Machine Learning Strategies for Complex Tasks

Colin Campbell, Theodoros EvgeniduBernd Heiselg, and Massimiliano Pondil

! Department of Engineering Mathematics,
Bristol University, Bristol BS8 1TR,
United Kingdom
C. Canpbel | @ristol . ac. uk
2 Center for Biological and Computational Learning,
MIT, Cambridge MA 02142,
USA
{t heos, pontil, heisele}@i.nit.edu

Abstract. In this paper we begin by reviewing recent research on kene¢hods. This subject provides a sys-
tematic and principled approach to machine learning taséls as classification, regression, novelty detection,
and query learning. Advanced robots are examples of congléonomous systems which must be able to
complete sophisticated operations involving one or morese tasks. For example, regression is relevant to
modeling the coordinate transformations of manipulatoekiatics. Analysis of images in a scene may require
detection of novel objects and classification of known disjed/e outline past work illustrating successful ap-
plication of kernel methods to object recognition in scefié® complex machine vision and control operations
inherent in humanoid robotics suggests the area is an ertédist-bed for co-operatively integrating different
machine learning tasks and stimulating future researattiims.

1 Introduction

In this paper we will begin by outlining a new approach to machineligtice based okernel methodsThis
approach is systematic and properly motivated theoretically [64]. Tigzunsists of the minimization of a convex
cost function, so there is only one solution. There are also few tepasameters to adjust and no need for a lot
of experimentation to determine the model’s architecture, unlike neatraionks, for example. Most importantly
kernel methods perform well in practice and exhibit good generalizatiopalrife datasets.

The purpose of writing this paper is threefold. Firstly, to infioe kernel methods to a wider audience. Sec-
ondly, to outline their successful application to important tasksimé#mnoid robotics such as 3D object recognition
and obstacle detection [48, 16, 43]. Finally we discuss future pergpsand the development of more complex
intelligent systems. Many machine learning tasks such as classificatioessemn and novelty detection are now
reasonably well understood. Thus to progress machine intelligencmieigsting to consider more complex vi-
sion or robotic systems in which these tasks are only sub-compor@ntexample, in the analysis of a scene
objects may be novel or known. Known objects may be classified and an ageo@sponse generated. Novel
objects will lead to learning and possible queries to extract additiof@hation.

The structure of the paper is as follows. In section 2 we will intaedkernel methods and outline their use for
binary and multi-class classification, regression, novelty detection aexy dearning. In section 3 we will then
illustrate their application to machine vision. Finally, we discusgsiffe perspectives. For the sake of brevity we
will concentrate on Support Vector Machines (SVMs) which are the mostkmellvn approach based on kernel
methods.

2 An Introduction to Kernel Methods.

2.1 A Unified View of the Learning Methods

We will consider learning techniques which lead to solution of the form

f(x) = Z o K (x,%;). 1)
=1
where thex;,7 = 1, ..., m are the input example& a certain symmetric positive definite function named kernel

(see below), and;; a set of parameters to be determined form the examples. For all the machisiEeoed, the
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Fig. 1. Themarginis the perpendicular distance between the separating igperand a hyperplane through the closest points
(these arsupport vectors The region between the hyperplanes on each side is chiiadrgin bandx; andx, are examples
of support vectors of opposite sign.

function f is found by minimizing functionals of the type

H(f] = IflI% + C Y V(y, f(x)), )

=1

whereV is aloss functionwhich measures the goodness of the predicted oytfwuf) with respect to the given
outputy; (for the case of supervised learning - for other cases, such as the noveltyiatrebne discussed below,
there is no outpuy;), || f||% a smoothness term which can be thought of as a norm in the Reproducinel Ker
Hilbert Space defined by the kernél, andC' a positive parameter which controls the relative weight between the
data and the smoothness term (see below). The choice of the loss fushetismmines different learning techniques,
each leading to a different learning algorithm for computing the coefficiepnfd7]. A large family of these
machines has been analyzed and justified theoretically [17]. The main technigiiscwss in this paper is Support
Vector Machines (SVM) [12, 64, 52].

