
Large Margin DAGs for
Multiclass Classification

John C. Platt
Microsoft Research
1 Microsoft Way

Redmond, WA 98052
jplatt@microsoft.com

Nello Cristianini
Dept. of Engineering Mathematics

University of Bristol
Bristol, BS8 1TR - UK

nello.cristianini@bristol.ac.uk

John Shawe-Taylor
Department of Computer Science

Royal Holloway College - University of London
EGHAM, Surrey, TW20 0EX - UK

j.shawe-taylor@dcs.rhbnc.ac.uk

Abstract

We present a new learning architecture: the Decision Directed Acyclic
Graph (DDAG), which is used to combine many two-class classifiers
into a multi-class classifier. For anN -class problem, the DDAG con-
tainsN(N � 1)=2 classifiers, one for each pair of classes. We present a
VC analysis of the case when the node classifiers are hyperplanes; the re-
sulting bound on the test error depends onN and on the margin achieved
at the nodes, but not on the dimension of the space. This motivates an
algorithm, DAGSVM, which operates in a kernel-induced feature space
and uses two-class maximal margin hyperplanes at each decision-node
of the DDAG. The DAGSVM is substantially faster to train and evalu-
ate than either the standard algorithm or Max Wins, while maintaining
comparable accuracy to both of these algorithms.

1 Introduction

The problem of multiclass classification, especially for systems like SVMs, doesn’t present
an easy solution. It is generally simpler to construct classifier theory and algorithms for two
mutually-exclusive classes than forN mutually-exclusive classes. We believe constructingN -class SVMs is still an unsolved research problem.

The standard method forN -class SVMs [9] is to constructN SVMs. Theith SVM will be
trained with all of the examples in theith class with positive labels, and all other examples
with negative labels. We refer to SVMs trained in this way as1-v-r SVMs (short for one-
versus-rest). The final output of theN 1-v-r SVMs is the class that corresponds to the SVM
with the highest output value. Unfortunately, there is no bound on the generalization error
for the 1-v-r SVM, and the training time of the standard method scales linearly withN .

Another method for constructingN -class classifiers from SVMs is derived from previous
research into combining two-class classifiers. Knerr [5] suggested constructing all possible



two-class classifiers from a training set ofN classes, each classifier being trained on only
two out ofN classes. There would thus beK = N(N � 1)=2 classifiers. When applied to
SVMs, we refer to this as1-v-1SVMs (short for one-versus-one).

Knerr suggested combining these two-class classifiers withan “AND” gate [5]. Fried-
man [4] suggested a Max Wins algorithm: each 1-v-1 classifiercasts one vote for its pre-
ferred class, and the final result is the class with the most votes. Friedman shows circum-
stances in which this algorithm is Bayes optimal.

A significant disadvantage of the 1-v-1 approach is that, unless the individual classifiers
are carefully regularized (as in SVMs), the overallN -class classifier system will tend to
overfit. The “AND” combination method and the Max Wins combination method do not
have bounds on the generalization error. Finally, the size of the 1-v-1 classifier may grow
superlinearly withN , and hence, may be slow to evaluate on large problems.

In Section 2, we introduce a new multiclass learning architecture, called the Decision Di-
rected Acyclic Graph (DDAG). The DDAG containsN(N � 1)=2 nodes, each with an
associated 1-v-1 classsifer. In Section 3, we present a VC analysis of DDAGs whose clas-
sifiers are hyperplanes, showing that the margins achieved at the decision nodes and the
size of the graph both affect their performance, while the dimensionality of the input space
does not. The VC analysis indicates that building large margin DAGs in high-dimensional
feature spaces can yield good generalization performance.Using such bound as a guide,
in Section 4, we introduce a novel algorithm for multiclass classification, based on placing
1-v-1 SVMs into nodes of a DDAG. This algorithm, called DAGSVM, is efficient to train
and evaluate. Empirical evidence for such efficiency is shown in Section 5.

2 Decision DAGs

A Directed Acyclic Graph (DAG) is a graph whose edges have an orientation and no cycles.
A Rooted DAG has a unique node such that it is the only node which has no arcs pointing
into it. A Rooted Binary DAG has nodes which have either 0 or 2 arcs leaving them.
We will use Rooted Binary DAGs in order to define a class of functions to be used in
classification tasks. The class of functions computed by Rooted Binary DAGs is formally
defined as follows.

Definition 1 Decision DAGs (DDAGs).Given a spaceX and a set of boolean functionsF = ff : X ! f0; 1gg, the classDDAG(F) of Decision DAGs onN classes overF are
functions which can be implemented using a rooted binary DAGwithN leaves labelled by
the classes where each of theK = N(N � 1)=2 internal nodes is labeled with an element
ofF . The nodes are arranged in a triangle with the single root node at the top, two nodes
in the second layer and so on until the final layer ofN leaves. Thei-th node in layerj < N
is connected to thei-th and(i+ 1)-st node in the(j + 1)-st layer.

