
Query Learning with Large Margin Classifiers

Colin Campbell C.Campbell@bris.ac.uk

Department of Engineering Mathematics, University of Bristol, Bristol BS8 1TR, United Kingdom

Nello Cristianini Nello.Cristianini@bris.ac.uk

Department of Engineering Mathematics, University of Bristol, Bristol BS8 1TR, United Kingdom

Alex Smola Alex.Smola@anu.edu.au

Department of Engineering and RSISE, Australian National University, Canberra, ACT 0200, Australia

Abstract

The active selection of instances can sig-
nificantly improve the generalisation perfor-
mance of a learning machine. Large margin
classifiers such as support vector machines
classify data using the most informative in-
stances (the support vectors). This makes
them natural candidates for instance selec-
tion strategies. In this paper we propose an
algorithm for the training of support vec-
tor machines using instance selection. We
give a theoretical justification for the strat-
egy and experimental results on real and ar-
tificial data demonstrating its effectiveness.
The technique is most efficient when the data
set can be learnt using few support vectors.

1. Introduction

The labour-intensive task of labelling data is a serious
bottleneck for many data mining tasks. Often cost
or time constraints mean that only a fraction of the
available instances can be labeled. For this reason
there has been increasing interest in the problem of
handling partially labeled data sets.

One approach to this problem is query learning (An-
gluin, 1988) where the learning machine is allowed
to actively interrogate its environment or data source
rather than just passively waiting for data. In par-
ticular, for learning with membership queries the al-
gorithm creates or selects unlabeled instances for the
human expert to label. One problem with creating
queries is that sometimes the most informative ones
are meaningless and impossible for the human expert
to label (Baum, 1991) e.g.the most informative query
may be an improper character for an OCR task. A

better approach may be to use query learning in con-
junction with partially labeled data sets so that the
unlabeled part becomes a reserve of potential queries
(Freund et al., 1997). The task is then reduced to
querying the most informative points in the data: a
problem known as instance selection or selective sam-
pling.

Large margin classifiers (Smola et al., 2000) based on
boosting (Freund & Schapire, 1997) or support vec-
tor machines (SVMs) (Vapnik, 1998; Cristianini &
Shawe-Taylor, in press) have the property of focusing
on a subset of the most informative patterns in a data
set and only using these to construct the hypothesis.
Such patterns may be called support patterns or in the
context of SVMs support vectors. In this sense Large
Margin Classifiers are a natural candidate for selective
sampling strategies. If one knew a priori the identity
of the support patterns in a data set, it would be pos-
sible to discard all the other patterns, and still recover
the same final hypothesis.

Theoretical results and artificial examples discussed
in Rivest and Eisenberg (1990) show that it is possible
to invent malicious distributions for which the num-
ber of queries is comparable to the sample size, hence
removing any advantage. In practice, such adversarial
distributions may not occur frequently. Indeed we find
that the sparsity of the solution is the most important
factor: if the hypothesis requires comparatively few
support vectors in relation to the total data set size
then selective sampling works well.

Following a brief overview of large margin techniques
and SVMs in Section 2 we outline a strategy for se-
lecting support patterns efficiently by considering the
minimax contribution of patterns to the regularized
risk functional in Section 3. An efficient stopping cri-
terion is considered in in Section 3.3. Experimental

results are presented in Section 4 showing that the al-
gorithm efficiently identifies the most informative data
points.

2. Large Margin Classifiers

2.1 Risk Functionals

Let X be the space of patterns, Y := {−1, 1} the space
of labels (i.e. target values) and p(x, y) a probability
distribution on X × Y . Then the classification prob-
lem consists of finding a mapping g : X → Y which
minimizes the risk of misclassification

R[g] =

∫
|y − g(x)|p(x, y)dx = Pr(y ̸= g(x)) (1)

In practice one uses real valued functions f(x) :
X → ℜ rather than binary functions g and substitutes
g(x) = sign(f(x)). Furthermore, p(x, y) is not read-
ily available and one has to use a (labelled) training
set S = {(x1, y1), . . . , (xℓ, yℓ)} of ℓ points in order to
infer a suitable function f . This is generally done by
minimizing the empirical estimate (or training error)
of R[f], i.e.