2.2 Binary Classification.

To introduce SVMs we will start with the simplest case of binary cfasdion. Theoretical results have been
derived which bound the generalization error [63, 64,13, 54] for bicaygsification (that is, the probability of
misclassifying a future point). In particular, these theoretical bisumave two implications. Firstly, the general-
ization error bound is minimized by maximizing the minimal distance betwthe hyperplane separating the two
classes and the closest datapoints to the hyperplane (Figure 1). Timsahdistance will be called theargin
and denoted. The second observation is that the generalization error bound does roiddep the dimension
of the space. This motivates the ideskefnel substitutionvhich amounts to a nonlinear projection of data into a
high-dimensional space where it is easier to separate the two classes of data.

The Learning Task. Let us consider a binary classification task with datapaint§ = 1,...,m) having corre-
sponding labelg; = +1 and let us suppose the decision function is:

f(x) =sign(w-x+1b) )

If the dataset is separable then the data will be correctly classifig@vf - x; + b) > 0 Vi. Clearly this relation

is invariant under a positive rescaling of the argument insidesthe-function, hence we can definecanonical
hyperplanesuch thatw -x+b = 1 for the closest points on one side amdx +b = —1 for the closest on the other.
For the separating hyperplane x+ b = 0 the normal vector is clearly/ ||w||. Hence the margin is given by the
projection ofx; — x5 onto this vector wherg; andx, are the closest points on opposite sides of the separating
hyperplane (see Figure 1). Sinee- x; + b = 1 andw - x5 + b = —1 this means the margints= 1/ ||w]||. To
maximize the margin the task is therefore:

win |5 | @



subject to the constraints:
yi (W x; +b) >1 Vi (5)

Taking the Wolfe dual, we can solve for the dual parameters (Lagrangipheutt) o; by maximizing with respect
to theq; the dual cost function [40, 12]:

m 1 m
W(a) = ZO[Z' — 5 Z aiajyiyj (Xi . Xj) (6)
i=1 i,j=1
subject to the constraint:
a; >0 Zaiyi =0 (7)
i=1

and the primal solutiosw can be shown [40, 12] to be given by
W= Z QiYiXs. )
i=1

Kernel substitution. This constrained quadratic programming (QP) problem will give aimg separating hy-
perplane which maximizes the margin if the data is separable. However,wgestith not exploited the second
observation made earlier: namely, the error bound does not depend omiesdin of the space. This feature
enables us to give an alternative kernel representation of the data whichivalequto a mapping into a high
dimensional space (callddature spacewhere the two classes of data are more readily separable. For the dual
objective function in (6) we notice that the datapoints,only appear inside an inner product. Thus this mapping
is achieved through a replacement of the inner product:

Xi - Xj — ¢ (%i) - (%) 9)

The functional form of the mapping(x; ) does not need to be knowimce it is implicitly defined by the choice of
kernel:

K(xi,xj) = ¢(xi) - #(x;) (10)

which is the inner product in the higher dimensional feature space (éespaice must therefore be a Hilbert or
inner product space [3,67,64]). With a suitable choice of kernel thee clat become separable in feature space
despite the fact that it may not be separable by a hyperplane in theadiigut space. A number of choices can
be made [3, 67, 64] for the kernel function, for example:

K(xi,%;) = e—||Xi—xj||2/202 (11)
defining an RBF network and:

K(xi,%;) = (x; - x; +1)* K (x;,x;) = tanh(0x; - x; +b) (12)

which would define polynomial and feedforward neural network classifieash Ehoice of kernel will define a
different type of feature space and the resulting classifiers will perétiiferently on test data though the general-
ization bounds mentioned earlier imply good performance on new data.

