
Algorithmic Approaches to Training SupportVector Machines: A SurveyColin Campbell,Department of Engineering Mathematics, Bristol University,Bristol BS8 1TR, United Kingdom (C.Campbell@bris.ac.uk)Abstract: Support Vector Machines (SVMs) have become an increasinglypopular tool for machine learning tasks involving classi�cation, regression ornovelty detection. They exhibit good generalisation performance on many real-life datasets and the approach is well-motivated theoretically. Training involvesoptimisation of a convex cost function, there are relatively few free parametersto adjust and the architecture does not have to be found by experimentation.In this tutorial we survey methods for training SVMs including model selectionstrategies for determining the free parameters and new techniques for activeselection of training examples.1. Introduction.Support Vector Machines (SVMs) have recently been successfully applied to anumber of applications ranging from particle identi�cation, face identi�cationand text categorisation to engine knock detection, bioinformatics and databasemarketing [9]. The approach is systematic and motivated by statistical learningtheory [26] and Bayesian arguments. The training task involves optimisationof a convex cost function: there are no false local minima to complicate thelearning process. The approach has many other bene�ts, for example, themodel constructed has an explicit dependence on the most informative patternsin the data (the support vectors), hence interpretation is straightforward. Inthis tutorial we introduce this subject with an emphasis on the issue of trainingSVMs.From the perspective of statistical learning theory the motivation for consider-ing binary classi�er SVMs comes from theoretical bounds on the generalisationerror [26, 6]. Though we do not quote the relevant theorem here we note thatit has two important features. Firstly, the upper bound on the generalizationerror do not depend on the dimension of the space. Secondly, the error boundis minimised by maximising the margin, 
, i.e. the minimal distance betweenthe hyperplane separating the two classes and the closest datapoints to thehyperplane (Figure 1).Let us consider a binary classi�cation task with datapoints xi (i = 1; : : : ;m)having corresponding labels yi = �1 and let the decision function be:f(x) = sign (w � x+ b)
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Figure 1: The margin is the perpendicular distance between the separatinghyperplane and a hyperplane through the closest points (the support vectors).x1 and x2 are examples of support vectors of opposite sign. The margin band isthe region between the hyperplanes on both sides of the separating hyperplane.If the dataset is separable then the data will be correctly classi�ed if yi(w �xi+b) > 0 8i. Clearly this relation is invariant under a positive rescaling of theargument inside the sign-function, hence we can de�ne a canonical hyperplanesuch that w �x+ b = 1 for the closest points on one side and w �x+ b = �1 forthe closest on the other. For the separating hyperplane w �x+b = 0 the normalvector is clearly w= jjwjj2, and hence the margin is given by the projection ofx1�x2 onto this vector (see Figure 1). Since w �x1+ b = 1 and w �x2+ b = �1this means the margin is 
 = 1= jjwjj2. To maximise the margin the task istherefore: Minimise g(w) = 12 jjwjj22subject to the constraints:yi (w � xi + b) � 1 8iand the learning task can be reduced to minimisation of the primal Lagrangian:L = 12(w �w)� mXi=1 �i (yi(w � x+ b)� 1)where �i are Lagrangian multipliers, hence �i � 0. Taking the derivatives withrespect to b and w and resubstituting back in the primal gives the Wolfe dualLagrangian: W (�) = mXi=1 �i � 12 mXi;j=1�i�jyiyj (xi � xj) (1)



which must be maximised with respect to the �i subject to the constraint:�i � 0 mXi=1 �iyi = 0 (2)In the dual lagrangian (1) we notice that the datapoints, xi; only appear insidean inner product. To get a potentially better representation of the data we canmap the datapoints into an alternative space, generally called feature space (apre-Hilbert or inner product space) through a replacement:xi � xj ! � (xi) � �(xj)The functional form of the mapping �(xi) does not need to be known sinceit is implicitly de�ned by the choice of kernel: K(xi;xj) = �(xi) � �(xj) orinner product in Hilbert space. With a suitable choice of kernel the data canbecome separable in feature space despite being non-separable in the originalinput space. Thus, whereas data for n-parity or the two spirals problem isnon-separable by a hyperplane in input space it can be separated in the featurespace de�ned by RBF kernels (giving an RBF-type network):K(xi;xj) = e�jjxi�xj jj2=2�2 (3)Many other choices for the