
Robust Bayes Point MachinesRalf Herbrich, Thore Graepel, Colin Campbell�Computer Science DepartmentTechnical University of Berlin10587 Berlin, GermanyAbstract. Support Vector Machines choose the hypothesis corre-sponding to the centre of the largest hypersphere that can be inscribedin version space. If version space is elongated or irregularly shaped apotentially superior approach is take into account the whole of versionspace. We propose to construct the Bayes point which is approximatedby the centre of mass. Our implementation of a Bayes Point Machine(BPM) uses an ergodic billiard to estimate this point in the kernel space.We show that BPMs outperform hard margin Support Vector Machines(SVMs) on real world datasets. We introduce a technique that allowsthe BPM to construct hypotheses with non{zero training error similarto soft margin SVMs with quadratic penelisation of the margin slacks.An experimental study reveals that with decreasing penelisation of train-ing error the improvement of BPMs over SVMs decays, a �nding that isexplained by geometrical considerations.1. IntroductionRecently there has been considerable interest in the theory and application ofSupport Vector Machines (SVMs) [3]. SVMs construct the hypothesis usingthe centre of the largest inscribable hypersphere in version space, i.e. the spaceof all hypotheses consistent with the training data. Boundaries of version spacetangentially contacting the hypersphere correspond to support vectors.If version space is elongated a potentially superior approach is to take intoaccount the exact geometrical structure of version space for de�ning the hy-pothesis. In this paper we will consider learning machines based on �nding themidpoint of the region of intersection of all hyperplanes which divide versionspace into two halves of equal volume: the Bayes point. The approach canbe motivated from a Bayesian perspective: if we consider a new test point x,the set of Bayes{optimal decision functions is given by those weight vectors wwhose posterior on a binary decision at x is greater than 0:5. As in generalthe intersection of Bayes{optimal decision functions for all x is empty we couldapproximate it by the function wBayes closest to the Bayes{optimal decisionhaving knowledge of the input distribution. This hypothesis is called the Bayes�Permanent Address: Department of Engineering Mathematics, Bristol University, BristolBS8 1TR, UK.



point. It was shown elsewhere [4] that, assuming a spherical input distribu-tion, wBayes converges to the centre of mass of version space. In this paper wewill sketch an algorithmic approach for estimating the Bayes point in kernelspace in Section 2. The full description of this algorithm has been presentedin a technical report [1]. We extend this approach to handling admission oftraining errors in Section 3 and experimentally compare its performance to softmargin SVMs.2. Estimating the Bayes Point in Kernel SpaceFrom the theory of reproducing kernel Hilbert spaces it is known that it ispossible to perform a mapping � : X 7! F from input space X to a potentiallyhigh-dimensional Hilbert space F called feature space such that a linear functionf can be expressed as an inner product between the mapped point x and avector w 2 F in terms of a kernel function k : X �X 7! R, i.e.f(x) = hw;�(x)iF = mXi=1 �ik(xi;x) w 2 F ; � 2 Rm : (1)Since a multiplication of w by a positive number would not change its clas-si�cation we assume kwkF = 1. Suppose we are given a training set Z =f(xi; yi)gmi=1 2 (X � f�1;+1g)m then version space is de�ned by:V (Z) = 8<:w ������ 8(xi; yi) 2 Z : yihw;�(xi)iF = yi mXj=1 �jk(xj ;xi) > 09=; : (2)We now outline an algorithm for estimating the Bayes point by the centreof mass in version space [1]. This approach develops a method presented byPal Ruj�an [2]. In order to obtain the centre of mass of V (Z) we uniformlygenerated random points (hyperplanes in input space) and average over them.Since it is diÆcult to generate hyperplanes consistent with Z we average overthe trajectory of a ball which is placed inside V (Z) and bounced like a billiardball. The boundaries constraining the billiard are given by the hyperplaneswith normal vectors yi�(xi). This process converges to the centre of massunder the assumption of ergodicity with respect to the uniform distribution inV (Z).Based on the fact that we play billiards only in V (Z) each position b,direction vector v of the ball and estimate wn of the centre of mass of V (Z)can be expressed as linear combinations of the mapped input points, i.e. wn =Pmi=1 �i�(xi), v = Pmi=1 �i�(xi), and b = Pmi=1 
