
Neurocomputing 48 (2002) 63–84
www.elsevier.com/locate/neucom

Kernel methods: a survey of current techniques

Colin Campbell
Department of Engineering Mathematics, Bristol University, Bristol BS8 1TR, UK

Received 1 November 2000; accepted 6 June 2001

Abstract

Kernel methods have become an increasingly popular tool for machine learning tasks
such as classi+cation, regression or novelty detection. They exhibit good generalization
performance on many real-life datasets, there are few free parameters to adjust and the
architecture of the learning machine does not need to be found by experimentation. In this
tutorial, we survey this subject with a principal focus on the most well-known models based
on kernel substitution, namely, support vector machines. c© 2002 Elsevier Science B.V.
All rights reserved.

Keywords: Kernel methods; Machine learning tasks; Architecture of learning machine;
Support vector machines

1. Introduction

Support vector machines (SVMs) have been successfully applied to a number
of applications ranging from particle identi+cation, face identi+cation and text cat-
egorization to engine-knock detection, bioinformatics and database marketing [17].
The approach is systematic and properly motivated by statistical learning theory
[58]. Training involves optimization of a convex cost function: there are no local
minima to complicate the learning process. The approach has many other bene+ts,
for example, the model constructed has an explicit dependence on a subset of the
datapoints (the support vectors), hence interpretation is straightforward and data
cleaning [16] could be implemented to improve performance. SVMs are the most
well known of a class of algorithms which use the idea of kernel substitution and
which we will broadly refer to as kernel methods.

In this tutorial, we introduce this subject, describing the application of kernel
methods to classi+cation, regression and novelty detection and the di=erent

E-mail address: c.campbell@bris.ac.uk (C. Campbell).

0925-2312/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0925-2312(01)00643-9

64 C. Campbell / Neurocomputing 48 (2002) 63–84

optimization techniques that may be used during training. This tutorial is not ex-
haustive and many alternative kernel-based approaches (e.g. kernel PCA [42], den-
sity estimation [64], etc) have not been considered here. More thorough treatments
are contained in the books by Cristianini and Shawe-Taylor [11], Vapnik’s classic
textbook on statistical learning theory [58], recent edited volumes [41,49] and a
special issue of Machine Learning [9].

2. Learning with support vectors

To introduce the subject we will begin by outlining the application of SVMs
to the simplest case of binary classi+cation. From the perspective of statistical
learning theory the motivation for considering binary classi+er SVMs comes from
theoretical bounds on the generalization error [58,11] (the theoretical generaliza-
tion performance on new data). These generalization bounds have two important
features (Appendix A). Firstly, the upper bound on the generalization error does
not depend on the dimension of the space. Secondly, the error bound is minimized
by maximizing the margin, �, i.e. the minimal distance between the hyperplane
separating the two classes and the closest datapoints to the hyperplane (Fig. 1).

Let us consider a binary classi+cation task with datapoints xi (i = 1; : : : ; m) hav-
ing corresponding labels yi =± 1 and let the decision function be

f(x) = sign(w · x + b): (1)

If the dataset is separable then the data will be correctly classi+ed if yi(w · xi +
b)¿ 0 ∀i. Clearly this relation is invariant under a positive rescaling of the ar-
gument inside the sign-function, hence we implicitly de+ne a scale for (w; b) to
give canonical hyperplanes such that w · x + b= 1 for the closest points on one
side and w · x + b= − 1 for the closest on the other side. For the separating hy-
perplane w · x + b= 0 the normal vector is clearly w=‖w‖2, and hence the margin
can be found from the projection of x1 − x2 onto this vector (see Fig. 1). Since
w ·x1 +b= 1 and w ·x2 +b=−1 this means the margin is �= 1=‖w‖2. To maximize

Fig. 1. The perpendicular distance between the separating hyperplane and a hyperplane through the
closest points (the support vectors) is called the margin. x1 and x2 are examples of support vectors
of opposite sign.

C. Campbell / Neurocomputing 48 (2002) 63–84 65

the margin the task is therefore

minimize g(w) = 1
2‖w‖2

2 (2)

subject to the constraints

yi(w · xi + b)¿ 1 ∀i (3)

and the learning task can be reduced to minimization of the primal lagrangian

L= 1
2(w · w)−

m∑
i=1

�i(yi(w · x + b)− 1); (4)

where �i are Lagrangian multipliers (hence �i¿ 0). From Wolfe’s theorem [66]
we can take the derivatives with respect to b and w and resubstitute back in the
primal to give the Wolfe dual lagrangian

W (�) =
m∑
i=1

�i − 1
2

m∑
i; j=1

�i�jyiyj(xi · xj) (5)

which must be maximized with respect to the �i subject to the constraints

�i¿ 0
m∑
i=1

�iyi = 0: (6)

So far we have not used the second feature implied by the generalization theorem
mentioned above: the bound does not depend on the dimensionality of the space.
For the dual lagrangian (5) we notice that the datapoints, xi ; only appear inside
an inner product. To get a better representation of the data we can therefore map
the datapoints into an alternative higher-dimensional space, called feature space,
through a replacement

xi · xj → �(xi) · �(xj): (7)

The functional form of the mapping �(xi) does not need to be known since it
is implicitly de+ned by the choice of kernel: K(xi ;xj) =�(xi) · �(xj) or inner
product in feature space (feature space must therefore be a pre-Hilbert or inner
product space). With a suitable choice of kernel the data can become separable in
feature space despite being non-separable in the original input space: hence kernel
substitution provides a route for obtaining non-linear algorithms from algorithms
previously restricted to handling linearly separable datasets. Thus, for example,
whereas data for n-parity or the two spirals problem is non-separable by a hy-
perplane in input space it can be separated in the feature space de+ned by RBF
kernels (giving an RBF-type network)

K(xi ;xj) = e−(xi−xj)2=2�2
: (8)

Many other choices for the kernel function are possible, e.g.

K(xi ;xj) = (xi · xj + 1)d K(xi ;xj) = tanh(�xi · xj + b) (9)

de+ning polynomial and feedforward neural network classi+ers. Indeed, the class
of mathematical objects which can be used as kernels is very general, and includes

66 C. Campbell / Neurocomputing 48 (2002) 63–84

scores produced by dynamic-alignment algorithms [18,62], for example. Suitable
kernels must satisfy a mathematical condition called Mercer’s theorem [30] which
we describe further in Appendix B (the tanh kernel above only satis+es Mercer’s
condition for certain values of � and b).