For the given choice of kernel the learning task therefore involves maatmn of the objective function:

m 1 m
W(a) = Z(Jéi — 5 Z aiozjyiyjK(xi,xj) (13)
i=1

i,j=1
subject to the constraints (7) and test examples are evaluated using ardaisition given by the sign of:

f(z) = ZyiaiK(xi, z)+b (14)
i=1

Since the biag), does not feature in the above dual formulation it is found from tiragd constraints via:
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using the optimal values ei;. When the maximal margin hyperplane is found in feature space, only plodsts
which lie closest to the hyperplane have > 0 and these points are tiseipport vector¢SV) [12, 64]. All other
points haver, = 0 and correspond to non-support vectors. These datapoints do not c#lthen position and
orientation of the separating hyperplane and hence do not contribite bypothesis (Figure 1). This means that
the representation of the hypothesis is given solely by those pehith are closest to the hyperplane which are
thus the most informative patterns in the data.

Allowing for Training Errors: Soft Margin Techniques. Most real life datasets contain noise and an SVM
can fit this noise leading to poor generalization. The effect of noise can beg@dy introducingoft margin[12]
training errorsS; and a trade off between training error and margin decided by paragietein (2). In this case
the primal formulation of SVM becomes:

N IS S -
min [§||w|| } +C;§i (16)
subject to the constraints:
£>0 Vi (18)

This can be seen as a machine of the form (2) [17]. Taking the dual ofrthlidgmn we end up with a maximization
which is the same as before except for the introduction of the fatigwonstraint on the,; parameters [12]:

0<aq; <C (19)
The final solution is again of the form
f(z) = ZyiaiK(xi, z)+b (20)
=1

which is of the form (1).

Determining the kernel parameters During the training process the kernel parameter needs to be specified
(e.g.o for the RBF kernel). If this parameter is too small or too large the mousl overfit or underfit the data.
If sufficient data is available this parameter can be found using validdatm by testing performance against
different choices of kernel parameter. However, it is also possible to getiarats of the kernel parameter more
directly without use of validation data [11].

Multiclass Classification. Various schemes have been proposed to handle multiclass classificatiéf][33,
One of the simplest schemes [46] is to reduce multiclass classificaticseties of binary classification operations
at each node in the tree (Figure 2). Both bottom up [48] and top-dm@es {46] can be used. We discuss the first
case in section 3.1.

2.3 Novelty Detection.

In many vision applications it is important to distinguish novejeas from known objects. One approach to
novelty detection is to create a binary-valued function which is podititeose regions of input space where data
predominantly lies and negative elsewhere.

One approach [58] is to find a hypersphere with a minimal raéi@nd centex which contains most of the
data: novel test points lie outside the boundary of this hypersphbestechnique we now outline was originally
suggested by Vapnik [63, 9], interpreted as a novelty detector by Tax amd®ER]iand used by the latter authors
for real life applications [58]. The effect of outliers is reduced by usilagk variableg; to allow for datapoints
outside the sphere and the task is to minimize the volume of thersgimd number of datapoints outside i.e.

min

R*+ C igil

i=1



Fig. 2. A multi-class classification problem can be reduced to &sef binary classification tasks using a tree structure avith
binary decision at each node. A 3-class (1,2,3) case is shevwn

subject to the constraints:
(xi —a)'(xi —a) < R*+ &

and¢; > 0, and where”' controls the tradeoff between the two terms.
After kernel substitution the dual formulation amounts to maxinoseadf:

W(Oé) = ZO@K(Xi,Xi) - Z Oél'O[jK(Xi,Xj) (21)
i=1

ij=1

with respect tay; and subject t@;’il a; =1and0 < a; < C.If C < 1 thenat boundexamples will occur with
a; = C and these correspond to outliers in the training process. Having etedihe training process a test point
z is declared novel if:

K(Z,Z)*2ZO@K(Z,X¢)+ Z Oél'O[jK(Xi,Xj)fRQ Z 0 (22)
i=1

ij=1

whereR? is first computed by finding an example whichisn-boundand setting this inequality to an equality.
An alternative approach has been developed by Scholkopf et al. [53]. Suyppagstrict our attention to RBF

kernels: in this case the data lie in a region on the surface of a hypEesm feature space singéx) - ¢(x) =

K (x,x) = 1. The objective is therefore to separate off this region from thesenfegion containing no data. This

is achieved by constructing a hyperplane which is maximally distant thenorigin with all datapoints lying on

the opposite side from the origin and such that x; + b > 0. This construction can be extended to allow for

outliers by introducing a slack variabfg giving rise to the following criterion:

|1 2 =
min | o [[w][* + C;&er (23)
subject to:
wexi b= =& (24)
with & > 0.