i�(xi), where �, � and 
are real vectors withm components and fully determine the state of the billiard.Using this notation inner products and norms in F become, e.g.hb;viF = mXi;j=1 
i�jk(xi;xj) kbk2F = hb;biF = mXi;j=1 
i
jk(xi;xj) ; (3)



and similarly for v and wn. Before generating a billiard trajectory in versionspace we �rst run an algorithm to �nd an initial starting point b0 inside versionspace. Then the algorithm can be subdivided into three steps (for a detailedderivation see [1]):1. Determine the closest boundary starting from current position b in directionv. Since it is computationally very demanding to calculate the 
ight time of theball on geodesics of the hypersphere we make use of the fact that the shortestdistance in Euclidean space is also the shortest distance on the hypersphere.Thus, we have for the 
ight time �i of the ball at position b in direction v tothe hyperplane with normal vector yi�(xi)�i = �yihb;�(xi)iFyihv;�(xi)iF def= �di�i : (4)After computing all m 
ight times, we look for the smallest positive, i.e.c = argmini:�i>0�i :If �c !1 we randomly generate a direction vector v pointing towards versionspace. Assuming that the last bounce took place at the hyperplane havingnormal yl�(xl) this can easily be checked byylhv;�(xl)iF > 0 : (5)2. Update the ball's position b0 =Pmi=1 
0i�(xi) and the new direction vectorv0 =Pmi=1 �0i�(xi) according to 
0i = 
i+�c�i and �0i = �i�2Æic�iyi. To satisfythe uniqueness constraint the position b0 and the direction vector v0 need tobe normalised. This can easily be achieved using equation (3).3. Update the centre of mass wn of the trajectory by the new line segmentfrom b to b0 calculated on the hypersphere. Since the solution w1 exists onthe hypersphere we cannot simply update the centre of mass using a weightedvector addition. Having the midpointm = b+ b0kb+ b0kF = mXi=1 �i�(xi) ; �i = 
i + 
0ikb+ b0kF ;we use the following update formula�0i = %1�wn;m; �n�n + �n��i + %2�wn;m; �n�n + �n� �i ;%1(wn;m; �) = �s��2 � �2hwn;miF � 2hwn;miF + 1 ;%2(wn;m; �) = �%1(wn;m; �)hwn;miF � [�2(1� hwn;miF)� 1] ;where we choose the � sign such that %2 is positive. Here we have used �n =kb� b0kF for the length of the trajectory at the n{th step and �n =Pni=1 �i
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Figure 1: Decision boundaries for a 2D toy problem of a SVM (left) and BPM (right)using hard margins (� = 0) and RBF kernels k(x;x0) = exp(�kx�x0k2=�2) (� = 1).for the accumulated length of the trajectory up to the n{th step. This ratherarcane de�nition implements a weighted addition of wn and m such that � isthe fraction between the current and the total chord length. The weightingfactor %2 of the new part of the trajectory decreases as the length of the totaltrajectory increases. Consequently a good stopping criterion is to terminatethe algorithm when this weighting factor falls below a prespeci�ed tolerance.Given nmax bounces the complexity of the algorithm is O(m2nmax). WithBPMs, the appealing SVM feature of sparseness of the solution in the �'s islost, a problem that can be overcome by reduced rank approximations.For illustration of the e�ective di�erence between SVM and BPM solutionsconsider Figure 1: the BPM trades margin for smoothness. To investigate theperformance on real world datasets we compared BPMs constructed using theabove algorithm against SVMs with hard margins. We studied performance on�ve standard benchmarking datasets from the UCI Repository1, and bananaand waveform, two toy datasets. In each case the data was randomly parti-tioned into 100 training and test sets in the ratio 60%:40%. The means andstandard deviations of the average test set errors are presented as percentagesin the columns headed SVM (hard margin) and BPM (� = 0) in Table 1. TheBPM outperforms SVMs on almost all datasets at a statistically signi�cantlevel.3. Bayes Point Machines with Soft BoundariesTo allow for training errors we will introduce the following version space con-ditions in place of those in (2):yihw;�(xi)iF = yi mXj=1 �jk(xj ;xi) � ��yi�ik(xi;xi) ; (6)1Publically accessible at http://www.ics.uci.edu/ mlearn/MLSummary.html.