Remp[f] =
1

ℓ

ℓ∑
i=1

|yi − sign(f(xi))| (2)

However, minimization of (2) is usually ill posed and
does not guarantee small R[f]. Good bounds on
the generalization error (Vapnik, 1998; Cristianini &
Shawe-Taylor, in press) can be obtained by seeking a
function f that achieves a large margin on the training
set, i.e. there exists a constant γ such that yif(xi) ≥ γ
for all 1 ≤ i ≤ ℓ. This goal is usually achieved by re-
placing the binary loss function in (2)

c(x, y, f(x)) = |y − sign(f(x))| (3)

by a margin-type loss function such as the soft margin
loss

c(x, y, f(x)) = max(0, 1− yf(x))s where s ≥ 1 (4)

or adaptive loss settings such as ν-loss (Schölkopf et
al., l999). However, minimizing such a modified loss
function still may be an ill posed problem and mini-
mizing it may just as well lead to poor generalization
performance.

Consequently a term Ω[f] controlling the class of ad-
missible functions has to be added and one therefore
obtains a regularized risk functional (cf. Smola (1998))

Rreg[f] = Remp[f] + λΩ[f]

=
1

ℓ

ℓ∑
i=1

c(xi, yi, g(xi)) + λΩ[f]. (5)

Here λ > 0 is the regularization (or trade–off) con-
stant which determines how much functions minimiz-
ing complexity are favoured over functions minimizing
Remp[f].

The problem of selective sampling can now be viewed
as follows. The minimizer of Rreg[f] has to be found
by selecting a set I ⊂ {1, . . . ℓ} of indices (if possible
with |I| ≪ ℓ) such that minimization of

RI
reg[f] = Remp[f] + λΩ[f]

=
1

ℓ

∑
i∈I

c(xi, yi, g(xi)) + λΩ[f] (6)

leads to some f∗ that comes close to minimizing
Rreg[f], too. Given some index Iold one strategy would
be to test all 2ℓ−|Iold| possible combinations of the la-
bellings so that the minimal improvement taken over
all possible labellings is then maximised. Clearly the
complexity of such an operation is prohibitively high
and we must instead opt for a computationally cheaper
heuristic strategy. This will be done in Section 3. Be-
fore going into details let us briefly review the special
type of learning machines that we will use for our ex-
periments.

2.2 Support Vector Machines

Support vector machines (SVMs) implement complex
decision rules by using a non-linear function ϕ to map
training points to a high-dimensional feature space,
where an optimal hyperplane is found which will min-
imise the regularized risk functional Rreg[f]. The
procedure for finding this optimal hyperplane can be
reduced to a quadratic programming task involving
maximisation of a corresponding dual objective func-
tion. The solution found by this optimisation task
has the remarkable property that it can be exclusively
expressed using a subset of the data (the support vec-
tors). The task of finding this subset and omitting the
labelling of the rest gives an obvious motivation for
considering query learning using SVMs.

For a SVM one considers the class of (non)linear func-
tions given by

f(x) = w · x+ b or f(x) = w · ϕ(x) + b. (7)

In particular, the separating hyperplane in X can be
characterised by the equation f(x) = w · x + b = 0,

x1
x2

Figure 1. The margin, γ, is the perpendicular distance
between the separating hyperplane and the closest points
(these are the support vectors). The region between the
hyperplanes through the support vectors on each side is
called the margin band. x1 and x2 are examples of support
vectors of opposite sign.

with f(xi) ≥ 0 if yi = +1 and f(xi) < 0 if yi = −1.
The distance between the separating hyperplane and
the closest points is called the margin and denoted γ
(Figure 1). The margin can be written γ = ∥w∥−1

(cf. Vapnik, 1998) so we may write the SV optimiza-
tion problem as minimization of the regularized risk
functional

Rreg[f] =
1

ℓ

ℓ∑
i=1

c(xi, yi, f(xi)) +
λ

2
∥w∥2. (8)

Computing the Wolfe dual from (8) yields the stan-
dard SV optimization task (Vapnik, 1998), namely
maximise:

W (α) = −
ℓ∑

i=1

αi+
1

2

ℓ∑
i,j=1

yiyjαiαj [ϕ(xi) · ϕ(xj)] (9)

subject to
ℓ∑

i=1

αiyi = 0. For the hard margin case:

