 17
Hu 9 12 ()

z is a normally distributed random variable (N(0, 1)) and hence it is straight-
forward to determine the probability: the lower the probability the more
significant the feature for discriminating the two classes.

Designed specifically for microarray datasets the Threshold Number of
Misclassifications (TNoM) score [1] is closely related to ranking scores and
will give a similar feature ranking to the Mann Whitney test, for example.
We calculate the TNoM score by finding the best classification performance
possible for the given feature. For the m values of the feature z; (components
of the feature vector) and label y; we evaluate:

nino \/n1n2(n1 + ng + 1)
oy =

TNoM = rzubn ; H [y; (ax; + b)) (18)

thus we count an error every time y; # sign(ax; + b). Since the argument
inside the Heaviside step function is invariant under an arbitrary positive
rescaling we can set a = 1 and evaluate the score using a 1-dimensional
minimisation on b. If we are able to find a threshold such that all values above
it belong to one class and all below belong to the other, then the TNoM score
is 0. If the best threshold involves one misclassification the TNoM score is 1,
etc. Given a particular class distribution we can also calculate the probability
of getting a feature with any particular TNoM score. We can then compare
the cumulative distribution function of the TNoM scores for a microarray
dataset with the theoretical scores for a null model (i.e. purely random
data) and thus determine if there is a significantly high number of low (i.e.
good) scoring features compared to random occurrence and therefore if the
data carries a significant information load. For example, in Figure 7 we give a
plot of the cumulative distributions for an ovarian cancer data set [12]. Here,
the curve determined from the ovarian cancer dataset lies considerably to the
left of the theoretical curve expected for purely random data, suggesting a
large number of discriminating features and significant information content.

4 FEATURE SELECTION 18

08 |

0.6 |

04 |

Proportion of total number of features

02|

I L
0 5 10 15 20 25
TNoM score

Figure 7: TNoM cumulative score curves for an ovarian cancer dataset [12].
The x-axis is TNoM score and y axis is the proportion of the total number of
features. The left-hand curve corresponds to actual scores and the right-hand
curve to the theoretical score for a null (random) model. As the curve from
the actual scores lies significantly to the left this means the data contains a
significant information content.

The Fisher and Golub scores. The second family of feature scoring
techniques has more of an emphasis on the differences in magnitudes of the
expression values between classes. Thus if we derive the means and standard
deviations for the samples in each class, a good discriminating feature would
have a large separation between the means and small standard deviations. If
we define the means of the samples in the two classes as p1 and py and their
standard deviations as o1 and o9, the Fisher (F) and Golub (G) scores are
defined as follows

e u22)2 o Ut 1 (19)
o1 + 03 o1+ 09

Scoring using the t-test. The final score we will consider is the well-known

t-test for the difference between means of two populations. We calculate the

means and variances (uy, po, o and o3) for the two classes and then a

weighted average of the two variances, with

4 FEATURE SELECTION 19

Ny + No — 2

and a test statistic ¢ using

M1 — M2
[1 1
S L + T2
from which a probability measure can readily be obtained from Student’s
distribution.

t= (21)

4.2 Recursive Elimination of Features

Rather than a prior scoring of features we could use a procedure within the
algorithm to eliminate redundant features. As an illustration we will consider
one method for SVMs which removes irrelevant features during the training
process. When using a linear kernel, we noted that the weight matrix for an
SVM can be expressed as w = >_.7", y;a;%;. The smallest component values
of the weight matrix will have least influence in the decision function and
will therefore be the best candidates for removal. For the Recursive Feature
Elimination (RFE) method proposed by Guyon et al [20], the SVM is trained
with the current set of features and the best candidate feature for removal
is identified via the weight vector. This feature is removed and the process
repeated until termination. One disadvantage of this method is that the
process will be slow if there are a large number of features (typically the case
for modern high density microarrays), though features could be removed in
batches, of course. The algorithm can be terminated if the test error is logged
throughout and passes through a minimum though, for SVMs, theoretical
criteria such as LOO bounds (which estimate generalisation performance)
can also be used [24]. This approach is general and can be applied to the
weights generated using the perceptron algorithm, for example.

Aside from RFE there are a number of other approaches where feature
selection is implemented directly within the algorithm. For example, with
Bayesian approaches a Bayesian prior can be incorporated into the design of
a classifier favouring sparse solutions, i.e. there is an explicit preference for a
solution with a very limited number of features (this is known as Automatic
Relevance Determination (ARD), see [23]). Bayesian ARD algorithms for

4 FEATURE SELECTION 20

this purpose have been developed and work well with microarray datasets
27].

