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ABSTRACT
Motivation: We investigate two new Bayesian classifica-
tion algorithms incorporating feature selection. These al-
gorithms are applied to the classification of gene expres-
sion data derived from cDNA microarrays.
Results: We demonstrate the effectiveness of the al-
gorithms on three gene expression datasets for cancer,
showing they compare well with alternative kernel-based
techniques. By automatically incorporating feature selec-
tion, accurate classifiers can be constructed utilizing very
few features and with minimal hand-tuning. We argue
that the feature selection is meaningful and some of the
highlighted genes appear to be medically important.
Contact: C.Campbell@bris.ac.uk

INTRODUCTION
The recent development of cDNA microarray technology
is creating a wealth of gene expression data. Typically
these datasets have a high dimensionality corresponding
to the large number of probes used and there are often
comparatively few examples. As an example, a recent
leukaemia dataset (Golub et al., 1999) has 72 examples
with 7129 features each. Viewed as a machine learning
problem, the high dimensionality and sparsity of data-
points has suggested the use of support vector machines
(SVMs). For example, for binary classification, the gener-
alization performance of an SVM does not depend on the
dimensionality of the space but on maximizing the margin,
γ , or distance between the separating hyperplane and the
closest points of each class. Also the high-dimensional
input vector xi is absorbed in the kernel matrix K (xi , x j )

where i, j are pattern indices. Thus training times follow
the reduced dimensionality of the example set size rather
than the number of features.

Several papers have reported results on the application
of SVMs to classification of gene expression data. For
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example, Brown et al. (2000) considered a dataset from
the budding yeast S. Cerevisiae with 2467 features.
SVMs outperformed Parzen windows, Fisher’s Linear
discriminant and two decision tree classifiers. Furey et
al. (2000) considered three datasets for ovarian cancer
(Schummer et al., 1999), colon cancer (Notterman et al.,
2001) and a dataset (Golub et al., 1999) for distinguishing
acute myeloid leukaemia (AML) and acute lymphoblastic
leukaemia (ALL). The authors reported low test errors for
these datasets despite the small number of tissue samples
available for investigation.

Apart from achieving a low test error it would also be
advisable to implement feature selection. By removing
redundant features it may be possible to reduce the test
error further. Though this reduction in the test error
depends on the algorithm and dataset considered, it can
be significant. For example, for the leukaemia dataset
mentioned in section 3.3, the number of test errors is
3.0 ± 0.1 with all 7129 features against 1.7 ± 0.1 with
128 key features (features ranked by Fisher score, trained
using an SVM and with a hundred 36 + 36 resamplings
from a merged data). Feature selection also simplifies the
hypothesis and may highlight those genes which are most
relevant.

Thus several authors have investigated feature selection
in this context. Furey et al. (2000) performed feature
selection using the Fisher score prior to training. Weston et
al. (2001) compared use of the Fisher score against feature
selection using generalization bounds from statistical
learning theory. Guyon et al. (2002) further introduced an
algorithm, called recursive feature elimination (RFE), in
which features are successively eliminated during training
of a sequence of SVM classifers. Since SVMs perform
well on these datasets and the RFE algorithm appears to
be one of the best kernel-based methods for implementing
feature selection in this context we have used it as
our comparative benchmark in the experiments described
below.

Rather than using generalization bounds from statistical
learning theory, an alternative approach is to exploit the
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Bayesian technique of automatic relevance determination
(ARD) to perform feature selection (MacKay, 1994; Neal,
1994). An ARD approach has been used previously for
constructing a classifier which is sparse in the number
of examples i.e. the relevance vector machine (RVM)
of Tipping (2000, 2001). For example, for two well-
known real-life datasets (Pima Indian diabetes and USPS
handwritten digit recognition) the RVM constructed the
classifier using 4 examples rather than 109 (diabetes) and
316 examples rather than 2540 (USPS) (Tipping, 2000). In
addition, these examples are distinct from those used by an
SVM since they tend to represent prototypical examples
rather than datapoints close to the decision boundary (the
support vectors of a SVM).