αi ∈ [0,∞), while for the soft margin loss with s = 1:
αi ∈ [0, λℓ] and: ϕ(xi) · ϕ(xi) → ϕ(xi) · ϕ(xi) + λℓ/2
for s = 2. The weight vector w is found to be

w =
ℓ∑

i=1

αiyiϕ(xi). (10)

One can show (see e.g. Smola (1998), Smola &
Schölkopf., 1998) for details) that the size of the loss
function c(xi, yi, f(xi)) and of the corresponding La-
grange multiplier αi is connected via

αi ∈ ∂̄αic(xi, yi, f(xi)), (11)

where ∂̄αi denotes the subdifferential1 with respect to
αi. For the case of a soft margin loss this means
that we can infer two things. Firstly the size of αi

indicates whether the sample is inside the margin or
not, provided we have already trained on it. Secondly
it allows us to predict whether adding a new sample
would increase the dual objective function (and de-
crease the primal objective) since for αi = 0, which
is the default for patterns not yet trained on, only if
c(xi, yi, f(xi)) ̸= 0 can any gain be achieved.

In our later experimental study we define the sparsity
ratio ω as the ratio of the number of support vec-
tors over total data set size (i.e. the fraction of points
with non-zero subdifferential). Certain data sets can
be modelled by a sparse hypothesis with relatively few
support vectors in the decision function, whereas for
other data sets the hypothesis modelling the data can
be dense with a sparsity ratio nearer unity.

To complete the implementation of a SVM the final
task is to perform an implicit mapping into feature
space by replacing the inner product ϕ(x) · ϕ(x′) by a
closed form expression k(x,x′) which satisfies Mercer’s
condition (Vapnik, 1998; Cristianini & Shawe-Taylor
in press). Possible choices of kernel are Gaussians:

k(x′,x) = e−||x−x||2/2σ2

(12)

or polynomial kernels k(x′,x) = (x · x′ + 1)d.

3. An Algorithm for Selecting Instances

3.1 Selection Strategies

Given a subset I of the data we want to infer which
instance to choose next. Since we do not know the la-
bels yi on the rest of the data set we have to make as-
sumptions about the distribution of the yi. As already
noted we cannot afford to solve the optimization prob-
lem for all 2ℓ−|I| possible sets of labellings yi = {±1}
before picking one point. Thus we must use a heuristic
and we will assume that all terms c(xi, yi, f(xi)) where
i ̸= inew have an equal influence. This approximation
still leaves room for several strategies:

Random Labels. We assume that the predictions
of the (so far) found classifier fI (which minimizes
RI

reg[f]) are completely uncorrelated with the labels
on the unlabelled data. In this case we want to find
the index i corresponding to the largest expected error

1The advantage of the latter is that is it is well defined
even for continuous functions which are nondifferentiable
only on a countable set. There the subdifferential yields
the interval between the lhs and rhs limit of the standard
derivatives. In other words, ∂̄α|α| yields sign(α) for α ≠ 0
and [−1, 1] for α = 0.

contribution, i.e.

i = argmax
i̸∈I

1

2
[c (xi, 1, f (xi)) + c (xi,−1, f (xi))] .

(13)
In the soft margin case this simplifies to

i = argmax
i ̸∈I

1

2
[max(0, 1− f(xi))

s

+ max(0, 1 + f(xi))
s] . (14)

The assumption of randomness, however, may only be
good in the initial stage of training, where we can as-
sume that the estimate has little to do with the actual
data. Later on, however, we expect that sign(f(xi))
and yi are positively correlated since the algorithm
will have learned something about the training set, so
the assumption of randomness is a bad choice.

Worst Case. This implies, however, that the er-
ror c(xi, yi, f(xi)) can be expected to be small since
the labelling most likely will be correct (and possibly
only the margin small), i.e. yi is more likely to be
signf(xi) rather than −signf(xi). This is, however,
where c(xi, yi, f(xi)) is smallest. Thus we choose i
according to a worst case strategy on yi:

i = argmax
i ̸∈I

min(c(xi, 1, f(xi)), c(xi,−1, f(xi))).

(15)
In the soft margin case this can be simplified to

i = argmin
i ̸∈I
|f(xi)|. (16)

In other words, the points closest to the decision
boundary are chosen. However, this also entails that in
some cases no pattern xi will have a nonzero minimax
error (if all |f(xi)| ≥ 1) i.e. the margin is empty.