After kernel substitution the dual formulation involves minimisatof:

W(a) = o0 K (x5,%5) (25)

N~

m
ik=1

subject to:



Fig. 3. Left figure: a lineak-insensitive loss function versys— w - x; — b. Right figure: a quadratieinsensitive loss function.

Fig. 4. The e-insensitive band around a nonlinear regression funciidwe variablest measure the cost of training errors
corresponding to points outside the band e.g.

0<a;<C D ai=1 (26)
=1

To determine the bias we find an examgiesay, which is non-boundy andg; are nonzero and < o; < C)
and determiné from:

m

b=—> a;K(xj,xx) (27)

j=1

The support of the distribution is then modeled by the decisiontfon:

f(z) = sign Z a; K(x5,2)+b (28)
j=1
which is again of the form (1).

2.4 Regression.

For real-valued outputs the learning task can also be theoretically motivatadtatistical learning theory [17].
In this case we can use as loss functions in eq. (2Ltherror (y; — f(x;))? and get the well known regularization
networks [67,21,17]. The SVM regression method is for a partiathaice of the loss function in 2, namely the
lineare—insensitive loss functioffy; — f(x;)|| (Figure 3) [64].

Instead of constraints used for SVM classification we now use constraintg-x; —b < eandw-x; +b—y; <
e to allow for a deviatiore between the eventual targetsand the functiorf(x) = w - x + b, modeling the data.
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As before we would also minimizéw/||* to increase flatness or penalize overcomplexity. To account for training
errors we introduce slack variableggi for the two types of training error. The effects of this choice can be
visualized as a band or tube around the hypothesis fun¢iigh and any points outside this tube can be viewed
as training errors (Figure 4). These slack variables are zero for positieithe tube and progressively increase
for points outside the tube. This general approach is caied regression [63] and is the most common approach
to SV regression, though not the only one [64]. Fdinaar e—insensitive loss functiothe task is therefore to
minimize:

(29)

min l||w||2 + Ci (fi + é;)

i=1

subject to

Yy —w-x;, —b<e+¢ (30)
(W-xi+b)—y; <et&

where the slack variables are both positjyg: > 0. After kernel substitution the dual objective function is:

W, @) = yilas — @) —ey (i + @) — % D (i = @) (o — @)K (i, 25) (31)
i=1 i=1 ii=1

which is maximized subject to

Xm: a; = i Q; (32)
=1

=1

and:
0< <C 0<a; <C (33)
The decision function is then:
f(z) = Zyi(ai — ;) K (x;,2) +b (34)
=1

which is again of the form (1).
We still have to compute the bial, and we do so by considering the KKT conditions for regressionaFor
linear loss function prior to kernel substitution these are:

i(e+& —yi+w-x;+b)=0

wherew = 377" | y;(a; — @;)x;, and:

(O — Oéi) fz =0
(C—a:)& =0 (36)

From the latter conditions we see that only when= C or a@; = C are the slack variables non-zero: these
examples correspond to points outsidedtiesensitive tube. Hence we can find the bias from a non-bound example
with 0 < «; < C usingb = y; — w-x; — e and similarly for0 < a; < C we can obtainit fronb = y; — w-x; +e.
Though the bias can be obtained from one such example it is best to aitpsihg an average over all points on
the margin.