To evaluate a particular DDAGG on inputx 2 X , starting at the root node, the binary
function at a node is evaluated. The node is then exited via the left edge, if the binary
function is zero; or the right edge, if the binary function isone. The next node’s binary
function is then evaluated. The value of the decision functionD(x) is the value associated
with the final leaf node (see Figure 1(a)). The path taken through the DDAG is known
as theevaluation path. The inputx reaches a node of the graph, if that node is on the
evaluation path forx. We refer to the decision node distinguishing classesi andj as theij-node. Assuming that the number of a leaf is its class, this node is thei-th node in the(N � j + i)-th layer providedi < j. Similarly thej-nodes are those nodes involving classj, that is, the internal nodes on the two diagonals containingthe leaf labelled byj.
The DDAG is equivalent to operating on a list, where each nodeeliminates one class from
the list. The list is initialized with a list of all classes. Atest point is evaluated against the



1 vs 4

2 vs 4 1 vs 3

3 vs 4 2 vs 3 1 vs 2

1
2
3
4

2
3
4

1
2
3

not 1 not 4

not 4 not 1 not 3not 2

3
4

4 3 2 1

2
3

1
2

1 1
1

1
1 1

11

4 4
44 44

2
2

22

2

2

2

3
3

3

3

3
3

1 vs 4 SVM

test points on this
side of hyperplane

cannot be in class 4

test points on this
side of hyperplane

cannot be in class 1

(a) (b)

Figure 1: (a) The decision DAG for finding the best class out offour classes. The equivalent
list state for each node is shown next to that node. (b) A diagram of the input space of a
four-class problem. A 1-v-1 SVM can only exclude one class from consideration.

decision node that corresponds to the first and last elementsof the list. If the node prefers
one of the two classes, the other class is eliminated from thelist, and the DDAG proceeds
to test the first and last elements of the new list. The DDAG terminates when only one class
remains in the list. For a problem withN classes,N � 1 decision nodes will be evaluated
in order to derive an answer.

The current state of the list is the total state of the system.Therefore, since a list state is
reachable in more than one possible path through the system,the decision graph that the
algorithm traverses is a DAG, not simply a tree.

Decision DAGs naturally generalize the class of Decision Trees, allowing for a more ef-
ficient representation of redundancies and repetitions that can occur in different branches
of the tree, by allowing the merging of different decision paths. The class of functions
implemented is the same as that of Generalized Decision Trees [1], but this particular rep-
resentation presents both computational and learning-theoretical advantages.

3 Analysis of Generalization

In this paper we study DDAGs where the node-classifiers are hyperplanes. We define a
Perceptron DDAGto be a DDAG with a perceptron at every node. Letw be the (unit)
weight vector correctly splitting thei andj classes at theij-node with threshold�. We
define the margin of theij-node to be
 = minc(x)=i;j fjhw; xi � �jg, wherec(x) is the
class associated to training examplex. Note that in this definition we only take into account
examples with class labels equal toi or j.
Theorem 1 Suppose we are able to classify a randomm sample of labeled examples using
a Perceptron DDAG onN classes containingK decision nodes with margins
i at nodei,
then we can bound the generalization error with probabilitygreater than1 � Æ to be less
than 130R2m �D0 log(4em) log(4m) + log 2(2m)KÆ �
whereD0 =PKi=1 1
2i , andR is the radius of a ball containing the support of the distribu-

tion.



Proof : see Appendix2
Theorem 1 implies that we can control the capacity of DDAGs byenlarging their margin.
Note that, in some situations, this bound may be pessimistic: the DDAG partitions the
input space into polytopic regions, each of which is mapped to a leaf node and assigned
to a specific class. Intuitively, the only margins that should matter are the ones relative to
the boundaries of the cell where a given training point is assigned, whereas the bound in
Theorem 1 depends on all the margins in the graph.

By the above observations, we would expect that a DDAG whosej-node margins are large
would be accurate at identifying classj, even when other nodes do not have large margins.
Theorem 2 makes this idea precise by showing that the appropriate bound depends only on
thej-node margins, but first we introduce the notation,�j(G) = Pfx : (x in classj andx
is misclassified byG) or x is misclassified as classj byGg.

Theorem 2 Suppose we are able to correctly distinguish classj from the other classes in
a randomm-sample with a DDAGG overN classes containingK decision nodes with
margins
i at nodei, then with probability1� Æ,�j(G) � 130R2m �D0 log(4em) log(4m) + log 2(2m)N�1Æ �
whereD0 =Xi2j-nodes

1
2i , andR is the radius of a ball containing the support of the

distribution.

