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Tumors are associated with altered or deregulated gene products that affect critical cellular functions. Here we assess the use
of a global expression profiling technique that identifies chromosome regions corresponding to differential gene expression,
termed comparative expressed sequence hybridization (CESH). CESH analysis was performed on a total of 104 tumors with
a diagnosis of rhabdomyosarcoma, leiomyosarcoma, prostate cancer, and favorable-histology Wilms tumors. Through the use
of the chromosome regions identified as variables, support vector machine analysis was applied to assess classification
potential, and feature selection (recursive feature elimination) was used to identify the best discriminatory regions. We
demonstrate that the CESH profiles have characteristic patterns in tumor groups and were also able to distinguish subgroups
of rhabdomyosarcoma. The overall CESH profiles in favorable-histology Wilms tumors were found to correlate with
subsequent clinical behavior. Classification by use of CESH profiles was shown to be similar in performance to previous
microarray expression studies and highlighted regions for further investigation. We conclude that analysis of chromosomal
expression profiles can group, subgroup, and even predict clinical behavior of tumors to a level of performance similar to that
of microarray analysis. CESH is independent of selecting sequences for interrogation and is a simple, rapid, and widely
accessible approach to identify clinically useful differential expression. © 2003 Wiley-Liss, Inc.

INTRODUCTION

Tumor classification and prediction of clinical
behavior are essential processes in the clinical man-
agement of patients, but for many tumors these
pose considerable challenges. Tumors are associ-
ated with altered or deregulated gene products that
affect critical functions such as cell division and
differentiation. This may determine the morpho-
logical features and biological behavior of malig-
nancies. Aberrant gene expression has been iden-
tified in many tumors over the last several decades.
Recently, arrays of sequences representing many
genes have permitted the simultaneous analysis of
differential expression of genes to be investigated
and the patterns used to classify tumors and predict
clinical behavior (Golub et al., 1999; Schummer et
al., 1999; Alizadeh et al., 2000; Notterman et al.,
2001; Ramaswamy et al., 2001; Pomeroy et al.,
2002; Shipp et al., 2002; van’t Veer et al., 2002).
The amount and complexity of the data generated
by microarray approaches, although considerable,
are limited to the sequences represented. There
are practical problems to consider with the use of
microarrays as well as recognized difficulties in
reliably interpreting thousands of noisy data points

to deduce significant biological information
(Knight, 2001; Novak et al., 2002; Simons et al.,
2003; Slonim, 2003). Other approaches to expres-
sion profiling include serial analysis of gene expres-
sion and massive parallel signature sequencing,
which provides high resolution and quantitative
data but requires high-through-put sequencing and
is currently time consuming and expensive to apply
to many samples (Velculescu et al., 1995; Brenner
et al., 2000). Therefore, alternative and comple-
mentary approaches to expression profiling for tu-
mor classification would be useful.

We previously developed and validated a rapid
expression profiling technique targeting chromo-
somes, termed comparative expressed sequence
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hybridization (CESH), which identifies chromo-
some regions corresponding to differential gene
expression (Lu et al., 2001). Differentially labeled
probes derived from a test and a control sample are
co-hybridized to normal metaphase chromosomes.
The ratio between the fluorescence intensities at a
chromosome location indicates the regions of the
genome containing differentially expressed genes
in a manner analogous to the way comparative
genomic hybridization (CGH) detects genomic im-
balances (Kallioniemi et al., 1992). The amount
and complexity of the data generated by CESH is
less than that generated by microarray approaches
and is independent of selecting sequences for in-
terrogation. CESH requires only nanogram quanti-
ties of RNA and so is readily applicable to small
biopsy samples, as demonstrated in this study.
Here we explore the ability of CESH profiles to
classify tumors into different histological and prog-
nostic groups and compare the level of perfor-
mance with well documented and previously as-
sessed microarray studies.

MATERIALS AND METHODS

Samples

Rhabdomyosarcoma samples from 39 patients
and 6 derived cell lines were collected for this
study. Among these, 26 cases were of alveolar his-
tology and 19 cases were described as embryonal
rhabdomyosarcomas. Nine cases of the rhabdomy-
osarcomas were small biopsy specimens confirmed
to contain tumor cells. For the alveolar subtype of
rhabdomyosarcoma, the PAX/FOXO1A(FKHR) fu-
sion gene status was detected by reverse transcrip-
tion polymerase chain reaction as previously de-
scribed (Anderson et al., 2001). Primary tumor
samples from 20 leiomyosarcoma and 21 prostate
cancers were also used together with the rhabdo-
myosarcoma samples against a normal muscle ref-
erence sample for CESH analysis. Eighteen sam-
ples of favorable-histology Wilms tumors were
taken, 14 at diagnosis including 8 from non-relapse
cases. Normal lymphocytes were used as control for
CESH analysis of the Wilms tumors.