Empty Margin. In the case of an “empty” margin
we have two conflicting issues. On the one hand, (13)
suggests that we choose an xi with a very large func-
tion value, f(xi). On the other hand, (15) would sug-
gest choosing a pattern close to the margin. Neither
of the two strategies appears to be optimal, thus we
pick a pattern randomly from {1, . . . ℓ}\I. We will use
the labels of random patterns in Section 3.3 to decide
when to stop.

Hard Margin. Finally, for the hard margin cost func-
tion, c assumes only two function values: 0 and∞ (0 if
yif(xi) ≥ 1 and ∞ otherwise). This makes both (13)
and (15) fail equally. Hence we have to do some more
analysis in that case (however, we limit ourselves to
SV machines). We assume that a feasible solution of

the optimization problem exists, in other words, that
the data set is separable.

By analyzing the objective function Ω[f] = 1
2∥w∥

2,
subject to constraints yif(xi) ≥ 1, one can see that
training on a subset I is equivalent to ignoring some of
the constraints, and therefore adding data to I (adding
constraints) will only increase the objective function
∥w∥2. Hence, at every step we would like to add in
the constraint that causes Ω[f] to increase most (since
we start with an f that is not a feasible solution of the
optimization problem yet and a larger w will be closer
to the overall feasible solution). The largest increase
comes from a large decrease of the minimum margin
γ = 1/∥w∥, which is achieved by patterns lying as
close as possible to the decision boundary. Hence the
selection rule is identical to that of the ‘worst case’
strategy presented above.

3.2 The Algorithm

So far we have omitted any description of stopping
criteria for the algorithm. We will come to this issue
in Section 3.3 since it is largely detached from the de-
scription of the training algorithm itself. Following the
above argument our strategy is to start by requesting
the labels of a random subset of instances and sub-
sequently iteratively requesting the label of that data
point which is closest to the current hyperplane. For
learning with a hard margin we list the algorithm on
the next page.

Many real life data sets contain noise and outliers in
the data. These can be readily handled using the
soft margin technique for (9): either using the s = 2
loss amounting to an addition to the diagonal com-
ponents of the kernel matrix (Shawe-Taylor & Cris-
tianini, 1999) K(xi,xi)← K(xi,xi) + ν (ν, a positive
constant) or by limiting the influence of individual La-
grange multipliers 0 ≥ αi ≥ ν (for s = 1).

In practical situations cost or time constraints may
cause early stopping of the labelling process. How-
ever, if this is not an immediate concern, an important
question is the stopping criterion for effective termina-
tion of the process. A naive strategy would be to stop
when the dual objective function stops increasing, i.e.
when the queried points stop yielding additional infor-
mation. As we illustrate in section 4 this does work in
practice but only for noise-free data. A better heuris-
tic is to stop when the margin band is empty as we
outline in the algorithm below and detail in the next
Section:

An Algorithm for Hard Margin Query Learning

Input the unlabelled training patterns x1,x2, . . . ,xm.

Program Set w, b = 0.

Randomly select an initial starting set I of l instances
from the training data.

Repeat

Train on the set {xi|i ∈ I}:

max

[∑
i∈I

αi −
1

2

∑
i,j∈S

yiyjαiαjK(xi,xj)

]
subject to

∑
i∈I

yiαi = 0 and αi ≥ 0

Compute the decision function f(xi) for all unla-
belled members of the training set:

f(x) =
∑
i∈I

yiαiK(xi,x) + b

where b is chosen according to:

b =
1

2

[
min

{i|i∈I,yi=+1}
(w · ϕ(xi))

+ max
{i|i∈I,yi=−1}

(w · ϕ(xi))

]
Pick the training pattern, i⋆, such that:

i⋆ = argmin
i/∈I

|f(xi)|

If |f(xi)| ≥ 1 then
The margin band is empty, hence select a val-
idation set of m instances at random from the
unlabelled training set (see Section 3.3).

else Query the label yi⋆ and increment the set: I =
I ∪ {i⋆}

endif

until all labels have been requested, or the stopping crite-
rion has been met on the validation set of m instances
(Section 3.3)

Output the number of queries, query set I and coefficients
αi and b.

