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Abstract

The active selection of examples can significantly improve the efficiency of the
learning process. For many tasks, compared to passive selection, a comparable test
error can be attained using fewer examples which are correspondingly more infor-
mative. For classification a number of active learning algorithms have been pro-
posed. However, there has been little progress in the development of correspond-
ing active learning procedures for regression. Gaussian Processes have an explicit
probabilistic formulation enabling the determination of posterior class probabili-
ties for classification and Bayesian confidence intervals for regression. Using this
probabilistic framework we outline an active learning algorithmic framework for
regression. We demonstrate the advantages of using active learning with several
classification and regression datasets.

1 Introduction

The ability to pose queries and to actively interogate the environment is the hallmark
of an intelligent system. It can improve the efficiency of the learning process since,
by posing maximally informative queries, a task could be learnt just as efficiently but
using fewer examples compared to passive learning. For this reason query learning [2]
has been well studied within machine learning. Two approaches are possible: firstly,
the learning machine may be able to create a query and ask for the label. Secondly, the
learning machine may be able to select an unlabelled datapoint and ask for the label.
The creation of queries only makes sense in certain contexts. For example, for a dataset
consisting of handwritten characters, it is possible to ask for the label of an unlabelled
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character. However, if we create characters it would be easy to create instances which
have no meaningful label. In this paper we will only consider the latter task if which
the learning machine has the ability to ask the label of selected datapoints, a problem
is known asinstance selectionor selective sampling.

Instance selection has been considered by learning theorists from several view-
points including PAC learning and statistical mechanics (SM) calculations of the gen-
eralization error curves [16]. In an early paper Rivest and Eisenberg [12] showed that
it is possible to create malicious distributions in which there is no advantage for active
learning over passive learning. On the other hand, for more typical distributions, SM
calculations [16, 17] indicated that there is a clear advantage to active learning. For
perceptrons these SM calculations also showed that the best unlabelled point to query
is that point closest to the current hyperplane (this hyperplane being derived from those
points already queried and labelled). This idea was successfully transferred [4, 14, 13]
to active learning using Support Vector Machines (SVMs) and it was demonstrated to
be effective for both artificial and real life examples. For example, it has been suc-
cessfully used to substantially improve detection of biologically active samples in drug
discovery [15]. Since we never need to ask for the labels of the eventual non-support
vectors, instance selection makes sense in this context and an active learning strategy
can be viewed as a heuristic for finding support vectors. The theorem of Rivest and
Eisenberg applies since it is possible to invent problems in which every point will be
a support vector: but this is not typical of most problems encountered. Campbell et
al. [4] argued that there is always a gain to be made by querying a point in the margin
band between the support vector hyperplanes. Finally, since the sparsity ratio of SVMs
(the ratio of number of support vectors to dataset size) typically decreases as a dataset
size increases, active learning is expected to be most efficient for large datasets.

A different viewpoint on active learning is provided by considering version space.
Maximally informative examples (maximising the entropy) are those examples which
bisect version space into equal halves. These maximally informative examples can
be found using a geometric billiard as in the Bayes Point Machine [8]. However, a
much simpler approach is to populate version space at random locations with a set of
‘voters’ using a learning rule without a convex cost function (e.g. perceptrons). This
committee approach to query learning [7] can be used to select the most informative
examples efficiently - the points with maximally ambiguous predicted labels according
to the ‘voters’.

These approaches have worked well for active selection using classification. How-
ever, margin or version space concepts do not transfer readily to the problem of active
learning for regression. In this paper we will consider active selection using Gaus-
sian Processes (GPs). Since GPs give confidence measures for regression and posterior
class probabilities for classification we can readily build an active learning strategy.
This gives a further route to active learning for classification but also a means for tack-
ling regession tasks. There are a number of possible algorithmic approaches to active
learning for regression and we will present a more detailed study elsewhere. In this
paper we will extend a sparse online learning algorithm for GPs recently proposed by
Csato and Opper [6]. Since this algorithm is fully described elsewhere [6] we need
only summarise the approach and list pseudo-code for the active learning variants in
section 2. In section 3 we demonstrate the advantages of active learning with artificial

2



and real-life examples.