kernel are possible e.g.:K(xi;xj) = (xi � xj + 1)d K(xi;xj) = tanh(�xi � xj + b) (4)de�ning polynomial and feedforward neural network classi�ers. Indeed, theclass of mathematical objects which can be used as kernels is very generaland includes, for example, scores produced by dynamic alignment algorithms[10, 27]. For binary classi�cation with the given choice of kernel the learningtask therefore involves maximisation of the Lagrangian:W (�) = mXi=1 �i � 12 mXi;j=1�i�jyiyjK(xi;xj) (5)subject to constraints (2). After the optimal values of �i have been found thedecision function is based on the sign of:f(z) = mXi=1 yi�iK(z;xi) + b (6)Since the bias, b, does not feature in the above dual formulation it is foundfrom the primal constraints:b = �12 24 maxfijyi=�1g0@ mXj2fSVg yj�jK(xi;xj)1A+ minfijyi=+1g0@ mXj2fSVg yj�jK(xi;xj)1A35



The con�dence of a classi�cation is directly related to the magnitude of f(z)[19].When the maximal margin hyperplane is found in feature space, only thosepoints which lie closest to the hyperplane have �i > 0 and these points are thesupport vectors. All other points have �i = 0. This means that the repre-sentation of hypothesis is solely given by those points which are closest tothe hyperplane and they are the most informative patterns in the data. Thisframework can be elaborated in many ways, for example:Multiclass Classi�cation. A number of schemes for multiclass classi�cationhave been outlined [15, 28]. One of the simplest schemes is to use a directedacyclic graph (Figure 2 (left)) with the learning task reduced to binary classi-�cation at each node [7].Soft margins and allowing for training errors. An SVM can �t noisepresent in the training data leading to poor generalisation. The e�ect of outliersand noise can be reduced by introducing a soft margin to remove the e�ect ofoutliers [4]. Currently two schemes are possible. In the �rst (L1 error norm)the learning task is the same as in (2,5) except for the introduction of the boxconstraint: 0 � �i � C (7)while in the second (L2 error norm) the learning task is the same as (2,5)except for addition of a small positive constant, �, to the leading diagonal ofthe kernel matrix: K(xi;xi) K(xi;xi) + � (8)C and � control the trade-o� between training error and generalisation abilityand are chosen by means of a validation set.Novelty Detection. For many real-world problems the task is not to classifybut to detect novel or abnormal instances. Novelty detection can be performedby modelling the support of a distribution (i.e. �nding a function which is 1where most data lies and 0 elsewhere).One approach [23, 1, 25] is to �nd asphere with a minimal radius R and centre a which contains most of the data:novel test points are those which lie outside the boundary of the sphere. Duringthe training process the e�ect of outliers is reduced by using slack variables �ito allow for some datapoints outside the sphere. Thus the task is to minimisethe volume of the sphere and number of datapoints outside i.e. R2 + 1�mPi �iwhere � controls the tradeo� between the two terms. For the chosen kernel thelearning task then reduces to maximisation of:W (�) = mXi=1 �iK(xi;xi)� mXi;j=1�i�jK(xi;xj)with respect to �i and subject to Pmi=1 �i = 1 and 0 � �i � 1=�m. A testpoint z is novel if:



K(z; z)� 2 mXi=1 �iK(z;xi) + mXi;j=1�i�jK(xi;xj) � R2 (9)R2 is found by using an equality in (9) for a training example for which �i isnot at a bound i.e. 0 < �i < 1=�m. This approach has also been developedby Sch�olkopf et al. [20] who give a di�erent QP formulation for estimating thesupport and provide good experimental evidence in favour of this approach byhighlighting abnormal digits in the USPS handwritten character dataset.Regression. Several approaches to regression [6, 26] are possible but, as forclassi�cation, the essential algorithmic task is to minimise a convex functionto give a sparse solution. Thus, for example, for �-SV regression [25] we min-imise jjwjj22 ; as before, to increase 
atness or penalise overcomplexity, and useconstraints yi � w � �(xi) � b � � and w � �(xi) + b � yi � � allowing for adeviation � between eventual targets yi and the function f(x) = w � �(x) + b,modelling the data. The learning task can be reduced to the maximisation ofdual Lagrangians such as:L = �� mXi=1 (�?i + �i) + mXi=1 yi (�?i � �i)� 12 mXi;j=1 (�?i � �i) ��?j � �j�K (xi;xj)subject to the constraint Pmj=1 �?j =Pmj=1 �j , for instance.2. Algorithmic Approaches to Training SVMsAll these tasks involve optimization of a quadratic Lagrangian and thus tech-niques from quadratic programming are most applicable including quasi-Newton,conjugate gradient and primal-dual interior point methods. Certain QP pack-ages are readily applicable such as MINOS