Proof : follows exactly Lemma 4 and Theorem 1, but is omitted.2
Note that we can expressPfx : x misclassified byG jx in classj g � �j(G)Pfx in classjg : (1)

We may know the probability in the denominator a priori, or estimate it from the data with
high confidence. Note that taking the sum of�j(G) over the classesj will give a larger
bound on the overall generalization error than that given inTheorem 1.

4 The DAGSVM algorithm

Based on the previous analysis, we propose a new algorithm, called the Directed Acyclic
Graph SVM (DAGSVM) algorithm, which combines the results of1-v-1 SVMs. We will
show that this combination method is efficient to train and evaluate.

The analysis of Section 3 indicates that maximizing the margin of all of the nodes in a
DDAG will minimize a bound on the generalization error. Thisbound is also independent
of input dimensionality. Therefore, we will create a DDAG whose nodes are maximum
margin classifiers over a kernel-induced feature space. Such a DDAG is obtained by train-
ing eachij-node only on the subset of training points labelled byi or j. The final class
decision is derived by using the DDAG architecture, described in Section 2.

The DAGSVM separates the individual classes with large margin. It is safe to discard the
losing class at each 1-v-1 decision because, for the hard margin case, all of the examples
of the losing class are far away from the decision surface (see Figure 1(b)).

For the DAGSVM, the choice of the class order in the list (or DDAG) is arbitrary. One
possible heuristic is to place the most frequent classes in the center of the list. If the
DDAG decisions are random coin flips, then the distribution of class outputs would be
binomial. The experiments in Section 5 simply use a list of classes in the natural numerical



(or alphabetical) order. Limited experimentation with re-ordering the list did not yield
significant changes in accuracy performance.

The DAGSVM algorithm is superior to existing multiclass SVMalgorithms in both training
and evaluation time. Empirically, SVM training is observedto scale super-linearly with the
training set sizem [6], according to a power law:Tsingle = cm
 ; (2)

for 
 � 2 for algorithms that are based on the decomposition method, with some propro-
tionality constantc. For the standard 1-v-r multiclass SVM training algorithm,the entire
training set is used to create allN classifiers, hence the training time isT1�v�r = cNm
 : (3)

Assuming that the classes have the same number of examples, training each 1-v-1 SVM
only requires2m=N training examples. Thus, trainingK 1-v-1 SVMs would requireT1�v�1 = cN(N � 1)2 �2mN �
 � 2
�1cN2�
m
 : (4)

For a typical case, where
 = 2, the amount of time required to train all of the 1-v-1 SVMs
is independent ofN , and is only twice that of training a single 1-v-r SVM. Using 1-v-1
SVMs with a combination algorithm is thus preferred for training time.

5 Empirical Comparisons and Conclusions

The DAGSVM algorithm was evaluated on two different test sets: the USPS handwritten
digit data set [9] and the UCI Letter data set [2]. The USPS digit data consists of 10 classes
(0-9), whose inputs are pixels of a scaled input image. Thereare 7291 training examples
and 2007 test examples. The UCI Letter data consists of 26 classes (A-Z), whose inputs are
measured statistics of printed font glyphs. We used the first16000 examples for training,
and the last 4000 for testing. All inputs of the UCI Letter data set were scaled to lie in[�1; 1].
On each data set, we trainedN 1-v-r SVMs andK 1-v-1 SVMs, using projected conjugate
gradient, with soft margins. We combined the 1-v-1 SVMs bothwith the Max Wins algo-
rithm and with DAGSVM. The choice of kernel and of the regularizing parameterC was
determined via performance on a validation set. The validation performance was measured
by training on 70% of the training set and testing on 30% of thetraining set. The best kernel
was selected from a set of polynomial kernels (from degree 1 through 6), both homogenous
and inhomogenous; and Gaussian kernels, with various�.

Kernel � C Number of Number of Training
Chosen Errors Kernel CPU Time

Evaluations (sec)
USPS
1-v-r Gaussian 3.58 100 92/2007 2986 3968
Max Wins Gaussian 5.06 100 91/2007 1887 326
DAGSVM Gaussian 5.06 100 88/2007 828 326

UCI Letter
1-v-r Gaussian 0.447 100 86/4000 8227 3775
Max Wins Gaussian 0.632 100 96/4000 7320 744
DAGSVM Gaussian 0.447 10 90/4000 3844 1738

Table 1: Experimental Results

Table 1 shows the results of the experiments. The optimal parameters for all three multi-
class SVM algorithms are very similar for both data sets. Also, the error rates are similar



for all three algorithms for both data sets. Neither 1-v-r nor Max Wins is statistically
significantly better than DAGSVM using McNemar’s test [3] ata 0.05 significance level.