For binary classi+cation with the given choice of kernel the learning task there-
fore involves maximization of the lagrangian

W (�) =
m∑
i=1

�i − 1
2

m∑
i; j=1

�i�jyiyjK(xi ;xj) (10)

subject to the constraints (6). The associated Karush-Kuhn-Tucker (KKT)
conditions are

yi(w · xi + b)− 1¿ 0 ∀i
�i¿ 0 ∀i

�i(yi(w · xi + b)− 1) = 0 ∀i (11)

which are always satis+ed when a solution is found. After the optimal values of
�i have been found the decision function is based on the sign of

f(z) =
m∑
i=1

yi�iK(z;xi) + b: (12)

Since the bias, b, does not feature in the above dual formulation it is found from
the primal constraints

b=− 1
2


 max

{i|yi=−1}


 m∑

j=1

yj�jK(xi ;xj)


+ min

{i|yi=+1}


 m∑

j=1

yj�jK(xi ;xj)




 :

(13)

We will henceforth refer to such a solution (�i; b) as a hypothesis modelling the
data. When the maximal margin hyperplane is found in feature space, only those
points which lie closest to the hyperplane have �i ¿ 0 and these points are the
support vectors. All other points have �i = 0. This means that the representation of
the hypothesis is given solely by those points which are closest to the hyperplane.
For some hypotheses most of the datapoints may be support vectors and we refer to
these as dense hypotheses. If a small fraction of the datapoints are support vectors
then we call the hypothesis sparse.

Many problems involve multiclass classi+cation and a number of schemes have
been outlined [29,63] (with broadly similar performance). One of the simplest
schemes is to use a directed acyclic graph (DAG) with the learning task reduced to
binary classi+cation at each node [36]. Thus if we consider a 3-class classi+cation
problem (Fig. 2) the +rst node in the DAG decides for classi+cation with label 1 or
3, say, with the next step being classi+cations 1 against 2 or 2 against 3 depending
on the outcome of the +rst decision. This scheme is adequate for small multi-class
classi+cation problems, whereas for larger problems it is possible to generalize the

C. Campbell / Neurocomputing 48 (2002) 63–84 67

Fig. 2. A multi-class classi+cation problem can be reduced to a series of binary classi+cation tasks.

above binary classi+cation model to maximization of a dual lagrangian for multiple
separating hyperplanes [63] or one could simply use a series of one-against-all
classi+ers.

2.1. Soft margins and allowing for training errors

Most real-life datasets contain noise and an SVM can +t this noise leading to
poor generalization. The e=ect of outliers and noise can be reduced by introducing
a soft margin [8] and two schemes are currently used (see also Appendix A). In
the +rst (L1 error norm) the learning task is the same as in (10; 6) except for the
introduction of the box constraint

06 �i6C (14)

while in the second (L2 error norm) the learning task is (10; 6) except for addition
of a small positive constant to the leading diagonal of the kernel matrix [8,47]

K(xi ;xi)← K(xi ;xi) + �: (15)

C and � control the trade-o= between training error and generalization ability
and are chosen by means of a validation set. The e=ect of these soft margins is
illustrated in Fig. 3 for the ionosphere dataset from the UCI Repository [65].

The justi+cation for these soft-margin techniques comes from statistical learning
theory but can be readily viewed as relaxation of the hard margin constraint (3).
Thus for the L1 error norm (and prior to introducing kernels) we introduce a
positive slack variable �i into (3)

yi(w · xi + b)¿ 1− �i (16)

and the task is now to minimize the sum of errors
∑m

i=1 �i in addition to ‖w‖2

min

[
1
2w · w + C

m∑
i=1

�i

]
: (17)

68 C. Campbell / Neurocomputing 48 (2002) 63–84

Fig. 3. Left: Test error as a percentage (y-axis) versus C (x-axis) and Right: test error as a percentage
(y-axis) versus � (x-axis) for soft margin classi+ers based on L1 and L2 error norms, respectively.
The UCI ionosphere dataset was used with RBF kernels (� = 1:5) and 100 samplings of the data.

This is readily formulated as a primal objective function

L(w; b; �; �) = 1
2w · w + C

m∑
i=1

�i −
m∑
i=1

�i[yi(w · xi + b)− 1 + �i]−
m∑
i=1

ri�i

(18)

with Lagrange multipliers �i¿ 0 and ri¿ 0. The derivatives with respect to w, b
and � give

@L
@w

=w−
m∑
i=1

�iyixi = 0; (19)

@L
@b

=
m∑
i=1

�iyi = 0; (20)

@L
@�i

=C − �i − ri = 0: (21)

Resubstituting these back in the primal-objective function we obtain the same
dual-objective function, (10), as before. However, ri¿ 0 and C−�i− ri = 0, hence
�i6C and the constraint 06 �i is replaced by 06 �i6C. Patterns with values
0¡�i ¡C will be referred to as non-bound and those with �i = 0 or �i =C will be
said to be at bound. For an L1 error norm we +nd the bias in the decision function
(12) from the KKT conditions for the soft margin case. In particular ri�i = 0 and
�i(yi(w · xi + b) − 1 + �i) = 0, hence if we select a non-bound datapoint i (such
that 0¡�i ¡C) we +nd from C − �i − ri = 0 that ri ¿ 0 hence �i = 0, and since
�i ¿ 0 so can determine b from b=yi − w · xi assuming yi =± 1.

The optimal value of C must be found by experimentation using a validation set
and it cannot be readily related to the characteristics of the dataset or model. In an

C. Campbell / Neurocomputing 48 (2002) 63–84 69

alternative approach (�-SVM [45]) it can be shown that solutions for an L1-error
norm are the same as those obtained from maximizing

W (�) =− 1
2

m∑
i; j=1

�i�jyiyjK(xi ;xj) (22)

subject to
m∑
i=1

yi�i = 0
m∑
i=1

�i¿ � 06 �i6
1
m
; (23)

where � lies on the range 0 to 1. The fraction of training errors is upper bounded
by � and � also provides a lower bound on the fraction of points which are sup-
port vectors. Hence in this formulation the conceptual meaning of the soft margin
parameter is more transparent.