Comparative Expressed Sequence Hybridization

CESH analysis was performed in the same man-
ner as originally described (Lu et al., 2001). Briefly,
total RNA was extracted and treated with DNase I
(Ambion, Austin, TX) before reverse transcription
by use of random hexamers and Superscript II
(Invitrogen, Paisley, UK). The resulting cDNA was
amplified and labeled with either FluoroRed or

FluoroGreen dTTP (Amersham, Buckingham-
shire, UK) by use of degenerate oligonucleotide
primed-PCR. Differentially labeled test and con-
trol probes were co-hybridized to normal blood
metaphase cells for 48 hr. The ratio of fluorescence
intensity between test and control along the length
of each metaphase chromosome was analyzed by
use of standard comparative genomic hybridization
analysis software (Digital Scientific, Cambridge,
UK) after image capture with a cooled charge-
coupled device camera attached to a fluorescence
microscope. In self:self hybridizations, the average
fluorescence intensity ratios and SD did not exceed
1.0 ! 0.2 along chromosome arms. An intensity
ratio outside these limits at a particular chromo-
somal location in five good-quality metaphases was
scored as a region harboring differentially ex-
pressed genes.

Microarray Analyses

Microarray analysis was carried out through the
use of a previously described methodology (Lu et
al., 2001; Clark et al., 2002). Clones collected for
the 2p24 region plus a 5,265-clone Geneset (Insti-
tute of Cancer Research and Cancer Research, UK)
were gridded onto microscopic slides, hybridized,
and analyzed by use of the software Genepix (Axon
Instruments, Foster City, CA).

Analysis of Predictive Accuracy by Use of Machine
Learning Algorithms

The potential of the profiles produced by the
CESH technique for classifying tumor groups, tu-
mor subgroups, and tumors with different clinical
characteristics was evaluated with a support vector
machine (SVM); an efficient machine learning clas-
sifier. The SVM classifier is trained on a set of
samples belonging to known classes (in our case,
known groups of tumors) and test samples pre-
sented to evaluate the predictive ability. SVMs
separate the data by maximizing the margin or
closest distance between the datapoints belonging
to two classes and the separating hyperplane. This
geometric problem can be reduced to finding the
solution of a constrained quadratic programming
problem. This task is convex, thus giving a unique
solution guaranteeing good generalization on bi-
nary classification problems. In our case, we have a
multi-class classification problem and so we used a
directed acyclic graph (DAG) approach in which
multi-class classification is reduced to a series of
binary classification tasks (Platt et al., 2000). To
apply an SVM, each distinguishable region based
on the chromosomal bands was scored ("320) as
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normal, underexpressed, or overexpressed such
that these became nominal variables. Regions were
excluded from the analysis if they were altered in
every sample and deduced to be attributed to the
choice of control tissue through comparisons pre-
viously made to other normal tissues (e.g., 2q23–32
and Xp11–12 [Lu et al., 2001]).

To make maximum use of the data, we per-
formed leave-one-out (LOO) estimations of pre-
diction accuracy. Thus, the learning machine is
trained on (n # 1) samples, then asked to predict
the class of the sample left out, with rotation of this
excluded sample so that each sample is used once
as the test example. LOO cross-validation has an
expected low bias but may have high variance in
the bias-variance tradeoff (Hastie et al., 2001).
However, for a comparison of learning curves,
which is our main objective here, we view LOO
cross-validation test errors as sufficient. In deter-
mining LOO test errors the feature selection was
performed only on the (n # 1) training examples
and did not implicitly include the test sample.

Recursive Feature Elimination

In this approach to feature selection (by use of an
SVM), the least-effective features for class distinc-
tion were progressively removed through an itera-
tive process. Thus, starting with all of the features,
the feature with least influence in the classification
function (Guyon et al., 2002) is identified and re-
moved with each iteration. Features surviving
longest in this process are the best discriminators
for the SVM classifier to use. The utility of recur-
sive feature elimination was twofold: first to iden-
tify regions that contain differentially expressed
genes, which may be significant discriminators and
worthy of further investigation, and second to cre-
ate a “streamlined” classifier that can be tested on
further samples.