4.3 Feature Selection: A Case Study.

To illustrate the above we will apply these techniques to a new dataset for pre-
dicting relapse versus non-relapse for a paediatric malignancy (R.D. Williams
et al. manuscript in preparation). In this study cDNA microarrays were used
with an approximately balanced dataset of 27 samples. The normalisations
mentioned in section 2 were very important and without proper intra- and
inter-slide normalisation we found little predictive ability. Normalisations
were implemented using a pre-existing software package [18] based on the
Statistics for Microarray Analysis (SMA) R package of Speed et al [19].

A Support Vector Machine with linear kernel was used with filter methods
for the feature selection. Recursive elimination of features was not used
because of the large number of features (17790). Given the small size of the
dataset leave-one-out (LOO) appears the best first strategy for evaluating
the test error. During evaluation of the test error the 26 examples in the
training set change with every leave-one-out rotation. Consequently, to derive
a fair test statistic, the statistical scores were determined for each of the 27
evaluations on the test point without incorporating it into the computation
of the score.

4 FEATURE SELECTION 21

13

12

11

10

Number of LOO test errors
©
T

o 20 40 60 80 100
Number of features

Figure 8: The number of LOO test errors (y-axis) versus number of top-
ranked features (z-axis) remaining with feature-ranking by the Fisher score
for predicting relapse or non-relapse. For 4 or fewer features a non-zero
training error appears and the test error rises from the minimum of 5/27.

In Figures 8, 9 and 10 we show the LOO test error (y-axis) versus number
of top-ranked features (z-axis) remaining for Fisher, Mann-Whitney and t-
test scoring of features. All three scores indicate prediction is poor if all the
features are used. However, good prediction is achieveable with a small num-
ber of features. Thus for the Fisher score the minimal LOO test error is 5/27,
for Mann-Whitney 4/27 and for the t-test 1/27. Generally the t-test performs
better than non-parametric methods such as the Mann-Whitney test so this
comparative performance is to be expected. For 9-fold cross-validation with
1000 random reshufflings of the order we get a 6.4 + 1.2% precentage test
error with 3 features remaining. These results indicate prediction of relapse
can be achieved, though any final confirmation would await evaluation on de
novo data and biological confirmation of the genes used. If, as here, predic-
tion can be achieved with the expression profile of a small set of genes then
the result is interesting but should be viewed with caution. If a set of genes
have highly correlated expression then only one member may be needed for
building a successful predictor (the rest are effectively redundant), though
this gene may not be as significant as some of the others. If, for example, the
expression pattern of a particular gene is associated with positional effects
(e.g. when a biologically significant overexpressed gene is located in an open
chromatin domain, or in a region of the genome that has become duplicated
in tumour cells), other genes that are not relevant to tumour outcome may be

4 FEATURE SELECTION 22

co-regulated by the same mechanism. Their apparent relevance only derives
from their position in this genomic region. Consequently the significance of
genes should be evaluated by other methods independently of the feature
selection used by the classifier.

16

14

12

10

Number of LOO test errors

o 20 40 60 80 100
Number of features

Figure 9: The number of LOO test errors (y-axis) versus number of top-
ranked features remaining (z-axis) with ranking of features by the Mann-
Whitney score. The minimum LOO test error improves on the Fisher score
in Fig. 8 with a minimum of 4/27.

5 ESTIMATING SAMPLE SIZE REQUIREMENTS 23

16

14 B

12 -

10 -

Number of LOO test errors
©
T
|

o 20 40 60 80 100
Number of features

Figure 10: The number of LOO test errors (y-axis) versus number of top-
ranked features remaining (z-axis) with ranking of features by the t-test. The
minimum LOO test error was 1 from 27 with 3-5 features remaining. With
2 features remaining a non-zero training error was recorded. The minimal
error is lower than for Fisher (Fig. 8) and Mann Whitney (Fig. 9) and the
curve is noticeably smoother.

5 Estimating sample size requirements

Suppose for a dataset of size m we evaluate a test error e(m). This test
performance may not be adequate for the given task. For example, if the
objective is to use a classifier for predicting invasive or non-invasive tumour
types the predictor may need to have greater than 95% test accuracy to be
acceptable in clinical practice. Hence given the current dataset size and test
error we may want to know the dataset size m’ which would give a required
test error e(m’). The answer to this problem lies within learning theory where
the theoretical dependence of generalisation error on sample size has been
well studied from a number of viewpoints for the perceptron, SVM and other
classifiers. Learning curves depict this dependence as the sample size varies.
The shape of the learning curve depends on the data and the efficiency of
the algorithm and in general, for typical datasets, these learning curves have
an inverse power-law dependence:

e(m)=am *+b (22)