For the L2 error norm the primal objective function is

L(w; b; �; �) = 1
2w · w + C

m∑
i=1

�2
i −

m∑
i=1

�i[yi(w · xi + b)− 1 + �i]−
m∑
i=1

ri�i

(24)

with �i¿ 0 and ri¿ 0. After obtaining the derivatives with respect to w, b and �,
substituting for w and � in the primal objective function and noting that the dual
objective function is maximal when ri = 0; we obtain the following dual objective
function after kernel substitution

W (�) =
m∑
i=1

�i − 1
2

m∑
i; j=1

yiyj�i�jK(xi ;xj)− 1
4C

m∑
i=1

�2
i : (25)

With �= 1=2C this gives the same dual objective function as for hard margin
learning except for the substitution (15). For many real-life datasets there is an
imbalance between the amount of data in di=erent classes, or the signi+cance of
the data in the two classes can be quite di=erent. For example, for the detection of
tumours on MRI scans it may be best to allow a higher number of false positives
if this improved the true positive detection rate. The relative balance between
the detection rate for di=erent classes can be easily shifted [59] by introducing
asymmetric soft margin parameters. Thus for binary classi+cation with an L1

error norm 06 �i6C+ (yi = + 1), and 06 �i6C−(yi =− 1), while K(xi ;xi)←
K(xi ;xi) + �+ (if yi = + 1) and K(xi ;xi)← K(xi ;xi) + �− (if yi =− 1) for the L2

error norm.

2.2. A linear programming approach to classi3cation

Rather than using quadratic programming it is also possible to derive a kernel
classi+er in which the learning task involves linear programming (LP) instead.
Training the classi+er involves the minimization

min

[
m∑
i=1

�i + C
m∑
i=1

�i

]
(26)

70 C. Campbell / Neurocomputing 48 (2002) 63–84

subject to

yi


 m∑

j=1

�iK(xi; xj) + b


¿ 1− �i; (27)

where �i¿ 0 and �i¿ 0. By minimizing
∑m

i=1 �i we could obtain a solution which
is sparse i.e. relatively fewer datapoints are used. Furthermore, eMcient simplex
or column-generation techniques exist for solving linear programming problems
so this is a practical alternative to conventional QP SVMs. This linear program-
ming approach evolved independently of the QP approach to SVMs [27] and, as
we will see, linear programming approaches to regression and novelty detection
are also possible. It is also possible to handle multi-class problems using linear
programming [63].

2.3. Model selection

Apart from the choice of kernel, the other indeterminate is the choice of the
kernel parameter (e.g. � in (8)). The kernel parameter can be found using cross-
validation if suMcient data is available. However, recent model-selection strategies
can give a reasonable estimate for the kernel parameter without use of additional
validation data. As a +rst attempt we can use a theorem stating that the general-
ization error bound is reduced as the margin � is increased. This theorem gives
the upper bound as R2=m�2 where R is the radius of the smallest ball containing
the training data. At an optimum of (10) it is possible to show that �2 = 1=

∑
i �

0
i

(where �0
i are the values of �i at the optimum). Also for RBF kernels it is fre-

quently the case that R � 1 (since the data lies on the surface of hypersphere
from �(x) ·�(x) =K(x;x) = 1) so the bound can be written

∑m
i=1 �0

i =m. Hence an
estimate for � can be found by sequentially training SVMs on the same dataset
at successively larger values of �, evaluating the bound from the �0

i for each case
and choosing that value of � for which the bound is minimized. This method [10]
will give a reasonable estimate if the data is spread evenly over the surface of
the hypersphere but it is poor if the data lie in a Oat ellipsoid, for example, since
the radius R would be inOuenced by the largest deviations. More re+ned estimates
therefore take into account the distribution of the data.

One approach [6] is to theoretically rescale data in feature space to compensate
for uneven distributions. A more complex strategy along these lines has also been
proposed by SchPolkopf et al. [44] which leads to an algorithm which has performed
well in practice for a small number of datasets. The most economical way to use
the training data is to use a leave-one-out procedure [6,21]. As an example, we
consider a recent result [22,56] in which the number of leave-one-out errors of an
L1-norm soft margin SVM is bounded by |{i: (2�iB2 +�i)¿ 1}|=m where �i are the
solutions of the optimization task in (10; 6) and B2 is an upper bound on K(xi; xi)
with K(xi; xj)¿ 0 (we can determine �i from yi(

∑
j �jK(xj; xi)+b)¿ 1−�i). Thus,

for a given value of the kernel parameter, the leave-one-out error is estimated
from this quantity (the system is not retrained with datapoints left out: the bound

C. Campbell / Neurocomputing 48 (2002) 63–84 71

is determined using the �0
i from the solution of (10; 6)). The kernel parameter is

then incremented or decremented in the direction needed to lower the bound. This
method has worked well on classi+cation of text [22].

2.4. Novelty detection

For many real-world problems the task is not to classify but to detect novel or
abnormal instances. Novelty or abnormality detection has potential applications in
many problem domains such as condition monitoring or medical diagnosis. One
approach can be viewed as one-class classi+cation in which the task is to model the
support of a data distribution (rather than having to +nd a real-valued function for
estimating the density of the data itself). Thus, at its simplest level, the objective
is to create a binary-valued function which is positive in those regions of input
space where the data predominantly lies and negative elsewhere.

One strategy [52] is to +nd a hypersphere with a minimal radius R and center a
which contains most of the data: novel test points lie outside the boundary of this
hypersphere. The technique we now outline was originally suggested by Burges
[40,3], intepreted as a novelty detector by Tax and Duin [52] and used by the
latter authors for real life applications [53]. The e=ect of outliers is reduced by
using slack variables �i to allow for datapoints outside the sphere and the task is
to minimize the volume of the sphere and number of datapoints outside i.e.

min

[
R2 +

1
m�

∑
i

�i

]
(28)

subject to the constraints

(xi − a)T(xi − a)6R2 + �i (29)

and �i¿ 0, and where � controls the tradeo= between the two terms. The primal
objective function is then

L(R; a; �i; �i) = R2 +
1
m�

m∑
i=1

�i −
m∑
i=1

�i�i

−
m∑
i=1

�i(R2 + �i − (xi · xi − 2a · xi + a · a)) (30)

with �i¿ 0 and �i¿ 0. After kernel substitution the dual formulation amounts to
maximization of

W (�) =
m∑
i=1

�iK(xi ;xi)−
m∑

i; j=1

�i�jK(xi ;xj) (31)

with respect to �i and subject to
∑m

i=1 �i = 1 and 06 �i6 1=m�. If m�¿ 1 then at
bound examples will occur with �i = 1=m� and these correspond to outliers in the
training process. Having completed the training process a test point z is declared

72 C. Campbell / Neurocomputing 48 (2002) 63–84

novel if

K(z; z)− 2
m∑
i=1

�iK(z;xi) +
m∑

i; j=1

�i�jK(xi ;xj)− R2¿ 0; (32)

where R2 is +rst computed by +nding an example which is non-bound and setting
this inequality to an equality.