In this paper we use the same Bayesian approach to
outline two algorithms which are sparse in terms of the
number of features used. Algorithm 1 is effectively the
‘dual’ of the standard RVM with sparsity obtained in the
feature set rather than the example set (unlike the stan-
dard RVM we also allow reintroduction of features during
the learning process). In the second algorithm feature se-
lection is performed by isolating the feature dependence
in the log-marginal likelihood function. As we will see
these algorithms have similar performance to SVMs when
applied to gene expression datasets from cDNA microar-
rays. Theoretically they are interesting because the moti-
vation behind the approach is Bayesian in contrast to the
statistical learning theory approach underpinning SVMs.
However, they also have the advantage that feature sparsity
is naturally incorporated into the algorithm—the optimal
number of relevant features is decided automatically. By
constrast, for an SVM, an additional feature selection pro-
cedure has to be added and a further criterion must be used
to indicate when the best feature set has been found. In
terms of practical use, these algorithms may highlight the
importance of certain genes and create simpler hypotheses
for separating classes (such as the genetic subtypes of a
cancer). Thus, for colon cancer, we will see that it strongly
highlights a feature which has recently been found to have
therapeutic significance. In the next section we describe
these algorithms in more detail and in Section 3 we will
describe performance on three gene expression datasets
for cancer.

THE ALGORITHMS
We will consider datasets consisting of m examples with
n-dimensional input vectors xν with corresponding target
yν ∈ R (where ν are pattern indices). For reasons outlined
below we will introduce the algorithms for regression
before adapting them to classification. For regression we
will assume the following likelihood for the data (Tipping,

2000):

p
(

y|w, σ 2
)

=
(

2πσ 2
)− m

2
exp

(
− 1

2σ 2
||y − �w||2

)
(1)

where w = (w0, . . . , wn). The gene expression datasets
we will subsequently consider are generally linearly
separable and for linear problems we use:

� =

 1 xT

1· · ·
1 xT

m


 , (2)

with the first column handling the bias w0 in the hypothe-
sis function:

f (z) =
n∑

j=1

w j z j + w0 (3)

where z j is an assumed input vector ( j are feature indices).
Pruning the i th column of � implements feature selection.
As for the RVM we assume a prior favouring sparse
hypotheses (Tipping, 2000), though sparse in features
rather than sparse in examples:

p (w|α) = (2π)−
n+1

2

n∏
i=0

α
1/2
i exp

(
−αiw

2
i

2

)
(4)

where we have introduced ‘hyperparameters’ α0 . . . αn
which control the ‘strength’ of the prior. We then integrate
out the weights between (1) and (4) to obtain the marginal
likelihood:

p(y|α, σ 2) = (2π)−
m
2

∣∣∣B−1 + �A−1�T
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2
.
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y
]

(5)

where A = diag(α0, α1, . . . , αn), B = σ−2Im and we
have additionally used the Woodbury–Sherman–Morrison
matrix identity:(

B−1 + �A−1�T
)−1 = B − B���T B (6)

with � = (
�T B� + A

)−1
. The posterior over the weights

is:

p
(

w|y, α, σ 2
)

= (2π)−
(n+1)

2 |�|− 1
2 .

exp

[
−1

2
(w − µ)T �−1 (w − µ)

]
(7)

where the mean is given by µ = ��T By. The algorithms
we now detail are based upon exploiting the type-II maxi-
mum likelihood principle. The objective is to maximize the
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marginal likelihood (5) with respect to the hyperparame-
ters in order to obtain point estimates of their values. These
can then be substituted back into (7) to give an updated
posterior distribution for the weights, which is typically
summarized by its mean.