2.5 Query Learning

For some real-life datasets the datapoints are initially unlabelledeSire labels of points correspondingion-
supportvectors are not actually required for determining an optimal separating pigperthese points do not
need to be labelled. This issue is particularly important for practiazdsgns in which labelling data is expensive
or the dataset is large and unlabelled. Since SVMs construct the hypsotisasj) a subset of the data containing
the most informative patterns they are good candidateadtive or selective samplingechniques which would
predominantly request the labels for those patterns which will becopposivectors

During the process of active selection the information gained from an @rathepends both on the position
(available information) and on its label (unavailable informatiorbefjuerying). Thus we must follow a heuristic
strategy to maximize information gain at each step. Firstly we note therlyqng a point within the margin band
(Figure 1l)alwaysguarantees a gain whatever the label of the point: we do not gain by ggerynint outside
the band unless the current hypothesis predicts the label incorrectiysénse the best points to query are those
points which are closest to the current hyperplane [10]. Intuitivaily tnakes sense since these are most likely to
be maximally ambiguous with respect to the current hypothesis and hemtesh candidates for ensuring that
the information received is maximized. Hence a good strategy [10] istbtst requesting the labels for a small
initial set of data and then successively querying the labels of pointsstltwsthe current hyperplane. For noiseless
datasets plateauing of the dual objective function provides a goodistppyiterion (since learning non-support
vectors would not change the value Bf(«)), whereas for noisy datasets emptying of the margin band and a
validation phase can provide a stopping criterion [10]. Finding@dggopping criterion is an open question.

2.6 Algorithmic Approaches to Training SVMs

For classification, regression or novelty detection we see that the Igdasi involves optimization of a quadratic
cost function and thus techniques from quadratic programming are magtadpe including quasi-Newton, con-
jugate gradient and primal-dual interior point methods. Certain QP paslag readily applicable such as MINOS
and LOQO. These methods can be used to train an SVM rapidly but they ledisadvantage that the kernel
matrix is stored in memory. For small datasets this is practical and QP esudre the best choice, but for larger
datasets alternative techniques have to be used. These split into tworeggchniques in which kernel compo-
nents are evaluated and discarded during learningramking setmethods in which an evolving subset of data is
used. For the first category the most obvious approach is to sequenpidhte they; and this is the approach used
by the Kernel Adatron (KA) algorithm [18]. For binary classificationittwno soft margin or bias) this is a simple
gradient ascent procedure on the SVM dual cost function in whiclkr 0 initially and thea; are subsequently
sequentially updated using:

a; — (3;6 (B;) where Bi=ai+tn|1—u> ayK(xi,x;) (37)

Jj=1

andé(3) is the Heaviside step function. The optimal learning ratan be readily evaluateg:= 1/ K (x;,x;) and

a sufficient condition for convergencelis< nK (x;,x;) < 2. With the given SVM decision function this method
is very easy to implement and can give a quick impression of the perform&8aévts on classification tasks. It
is equivalent to Hildreth’s method in Optimization theory and can be gereddio the case of soft margins and
inclusion of a bias [32]. However, it is not as fast as most QP routemzecially on small datasets.

Rather than sequentially updating thethe alternative is to update the in parallel but using only a subset or
chunkof data at each stage. Thus a QP routine is used to optimize the objectiti@fuon an initial arbitrary subset
of data. The support vectors found are retained and all other datapoititsw 0) discarded. A new working set
of data is then derived from these support vectors and additional datspgiich maximally violate the storage
constraints. Thighunkingprocess is then iterated until the margin is maximized. Of course, thieguoe may
still fail because the dataset is too large or the hypothesis modekndgtia is not sparse (most of theare non-
zero, say). In this casgecompositiofj40] methods provide a better approach: these algorithms only used fix
size subset of data with the for the remainder kept fixed.

The limiting case of decomposition is the Sequential Minimal OptinoratSMO) algorithm of Platt [45] in
which only twoa; are optimized at each iteration. The smallest set of parameters which can bezegtimith
each iteration is plainly two if the constrailt." , a;y; = 0 is to hold. Remarkably, if only two parameters are
optimized and the rest kept fixed then it is possible to derive an analytkaian which can be executed using
few numerical operations. The algorithm therefore selects two Lagranijiglnets to optimism at every step and
separate heuristics are used to find the two members of the pair.



The SMO algorithm has been refined to improve speed [30] and generaliseceraloeabove three tasks of
classification [45], regression [55] and novelty detection [53].