An alternative approach has been developed by SchPolkopf et al. [43]. Suppose
we restrict our attention to RBF kernels then the datapoints lie on the surface of a
hypersphere in feature space since �(x) · �(x) =K(x;x) = 1 from (8). The objec-
tive is to separate o= the region containing the datapoints from the surface region
containing no data. This is achieved by constructing a hyperplane which is maxi-
mally distant from the origin with all datapoints lying on the opposite side from the
origin and such that w · xi + b¿ 0. This approach leads to an alternative quadratic
programming problem and the authors [43] report that the technique works well
on real-life datasets, including the highlighting of abnormal digits for the USPS
handwritten character dataset. Instead of repelling the hyperplane away from the
origin a further alternative is to attract the hyperplane towards the datapoints in
feature space (while maintaining the requirement w · xi + b¿ 0). This leads to an
algorithm for novelty detection based on linear programming [4].

3. Regression

For real-valued outputs the learning task can also be theoretically motivated from
statistical learning theory (Appendix A). Instead of (3) we now use constraints
yi−w ·xi−b6 ! and w ·xi +b−yi6 ! to allow for some deviation ! between the
eventual targets yi and the function f(x) =w·x+b, modelling the data. We can vi-
sualize this as a band or tube of size ±("−�) around the hypothesis function f(x)
and any points outside this tube can be viewed as training errors. The structure of
the tube is de+ned by an !-insensitive loss function (Fig. 4). As before we minimize
‖w‖2 to penalize overcomplexity. To account for training errors we also introduce
slack variables �i; �̂i for the two types of training error. These slack variables are

Fig. 4. Left +gure: a linear !-insensitive loss function versus yi − w · xi − b. Right +gure: a quadratic
!-insensitive loss function.

C. Campbell / Neurocomputing 48 (2002) 63–84 73

zero for points inside the tube and progressively increase for points outside the
tube according to the loss function used. This general approach is called !-SV
regression [57] and is the most common approach to SV regression, though not
the only one [58]. For a linear !-insensitive loss function the task is therefore to
minimize

min

[
‖w‖2 + C

m∑
i=1

(�i + �̂i)

]
(33)

subject to

yi − w · xi − b6 ! + �i;

(w · xi + b)− yi6 ! + �̂i; (34)

where the slack variables are both positive �i; �̂i¿ 0. After kernel substitution the
dual objective function is

W (�; �̂) =
m∑
i=1

yi(�i − �̂i)− !
m∑
i=1

(�i + �̂i)− 1
2

m∑
i; j=1

(�i − �̂i)(�j − �̂j)K(xi; xj)

(35)

which is maximized subject to
m∑
i=1

�̂i =
m∑
i=1

�i (36)

and

06 �i6C 06 �̂i6C: (37)

Similarly a quadratic !-insensitive loss function gives rise to

min

[
‖w‖2 + C

m∑
i=1

(�2
i + �̂

2
i)

]
(38)

subject to (34), giving a dual objective function

W (�; �̂) =
m∑
i=1

yi(�i − �̂i)− !
m∑
i=1

(�i + �̂i)

− 1
2

m∑
i; j=1

(�i − �̂i)(�j − �̂j)(K(xi ;xj) + #ij=C) (39)

which is maximized subject to (36). The function modelling the data is then

f(z) =
m∑
i=1

(�i − �̂i)K(xi ; z) + b: (40)

74 C. Campbell / Neurocomputing 48 (2002) 63–84

We still have to compute the bias, b, and we do so by considering KKT conditions
for regression. For a linear loss function prior to kernel substitution these are

�i(! + �i − yi + w · xi + b) = 0;

�̂i(! + �̂i + yi − w · xi − b) = 0; (41)

where w=
∑m

j=1 yj(�j − �̂j)xj, and

(C − �i)�i = 0;

(C − �̂i)�̂i = 0: (42)

From the latter conditions we see that only when �i =C or �̂i =C are the slack
variables non-zero: these examples correspond to points outside the !-insensitive
tube. Hence from (41) we can +nd the bias from a non-bound example with
0¡�i ¡C using b=yi −w · xi − ! and similarly for 0¡�̂i ¡C we can obtain it
from b=yi − w · xi + !. Though the bias can be obtained from one such example
it is best to compute it using an average over all points on the margin.

Apart from the formulations given here it is possible to de+ne other loss func-
tions giving rise to di=erent dual objective functions. In addition, rather than spec-
ifying ! a priori it is possible to specify an upper bound � (06 �6 1) on the
fraction of points lying outside the band and then +nd ! by optimizing over the
primal objective function

1
2
‖w‖2 + C

(
�m! +

m∑
i=1

|yi − f(xi)|
)

(43)

with ! acting as an additional parameter to minimize over [39]. As for classi+cation
and novelty detection it is possible to formulate a linear programming approach to
regression with [64]

min

[
m∑
i=1

�i +
m∑
i=1

�∗i + C
m∑
i=1

�i + C
m∑
i=1

�∗i

]
(44)

subject to

yi − !− �i6


 m∑

j=1

(�∗j − �j)K(xi; xj)


+ b6yi + ! + �∗i : (45)

Minimizing the sum of the �i approximately minimizes the number of support
vectors which favours sparse hypotheses with smooth functional approximations
of the data. In this approach the kernel does not need to satisfy Mercer’s
condition [64].

4. Algorithmic approaches

So far the methods we have considered have involved linear or quadratic pro-
gramming. Linear programming can be implemented using column generation tech-
niques [32] and many packages are available, e.g. CPLEX. Existing LP packages

C. Campbell / Neurocomputing 48 (2002) 63–84 75

based on simplex or interior point methods can handle problems of moderate size
(up to thousands of datapoints). For quadratic programming there are also many
applicable techniques including conjugate gradient and primal-dual interior point
methods [26]. Certain QP packages are readily applicable such as MINOS and
LOQO. These methods can be used to train an SVM rapidly but they have the
disadvantage that the kernel matrix is stored in memory. For small datasets this
is practical and QP routines are the best choice, but for larger datasets alterna-
tive techniques have to be used. These split into three categories: techniques in
which kernel components are evaluated and discarded during learning, working set
methods in which an evolving subset of data is used, and new algorithms that
explicitly exploit the structure of the problem. For the +rst category the most obvi-
ous approach is to sequentially update the �i and this is the approach used by the
kernel adatron (KA) algorithm [15]. For binary classi+cation (with no soft margin
or bias) this is a simple gradient ascent procedure on (10) in which �i¿ 0 initially
and the �i are subsequently sequentially updated using

�i ← �i"(�i); where �i = �i + $


1− yi

m∑
j=1

�jyjK(xi ;xj)


 (46)

and "(�) is the heaviside step function. The optimal learning rate $ can be readily
evaluated: $= 1=K(xi ;xi) and a suMcient condition for convergence is 0¡$K(xi ;xi)
¡ 2. With the decision function (12) this method is very easy to implement and
can give a quick impression of the performance of SVMs on classi+cation tasks.
It can be generalized to the case of soft margins and inclusion of a bias [26,5].
However, it is not as fast as most QP routines, especially on small datasets.