Algorithm 1
We can obtain an iterative update formula for the α
by taking the natural log of (5) and differentiating this
expression with respect to α. Using the following formulae
for this differentiation (with M an arbitrary matrix):

∂M−1

∂α
= −M−1

(
∂M−1

∂α

)
M−1 (8)

∂ ln |M|
∂α

= T r

(
M−1 ∂M

∂α

)
(9)

we derive the following update formula for the α at the
optimum:

αi = γi/µ
2
i (10)

where γi = 1 − αi�i i and:

(σ 2)new = ||y − �µ||2(
m − ∑

i γi
) (11)

These formulae suggest an algorithmic approach to regres-
sion (Tipping, 2000) in which we iteratively update α and
σ and intermediate quantities such as µ and �. In prac-
tice, during re-estimation, many of the αi approach infin-
ity. For those αi , the corresponding individual weight pos-
teriors p(wi |y, α, σ 2) become infinitely peaked at zero,
implying that the corresponding i th column in � can be
‘pruned’. During execution of the algorithm with forward
selection such features were removed and in the simula-
tions described below we used αi > 1012 as the prun-
ing criterion. The re-introduction of pruned features was
also allowed if the gradient of the marginal likelihood,
(5), with respect to αi is less than a bound. In the sim-
ulations below we used α−1

i − �i i − µ2
i < −10−5. The

numerical values of the lower bound for pruning and upper
bound for re-introduction of features were found using ex-
periments on artificial datasets. However, for these artifi-
cial datasets and the microarray datasets described below,
we found very little change in performance on varying
these bounds provided the lower bound for pruning is a
very large number and the bound on re-introduction corre-
spondingly small. The algorithm is run until a termination
criterion is reached (which we took to be that the largest
change to a finite αi value was below a tolerance).

The above formulation is for regression and we must
now consider its adaptation to classification. For classi-
fication where yν ∈ {0, 1}, the algorithm is slightly dif-
ferent. The linear model is generalized by applying the

logistic sigmoid function g( f ) = 1/(1 + e− f ) to f (·).
The likelihood of the dataset is then written as (Bishop,
1995):

p(y|w) =
m∏

ν=1

g( f (xν))
yν [1 − g( f (xν))]1−yν . (12)

As a result of this modification, the weight posterior
is no longer analytically obtainable, but for given values
of α an effective approximation can be obtained using a
Gaussian centred at the maximum of p(w|y, α). Finding
this maximum, and hence the mean µ of the approximat-
ing Gaussian, is equivalent to a standard optimization of
a regularised logistic model and different methods can be
applied to solve it (Tipping, 2001).

The covariance � = (−∇∇ log p(y, w|α))−1 of the
approximating Gaussian is now equal to (�T B� + A)−1,
where B is an m × m diagonal matrix with Bνν =
g( f (xν))[1 − g( f (xν))]. The hyperparameters {αi } are
still updated as in (10). Noting the similar covariance
matrices between regression and classification models,
we can readily adapt the regression algorithm to the
task of classification as follows (Tipping, 2001). Let
yν ∈ {−1, +1}, A = diag(α0, α1, · · · , αn), and B =
diag(1/σ 2

1 , · · · , 1/σ 2
m). We update the hyperparameters

{αi } using (10), but for {σ 2
ν }, we instead use the formula

(Tipping, 2001):

(σ 2
ν )new = 1/[g( f (xν))(1 − g( f (xν)))] (13)

to determine B. Since g( f (xν))(1 − g( f (xν))) is at
most 1/4, we can set σ 2

ν to a constant for simplicity
(for algorithm 2 in the next subsection we set σν to
1 when applying regression likelihood to the task of
classification). To predict the labels of test instances, we
threshold f (·) in (3) at zero. In the experimental section
we will use (13) in the simulations. However, as we note
in that section, a small further reduction in the test error
can be gained if we do not use (13) but only use (10) and
optimize the σ value using further data.