3 Applications of Support Vector Machines to machine vision.

3.1 Learning to Recognize 3-D Objects

We show the potential of SVMs in robotics addressing the recognifi@D objects from video images. We de-
scribe an aspect-based recognition approach using SVMs. Aspect-based recagclimiques have received in-
creasing attention from both the psychophysical [57, 15] and compwsieny47, 1, 61, 8,44, 37,68, 40, 48] com-
munities. These techniques are well-suited for recognition problemkiicth geometric models of the objects are
difficult to obtain. This is typically the case when a robot has to inteséttt complex objects.

In the following, we give a brief overview of our recognition meth&or more information see [48].

Aspect-Based Recognition SystenWe build a system which is able to recognize an object in an image among a
given set of objects. The system consists of five stages:

— Data Collection:
The first step is to collect images of the objects we want to recognize. Thagesmshould cover a wide range
of viewing angles of each object.

— Preprocessing:
Each image of the objects is represented by a feature vector of fixed lengtpicaltyepresentation is the
pixel representation. Other representations like wavelets and principglocents can be used. We discuss
some of them in the next subsection.

— Building the Training Sets:
The set of preprocessed images of each object is stored as a training set.

— Training the System:
The SVM associated to each pair of objects is computeglidfthe number of objects, this requires to train
the SVM algorithm discussed in section 2.2 on all possible pairsjettd andj, withi, j =1,...,g,i # j.
The number of pairs iéw. We denote the SVM associated to objecand; with 7 (x).

— Recognition:
Recognition is performed following the rules of a tennis tournanteath object is regarded apkayer, and
the outcome of anatchis determined by the SVM classifier which was trained to distinguish bettedmvo
objects. If the players are objedtandj, the system determines the winner according to the sigfi/¢k).
For simplicity, we assume that there are objects, in the first roun#® —! matches are played and th&—!
losing players are eliminated. TB& —! winners advance to the second round. ThRe- 1)-th round is the final
between the remaining 2 players that won all the previous matches. Ovieisaipprocedure requires® — 1
classifications. As mentioned in section 2.2, other multiclass classificapproaches can be used for such
problems.

In [48] we used the COIL (Columbia Object Image Library) databasestandard databases for 3-D object
recognition. It consists of 7200 color images of 100 objects (72 viewsach of the 100 objects). As explained in
detail in [37], the objects are positioned in the center of a turntablebsaerved from a fixed viewpoint. For each
object, the turntable is rotated 72 times in step5°of

Figure 5 shows a selection of the objects in the database. Figure 6 diffamsnt poses of a specific object,
one everyis°,

In [48], each initial color image was first transformed intd2ax 32 gray-level image leading to a feature vector
of 32 x 32 = 1024 components. The gray values were in the range between 0 and 255.

Each training set contained 36 views of the same object. The remaininggg@#per object were used to test
the system. For each pair of obje¢ts a linear SVMf#¥ (x) = w¥ - x + b was computed.

The number of support vectors was ranging between 30% and 60% of tlaé 7@ittraining images for each
object pair. This large percentage of support vectors was due to the inigimslonality of the feature space in
combination with the small number of examples.

The system recoginzed most of tB2 objects with 100% recognition rate. The system maintained its perfor-
mance after adding substantial amount of random additive noise to theéeges (see [48] for details).

1 Available via anonymous ftp atw. cs. col unbi a. edu.
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Fig. 5. Images of 16 of the COIL objects.

- ) Rt N (] B

Fig. 6. Eight of the 72 images of a COIL object.

3.2 Learning to detect objects

Detection of real-world objects in images, such as faces and people, is a prddiemd@amental importance in
many areas of image processing and robotics: for autonomous navigatistacles and landmarks need to be
detected; for face recognition, for example for human-computer/rotesiction, the face must first be detected
before being recognized; effective indexing into image and video datab&seemrelies on the detection of
different classes of objects. The detection of objects poses challengirigmsolbhe objects are difficult to model,
there is significant variety in color and texture, and the backgroundssig#iich the objects lie are unconstrained.