3.3 A Stop and Query Termination Criterion

A good stopping rule should be able to give an upper
bound on the probability of error on the remaining
(unlabelled) training set, given the current hypothesis
and the outcomes of previous queries (i.e. the label
set {yi : i ∈ I}). The main tool in the subsequent
analysis is a theorem by Hoeffding (1963) bounding the
deviation of empirical means from their expectations.

Theorem 1: Let ξ1, . . . , ξm be independent bounded
random variables such that ξi falls in the interval
[ai, ai + bi] with probability one. Denote their aver-
age by Sm = 1

m

∑
i ξi. Then for any ϵ > 0 one has

Pr{Sm − E[Sm] ≥ ϵ}
Pr{E[Sm]− Sm ≥ ϵ}

}
≤ exp

{
− 2m2ϵ2∑m

i=1 b
2
i

}
(17)

We have to adapt this statement to a large deviations
statement concerning sample averages over different
sample size. This can be readily constructed as fol-
lows. We quote a theorem Smola, Mangasarian and
Schölkopf (1999) which contains exactly the statement
we need.

Theorem 2: Let ξ1, . . . , ξM be independent identi-
cally distributed bounded random variables, falling
into the interval [a, a+b] with probability one. Denote
their average by SM = 1

M

∑
i ξi. Moreover denote by

ξs(1), . . . , ξs(M̃)
with M̃ < M a subset of the same ran-

dom variables (with s : {1, . . . , M̃} → {1, . . . ,M} be-
ing an injective map), and S

M̃
= 1/M̃

∑
i ξs(i). Then

for any ϵ > 0 one has

Pr{SM − S
M̃
≥ ϵ}

Pr{S
M̃
− SM ≥ ϵ}

}
≤ exp

{
− 2MM̃ϵ2

(M − M̃)b2

}
(18)

In the present case we set b = 1 (training errors count
as 1), m denotes the size of the (so far) unlabelled

training set M = m − |I|, and M̃ is the size of a
subset of {1, . . .m}\I on which no training has been
performed but on which the labels already have been
queried.

Thus with confidence 1−η the training error (the same
statement also holds for the margin error) on the whole
untested subset can be bounded by

S
M̃
≤ SM + ϵ where − log η ≤ 2MM̃ϵ2

M − M̃
. (19)

In other words, if, at some point, we perform M̃ queries
without updating the current hypothesis and observe
a (margin) error S

M̃
on these queries, (19) can be

applied. However, we may not be satisfied with the
first test query and decide to do some more train-
ing (and subsequently perform another query) before
stopping the algorithm. There exists always a prob-
ability that we just might have been lucky (the η
term), and these terms could add up. This can be

countered by systematically enlarging M̃ every time
we perform such a query such that the bound holds
for ηk = 2−kη. Then, even if these ‘lucky’ events
are independent, we can still make a statement with
1−

∑
k ηk ≤ 1−η

∑∞
k=1 2

−k = 1−η confidence. Hence
we obtain

S
M̃
≤ SM +

√
(M − M̃)(k log 2− log η)

2MM̃
(20)

< SM +

√
k log 2− log η

2M̃
. (21)

A practical algorithm using (20) will proceed as fol-
lows: train until either the margin band is empty or
until a stopping point specified by the user has been
met. Perform a random sampling of unlabelled sam-
ples such that with a confidence η (specified by the
user) a bound on the remaining training error can be
stated. If the user is satisfied then stop or continue
with training/querying if desired. Since we would like
our confidence rating to increase as we continue sam-
pling, we fix ϵ to be stated in terms of the remaining
error on the unlabelled data rather than the entire data
set.

4. Experiments

We now compare selective sampling and random sam-
pling on 2 artificial and 2 real data sets using the stop-
ping criteria stated above. The computational cost of
finding the data point closest to the current hyper-
plane is small compared to the cost involved in learning
so there is little difference between training times for
the two techniques. Predictably the number of queries
needed to achieve optimal performance depends on the
sparsity ratio, ω.

Artificial Data. As our first artificial example we will
choose a data set generated by the majority rule (a 1
if the majority of bits in the input string are +1 and
a −1 if the majority consists of −1). In Figure 2 we
see that selective sampling has a clear advantage over
random sampling of data points. In particular, after
querying a subset of about 60 samples, the decision
function is learnt correctly.