Algorithm 2
An alternative strategy has recently been suggested by
Faul and Tipping (2001). In constrast to the derivation
of algorithm 1, we proceed by writing down the log-
marginal-likelihood:

L(α) = ln
[

p
(

y|α, σ 2
)]

= −1

2

(
m ln(2π) + ln |C| + yT C−1y

)
(14)

where:
C = B−1 + �A−1�T (15)
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Table 1. The numbers of errors on the test set and feature set size for the colon cancer dataset with 50 training patterns and 12 test patterns. The SVM was
trained with decreasing feature set size with a leave-one-out bound to determine the stopping point. 100 partitionings of the data were used

Algorithm 1 Algorithm 2 (using σ = 1) SVM (RFE) SVM (Fisher score)

Number of errors on test data 2.04 ± 0.14 2.90 ± 0.13 2.84 ± 0.14 2.68 ± 0.15
Size of feature set 15.13 ± 0.31 8.55 ± 0.13 4.25 ± 0.12 14.41 ± 5.35

Table 2. The numbers of errors on the test set and feature set size for the ovarian cancer dataset with 40 training patterns and 14 test patterns. The SVM was
trained with decreasing feature set size with a leave-one-out bound to determine the stopping point. 100 partitionings of the data were used

Algorithm 1 Algorithm 2 (using σ = 1) SVM (RFE) SVM (Fisher score)

Number of errors on test data 1.95 ± 0.11 1.80 ± 0.13 1.82 ± 0.13 1.89 ± 0.13
Size of feature set 9.62 ± 0.30 6.5 ± 0.13 2.66 ± 0.07 17.24 ± 3.14

with B = σ−2Im . Here, and in the derivation below, we
will assume σ is a constant.

In order to isolate the influence of an individual feature
i , we decompose C as:

C = C−i + α−1
i �i�

T
i (16)

where �i is the i th column of �. Using the Woodbury–
Sherman–Morrison formula for the inverse of C:

C−1 = C−1
−i + C−1

−i �i�
T
i C−1

−i

αi + �T
i C−1

−i �i
(17)

we can write:

L(α) = L(α−i ) + R(αi ) (18)

where:

R(αi ) = 1

2

[
ln(αi ) − ln

(
αi + �T

i C−1
−i �i

)

+
(
�T

i C−1
−i y

)2

(
αi + �T

i C−1
−i �i

)

 (19)

Conveniently, all dependencies on αi (and its corre-
sponding feature) are isolated in R(αi ). Taking the deriva-
tive of L(α) with respect to αi we then get:

∂L(α)

∂αi
= 1

2

[
Si + α−1

i S2
i − Q2

i

(αi + Si )
2

]
(20)

where for convenience we define Qi = �T
i C−1

−i y and

Si = �T
i C−1

−i �i . As shown in Faul and Tipping (2001),
if Q2

i > Si then analysis of the second derivative indicates

that R(αi ) is maximized at αi = S2
i /(Q2

i − Si ). If
Q2

i ≤ Si then considering the asymptotic behaviour of
the first derivative demonstrates that R(αi ) is maximized
at αi = ∞, equivalent to the removal of feature i .

These properties suggest a sequential algorithm for
maximizing the marginal likelihood where at each iter-
ation we compute (efficiently) optimal new α values indi-
vidually for every feature. Note, importantly, that we can
do this for features that are currently excluded (i.e. where
αi = ∞). It is then straightforward to compute the change
in L(α) resulting from the individual optimization of each
αi , and then select that change which most increases L(α).
At each iteration we may therefore:

• introduce a feature when αi = ∞ but Q2
i > Si ,

• exclude a feature when αi < ∞ but Q2
i ≤ Si ,

• update a current feature (re-estimate αi ) when αi < ∞
and Q2

i > Si .