Chunking and decomposition. Rather than sequentially updating the �i the al-
ternative is to update the �i in parallel but using only a subset or chunk of data
at each stage. Thus a QP routine is used to optimize the lagrangian on an initial
arbitrary subset of data. The support vectors found are retained and all other dat-
apoints (with �i = 0) discarded. A new working set of data is then derived from
these support vectors and additional datapoints which maximally violate the storage
constraints. This chunking process is then iterated until the margin is maximized.
Of course, this procedure may still fail because the dataset is too large or the
hypothesis modelling the data is not sparse (most of the �i are non-zero, say). In
this case decomposition [34] methods provide a better approach: these algorithms
only use a +xed size subset of data with the �i for the remainder kept +xed.

Decomposition and sequential minimal optimization (SMO). The limiting case
of decomposition is the sequential minimal optimization (SMO) algorithm of Platt
[35] in which only two �i are optimized at each iteration. The smallest set of
parameters which can be optimized with each iteration is plainly two if the con-
straint

∑m
i=1 �iyi = 0 is to hold. Remarkably, if only two parameters are optimized

and the rest kept +xed then it is possible to derive an analytical solution which
can be executed using few numerical operations. The method therefore consists
of a heuristic step for +nding the best pair of parameters to optimize and use of
an analytic expression to ensure the lagrangian increases monotonically. For the

76 C. Campbell / Neurocomputing 48 (2002) 63–84

hard margin case the latter is easy to derive from the maximization of #W with
respect to the additive corrections a; b in �i → �i + a and �j → �j + b; (i �= j). For
the L1 soft margin care must be taken to avoid violation of the constraints (14)
leading to bounds on these corrections. The SMO algorithm has been re+ned to
improve speed [24] and generalized to cover the above above-mentioned tasks of
classi+cation [35], regression [48] and novelty detection [43]. SVM packages such
as SVMTorch [7] and SVMLite [23] also use these working set methods. There
are also interesting LP variants for these decomposition methods. The fastest LP
methods decompose the problem by rows and columns and have been used to
solve the largest reported non-linear SVM regression problem with up to 16000
datapoints and a kernel matrix with over a billion elements [2].

Further optimization algorithms. The third approach is to directly approach
training from an optimization perspective and create new algorithms. Keerthi et
al. [25] have proposed a very e=ective binary classi+cation algorithm based on
the dual geometry of +nding the two closest points in the convex hulls. These
approaches have been particularly e=ective for linear SVM problems. The La-
grangian SVM (LSVM) method of Mangasarian and Musicant [28] reformulates
the classi+cation problem as an unconstrained optimization task and then solves
the problem using an algorithm which only requires the solution of systems of
linear equalities. Using a simple program, LSVM can solve linear classi+cation
problems for millions of points in minutes. LSVM uses a method based on the
Sherman-Morrison-Woodbury formula which only requires solution of systems of
linear equalities. The interior-point [13] and semi-smooth support vector methods
[14] of Ferris and Munson can be used to solve linear classi+cation problems with
up to 60 million data points in 34 dimensions.

5. Further techniques based on kernel representations

So far we have considered methods based on linear and quadratic programming.
Here we shall consider further kernel-based approaches which may utilize general
non-linear programming and other techniques. In particular, we will consider ap-
proaches to two issues: how to improve generalization performance over standard
SVMs and how to create hypotheses which are sparse.

Algorithms leading to dense hypotheses. Taking the geometric dual of input
space we +nd datapoints become hyperplanes and separating hyperplanes become
points. In this dual space we de+ne version space as the set of all hypotheses
(points) consistent with the data and this version space is bounded by the hyper-
planes representing the data. An SVM solution can be viewed as the center of the
largest inscribable hypersphere in version space: the support vectors correspond to
those examples with hyperplanes tangentially touching this hypersphere (Fig. 5).
If version space is elongated then the center of the largest inscribed hypersphere
does not appear to be the best choice. Indeed, a better choice would be the Bayes
point which can be approximated by the center of mass of version space [61].
Bayes point machines (BPMs) construct a hypothesis based on this center of ver-

C. Campbell / Neurocomputing 48 (2002) 63–84 77

Fig. 5. The center of mass of version space (×) and the center of the largest inscribed sphere (+) in
an elongated version space.

sion space and this choice can be justi+ed by theoretical arguments [33,61,38] in
addition to having a geometric appeal. In one approach the center of mass is de-
termined using a kernelized billiard algorithm in which version space is traversed
uniformly and an estimate of the center of mass is repeatedly updated. For a large
majority of datasets version space diverges from sphericality and the BPM outper-
forms an SVM at statistically signi+cant levels. For arti+cial examples with very
elongated version spaces the generalization error of a BPM can be half that of an
SVM [19,20].

Rather than using the center of mass of version space an alternative might be
to use a hypothesis that lies towards the center of this space but which is easier
to compute. This could be achieved by using repulsive potentials)(�) favouring
points towards the center of version space [38]. As an example we could use

min)(�) =

[
m∑
i=1

ln(�iK(xi; xj) + b)

]
(47)

subject to
1
2

m∑
i=1

�2
i = 1 (48)

which is the basis of the analytic center machine (ACM) [55]. The gradient and
Hessian for (47) can be readily evaluated allowing for computational eMciency and
the algorithm appears to perform well in practice. Training involves optimization
of a non-linear function and leads to a dense hypothesis.

The ACM algorithm is one example of a broad class of algorithms to which ker-
nel substitution can be applied and which lead to a non-QP non-linear programming

78 C. Campbell / Neurocomputing 48 (2002) 63–84

task for training. The hypotheses constructed are typically dense in the number of
support vectors. For example, for classi+cation, the idea of kernel substitution can
be readily applied to the Fisher discriminant [12] and the resulting classi+er works
well in practice [31]. For regression one can similarly apply kernel substitution to
minimization of the standard least squares error function based on the di=erence
between target and the output of the regression function [37,50,51]. This leads to
non-linear regression (and classi+cation) functions which perform well on real-life
datasets.