Error Rate Estimation

For a wide variety of different algorithms (in-
cluding SVMs with linear kernels), the functional
relationship between test error rate e(n) and train-
ing set size n is given by Zipf’s Law:

e$n% ! an#& " b

where a is the learning rate, & is the decay rate, and
b is the minimal error rate achievable because of
the existence of noise in the data. The dependency
enables comparisons to be made for different ex-
perimental or algorithmic techniques. We have
given this dependency as a function of sample size

and extrapolated the error rate for a fixed size of
400 samples for each of the CESH classifications.
These parameters were previously determined for
published microarray experiments by use of SVMs
trained with a linear kernel (Golub et al., 1999;
Schummer et al., 1999; Alizadeh et al., 2000; Not-
terman et al., 2001; Ramaswamy et al., 2001;
Pomeroy et al., 2002; Shipp et al., 2002; van’t Veer
et al., 2002; Mukherjee et al., 2003). We compared
these data with a similar analysis of the CESH data
to assess the performance of the CESH approach to
classifying tumors.

RESULTS

CESH analysis was successfully applied to small
biopsy samples of rhabdomyosarcoma available for
this study involving as little as 20 ng of RNA.
Examples of the CESH analysis indicating differ-
ential expression in rhabdomyosarcomas and
leiomyosarcomas compared to normal muscle tis-
sue are shown in Figure 1. The results of all of the
CESH analysis are presented in the supplemental
data (www.icr.ac.uk/home/lu/). CESH data for the
three groups of tumors with clear histopathological
diagnoses (45 rhabdomyosarcomas, 20 leiomyosar-
comas, and 21 prostate cancers) identified tumor-
specific regions differentially expressing genes rel-
ative to muscle. This included overexpression from
11q13 in 62% of prostate samples and from
2p23–24 in 62% of rhabdomyosarcomas. Other re-
gions frequently indicated as differentially ex-
pressed in rhabdomyosarcomas are summarized in
Table 1. Overexpression of genes from 4p15–16
(80%) and Xp22 (95%) and underexpression of
genes from 11q14–23 (85%) were detected in
leiomyosarcomas. The CESH data set for the pros-
tate cancer, rhabdomyosarcomas, and leiomyosar-
comas was subjected to a multi-class classification
experiment by use of an SVM. Through use of a
LOO approach, this gave the test error rate of 0.058
(5/86) (i.e., it was able to classify correctly 94.2% of
test samples). By use of soft margins to compensate
for the existence of noise in the data, arising from
a non-zero training error, the test error rate was
0.035 (3/86; i.e., correct classification of 96.5% of
test samples). This establishes CESH expression
patterns as specific for each of these different types
of tumor.

To assess whether the CESH profiles were dis-
tinctive for the different subtypes of rhabdomyo-
sarcomas, data from the 16 alveolar cases with the
PAX/FOXO1A fusion genes and the 19 embryonal
rhabdomyosarcomas were analyzed. It was notable
that both subgroups of rhabdomyosarcomas show
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common regions of frequent differential expres-
sion. In addition, the frequency of involvement of
other regions was associated with one or other of
the subtypes (Table 1). The data were investigated
further by use of a binary classification SVM, which
gave a LOO error rate of 0.17 (6/35; i.e., the SVM
correctly classified new test samples 83% of the
time). Perceptron neural networks were also ap-
plied and demonstrated a similar learning effi-
ciency (data not shown). To determine which dif-
ferentially expressed regions were most useful in
distinguishing alveolar from embryonal, rhabdo-
myosarcoma (RMS) we used a recursive feature
elimination method. Through the use of recursive
feature elimination, we found that a feature size of

43 was able to achieve a LOO error of 4/35 (i.e.,
correctly classifying new test samples 88.6% of the
time with zero training error). Distinguishing re-
gions were identified that lie within the regions
indicated in Table 1. In addition to these chromo-
some bands, the SVM also selected overexpression
from other regions such as 5q35, 13q32, and Xq13
as being useful in classifying cases, although the
frequency of involvement of these was lower. Mi-
croarray analysis of clones collected for the 2p23–25
region plus a 5,265 clone Geneset was carried out
for five cases of rhabdomyosarcomas to identify
some of the genes in the regions indicated by
CESH. The genes found here and in the literature
are shown in Table 1.