When the algorithm has terminated (according to a
similar criterion as previously stated) we then find � =(
�T B� + A

)−1
and hence determine the mean values for

the weights via µ = ��T By.
In the experiments below we set σ = 1, though, as

for algorithm 1, a small gain in test error reduction can
be achieved if σ is optimized using further data. In the
simulations presented below we also found use of the re-
gression likelihood (1) with thresholding gave marginally
lower test errors than use of the classification likelihood
(12). Consequently we used the regression likelihood in
our experiments (as an illustration, in reference to Tables 1
and 2 the test errors were 3.26 ± 0.13 and 1.81 ± 0.13
respectively using the classification likelihood with algo-
rithm 2).
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EXPERIMENTAL RESULTS
We now report the test performance of these algorithms
on gene expression datasets for colon cancer, ovarian
cancer and the leukaemia dataset. For the first dataset
(colon cancer) the data had been preprocessed before
presentation to the classifier. In order to compare with the
RFE algorithm of Guyon et al. (2002) we used exactly
the same data and pre-processing steps: the log of all
values was taken, sample and feature vectors were then
normalized and the values passed through a tanh-function
to diminish the effect of outliers. For ovarian cancer
the data supplied by the experimentalists did not require
further pre-processing by the authors and for leukaemia
we used the standard presentation of the data (Proceedings
of CAMDA, 2000).

We will also compare the test errors with those obtained
using an SVM with Fisher score feature ranking or
recursive feature elimination (RFE). Both these SVM
algorithms must use a stopping criterion to halt the
feature selection process at an appropriate point. A good
procedure would be to use leave-one-out (LOO) cross
validation each time a feature is eliminated. However,
this process becomes too computationally intensive for
most datasets encountered. Instead we have used the
efficient leave-one-out bound of Joachims (2000) each
time a feature is eliminated. This comparison of the
algorithms will not make implicit use of the test data
and so the reported performance on the test data is
representative. However, for completeness, we will also
give the lowest achieveable test error (which will make
implicit use of the test data). For an SVM this will be
the lowest averaged test error across all feature set sizes
and for the Bayesian algorithms, where the feature set is
automatically determined, we give the lowest averaged test
error across a range of σ values.

An important point to note is that current gene expres-
sion datasets are characterized by few datapoints in a very
high-dimensional space. Thus separability and low test er-
rors may not be a surprise. Instead the problem may be that
the hypotheses generated are not unique: many hypotheses
could fit the data well, each using a distinct set of features.
To investigate this issue we will randomly partition the
data into two disjoint subsets of equal size and train the
algorithm on both sets. After training we find the num-
ber of features common to both hypotheses. Since it is
straightforward to determine the probability of randomly
having common features, we can therefore quantify the
extent to which feature selection is meaningful. Let n be
the maximum number of possible features, n1 the number
of features in hypothesis 1, n2 the number of features in
hypothesis 2 and let Nc represent the number of features
common to both hypotheses. Further let na = max(n1, n2)

and nb = min(n1, n2). If n1 and n2 features are drawn

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

120

Fig. 1. For 100 partitionings of the colon cancer dataset the y-
axis shows the number of occurrences of the feature (the maximum
would be 200) and the x-axis shows the feature index.

from n features uniformly at random, then the conditional
probability of having nc features in common is:

Pr(Nc = nc|n, n1, n2) =

(
na
nc

) (
n − na
nb − nc

)
(

n
nb

) (21)

where nb ≥ nc ≥ max(0, na + nb − n). For large n and
small n1, n2, the probability that Nc = 1 or Nc = 2 is
generally very small for the datasets considered here.

Colon cancer dataset
For the colon cancer (Alon et al., 1999) dataset the task is
to distinguish cancer from normal tissue using microarray
data with 2000 features per example. The data was derived
from 22 normal and 40 cancer tissues. In Table 1 we
report average performance over 100 random partitions
into 50 training and 12 test examples. The above Bayesian
algorithms and the SVMs have similar performance. For
the minimal achieveable test errors, the SVM with Fisher
score feature ranking gave an average 1.63 ± 0.10 errors
(using four features), the RFE algorithm gave 1.76 ± 0.10
errors (with 77 features). For the Bayesian algorithms
the lowest errors were 1.42 ± 0.128 for algorithm 1 (at
σ = 1.1) and 2.13 ± 0.12 for algorithm 2 (at σ = 2.2).