and LOQO. These methods can beused to train an SVM rapidly but they have the disadvantage that the kernelmatrix is stored in memory. For small datasets this is practical and QP rou-tines are the best choice, but for larger datasets alternative techniques haveto be used. These split into two categories: techniques in which kernel com-ponents are evaluated and discarded during learning and working set methodsin which an evolving subset of data is used. For the �rst category the mostobvious approach is to sequentially update the �i and this is the approach usedby the Kernel Adatron (KA) algorithm [8]. For binary classi�cation (with nosoft margin or bias) this is a simple gradient ascent procedure on (5) in which�i � 0 initially and the �i are subsequently sequentially updated using:�i  �i� (�i) where �i = �i + �0@1� yi mXj=1 �jyjK(xi;xj)1A (10)



and �(�) is the Heaviside step function. The optimal learning rate � can bereadily evaluated: � = 1=K(xi;xi) and a su�cient condition for convergenceis 0 < �K(xi;xi) < 2. With the decision function (6) this method is very easyto implement and can give a quick impression of the performance of SVMson classi�cation tasks. It is equivalent to Hildreth's method in Optimisationtheory and can be generalised to the case of soft margins and inclusion of abias [14]. However, it is not as fast as most QP routines, especially on smalldatasets.Chunking and Decomposition. Rather than sequentially updating the �ithe alternative is to update the �i in parallel but using only a subset or chunkof data at each stage. Thus a QP routine is used to optimise the lagrangian onan initial arbitrary subset of data. The support vectors found are retained andall other datapoints (with �i = 0) discarded. A new working set of data is thenderived from these support vectors and additional datapoints which maximallyviolate the storage constraints. This chunking process is then iterated untilthe margin is maximised. Of course, this procedure may still fail because thedataset is too large or the hypothesis modelling the data is not sparse (mostof the �i are non-zero, say). In this case decomposition [17] methods provide abetter approach: these algorithms only use a �xed size subset of data with the�i for the remainder kept �xed.Decomposition and Sequential Minimal Optimisation (SMO). Thelimiting case of decomposition is the Sequential Minimial Optimisation (SMO)algorithm of Platt [18] in which only two �i are optimised at each iteration.The smallest set of parameters which can be optimised with each iteration isplainly two if the constraintPmi=1 �iyi = 0 is to hold. Remarkably, if only twoparameters are optimised and the rest kept �xed then it is possible to derivethis analytical solution which can be executed using few numerical operations.The method therefore consists of a heuristic step for �nding the best pair ofparameters to optimise and use of an analytical expression to ensure the la-grangian increases monotonically. For the hard margin case the latter is easyto derive from the maximisation of �W with respect to the additive correctionsa; b in �i ! �i + a and �j ! �j + b, (i 6= j). For the L1 soft margin care mustbe taken to avoid violation of the constraints (7) leading to bounds on thesecorrections. The SMO algorithm has been re�ned to improve speed [13] andgeneralised to cover the above three tasks of classi�cation [18], regression [22]and estimating densities [20]. Due to its decomposition of the learning taskand speed it is probably the method of choice for training SVMs.Model Selection. Apart from the choice of kernel the other indeterminateis the choice of the kernel parameter (e.g. � in (3)). The kernel parametercan be found using cross-validation if su�cient data is available. However,recent model selection strategies can give a reasonable estimate for the kernelparameter based on theoretical arguments without use of additional validationdata. As a �rst attempt we can use a theorem stating that the test error bound(E) is reduced as the margin 
 is increased E = R2=
2 where R is the radius of



the smallest ball containing the training data (in general R can be found via aQP task [1, 25]). At the optimum of (3) it is possible to show that 
2 = 1=Pi �0i(where �0i are the values of �i at the optimum). For RBF kernels R ' 1 (thedata lie on the surface of hypersphere since �(x) � �(x) = K(x;x) = 1 from(5)). Hence an estimate for � can be found by sequentially training SVMson the same dataset at successively larger values of �, evaluating E from the�0i for each case and choosing that value of � for which E is minimised. Thismethod [5] will give a reasonable estimate if the data is spread evenly over thesurface of the hypersphere but it is poor if the data lie in a 