5 ESTIMATING SAMPLE SIZE REQUIREMENTS 24

Test error

L L L L L L L L L
() 5 10 15 20 25 30 35 40 45
Number of samples

Figure 11: The learning curve for a lymphoma classification problem [6]
distinguishing diffuse large B-cell lymphoma from other types. The fractional
error rate is given on the y-axis and the sample size on the z-axis. Both leave-
one-out test errors and power law fit are given.

for expected error e(m) given m training samples, learning rate a, decay rate
a and Bayes error b, which indicates the minimum test error achievable.
The theoretical maximal decay rate is o = 1, falling from this optimum for
less efficient algorithms or complex learning problems. This functional form
is expected to apply to the 25% and 75% quartiles in addition to the mean
trend curve. Mukherjee et al [10] have investigated learning curves for a
variety of microarray datasets, predominantly for cancer. In Figure 11 and
12 we show numerical test errors (errors on holdout data with resampling)
and the learning curves for binary classification using a lymphoma [6] and a
colon cancer [11] microarray dataset.

For very small training sets, the above inverse power-law model usually
breaks down and there is not enough data to make an accurate extrapolation
of the test error. Thus, for a workable method, we must determine the
minimum training set size that will give sound results. This is done by finding
at what training set size the test error becomes significant when compared
with the null hypothesis of a random classifier:

5 ESTIMATING SAMPLE SIZE REQUIREMENTS 25

Ho:p(y = 1z, {z1, 91, s Ty Ym }) = ply = =1, {x1, 91, -, T, Ym })
(23)
i.e. the conditional probability of a label being 1 or —1 is equal. The
random classifier is constructed by training on the same input data but with
the class labels randomly permuted. Suppose we have a total of m data
points that we sub-sample into T different training sets of size p and test
sets of size (m — p). Now, for each of our 7 train/test realisations, we
construct 75 random data sets by permuting the training labels. We now
use these 177 x Ty random datasets to train classifiers and record the error
of each classifier when evaluated with the respective non-random test set.
Using these errors we construct an empirical distribution function for the
random classifier,

T T

P (a) = G 2o 0 = i) (24

7,1]1

where e, ; ; is the error of the 4t random dataset created from the 7"
subsampling, with training size p. The significance of the classifier is P7*"(e,)
which is the percentage of random classifiers with error rate smaller than e,
the mean error of classifiers trained on the T} subsamplings with the true
labels. So, for example, if it is decided that in order for sample sizes to be
used, they should be significant with a probability of 95%, one would simply
find the lowest value of p for which PJ** > 0.05. All values of p above this
value are deemed to be significant and can be used in fitting the inverse
power-law model.

Once a set of p pairs of training set sizes and empirical errors has been
gathered, the learning curve can be fitted by minimising:

mlnz am;® +b—ép,)? a,a,b>0. (25)
@wab
This is a convex optimisation problem when b is fixed. If we fix b, one can
estimate v and a by taking logarithms and solving the equivalent linearised
minimisation problem:

p

min Y (In(a) — amy + In(b — ,,))? a,a,b > 0. (26)

a,a,b =1

6 CONCLUSION 26

0.45

Test error

L L L L L L
() 10 20 30 40 50 60
Number of samples

Figure 12: The learning curve and LOO test errors for a colon cancer classi-
fication problem [11].

A straightforward line search procedure over b enables us to find an esti-
mate for a;, a and b.

6 Conclusion

The interpretation of microarray datasets poses new problems for data analy-
sis. It will be important to compare the performance of different classifiers on
these datasets, to find the best feature selection strategies, the best method
for implementing confidence measures and suitable procedures for handling
imbalanced datasets. In addition, the performance of a classifier could be im-
proved by using prior knowledge or the integration of knowledge from other
domains. Many other problems arise in this context. For example, a novelty
detector might be used to identify new instances which do not apparently be-
long to any class currently in the data. For some cancer microarray datasets
there are samples with little apparent connection to the others, which could
have arisen from other locations, belong to functionally different cell types
(e.g. stem cells) or be sufficiently abnormal as to be unrepresentative of any
assigned classes. In short, a better classifier could be built by not using all
the data but by only using prototypical instances with removal of some ab-

REFERENCES 27

normal datapoints (therefore given as ‘unclassifiable’). The best strategies
for quality pre-filtering prior to construction of a classifier is an interesting
topic for future research.

Aside from classification, microarray datasets prompt many other prob-
lems for data analysis. One obvious issue is that the label may be continuous-
valued. For example, rather than predicting indolent or aggressive for a tu-
mour sample, it would be better to output a continuous value indicating
where on a spectrum the new sample lies. This is the problem of regression
and most of the normalisations and feature selection strategies described
above will be relevant to this problem also.