To investigate the degree of uniqueness of the hypothe-
ses we performed 100 random partitionings of the data
into disjoint subsets of 31 examples each and trained the
algorithm on each subset separately. For algorithm 1 the
occurrence rate for particular features is shown in Figure
1. Several features were particularly prominant: feature
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377 (accession no. Z50753) corresponding to mRNA for
uroguanylin precursor, 493 (R87126) corresponding to
myosin heavy chain, nonmuscle, and 1772 (H08393) cor-
responding to collagen alpha 2(XI) chain (Homo sapiens).
Feature 377 was a feature in common for 27 out of 100
partitionings of the data and hence it is a very significant
feature according to our earlier discussion (the lowest
conditional probability found was 0.947 for finding no
features in common for the given individual experiment).
Feature 493 is found in common three times for these 100
partitionings, and features 1772 and 625 (X12671) are
found in common once each. For algorithm 2 a similar
distribution appeared with feature 377 appearing in com-
mon in eight of 100 partitions and feature 493 occurring
on three occasions in common (for interest, using the
likelihood (12) feature 377 appears on six occasions and
feature 1772 on one occasion).

Guanylin and uroguanylin are markedly reduced in early
colon tumours (Notterman et al., 2001) with very low
expression in adenocarcinoma of the colon and also in its
benign precursor, the adenoma (D. Notterman, personal
communication). Treatment with uroguanylin has recently
been found to have possible therapeutic significance
(Shailubhai et al., 2000) with a significant reduction in
the number of pre-cancerous colon polyps (adenomas),
shrinkage in the remainder and observed apoptosis of
adenocarcinoma cells. It is remarkable that therapeutically
significant targets can be highlighted so clearly using these
methods.

Ovarian cancer dataset
As a second experiment we also evaluated our algorithm
on a new ovarian cancer dataset (for an earlier study see
Schummer et al. (1999)). This consisted of 30 examples
derived from ovarian tumours and 24 normal examples,
each example having 1536 features. The results are
presented in Table 2. Again the Bayesian algorithms and
SVMs have similar performance. Implicitly using the test
set, the lowest averaged test error performance was 1.08±
0.10 errors (using Fisher score ranking of features with
80 features), 1.70 ± 0.11 errors (RFE, using six features),
1.56±0.11 errors (algorithm 1, at σ = 1.1) and 1.31±0.11
errors (algorithm 2, at σ = 1.9).

Splitting the data into two disjoint datasets of 27
examples each we found the occurrence rate for features
given in Figure 2 for algorithm 1. Five features were
found in common for 100 partitionings of the data: feature
9 was in common on 34 occasions, feature 1526 on 20
occasions and features 1483, 510, 93 on one occasion
each. For algorithm 2 we found 1526 in common on four
occasions, 1483 in common on four occasions and feature
9 in common once (for the classification likelihood (12)
feature 1491 appears on 16 occasions and 1526 on four
occasions).
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Fig. 2. For 100 partitionings of the ovarian cancer dataset the y-
axis shows the number of occurrences of the feature (the maximum
would be 200) and the x-axis shows the feature index.

Feature 1526 actually has no match to a known se-
quence. However, it has also been ranked high in alter-
native investigations of this dataset and therefore appears
an interesting target for further investigation (M. Schum-
mer, personal communication). Of the other features,
feature 1491 (HE4) is a significant feature (Schummer,
personal communication) and has been identified recently
in serial analyses of gene expression data for ovarian
cancer (Hough et al., 2000). Several features are not so
interesting as markers. For example, feature 9 corresponds
to Dihydropyrimidase rel. prot-3 and it is not a good
marker candidate because of its occurence in other tissues.