Figure 1. An example of expression profiling by use of CESH analysis. A: A rhabdomyosarcoma; B: a
leiomyosarcoma. A representative image of each case is shown on the left. The average profile along the
chromosomes from six cells from each case is presented on the right. Red bars on the left side of the
chromosomes indicate regions with relative underexpression of genes, and green bars on the right side of
the chromosomes show regions of relative gene overexpression.
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Binary classification by SVM analysis of CESH
data for Wilms tumors (supplemental data on www.
icr.ac.uk/home/lu/) gave a LOO error of 2/18, cor-
rectly classifying whether tumors would relapse
88.9% of the time. To determine which differen-
tially expressed regions are most useful in distin-
guishing relapse from non-relapse, we again used a
recursive feature elimination method (Guyon et al.,
2002). At a feature size of 22, a LOO rate of 1/18
with zero training error (94.4% new test samples
predicted correctly) was achieved. The effect of
this feature selection is illustrated in Figure 2.
Those features that survive longest and most fre-
quently are likely to be significant discriminators
and include overexpression from regions 1q41–43,
1q23, 18q21, 2p23, and 19q13.4, and underexpres-
sion from 1p22, 6p12, and 8q22.

The classification performance of our CESH
analysis was compared to a previous analysis of
high-profile microarray experiments that used a
recently developed technique for determining the
estimated dependency of test error on sample size
(Mukherjee et al., 2003). Table 2 shows this error
rate for the CESH analysis and the previously pub-
lished error rates of the microarray studies.

DISCUSSION

Here, we demonstrate the ability of CESH pro-
filing to distinguish tumor groups, subgroups, and
tumors with different biological behaviors with a
level of performance similar to that of microarray
approaches. Generally, the CESH profiles ap-
peared more consistent between samples and to
involve smaller regions than the corresponding
DNA profiles reported in previous CGH studies of
the rhabdomyosarcomas and leiomyosarcomas (Fig.
1, Table 1, and supplementary data on www.
icr.ac.uk/home/lu/) (Weber-Hall et al., 1996; Gor-
don et al., 2000; Wang et al., 2001). The expression
patterns at the chromosomal level were shown to
be distinctive for rhabdomyosarcoma, leiomyosar-
coma, and prostate cancers—tumors with clearly
different pathologies. We also investigated the
rhabdomyosarcomas in more detail and found
that the CESH patterns were distinctive in dif-
ferent subtypes. Rhabdomyosarcomas are a het-
erogeneous group of malignant tumors that re-
semble developing skeletal muscle and are
mainly found in children. There are two main
subtypes, known as embryonal and alveolar. The
alveolar subtype is frequently associated with

TABLE 1. Chromosome Regions of Frequent Differential Gene Expression Identified by CESH Analysis of Rhabdomyosarcomas
Compared to Muscle Tissue and Candidate Genes for Involvement*

Chromosome region

Frequency of changes

Genes altered in rhabdomyosarcomas
RMS

(n ' 35)
Alveolar
(n ' 16)

Embryonal
(n ' 19)

Regions common to subtypes
2q141 51% 50% 53% AMPHL
8p231 46% 56% 32%
19q131 46% 50% 42% ZFP137, TNNT1
3p22–242 46% 50% 42%
6q21–232 80% 69% 89% Phospholamban, connective tissue growth factor
10q21–222 51% 44% 58%

Discriminatory regions
2p23–251 (alveolar)a 66% 94% 42% POML, RHOE, DDEF2, LOC165323, PIG3,

MYCN, DDX1, SRC-1 (NCOA1), IMAGE
2008980, 1471296, 2072624, 2091812

5p14–151 (alveolar)a 26% 50% 5% TRIO, BASP1, IMAGE 1031125, 246377,
12q241 (alveolar)a 31% 50% 16% HM74, P2RX4, POLE
16q22–241 (alveolar)a 23% 44% 5% WWOX, LOC197256
20q12–131 (alveolar)a 40% 56% 26% AIB2, MYBL2, HSRANSEB, TFAP2C
8p12–q211 (embryonal)a 29% 0% 53% Slug
8q23–241 (embryonal)a 43% 19% 63% MYC, PLEC1, FAK, Lipoprotein lipase,