2 The Algorithms

2.1 Gaussian Process Models

Gaussian Processes (GP) can be viewed as Bayesian kernel machines [10, 11]. Let us
consider a training set consisting of input vectorsXN ≡ {x(n)}Nn=1 with correspond-
ing labelstN , produced by some underlying functiony(x) which is parameterized by
a set of parametersw. We can use a Bayesian approach to infer the function given the
data. This inference is described by the posterior probabiliy distribution:

P (y(x|tN ,XN )) =
P (tN |y(x),XN )P (y(x))

P (tN |XN )
(1)

Now, P (y(x)) is the prior probability distribution on the family of functions as-
sumed by the parameterization ofy(x). For example, for a feed-forward neural net-
work, this would be a prior over the weights which implies a prior distribution over the
overall function. In GPs, no such parameterization takes place and the priorP (y(x)) is
placed over the space ofall functions. The simplest type of prior over such a function
space is called a Gaussian Process which can be viewed as a generalization of a Gaus-
sian Distribution over a finite space to an infinite dimensional function space. The GP
is defined by its mean and a covariance functionC(x1,x2) which gives the expected
covariance ofy(x) at pointsx1 andx2.

2.2 An Active Learning Algorithm for Regression and Classifica-
tion

One approach to active learning with GPs is to adapt an online algorithm for training
GPs with a suitable criterion for selecting the most informative examples. Several
approaches are possible, though here we will only adapt one sparse online algorithm
and refer the reader to [6] for further details.

2.2.1 Regression

In the pseudo-code listing of the algorithm (below) we give an outline of the sparse
online GP algorithm of Csató and Opper ([6, 5]) for regression using an RBF kernel
K0(x1,x2) = exp(−||x1 − x2||2/2dσ2

k) whered is the dimensionality of the input
data andσ2

k is the user-specified kernel parameter. RBF kernels were chosen as they
ensure that input points only have influence on their locality in the input space. This
is beneficial for active selection as it will lead to a larger degree of uncertainty in
unexplored areas of the input space. For passive learning the examples are presented
in a random order. For active selection the examples are presented in such an order as
to enhance the learning process. For the case of regression we propose the following
method. The current estimates of the mean and covariance of the gaussian process are
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used to predict the output distribution for each of the remaining training points inX,
given by:

p(y|x,α,C) =
(

1
2πσ2

x

)2

exp
{
−||y −αT kx||2

2σ2
x

}
(2)

with σ2
x = σ2

0 + kT
x Ckx + k∗x andk∗x = K0(x,x), and the output distribution for

each point is assumed to bey ∼ N (αT kx, σ2
x). Thus our selection procedure is to

pick the point from the training set with the maximum varianceσx as this is expected
to be most uncertain and hence the point that would provide us with the maximum
information. For a detailed description of the algorithm see [6] or [5]. In brief our
main parametric quantities,αt andCt (used to calculate our approximation of the
mean and covariance of the GP at timet respectively) begin as null matrices.Q stores
a representation of the inverse ofC which can be updated iteratively and thus avoids
invertingC at each step.B will hold basis vectors (training vectors that are used in out
current approximation). Initially, this is empty and the number of basis vectorsNb is
zero. Having selected the next point (as described above) we calculatekxp

- this holds
the prior covariance between the new point and each of the current basis points. This
is then used to calculateσ2

x, q(t+1), r(t+1) andγt+1. γt+1 can be thought of as the
noveltyof the current input. If this does not exceed some pre-determined thresholdεtol

then the point is not included as a basis vector and we perform a reduced update on our
GP parameters - i.e., their size is not increased. If however, thenoveltydoes exceed
our threshold, we perform a full update of our GP parameters and add this current point
to B. Note, the functionTt+1(a) increases the dimension of the vectora by adding
an empty element. Similarly,Ut+1(Q) increases the dimension of a square matrix by
adding an empty row and column. To give a sparse solution we can impose a maximum
value on the number of basis vectors inB. Every time a vector is added toB, we would
check to see if we have not exceeded this number. If so, the lowest scoring basis vector
is removed from the basis and the GP parameters are updated. The definitions ofC(t),
C∗ andc∗ used in the update are shown in figure 1.