SVM (hard margin) BPM (hard boundary) � p-valueHeart 25.4�0.40 22.8�0.34 10.0 1.00Thyroid 5.3�0.24 4.4�0.21 3.00 1.00Diabetes 33.1�0.24 32.0�0.25 5.0 1.00Waveform 13.0�0.10 12.1�0.09 20.0 1.00Banana 16.2�0.15 15.1�0.14 0.5 1.00Sonar 15.4�0.37 15.9�0.38 1.0 0.01Ionosphere 11.9�0.25 11.5�0.25 1.5 0.99Table 1: Experimental results on seven benchmark datasets. Shown are mean andstandard deviation obtained on 100 di�erent runs. The �nal column gives the p-valuesof a paired t-test indicating the improvement is statistically signi�cant.where � � 0 is an adjustable parameter. Equation (6) can be interpreted asallowing the ball to penetrate walls. Since the decision function based on (1)is invariant under any positive rescaling of the �'s it is necessary to have an�j on the right hand side to make � scale{invariant as well. This formulationgives a simple modi�cation of the algorithm described in Section 2. To see thiswe note that equation (6) can be rewritten asyi 24 mXj=1 �j(1 + �Æij)k(xj ;xi)35 � 0 ; (7)Hence we can use the above algorithm but with an additive correction to thediagonal terms of the kernel matrix computed at the start of the algorithmk(xi;xi)  k(xi;xi) + �. This additive correction to the kernel diagonals issimilar to the L2 error norm used to introduce a soft margin during trainingof SVMs. Another insight into the introduction of soft boundaries comes fromnoting that the distance between two normalised points �(xi) and �(xj) canbe written jj�(xi)� �(xj)jj2 = 2(1 + �� k(xi;xj)) :Thus, if we add � to the diagonal elements of the kernel matrix, the pointsbecome equidistant for � ! 1. This gives the resulting version space a moreisotropic shape. Hence, the centre of the largest inscribable sphere (SVM so-lution) tends towards the centre of mass of version space.In order to investigate the e�ect of � (soft boundaries) we trained a BPMwith soft boundaries and compared it to the results of training an SVM withsoft margin using the same kernel matrix (see equation (7)). In Figure 2 weplotted the generalisation error as a function of �'s for a toy problem and theheart dataset. We observe that the SVM with an L2 soft margin achievesa minimum of the generalisation error which is close to, or just above, theminimum error which can be achieved using a BPM with positive �'s. This
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Figure 2: Generalisation error versus � for a toy problem using linear kernels(left) and for the heart dataset using RBF kernels with � = 10:0 (right). Theerror bars indicate one standard deviation of the estimated mean.may not be too surprising taking the change of geometry into account. Thussoft margin SVMs approximates BPMs with soft boundaries.4. Discussion and ConclusionOur results indicate that hard boundary BPMs have an edge over hard marginSVMs for the type of data we investigated. We have introduced one mechanismfor admitting classi�ers of non{zero training error but we expect others arepossible based on more re�ned noise models not easily implementable in theoptimisation framework of SVMs. More importantly, theoretical results in thePAC{Bayesian framework (see [1]) indicate that the observed superiority ofBPMs has a sound basis as measured by PAC type bounds on the generalisationerror.References[1] R. Herbrich, T. Graepel and C. Campbell. Bayesian learning in reproduc-ing kernel Hilbert spaces. TR 99-11, Technical University, Department ofComputer Science, Berlin, 1999.[2] P. Rujan. Playing billiard in version space. Neural Computation, 9:99{122,1997.[3] V. Vapnik. Statistical Learning Theory. John Wiley and Sons, New York,1998.[4] T. Watkin. Optimal Learning with a Neural Network. Europhysics Letters21:871{877, 1993.