at ellipsoid, forexample, since the radius R would be in
uenced by the largest deviations. Morere�ned estimates therefore take into account the distribution of the data. Oneapproach [3] is to simply rescale data in kernel space to compensate for unevendistributions. This rescaling is achieved using the eigenvalues and eigenvectorsof the covariance matrix K(xi;xj). A more complex strategy along these lineshas also been proposed by Sch�olkopf et al [21] which leads to an algorithmwhich has performed well in practice for a small number of datasets.The most economical way to use the training data is to use a leave-one-outcross-validation procedure. In this procedure, single elements from the dataset are removed, the SVM is trained on the remaining l� 1 elements and thentested on the removed datapoint. Under the reasonable assumption that the setof support vectors does not change it is possible to derive tight bounds on thegeneralisation error. Two examples of these model selection rules are the span-rule of Chapelle and Vapnik [3] and a rule proposed by Jaakolla and Haussler[12]. Based on recent studies with a limited number of datasets, these modelselection strategies appear to work well. However, a comparative study of thesedi�erent techniques and their application to a wider range of real-life datasetsneeds to be undertaken to establish if they are fully practical approaches.Active Selection. So far we have considered learning strategies in whichdata is acquired passively. However, SVMs construct a hypothesis using asubset of the data containing the most informative patterns and thus theyare good candidates for active or selective sampling techniques which seek outthese patterns. Suppose the data is initially unlabeled, a good heuristic al-gorithm would predominantly request the labels for those patterns which willbecome support vectors: the labels are not required for patterns correspondingto non-support vectors in the eventual hypothesis. Active selection would beparticularly important for practical situations in which the process of labellingdata is expensive or the dataset is large and unlabelled.During the process of active selection the information gained from an exampledepends both on the position (available information) and on its label (unavail-able information before querying). Thus we must follow a heuristic strategyto maximise the gain at each step. Firstly we note (Figure 1) that queryinga point within the margin band always guarantees a gain whatever the labelof the point. We do not gain by querying a point outside the band unless thecurrent hypothesis predicts the label incorrectly. The best points to query areindeed those points which are closest to the current hyperplane [2]. Intuitively



this makes sense since these are most likely to be maximally ambiguous withrespect to the current hypothesis and hence the best candidates for ensuringthat the information received is maximised. Hence a good strategy [2] is tostart by requesting the labels for a small initial set of data and then succes-sively querying the labels of points closest to the current hyperplane. Activeselection works best if the hypothesis modelling the data is sparse i.e. thereare comparatively few support vectors to �nd (Figure 2(right)).
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0 20 40 60 80 100 120 140 160 180 200Figure 2: Left: a multi-class classi�cation problem can be reduced to a series ofbinary classi�cation tasks. Right: Generalisation error (y-axis) as a percent-age versus number of patterns (x-axis) for random selection (top curve) andactive selection (bottom curve). Active selection outperforms random selectionespecially when the hypothesis is sparse (for this dataset 28% of patterns weresupport vectors).3. ConclusionSince the learning task involves optimisation of a quadratic function SVMsprovide a unique solution. The approach is general in that they can be appliedto a wide range of machine learning tasks (e.g. classi�cation, regression andnovelty detection) and can be used to generate many possible learning machinearchitectures (RBF networks, feedforward neural networks) through the choiceof kernel. Kernel substitution of the inner product is, indeed, a powerful ideaseparate from the concept of the margins and it can be used to de�ne manyother types of learning machines [16, 11] distinct from SVMs. Above all SVMsperform well in practice and consequently can be expected to develop as animportant tool for future applications of machine learning.References[1] C. Burges. A tutorial on support vector machines for pattern recognition.Data Mining and Knowledge Discovery, 2, p. 121-167, 1998.
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