Generating sparse hypotheses. The Bayes point machine may exhibit good gen-
eralization but it has the disadvantage that the hypothesis is dense. Ideally we would
also like to derive kernel classi+ers or regression machines which give sparse hy-
potheses using a minimal number of datapoints. The most e=ective means of ob-
taining sparse hypotheses remains an object of research but an excellent scheme is
the relevance vector machine of Tipping [54]. Using the function f(z) =∑m

i=1 �iK(z; xi) + b to model the data, a Bayesian prior is de+ned over the model
parameters favouring smooth sparse hypotheses. From Bayes rule a posterior over
the weights can be obtained and thence a marginal likelihood or evidence. Iterative
maximization of this evidence suggests suitable examples for pruning, creating an
eventual hypothesis which is sparse in the number of datapoints used. Experiments
show that this approach can sometimes give hypotheses which only use a few
percent of the available data [54].

6. Conclusion

The approach we have considered is very general in that it can be applied to
a wide range of machine learning tasks and can be used to generate many possi-
ble learning machine architectures (RBF networks, feedforward neural networks)
through an appropriate choice of kernel. A variety of optimization techniques can
be used during the training process which typically involves optimization of a con-
vex function. Above all, kernel methods have been found to work well in practice.
The subject is still very much under development but it can be expected to develop
as an important tool for machine learning and applications.

Appendix A. Generalization bounds

The generalization bounds mentioned in Section 2 are derived within the frame-
work of probably approximately correct (pac) learning. The training and test data
are assumed independently and identically (iid) generated from a +xed distri-
bution denoted D. The distribution over input–output mappings will be denoted
(x; y)∈X ×{−1; 1} with X assumed to be an inner product space. With these as-
sumptions pac-learnability can be de+ned as follows. Consider a class of possible
target concepts C and a learner L using a hypothesis space H to try and learn this
concept class. Given a suMcient number, m, of training examples the class C is

C. Campbell / Neurocomputing 48 (2002) 63–84 79

pac-learnable by L if for any target concept c∈C; L will with probability (1− #)
output a hypothesis h∈H with a generalization error errD(h)¡!(m;H; #). The pac
bound !(m;H; #) is derived using probabilistic arguments [1,60] and bounds the tail
of the distribution of the generalization error errD(h).

For the case of a thresholding learner L with unit weight vector on an inner
product space X and a margin �∈R+ the following theorem can be derived if the
dataset is linearly separable:

Theorem 1. Suppose examples are drawn independently according to a distribu-
tion whose support is contained in a ball in Rn centered at the origin; of radius R.
If we succeed in correctly classifying m such examples by a canonical hyperplane;
then with con3dence 1 − # the generalization error will be bounded from above
by [46]

!(m;H; #) =
2
m

(
64R2

�2 log
(�em

8R2

)
log
(

32m
�2

)
+ log

(
4
#

))
(49)

provided 64R2=�2 ¡m. This result does not depend on the dimensionality of the
space and also states that the bound is reduced by maximizing the margin �.

Though this is our main result motivating maximization of the margin for SVMs
it does not handle the case of non-separable data or the existence of noise. As
pointed out in the main text these instances are handled by introducing an L1 or
L2 soft margin. The following two bounds do not depend on the training data being
linearly separable and cover these two cases [47]:

Theorem 2. Suppose examples are drawn independently according to a distribu-
tion whose support is contained in a ball in Rn centered at the origin; of radius
R. There is a constant c such that with con3dence 1− # the generalization error
will be bounded from above by

!(m;H; #) =
c
m

(
R2 + ‖�‖2

1 log(1=�)
�2 log2(m) + log

(
1
#

))
; (50)

where � is the margin slack vector.

Theorem 3. Suppose examples are drawn independently according to a distribu-
tion whose support is contained in a ball in Rn centered at the origin; of radius
R. There is a constant c such that with con3dence 1− # the generalization error
will be bounded from above by

!(m;H; #) =
c
m

(
R2 + ‖�‖2

2

�2 log2(m) + log
(

1
#

))
; (51)

where � is the margin slack vector.

For both these theorems we see that maximizing the margin alone does not
necessarily reduce the bound and it is necessary to additionally reduce the norms
of the slack variables.

80 C. Campbell / Neurocomputing 48 (2002) 63–84

Both these theorems can be adapted to the case of regression. However, in
contrast to Theorems 1–3 above it is no longer appropriate to +x the norm of the
weight vector since invariance under positive rescaling of the weight vector only
holds for a thresholding decision function. For regression the relevant theorem for
an L2 norm on the slack variables is then:

Theorem 4. Suppose examples are drawn independently according to a distribu-
tion whose support is contained in a ball in Rn centered at the origin; of radius
R. Furthermore 3x �6 " where " is a positive real number. There is a constant
c such that with probability 1− # over m random examples; the probability that
a hypothesis with weight vector w has output more than " away from its true
value is bounded above by

!(m;H; #) =
c
m

(‖w‖2
2R

2 + ‖�‖2
2

�2 log2(m) + log
(

1
#

))
; (52)

where �= �(w; "; �) is the margin slack vector. This theorem motivates the loss
functions for regression.

Appendix B. Kernel substitution and Mercer’s theorem

In Section 2 we introduced the idea of kernel substitution, equivalent to in-
troducing an implicit mapping of the data into a high-dimensional feature space.
Non-linear datasets which are unlearnable by a linear learning machine in input
space can then become learnable in feature space. In input space the hypothesis
modelling the data is of the form

f(x) =w · x + b: (53)

If the dataset is separable, the separating hyperplane passes through the convex
hull de+ned by the datapoints and hence w can be expressed as an expansion in
terms of the datapoints thus

w=
m∑
i=1

�iyixi : (54)

With this expansion the decision function can therefore be written

f(x) =
m∑
i=1

�iyi(xi · xj) + b: (55)

The xi only appear inside an inner product, justifying kernel substitution and with
the choice of kernel implicitly selecting a particular feature space

K(xi ;xj) =�(xi) · �(xj): (56)

However, only certain choices of kernel are allowable. The requirements on the
kernel function are de+ned by the two theorems below. First we observe that the

C. Campbell / Neurocomputing 48 (2002) 63–84 81

kernel function is symmetric. In addition we also note from that for a real vector
v we have

vTKv=

∥∥∥∥∥
m∑
i=1

vT
i �(xi)

∥∥∥∥∥
2

2

¿ 0; (57)

where the matrix K has components K(xi ;xj); (i = 1; : : : ; m; j = 1; : : : ; m). This sug-
gests the following theorem which can be proved:

Theorem 5. Let K(x; y) be a real symmetric function on a 3nite input space; then
it is a kernel function if and only if the matrix K with components K(xi ;xj) is
positive semi-de3nite.

More generally, for C a compact subset of RN we have:

Theorem 6 (Mercer’s theorem). If K(x; y) is a continuous symmetric kernel of a
positive integral operator T i.e.