2.2.2 Classification

For classification, the algorithm listed in the pseudo-code is used with the equations
for q(t+1) andr(t+1) given by (3) to (6) below, whereerf ′ anderf ′′ are the first and
second derivatives of the error function defined in (6).

q(t+1) =
yt+1

σx

erf ′(z)
erf(z)

(3)

r(t+1) =
1
σ2

x

{
erf ′′(z)
erf(z)

−
(

erf ′(z)
erf(z)

)2
}

(4)

z =
yαT

t kxp

σx
(5)

erf(z) =
1√
2π

z∫
−∞

exp
(
−t2

2

)
dt (6)
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For the classification case, the next point is chosen as that example which is maximally
informative. The class-conditional probability for each of the remaining training points
is calculated from:

p(y|x,α,C) = erf

(
yαT kx

σx

)
(7)

wherey can be either±1 for the binary case. This probability is then used to calculate
the cross-entropy for that point, given by:

e = −p−1 log2(p−1)− (1− p−1) log2(1− p−1) (8)

The chosen point is that which has the highest value ofe, though this amounts
to choosing the point with posterior probability closest to0.5 in (7) during the active
learning process.

3 Experiments

3.1 Classification

As our first example for classification we will consider the majority rule since this
dataset has a low sparsity ratio and hence has been shown to perform well with a SVM
query learning algorithm ([4]). The training set is made up of vectors consisting of
±1. The target class is+1 if there are more+1 than−1 in the input vector and
vice versa. The data set comprised 400 points, that was partitioned 100 times into
training and test sets of 200 points each. In each experiment, the upper curve shows the
performance obtained by choosing the next point at random and the lower curve is for
active learning. The entropy plot (figure 2(d)) indicates the gain in information return
per example using active learning. Parameters values used wereσ2

k = 400, σ2
0 = 0.0,

εtol = 1e − 6 andMBV = 50. In figure 2(c) we give results for classification using
the Cleveland Heart dataset [1]: here the task is to detect the presence or absence of
heart disease. The learning curve in figure 2(c) was generated using100 partitions of
the297 instances into150 training points and147 test points. Parameter values were
σ2

k = 0.06, σ2
0 = 0.0, εtol = 1e− 3 andMBV = 150. The final classification study is

from the UCI repository [3] and the task is to distinguish between two different types of
wine. The learning curve in 2(d) is created from100 partitions of the130 instances into
80 train and50 test points. Parameter values wereσ2

k = 10.0, σ2
0 = 0.0, εtol = 1e− 6

andMBV = 80. In each learning curve plot, the lower curve corresponds to active
selection and they axis shows the number of mis-classified points. For the heart and
wine datasets we notice that prototypical examples are learnt first resulting in a sharp
fall in the learning curve. Thereafter, the learning machine learns outliers and the test
error can climb. This phenomenon is not apparent with passive learning.

3.2 Stopping Criteria

To complete the algorithm we also need a stopping criterion. For SVM classifiers,
Campbell et al [4] proposed stopping criteria based on successive agreement between
predicted label and the actual label (noiseless datasets) or the absense of points in the
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Algorithm 1 Sparse Online Gaussian Process

Require: Training DataX = {x1, . . . ,xm}, Targetsy, kernel parameterσ2
k, noise

parameterσ2
0 , Maximum number of Basis VectorsMBV , Toleranceεtol, Basis vector

matrix B ← [ ],α ← [ ], C ← [ ], Q ← [ ], Nt = Number of points in training set,
Nb = 0 Number of basis vectors.

for t = 0 to Nt − 1 do
Choose Next Point (xp) Randomly or Actively
kxp
← [K0(b1,xp), . . . ,K0(bNb