Initial work on object detection used template matching approaches with rggtidemplates or handcrafted
parameterized curves, [5, 71]. These approaches are difficult to extend tacompéex objects such as people,
since they involve a significant amount of prior information and domknowledge. Other systems detect objects in
video sequences focusing on using motion and 3D models or constrafimd feople [60, 31, 25,49, 70, 23, 34].
In recent research the detection problem has been solved using learning-basediésdinat are data driven. This
approach was used by Sung and Poggio[56] and Vaillant, et al. [62] foretieetibn of frontal faces in cluttered
scenes, with similar architectures later used by Moghaddam and Pentland ¢86éyRet al. [51], and Osuna et
al. [40]. We now briefly discuss how the learning mechanisms outlinétkifirst part of the paper can be used as
an approach to object detection in images.

A trainable system for object detection We briefly describe a trainable system for object detection. For more
information on the system we refer the reader to [16]. The system is loasi8] and can be used to learn any
class of objects. The overall framework has been motivated and successfuigdapphe past [43]. The system
consists of three parts:

— A set of (positive) example images of the object class considered (i.e. imademtal faces) and a set of
negative examples (i.e. any non-face image) are collected.

— The images are transformed into vectors in a chosen representation (i.eoreoféhke size of the image with
the values at each pixel location).

— The vectors (examples) are used to train a SVM classifier to learn the clagwifizesk of separating positive
from negative examples. A new set of examples is used to test the syRtenfull architecture involves
scanning an (test) image over different positions and scales.

Two choices need to be made: the representation in the second stage, and thefkbm&8VM (discussed
above) in the third stage. In [16] various image representations weneadedl

— Thepixel representationtrain an SVM using the raw pixel values of the images (possibly scaledeleet0
and 1).

— The eigenvector (principal components) representatioompute the correlation matrix of the positive ex-
amples (the pixel vectors corresponding to images of the positive cleeg images of faces) and find its
eigenvectors. Then project the pixel vectors on the computed eigenvectocanv@her do a full rotation by
taking the projections on all eigenvectors, or use the projections lgritenfirst few principal components.
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— Thewavelet representatiortonsider a set of Haar wavelets at different scales and locations, and compute the

projections of the images on the chosen wavelets. Wavelets at differentsgalles used.

Once a representation is chosen and an SVM is trained, the system can be wsddting objects in new
images (i.e. in the environment where a robot navigates) by simply swatire images with a window of size
equal to that of the training data (possibly scaling the images at vasalss), passing the scanned window of
the image to the trained SVM and deciding at each location in the image whethet there is an object of the
positive class. For many classes of objects, mutliclass SVMs can be usedsarhe manner.

An important issue is that of feature selection. For example, in the basehie pixel values of the images
are used to train a classifier, the question is which pixels (that is, vdads of the images) are more important?
Finding good methods for feature selection is a difficult problem. Aistais suggested in [16], and more formal
methods are suggested in [26]. Selecting features can be important whenaatumgg$ are available, like in the
case of image, speech, or video processing. In fact many learning methodgtseffenrse of dimensionality”.

It turns out that an important characteristic of SVM and kernel machinesafeelvithin the statistical learning
theory framework is that they can handle large dimensional data. Thislixplained within the theory [64],

and also experimentally verified by many researchers (see for example [bh&])cHaracteristic of SVMs makes
them suitable learning methods for complex tasks where many features arsamgcetich is often the case for
robotics applications.

4 Conclusion

In this paper we outlined an approach to solving complex problems baskdroel learning methods. These
methods are motivated and justified theoretically within the well estadidield of statistical learning theory
[64], and can be used for a number of learning tasks, such as classificagogssien, and novelty detection.
The methods are shown to work well in practice and, unlike other metharsas neural networks, they lead to
learning machines that can be trained efficiently, with few parameters and wptjmal solutions.
Complex systems, such as autonomous robots, need to handle all oostimelearning tasks outlined in

this paper. We beleive that combining the methods discussed here intoroigiid such systems is a promising
direction for research.
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