ANNEXIN XIII, LY6E, LOC14A1, IMAGE
1031991, TAF2, NOV

*1 relative overexpression of genes in the chromosome region. 2 relative underexpression of genes in the chromosome region.
aRegions that are more frequent in one or other of the subtypes and that are retained by recursive feature elimination in greater than 16 times out
of 35 iterations at a feature size of 43. Genes in bold letters are those identified by our microarray analysis, and others are from the literature (Khan
et al., 1998, 1999, 2001; Lu et al., 2001; Manara et al., 2002).
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chromosome translocations and corresponding
fusion gene products involving the PAX3 or
PAX7 and FOXO1A genes (Anderson et al., 1999;
Barr, 2001). To assess whether the CESH pro-
files were distinctive for these subtypes, data
from the 16 alveolar cases with the PAX/FOXO1A
fusion genes and the 19 embryonal rhabdomyo-
sarcomas were analyzed. It was notable that both
subgroups of rhabdomyosarcomas showed com-
mon regions of frequent differential expression.
This suggests that the expression of at least some
genes is common to the different subtypes. In
addition, the frequency of involvement of other
regions was associated with one or other of the
subtypes (Table 1). Therefore, although the
CESH profiles reflect underlying similarities be-
tween the two main subtypes of rhabdomyosar-
comas, it is possible in the majority of cases to
distinguish these subtypes on the basis of their
chromosomal expression profiles.

Differentially expressed genes from the chromo-
somal regions indicated were identified through
the limited microarray analysis carried out here and
other microarray analyses reported in the literature
(Table 1) (Khan et al., 1998, 2001; Lu et al., 2001;
Manara et al., 2002). These may be genes involved
in the development of rhabdomyosarcoma sub-
types. Region-specific microarray analysis repre-
sents one approach to identifying genes that may
be involved in the development of tumors or that

are of use in discriminating between groups of
tumors. The CESH data highlight chromosomal
regions for further investigation that were not ap-
parent in the microarray analysis, such as 8p23 and
10q21–22. This may be attributed to poor gene
coverage on the microarrays for these regions. In
addition, the microarray data show that more than
one gene from a region is likely to be involved
(Table 1). This is consistent with other microarray
data (not shown) and recent literature that used
serial analysis of gene expression data and may
reflect a more general phenomenon of region-spe-
cific gene expression (Caron et al., 2001). This may
result from co-regulation of functionally related
genes or more general regulatory mechanisms, such
as those involving chromatin conformation and epi-
genetic changes (Roy et al., 2002).

The most striking finding is that analysis of
CESH data has the potential to indicate tumor
behavior. This was revealed by comparing the re-
lapse and the non-relapse Wilms cases. Wilms tu-
mors are the most common renal neoplasm of
childhood, and relapsed tumors, although rare, re-
spond poorly to intensive second-line therapy. We
previously showed an association between subse-
quent relapse and gain of genomic material from 1q
and overexpression of genes from this region irre-
spective of genomic gain (Hing et al., 2001; Lu et
al., 2002). Here, we demonstrate that the expres-
sion pattern as a whole was indicative of outcome.

To put the classification performance of our
CESH analysis into context, the performance was
compared to previous analyses of high-profile mi-
croarray experiments that used a recently devel-
oped technique for determining the estimated de-
pendency of test error on sample size (Golub et al.,
1999; Schummer et al., 1999; Alizadeh et al., 2000;
Notterman et al., 2001; Ramaswamy et al., 2001;
Pomeroy et al., 2002; Shipp et al., 2002; van’t Veer
et al., 2002; Mukherjee et al., 2003). Although the
CESH comparisons here used different tumor sam-
ples and the published studies address a variety of
classification issues, the error rates were similar.
This demonstrates that CESH data are comparable
in test performance to those of microarray studies.