,xp)]T

σ2
x ← σ2

0 + kxp
CtkT

xp
+ k∗xp

q(t+1) ← (yt+1 −αT
t kxp

)/σ2
x

r(t+1) ← −1/σ2
x

γt+1 ← k∗xp
− kT

xp
Qtkxp

êt+1 ← Qtkxp

if γt+1 < εtol then
ŝt+1 ← Ctkxp

+ êt+1 Perform Reduced Update
αt+1 ← αt + q(t+1)ŝt+1

Ct+1 ← Ct + r(t+1)ŝt+1ŝT
t+1

else
st+1 ← Tt+1(Ctkt+1) + et+1 Perform Full Update
αt+1 ← Tt+1(αt) + q(t+1)st+1

Ct+1 ← Ut+1(Ct) + r(t+1)st+1sT
t+1

Add xp to Basis Vector MatrixB
Nb ← Nb + 1
Qt+1 ← Ut+1(Qt) + γ−1

t+1(Tt+1(êt+1)− et+1)(Tt+1(êt+1)− et+1)T

if Nb > MBV then
εi ← |αt+1(i)|/Qt+1(i, i) wherei← 1 . . . Nb Calculate BV Scores
i∗ ← Position of minimum value ofεi

α̂← α(t) − α∗Q∗

q∗ Removal Equations

Ĉ← C(t) + (c∗Q∗Q∗T )/q∗2 −
[
Q∗C∗T + C∗Q∗T ]

/q∗

Q̂← Q(t) − (Q∗Q∗T )/q∗ For definitions, see figure 1
Removebi∗ from B
Nb ← Nb − 1

end if
end if
Removexp from training setX

end for

α =


α(t)

α∗

α(t)

 ,C =


C(t) C∗ C(t)

C∗ c∗ C∗

C(t) C∗ C(t)

 ,Q =


Q(t) Q∗ Q(t)

Q∗ q∗ Q∗

Q(t) Q∗ Q(t)


Figure 1: Decomposition ofα,Q,C matrices for point removal
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margin band (noisy datasets). Here, we propose using the entropy of the selected point.
For binary classification, for example, it is apparent that the maximally informative un-
labeled example is that point with posterior probability closest to0.5. From (8), it can
be seen that this gives us the maximum possible cross entropy value of− log2 0.5 or
1. Similarly, assuming that we are learning the underlying function correctly, training
points that we classify with a probability approaching1 provide us with little infor-
mation (they have a cross-entropy value approaching0). Figure 2(b) shows how the
entropy of the chosen point varies as the points are learnt for the majority rule (learn-
ing curves can be seen in 2(a)). In figure 2(b), the dotted curve corresponds to the
entropy of the points chosen by active selection whilst the solid curve corresponds to
the points being chosen randomly. Both curves are averaged over100 numerical ex-
periments. When the entropy curve reaches thex axis no further gain is being made
by learning more points. This is supported by a levelling of the active learning curve
in figure 2(a) in the same region. The passive learning entropy curve falls more slowy
than the active learning curve indicating that the passive learner is still learning from
examples well after the active learner has finished.

3.3 Regression

The first regression task we shall consider is for learning thesin(x1x2) function: given
the values ofx1 andx2 (this is our inputx vector) the task is to predict a new value
of sin(x1x2). The results for this dataset can be seen in figure 3(a).100 partitions of
the441 training points into200 training and220 test examples were used with the fol-
lowing parameter values:MBV = 50, σ2

k = 1, σ2
0 = 0.02, εtol = 1e− 4. The second

regression problem is based on the Mackey-Glass time series - a classic benchmark
regression problem. The task is to predict the (n + 1)’th value given as an input ofn
consecutive values from the time series. In this example,n = 5 and the curves in figure
3(b) were created using100 different partitions of the total400 points into200 training
and test points. The other parameter values are as follows:MBV = 50, σ2

K = 1,
σ2

0 = 0.02 andεtol = 1e− 6. Our final regression data set is a QSAR dataset (for de-
termining quantitative structure activity relationships), see [9]. It involves inferring the
relationship between the physical structure of a chemical compound and its associated
activity. 100 partitions of the training data into100 training points and86 test points
were performed with the following parameter values:MBV = 100, σ2

k = 5, σ2
0 = 5,

εtol = 1e− 6. For all these cases, the lower curve corresponds to active selection and
the upper curve to passive selection. The performance measure is the average mean
square difference between actual and predicted values.