Figure 3 shows the rapid increase in the dual objec-
tive function (9) for query learning with the optimum
achieved after about 60 instances. Thus for noiseless
data sets - as in this case - monitoring the dual objec-
tive function provides a good stopping criterion

Figure 4 shows the corresponding performance for
the shift detection problem (Nowlan & Hinton, 1992).
Compared to the majority rule, selective sampling ap-
pears to have a less dramatic effect. For shift detection
the sparsity ratio is ω = 0.53 in contrast to the ma-
jority rule with ω = 0.28. Thus selective sampling
appears to be most effective if the target concept is
sparse. This makes sense since, with few support vec-

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140 160 180 200

Figure 2. Generalisation error (y axis) as a percentage ver-
sus number of patterns learnt (x axis) for random sampling
(top, right curve) and query learning (bottom, left curve).
Majority rule (with 20 components per instance) ran-
domly split into 200 training and 200 test instances aver-
aged over 100 samplings; Gaussian kernels with σ = 20.0.

0

500

1000

1500

2000

2500

3000

3500

4000

0 20 40 60 80 100 120 140 160 180 200

Figure 3. The averaged value of the objective function (y
axis) versus number of instances learnt (x axis) for the
majority rule. The upper (solid) curve corresponds to
query learning; lower (dashed) curve to random sampling.

tors, the dual objective function will stop increasing if
these support vectors can be found early in the process.
Indeed, for the majority rule, for example, we notice
that the rule is efficient in identifying support vectors
since, with a training set of 200 (Figure 2) there are
an average 56 support vectors against an average 60
queries made.

Real World Data. In Figure 5 we plot the corre-
sponding curves for the ionosphere data set from the
UCI Repository (Blake, Keogh & Merz, 1998). The
ionosphere data set had a sparsity ratio of 0.29 so the
advantages of selective sampling are clear. A plot of
the averaged distance to the separating hyperplane in-
dicates the closest points are outside the margin band
after an average 94 instances (Figure 6). We notice
that the generalisation error has a minimum for se-
lective sampling with a hard margin loss: after pass-
ing through this minimum the generalisation error in-
creases as the system learns outliers. In fact the cri-

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100 120 140 160 180 200

Figure 4. Generalisation error (y axis) as a percentage ver-
sus number of patterns learnt (x axis) for random sampling
(top, right curve) and query learning (bottom, left curve).
Shift detection data set randomly split into 200 train-
ing and 200 test instances averaged over 100 samplings;
Gaussians kernel with σ = 5.0.

10

12

14

16

18

20

22

24

26

28

30

0 20 40 60 80 100 120 140 160 180 200

Figure 5. Generalisation error (y axis) as a percentage ver-
sus number of patterns learnt (x axis) for random selection
(top curve) and query learning (bottom curve). UCI iono-
sphere data set randomly split into 200 training and 151
test instances averaged over 100 samplings; Gaussian ker-
nel with σ = 2.0.

terion of stopping when the margin band is empty ap-
pears a good heuristic for avoiding the learning of out-
liers for this data set. However, as mentioned earlier,
the influence of noise and outliers is best reduced by in-
troducing a soft margin loss function (4), for example,
by using the replacement K(xi,xi)← K(xi,xi)+ν (ν
positive) throughout the algorithm outlined in Section
3.2.

As a second example for real-life data sets we have
investigated classification of single handwritten digits
(one-against-all) for data from the USPS set of hand-
written postal codes (Lecun et al., 1989). For the digit
illustrated in Figure 7 we find the generalisation error
achieved by learning the entire data set (0.59%) is al-
ready achieved with approximately 1,000 queries.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100 120

Figure 6. The average minimal distance between the clos-
est point and the current separating hyperplane (y axis)
versus number of instances learnt (x axis) for the iono-
sphere data set averaged over 100 samplings. After an
average 94 instances the closest points lie outside the mar-
gin band.

0

2

4

6

8

10

12

14

0 200 400 600 800 1000 1200

Figure 7. Generalisation error (y axis) as a percentage ver-
sus number of patterns learnt (x axis) for random sam-
pling (top, solid curve) and query learning (bottom, dashed
curve). USPS data set with one-against-all classification
of digit 0. Label queries were made from a set of 7,291
digits (each consisting of 16×16 images with each com-
ponent lying in the range −1 to 1). The test set con-
sisted of 2,007 digits. Gaussian kernels were used with
σ = 1.8.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200 250 300 350

Figure 8. The sparsity ratio (y axis) versus number of pat-
terns learnt (x axis) for the UCI ionosphere data set (each
data point has been averaged over 100 samplings of the
data). As the size of the data set increases the sparsity
ratio tends to decrease. We have observed the same phe-
nonenon with all the data sets considered here.