(Tf)(y) =
∫
C
K(x; y)f(x) dx (58)

with ∫
C×C

K(x; y)f(x)f(y) dxdy¿ 0 (59)

for all f∈L2(C) then it can be expanded in a uniformly convergent series in the
eigenfunctions j and positive eigenvalues �j of T; thus

K(x; y) =
ne∑
j=1

�j j(x) j(y); (60)

where ne is the number of positive eigenvalues.

This theorem holds for general compact spaces, and generalizes the requirement
to in+nite feature spaces. (59) generalizes the semi-positivity condition given in
Theorem 5 above.

References

[1] M. Anthony, P. Barlett, Learning in neural networks: theoretical foundations, Cambridge
University Press, Cambridge, 1999.

[2] P. Bradley, O. Mangasarian, D. Musicant, Optimization in massive datasets, in: J. Abello,
P. Pardalos, M. Resende (Eds.), Handbook of Massive Datasets, Kluwer, Dordrecht, 2001,
to appear.

[3] C. Burges, A tutorial on support vector machines for pattern recognition, Data Mining and
Knowledge Discovery 2 (1998) 121–167.

[4] C. Campbell, K.P. Bennett, A linear programming approach to novelty detection, Advances in
Neural Information Processing Systems, vol. 13, MIT Press, Cambridge, MA, 2001, 395–401.

82 C. Campbell / Neurocomputing 48 (2002) 63–84

[5] C. Campbell, N. Cristianini, Simple training algorithms for support vector machines, Technical
Report, Bristol University, http:==lara.enm.bris.ac.uk=cig, 1998.

[6] O. Chapelle, V. Vapnik, Model selection for support vector machines, to appear in Advances in
Neural Information Processing Systems, vol. 12, MIT Press, Cambridge, MA, 2000.

[7] R. Collobert, S. Bengio, SVMTorch web page: http:==www.idiap.ch=learning=SVMTorch.html.
[8] C. Cortes, V. Vapnik, Support vector networks, Machine Learning 20 (1995) 273–297.
[9] N. Cristianini, C. Campbell, C. Burges (Eds.), Support vector machines and kernel methods,

Machine Learning, 2001, to appear.
[10] N. Cristianini, C. Campbell, J. Shawe-Taylor, Dynamically adapting kernels in support vector

machines, Advances in Neural Information Processing Systems, vol. 11, MIT Press, Cambridge,
MA, 1999, pp. 204–210.

[11] N. Cristianini, J. Shawe-Taylor, An introduction to support vector machines and other kernel-based
learning methods, Cambridge University Press, Cambridge, 2000.

[12] R.O. Duda, P.E. Hart, Pattern classi+cation and scene analysis, Wiley, New York, 1973.
[13] M. Ferris, T. Munson, Interior point methods for massive support vector machines, Data Mining

Institute Technical Report 00-05, Computer Sciences Department, University of Wisconsin,
Madison, Wisconsin, 2000.

[14] M. Ferris, T. Munson, Semi-smooth support vector machines, Data Mining Institute Technical
Report 00-09, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin,
2000.

[15] T.-T. Friess, N. Cristianini, C. Campbell, The kernel adatron algorithm: a fast and simple learning
procedure for support vector machines. 15th International Conference on Machine Learning,
Morgan Kaufman Publishers, 1998, pp. 188–196.

[16] I. Guyon, N. Matic, V. Vapnik, Discovering informative patterns and data cleaning, in:
U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy (Eds.), Advances in Knowledge
Discovery and Data Mining, MIT Press, Cambridge, MA, 1996, pp. 181–203.

[17] Cf: http:==www.clopinet.com=isabelle=Projects=SVM=applist.html.
[18] D. Haussler, Convolution Kernels on Discrete Structures, UC Santa Cruz Technical Report

UCS-CRL-99-10, 1999.
[19] R. Herbrich, T. Graepel, C. Campbell, Bayes Point Machines, J. Machine Learning Res. (2001)

to appear.
[20] R. Herbrich, T. Graepel, C. Campbell, Robust bayes point machines, Proceedings of ESANN2000,

D-Facto Publications, Belgium, 2000, pp. 49–54.
[21] T. Jaakolla, D. Haussler, Probabilistic kernel regression models, Proceedings of the 1999

Conference on AI and Statistics, 1999.
[22] T. Joachims, Estimating the generalization performance of an SVM eMciently, Proceedings

of the Seventeenth International Conference on Machine Learning, Morgan Kaufmann, 2000,
pp. 431–438.

[23] T. Joachims, Web Page for SVMLight Software: http:==wwwais.gmd.de= t̃horsten=svm light.
[24] S. Keerthi, S. Shevade, C. Bhattacharyya, K. Murthy, Improvements to Platt’s SMO algorithm

for SVM classi+er design, Technical Report, Department of CSA, Bangalore, India, 1999.
[25] S. Keerthi, S. Shevade, C. Bhattacharyya, K.A. Murthy, A fast iterative nearest point algorithm

for support vector machine classi+er design, IEEE Trans. Neural Networks 11 (2000) 124–136.
[26] D. Luenberger, Linear and Nonlinear Programming, Addison-Wesley, Reading, MA, 1984.
[27] O.L. Mangasarian, Linear and non-linear separation of patterns by linear programming, Oper.

Res. 13 (1965) 444–452.
[28] O. Mangasarian, D. Musicant, Lagrangian support vector regression, Data mining Institute

Technical Report 00-06, June 2000.
[29] E. Mayoraz, E. Alpaydin, Support vector machines for multiclass classi+cation, Proceedings of

the International Workshop on Arti+cial Neural Networks (IWANN99), IDIAP Technical Report
98-06, 1999.

[30] J. Mercer, Functions of positive and negative type and their connection with the theory of integral
equations, Philos. Trans. Roy. Soc. London A 209 (1909) 415–446.

C. Campbell / Neurocomputing 48 (2002) 63–84 83

[31] S. Mika, G. Ratsch, J. Weston, B. SchPolkopf, K.-R. Muller, Fisher discriminant analysis
with kernels, Proceedings of IEEE Neural Networks for Signal Processing Workshop, 1999,
pp. 41–48.

[32] S. Nash, A. Sofer, Linear and non-linear programming, McGraw-Hill, New York, 1996.
[33] M. Opper, D. Haussler, Generalization performance of bayes optimal classi+cation algorithm for

learning a perceptron, Phys. Rev. Lett. 66 (1991) 2677–2680.
[34] E. Osuna, F. Girosi, Reducing the Run-time Complexity in Support Vector Machines, in:

B. SchPolkopf, C. Burges, A. Smola (Eds.), Advances in Kernel Methods: Support Vector Learning,
MIT press, Cambridge, MA, 1999, pp. 271–284.