4 Conclusion.

We have outlined a framework for active learning using Gaussian Processes. In the
introduction we mentioned various schemes for active learning using classifiers but
corresponding approaches for regression appear much less studied. On the other hand
active selection for regression is potentially important in many real-life applications.
For example, for QSAR the measurements are generally continuous-valued, but each
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experiment is costly and time-consuming. In this paper we have adapted an online
algorithm for training GPs to perform active learning, both for regression and classifi-
cation. Other approaches involving GPs and further methods can also be used for these
active learning tasks and in a subsequent paper we expect to present a more detailed
analysis.

Acknowledgements: We would like to thank Manfred Opper and Lehel Csato for
discussions.

References

[1] J. Andras. Cleveland heart database: http://www.ics.uci.edu/ mlearn/mlrepository.html.

[2] D. Angluin. Queries and concept learning.Machine Learning, 2:319–342, 1988.

[3] C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.

[4] C Campbell, N Christianini, and A Somola. Query learning with large margin
classifiers.Proceedings of the 17th International Conference on Machine Learn-
ing, pages 111–118, 2000.

[5] L. Csat́o. Gaussian Processes - Iterative Sparse Approximations. PhD thesis,
Aston University, Neural Computation Research Group, 2002.

[6] L. Csat́o and M. Opper. Sparse on-line gaussian processes.Neural Computation,
14:641–668, 2002.

[7] Y. Freund, S. Seung, E. Shamir, and N. Tishby. Selective sampling using the
query by committee algorithm.Machine Learning, 28:133–168, 1997.

[8] R. Herbrich, T. Graepel, and C. Campbell. Bayes point machines.Journal of
Machine Learning Research, 1:245–279, 2001.

[9] J.D. King. A comparison of artificial intelligence methods for modelling QSARs.
Applied Artificial Intelligence, 1994.

[10] D.J.C. Mackay. Introduction to gaussian processes. In Christopher M. Bishop, ed-
itor, Neural Networks and Machine Learning, pages 133–164. NATO Advanced
Study Institute, Springer, 1997.

[11] R.M. Neal. Bayesian Learning for Neural Networks (Lecture Notes in Statistics
118). Springer, 1996.

[12] R.L. Rivest and B. Eisenberg. On the sample complexity of pac-learning using
random and chosen examples. InProceedings of the 1990 Workshop on Compu-
tational Learning Theory. San Mateo, CA. Morgan Kauffman, 1990.

[13] G. Schohn and D. Cohn. Less is more: Active learning with support vector ma-
chines. InProceedings of the Seventeenth International Conference on Machine
Learning. Stanford, CA., 2000.

8



[14] S. Tong and D. Koller. Support vector machine active learning with applications
to text classification.Journal of Machine Learning Research, 2:45–66, 2001.

[15] M.K. Warmuth, J. Liao, G. R̈atsch, M. Mathieson, S. Putta, and C. Lemmen.
Active learning with svms in the drug discovery process.Chemical Information
and Computer Sciences, accepted, 2003.

[16] T L H Watkin, A Rau, and M Biehl. The statistical mechanics of learning a rule.
Rev. Mod. Phys., 65:499–556, 1993.

[17] T.L.H. Watkin and A. Rau. Selecting examples for perceptrons.J. Phys.,
A25:113–121, 1992.

9



(a) Majority rule learning curves (b) Majority rule entropy curve

(c) Heart dataset learning curve (d) Wine dataset learning curve

Figure 2: Learning curves and an entropy plot. In plots (a), (c) and (d) the number of
errors (y-axis) is plotted against number of examples (x-axis). The upper curve gives
the performance with passive learning, the lower gives active learning. For the real-life
noisy datasets in (c) and (d) prototypical examples are learnt first, then the outliers in
the data, resulting in the test error curve climbing as outliers are learnt. The entropy
plot (b) shows that the information gain is more efficient with active learning (dashed
curve) rather than passive learning (solid mean curve), for the majority rule in (a).
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(a)sin(x1x2) (b) Mackey Glass

(c) QSAR

Figure 3: Regression learning curves. The error (averaged mean squared difference)
on test points (y-axis) versus number of examples (x-axis) for three regression tasks.
The upper curves are for passive learning and the lower are for active learning.
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