Approaches to expression profiling include serial
analysis of gene expression, massive parallel signa-
ture sequencing, and currently the most widely
used approaches of microarray-based analyses (Vel-
culescu et al., 1995; Golub et al., 1999; Schummer
et al., 1999; Alizadeh et al., 2000; Brenner et al.,
2000; Notterman et al., 2001; Ramaswamy et al.,
2001; Pomeroy et al., 2002; Shipp et al., 2002; van’t
Veer et al., 2002). The first two of these approaches

Figure 2. Multidimensional scaling plot representing the Wilms tu-
mor expression data after RFE at a feature size of 22 (error ' 1/18).
The model was constructed from a squared Euclidean distance prox-
imity measurement calculated from features retained in more than 10
out of 18 feature elimination iterations. E represents non-relapse cases
and ‚ represents relapse cases. The tumors form two separate groups
reflecting the selection of features that distinguish those tumors that
subsequently relapsed from those that did not.
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are technically demanding, require a lot of se-
quencing power, and, although they provide high
resolution, quantitative data are time-consuming
and expensive to apply to many samples. Microar-
ray analyses have successfully addressed a number
of classification issues, but it is recognized that
there are methodological and statistical challenges
and problems associated with the analysis of thou-
sands of variable datapoints (Knight, 2001; Novak
et al., 2002; Simons et al., 2003; Slonim, 2003). In
addition, a study of matched mRNA that used two
different microarray techniques showed that there
was generally a poor correlation between the data
from the different platforms, suggesting that
probe-specific factors influence measurements
(Kuo et al., 2002). The CESH technique has some
advantages as an alternative or complement to mi-
croarray analysis. The use of chromosomes as a
target involves no pre-selection of gene sequences
for interrogation, as highlighted in a commentary
on the technique (Chin, 2001). Although the data
are less complex than those from microarrays, we
have demonstrated here the remarkable ability of
expression profiling at the chromosomal level to
distinguish tumor groups, subgroups, and tumors
with different clinical behaviors to a level of per-
formance similar to that of recent high-profile mi-
croarray studies. Analysis is relatively rapid, making
it possible to screen large numbers of samples, and
it is particularly applicable to analysis of small
amounts of tissue. The key regions identified by
CESH could be the focus of further investigation,
including analysis of samples identified with these

regions involved. This could include the use of
custom-designed microarrays representing all
known genes for a chromosomal region and/or in-
vestigations of specific candidate genes and their
products to identify differentially expressed genes
that may be useful disease markers or novel targets
for therapy. Existing fluorescence in situ hybridiza-
tion expertise and equipment are appropriate to
perform CESH analysis, and it is therefore readily
accessible to many laboratories.

In conclusion, the analysis of CESH data de-
scribed here represents a useful approach to ad-
dressing problems in classifying tumors that may
be difficult by use of standard methods of diagno-
sis. It may also be able to predict behavior in other
tumor types and lead to better clinical management
of patients.
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TABLE 2. Comparison of CESH Classification Performance With Microarray Classification Performance

Learning curve e(n) ' an#& ( b
Error rate at

n ' 400 Analysis Study and reference

e (n) ' 1.42n#0.52 ( 0.0098 7.278 ) 10#2* Microarray Variety tumors/normal (Ramaswamy et al., 2001)
e (n) ' 0.7706n#0.63 ( 0.009 2.668 ) 10#2* Microarray Leukemia AML/ALL (Golub et al., 1999)
e (n) ' 0.7362n#0.6864 1.205 ) 10#2* Microarray Ovarian tumor/normal (Schummer et al., 1999)
e (n) ' 0.57n#0.7073 ( 0.0006 8.831 ) 10#3* Microarray Lymphoma follicular/B-cell (Alizadeh et al., 2000)
e (n) ' 1.115n#0.3295 ( 0.006 1.608 ) 10#1* Microarray Medulloblastoma treatment outcome

poor/successful (Pomeroy et al., 2002)
e (n) ' 0.9431n#0.2957 ( 0.01 1.704 ) 10#1* Microarray Lymphoma treatment outcome poor/succesful

(Shipp et al., 2002)
e (n) ' 0.4852n#0.0733 ( 0.01 3.227 ) 10#1* Microarray Breast cancer treatment outcome

metastatic/disease' free (van’t Veer et al., 2002)
e (n) ' 0.4798n#0.2797 8.980 ) 10#2* Microarray Colon tumor/normal (Notterman et al., 2001)
e (n) ' 1.172n#0.575 3.739 ) 10#2 CESH Rhabdomyosarcoma, leiomyosarcoma, prostate

cancer (this study)
e (n) ' 0.655n#0.321 9.572 ) 10#2 CESH Alveolar vs. embryonal rhabdomyosarcoma (this

study)
e (n) ' 0.747n#0.544 2.869 ) 10#2 CESH Wilms, treatment outcome (this study)

*Estimate taken from Mukherjee et al. (2002).
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