The arrival of microarray technology is already giving important insights
and this trend will only accelerate in the future. We can expect accurate
classifiers which will indicate the detailed sub-type of a disease, the expected
future progression and the optimal treatment strategy. The ability to predict
the future course of a disease also means an implicit understanding of the
role and significance of particular genes. This knowledge will be crucial for
drug development. Aside from medical uses, microarray technology has the
potential to revolutionise our understanding of biological processes.

References

[1] Ben Dor A. Tissue classification of gene expression profiles. Journal of
Computational Biology, 7:559-583, 2000.

[2] Scholkopf B. and Smola A. J. Learning with Kernels: Support Vector
Machines, Regularization, Optimization and Beyond. MIT Press, 2001.

[3] Campbell C. Kernel methods: a survey of current techniques. Neuro-
computing, 48:63-84, 2002.

[4] Holmes C.C. A probabilistic nearest neighbour method for statistical
pattern recognition. Jounal Roy. Statist. Soc. B, 64(2):295-306, 2002.

[5] Rees D.G. Essential Statistics. Chapman and Hall, 2001.

[6] Alizadeh A.A. et al. Different types of diffuse large b-cell lymphoma
identified by gene expressing profiling. Nature, 403:503-511, 200.

REFERENCES 28

[7]

[10]

[11]

[12]

[15]

[16]

Bhattacharjee A. et al. Classification of human lung carcinomas by mrna

expression profiling reveals distinct adenocarcinoma sub-classes. Proc.
Natl. Acad. Sci., 98:13790-13795, 2001.

Golub T.R. et al. Molecular classification of cancer: Class discovery and
class prediction by gene expression monitoring. Science, 286:531-537,
1999.

Lock C. et al. Gene-microarray analysis of multiple sclerosis le-
sions yields new targets validated in autoimmune encephalitis. Nature
Medicine, 8:500-507, 2002.

Mukherkee S. et al. Estimating dataset size requirements for classifying
dna microarray data. Journal of Computational Biology, 10:119-142,
2003.

Notterman D. et al. Transcriptional gene expression profiles of colorec-

tal adenoma, adenocarcinoma and normal tissue examined by oligonu-
cleotide arrays. Cancer Research, 61:3124-3130, 2001.

Schummer M. et al. Comparative hybridization of an array of 21500
ovarian cdnas for the discovery of genes overexpressed in ovarian car-
cinomas. International Journal on Genes and Genomes, 238:375-385,
1999.

Singh D. et al. Gene expression correlates of clinical prostate cancer
behavior. Cancer Cell, 1:203-209, 2002.

Sorlie T. et al. Gene expression patterns of breast carcinomas distin-
guish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci.,
98:10869-10874, 2001.

Troyanska O. et al. Missing value estimation methods for dna microar-
rays. Bioinformatics, 17:520-525, 2001.

Vawter M.P. et al. Microarray analysis of gene expression in the pre-
frontal cortex in schizophrenia: a preliminary study. Schizophrenia Re-
search, 58:11-20, 2002.

Yang Y.H. et al. Normalization for cdna microarray data: a robust com-
posite method addressing single and multiple slide systematic variation.
Nucleic Acids Res., 30(4):e15, 2002.

REFERENCES 29

[18] http://www.maths.lth.se/help/R/com.braju.sma/.
[19] http://www.stat.berkeley.edu/users/terry/zarray/Software/smacode.html.

[20] Guyon I., Weston J., Barnhill S., and Vapnik V. Gene selection for
cancer classification using support vector machines. Machine Learning,
46:389-422, 2002.

[21] Platt J.C. Probabilistic outputs for support vector machines and com-
parisons to regularized likelihood methods. In Alexander J. Smola, Peter
Bartlett, Scholkopf Bernhard, and Dale Schuurmans, editors, Advances
in Large Margin Classifiers, 1999.

[22] Hastie T. Tibshirani R. and Friedman J. The Elements of Statistical
Learning. Springer, 2001.

23] Neal R.M. Bayesian Learning for Neural Networks (Lecture Notes in
Statistics 118). Springer, 1996.

[24] Joachims T. Estimating the generalization performance of a svm effi-
ciently. In Proceedings of the Seventeenth International Conference on
Machine Learning. Stanford, CA., 2000.

[25] Vapnik V.N. Statistical Learning Theory. John Wiley and Sons, inc.,
1998.

[26] Cleveland W. Robust locally weighted regression and smoothing scat-
terplots. Journal of the American Statistical Association, 74:829-836,
1979.

[27] Li Y., Campbell C., and Tipping M. Bayesian automatic relevance
determination algorithms for classifying gene expression data. Bioinfor-
matics, 18:1332-1339, 2002.