5. Conclusion

In all the numerical experiments considered selective
sampling led to a more rapid decrease in generalisa-
tion error compared to random selection, though the
advantages of selective sampling can be small if the hy-
pothesis modelling the data is dense. This is not very
surprising since in cases where much data is needed
to model the hypothesis precisely, by definition one
simply cannot achieve the same result with less data.
However, sparsity ratios generally decrease as the vol-
ume of data increases (Figure 8) reaching a lower limit
(Smola, 1996). Thus the method should be particu-
larly useful for large data sets. Despite the fact that
you can initiate the algorithm with the previous αi so-
lution every time a new data point is learnt, training
times could still be too long as more data is learnt for
a large data set. In this case one could query the la-
bels of a set of points nearest the current hyperplane
rather than a single data point, reducing training time
at the expense of a small decrease in performance.

References

Angluin, D. (1988). Queries and concept learning.
Machine Learning, 2 , 319–342.

Baum, E. B. (1991). Neural networks which learn in
polynomial time from examples and queries. IEEE
Transactions on Neural Networks, 2 , 5–19.

Blake, C., Keogh, E., & Merz, C.J. (1998).
UCI repository of machine learning databases
(www.ics.uci.edu/∼mlearn/MLRepository.html).

Cristianini, N. & Shawe-Taylor, J. (in press). An in-
troduction to support vector machines. Cambridge,
UK: Cambridge University Press.

Freund, Y. & Schapire, R.E. (1997). A decision-
theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and
System Sciences, 55 , 119–139.

Freund, Y., Seung, S., Shamir, E., & Tishby, N. (1997).
Selective sampling using the query by committee al-
gorithm. Machine Learning, 28 , 133–168.

Hoeffding, W. (1963). Probability inequalities for
sums of bounded random variables. Journal of the
American Statistical Association, 58 , 13–30.

Le Cun, Y., Boser, B., Denker J.S., Henderson D.,
Howard R.E., Hubbard W., & Jackel L.J. (1989).
Backpropagation applied to handwritten zip code
recognition. Neural Computation 1 , 541-551.

Nowlan S.J. & Hinton, G.E. (1992). Simplifying neural

networks by soft weight-sharing. Neural Computa-
tion, 4 , 473–493.

Rivest R.L. & Eisenberg, B. (1990). On the sample
complexity of pac-learning using random and chosen
examples. In Proceedings of the 1990 Workshop on
Computational LearningTheory (pp. 154–162). San
Mateo, CA: Morgan Kaufmann.

Schölkopf, B. Bartlett, P.L., Smola, A. & Williamson,
R. (1999). Shrinking the tube: a new support vec-
tor regression algorithm. In Kearns, M.S., Solla,
S.A., and Cohn, D.A., editors, Advances in Neural
Information Processing Systems 11 (pp. 330 – 336).
Cambridge, MA: MIT Press.

Shawe-Taylor J. & Cristianini, N. (1999). Further
results on the margin distribution. In Proceedings
of the Twelth Annual Conference on Computational
Learning Theory, COLT’99.

Smola, A.J. (1996). Regression estimation with
support vector learning machines. Master’s the-
sis, Department of Physics, Technische Universität
München.

Smola, A.J. (1998). Learning with kernels. PhD the-
sis, Department of Computer Science, Technische
Universität Berlin.

Smola, A.J., Mangasarian, O.L. , & Schölkopf, B.
(1999). Sparse kernel feature analysis. Technical
Report 99-03, Data Mining Institute, University of
Wisconsin, Madison.

Smola, A.J. & Schölkopf, B. (1998). On a kernel–based
method for pattern recognition, regression, approx-
imation and operator inversion. Algorithmica, 22 ,
211–231.

Smola, A.J., Bartlett, P.L., Schölkopf, B., & Schu-
urmans, D. (in press). Advances in Large Margin
Classifiers. Cambridge, MA: MIT Press.

Vapnik, V. (1998). Statistical learning theory. New
York: Wiley.