[35] J. Platt, Fast training of SVMs using sequential minimal optimization, in: B. SchPolkopf,
C. Burges, A. Smola (Eds.), Advances in Kernel Methods: Support Vector Learning, MIT press,
Cambridge, MA, 1999, pp. 185–208.

[36] J. Platt, N. Cristianini, J. Shawe-Taylor, Large margin DAGS for multiclass classi+cation,
Advances in Neural Information Processing Systems, vol. 12, MIT Press, Cambridge, MA, 2000.

[37] C. Saunders, A. Gammerman, V. Vovk, Ridge regression learning algorithm in dual variables,
Proceedings of the 15th International Conference on Machine Learning (ICML 98), Morgan
Kaufmann, Los Altos, CA, 1998, pp. 515–521.

[38] J. Schietse, Towards Bayesian Learning for the Perceptron, Ph.D. Thesis, Faculteit
Wetenschappen, Limburgs Universitair Centrum, Belgium, 1996.

[39] B. SchPolkopf, P. Bartlett, A. Smola, R. Williamson, Support vector regression with automatic
accuracy control, in: L. Niklasson, M. BUoden, T. Ziemke (Eds.), Proceedings of the 8th
International Conference on Arti+cial Neural Networks, Perspectives in Neural Computing,
Springer, Berlin, 1998.

[40] B. SchPolkopf, C. Burges, V. Vapnik, Extracting support data for a given task, Proceedings:
First International Conference on Knowledge Discovery and Data Mining, in: U.M. Fayyad,
R. Uthurusamy (Eds.), AAAI Press, Menlo Park, CA, 1995.

[41] B. SchPolkopf, C. Burges, A. Smola, Advances in Kernel Methods: Support Vector Machines,
MIT Press, Cambridge, MA, 1998.

[42] B. SchPolkopf, A. Smola, K.-R. Muller, Kernel Principal Component Analysis, in: B. SchPolkopf,
C. Burges, A. Smola (Eds.), Advances in Kernel Methods: Support Vector Machines, MIT Press,
Cambridge, MA, 1998, pp. 327–352.

[43] B. SchPolkopf, J.C. Platt, J. Shawe-Taylor, A.J. Smola, R.C. Williamson, Estimating the
support of a high-dimensional distribution, Microsoft Research Corporation Technical Report
MSR-TR-99-87, 1999.

[44] B. SchPolkopf, J. Shawe-Taylor, A. Smola, R. Williamson, Kernel-dependent support vector error
bounds, Ninth International Conference on Arti+cial Neural Networks, No. 470, IEE Conference
Publications, 1999, pp. 304–309.

[45] B. SchPolkopf, A. Smola, R.C. Williamson, P.L. Bartlett, New support vector algorithms, Neural
Computation 12 (2000) 1207–1245.

[46] J. Shawe-Taylor, P.L. Bartlett, R.C. Williamson, M. Anthony, Structural risk minimization over
data-dependent hierarchies, IEEE Trans. Inform. Theory 44 (1998) 1926–1940.

[47] J. Shawe-Taylor, N. Cristianini, Margin distribution and soft margin, in: A. Smola, P. Barlett, B.
SchPolkopf, C. Schuurmans (Eds.), Advances in Large Margin Classi+ers, Chapter 2, MIT Press,
Cambridge, MA, 1999.

[48] A. Smola, B. SchPolkopf, A tutorial on support vector regression, NeuroColt2 TR 1998-03, 1998.
[49] A. Smola, P. Barlett, B. SchPolkopf, C. Schuurmans (Eds.), Advances in Large Margin Classi+ers,

MIT Press, Cambridge, MA, 2001.
[50] J.A.K. Suyhens, J. Vandewalle, Least squares support vector machine classi+ers, Neural Process.

Lett. 9 (1999) 293–300.
[51] J.A.K. Suyhens, L. Lukas J. Vandewalle, Sparse approximation using least squares support vector

machines, Proceedings of the IEEE International Symposium on Circuits and Systems, Geneva,
Switzerland (2000) II757–II760.

[52] D. Tax, R. Duin, Data domain description by Support Vectors, in: M. Verleysen (Ed.),
Proceedings of ESANN99, D. Facto Press, Brussels, 1999, pp. 251–256.

84 C. Campbell / Neurocomputing 48 (2002) 63–84

[53] D. Tax, A. Ypma, R. Duin, Support vector data description applied to machine vibration analysis,
in: M. Boasson, J. Kaandorp, J. Tonino, M. Vosselman (Eds.), Proceedings of the 5th Annual
Conference of the Advanced School for Computing and Imaging, Heijen, NL, June 15–17, 1999,
pp. 398–405.

[54] M. Tipping, The Relevance Vector Machine, Advances in Neural Information Processing Systems,
vol. 12, MIT Press, Cambridge, MA, 2000, pp. 652–658.

[55] T. Trafalis, A. Malysche=, An analytic center machine, Machine Learning, to appear.
[56] V. Vapnik, O. Chapelle, Bounds on error expectation for SVMs, Neural Computation, to appear.
[57] V. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, 1995.
[58] V. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.
[59] K. Veropoulos, C. Campbell, N. Cristianini, Controlling the sensitivity of support vector machines,

Proceedings of the International Joint Conference on Arti+cial Intelligence (IJCAI), Stockholm,
Sweden, 1999.

[60] M. Vidyasagar, A Theory of Learning and Generalization, Springer, Berlin, 1997.
[61] T. Watkin, A. Rau, The statistical mechanics of learning a rule, Rev. Modern Phys. 65 (1993)

499–556.
[62] C. Watkins, Dynamic alignment kernels, Technical Report, UL Royal Holloway, CSD-TR-98-11,

1999.
[63] J. Weston, C. Watkins, Multi-Class Support Vector Machines, in: M. Verleysen (Ed.), Proceedings

of ESANN99, D. Facto Press, Brussels, 1999, pp. 219–224.
[64] J. Weston, A. Gammerman, M. Stitson, V. Vapnik, V. Vovk, C. Watkins, Support vector density

estimation, in: B. SchPolkopf, C. Burges, A. Smola (Eds.), Advances in Kernel Methods: Support
Vector Machines, MIT Press, Cambridge, MA, 1998, pp. 293–306.

[65] http:==www.ics.uci.edu= m̃learn=MLRepository.html
[66] P. Wolfe, A duality theorem for non-linear programming, Quart. Appl. Math. 19 (1961)

239–244.