Leukaemia dataset
In our final study we considered distinguishing acute
myeloid leukaemia (AML) from acute lymphoblastic
leukaemia (ALL). This dataset (Golub et al., 1999) has
been extensively studied and we have chosen to use the
standard split consisting of a training set of 38 examples
(17 ALL and 11 AML) and a test set of 34 (20 ALL and 14
AML). The authors who gathered the data (Golub et al.,
1999) investigated the use of a weighted voting scheme.
This correctly learnt 36 of the 38 training examples and
on the test set it gave 29 from 34 correct, declining to
predict on 5. They also tried a self-organizing map which
gave two clusters: one with 24 ALL and 1 AML and
the other with 10 AML and 3 ALL. Furey et al. (2000)
investigated the use of a SVM with different settings of
kernel parameter and soft margin. It correctly learnt all
the training data and the test results varied according to
the different configurations achieving zero training error.
There were between four and two test errors except for
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Fig. 3. For 100 partitionings of the leukemia cancer dataset the y-
axis shows the number of occurrences of the feature (the maximum
would be 200) and the x-axis shows the feature index.

one choice with 29 correct and the five declined by
the weighted voting scheme classified incorrectly. For an
SVM (Fisher score ranking of features and LOO stopping
criterion) we found a set of eight features was used
but there were six errors on the test set. For the RFE
algorithm 65 features were used and there were three
errors. For this particular dataset algorithm 1 gave three
test errors and algorithm 2 gave one error. Making use of
the test set we can obtain minimal test errors similar to
those reported elsewhere (Proceedings of CAMDA, 2000)
namely zero errors (SVM/Fisher score feature ranking),
one error (SVM/RFE), two errors (algorithm 1) and one
error (algorithm 2).

For 36 + 36 splits of the data, with 100 resamplings,
the average number of features used was 6.98 ± 0.25
for algorithm 1 and 7.09 ± 0.10 for algorithm 2 (at
σ = 1). However, in contrast to the colon and ovarian
datasets, few features appeared in common at significant
levels. For algorithm 1 features 3252 appeared twice
in common, feature 1834 once in common and for
algorithm 2 features 985, 1779 and 3252 appeared once
and 4847 twice in common. From theorem (21) the lowest
conditional probability of finding no features in common
on random grounds was found to be 0.983 per experiment
for algorithm 1, for example.

DISCUSSION
The two algorithms give similar performance and we
have stated both variants since they can give differing
emphasis to various features. Both algorithms have similar
test error rates to SVMs. Though the datasets considered
here were linearly separable it is also possible to use kernel

substitution to handle non-linearly separable datasets (see
Tipping (2001)).

Simpler methods (e.g. scores such as the Fisher score
or Pearson correlation coefficient) can be used to high-
light differential expression between genes belonging to
samples from different classes. Compared to feature selec-
tion by the above algorithms, these scoring methods would
typically give a much larger number of differentially ex-
pressed genes since, for discrimination, there is no need to
use redundant features if the decision function can be ac-
curately formulated using a few strong features. Of course,
this smaller set of important discriminating features could
be potentially interesting. Indeed, using the methods pro-
posed here some of the genes highlighted certainly appear
to be medically relevant, most notably the uroguanylin
precursor for colon cancer and HE4 for ovarian cancer. In
addition, scores can indicate the significance of individual
genes but do not use mutual information between features,
whereas the decision boundary created by a classifier has
a more holistic dependence on the features.

However, we believe the main use of the above algo-
rithms would be in tasks such as diagnosis and the assign-
ment of new samples to particular categories. For example,
for the leukaemia dataset the task was to assign the input to
one of two classes. In addition, cDNA microarray experi-
ments have indicated genetic sub-categories for a number
of cancers (e.g. lymphoma (Alizadeh et al., 2000) and lung
cancer (Sorlie et al., 2001)). In these cases, use of a smaller
number of important features simplifies the experimental
process. At the same time the proposed algorithms incor-
porate Bayesian principles to ensure good generalization
for the classification of new examples.
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