The three algorithms distinguish themselves in both training and evaluation time. The
number of kernel evaluations is a good indication of evaluation time. For 1-v-r and Max
Wins, the number of kernel evaluations is the total number ofunique support vectors for all
SVMs. For the DAGSVM, the number of kernel evaluations is thenumber of unique sup-
port vectors, averaged over the evaluation paths through the DDAG taken by the test set. As
can be seen in Table 1, Max Wins can be faster than 1-v-r SVMs, while the DAGSVM has
the fastest evaluation. The DAGSVM uses a factor of 2.1 and 3.6 fewer kernel evaluations
than the 1-v-r algorithm, which should translate into a similar evaluation time decrease.

The DAGSVM algorithm is also substantially faster to train than the standard 1-v-r SVM
algorithm: a factor of 2.2 and 11.9 times faster for these twodata sets. The Max Wins
algorithm shares a similar training speed advantage.

In summary, we have created a Decision DAG architecture, which is amenable to a VC-
style bound of generalization error. Using this bound, we created the DAGSVM algorithm,
which places a two-class SVM at every node of the DDAG. The DAGSVM algorithm
was tested versus the standard 1-v-r multiclass SVM algorithm, and Friedman’s Max Wins
combination algorithm. The DAGSVM algorithm yields comparable accuracies to the other
two algorithms, but yields substantial improvements in both training and evaluation time.

6 Appendix: Proof of Main Theorem

Definition 2 LetF be a set of real valued functions. We say that a set of pointsX is 
-
shattered byF relative tor = (rx)x2X , if there are real numbersrx, indexed byx 2 X ,
such that for all binary vectorsb indexed byX , there is a functionfb 2 F satisfying(2bx � 1)fb(x) � (2bx � 1)rx + 
. Thefat shattering dimension, fatF , of the setF is a
function from the positive real numbers to the integers which maps a value
 to the size of
the largest
-shattered set, if the set is finite, or maps to infinity otherwise.

As a relevant example, consider the classFlin = fx! hw; x i � � : kwk = 1g. We quote
the following result from [1].

Theorem 3 LetFlin be restricted to points in a ball ofn dimensions of radiusR about the
origin. Then

fatFlin
(
) � minfR2=
2; n+ 1g:

We will bound generalization with a technique that closely resembles the technique used
in [1] to study Perceptron Decision Trees. We will now give a lemma and a theorem: the
lemma bounds the probability over a double sample that the first half has zero error and the
second error greater than an appropriate�. We assume that the DDAG onN classes hasK = N(N � 1)=2 nodes and we denote fatFlin

(
) by fat(
).
Lemma 4 LetG be a DDAG onN classes withK = N(N � 1)=2 decision nodes with
margins
1; 
2; : : : ; 
K at the decision nodes satisfyingki = fat(
i=8), wherefat is con-
tinuous from the right. Then the following bound holds,P 2mfxy: 9 a graphG : G
which separates classesi and j at the ij-node for allx in x; a fraction of points mis-
classified iny > �(m;K; Æ):g < Æ where�(m;K; Æ) = 1m (D log(8m) + log 2KÆ ) andD =PKi=1 ki log(4em=ki).
Proof The proof of Lemma 4 is omitted for space reasons, but is formally analogous to the
proof of Lemma 4.4 in [7], and can easily be reconstructed from it. 2
Lemma 4 applies to a particular DDAG with a specified margin
i at each node. In practice
we observe these quantities after generating the DDAG. Hence, to obtain a bound that can



be applied in practice we must bound the probabilities uniformly over all of the possible
margins that can arise. We can now give the proof for Theorem 1.

Proof of Main Theorem : We must bound the probabilities over different margins. Wefirst
use a standard result due to Vapnik [8, page 168] to bound the probability of error in terms
of the probability of the discrepancy between the performance on two halves of a double
sample. Then we combine this result with Lemma 4. We must consider all possible patterns
of ki’s over the decision nodes. The largest allowed value ofki is m, and so, for fixedK,
we can bound the number of possibilities bymK . Hence, there aremK of applications of
Lemma 4 for a fixedN . SinceK = N(N � 1)=2, we can letÆk = Æ=mK , so that the sumPmk=1 Æk = Æ. Choosing��m;K; Æk2 � = 65R2m �D0 log(4em) log(4m) + log 2(2m)KÆ �

(5)

in the applications of Lemma 4 ensures that the probability of any of the statements failing
to hold is less thanÆ=2. Note that we have replaced the constant82 = 64 by 65 in order
to ensure the continuity from the right required for the application of Lemma 4 and have
upperboundedlog(4em=ki) by log(4em). Applying Vapnik’s Lemma [8, page 168] in
each case, the probability that the statement of the theoremfails to hold is less thanÆ. 2
More details on this style of proof, omitted in this paper forspace constraints, can be
found in [1].

References

[1] K. Bennett, N. Cristianini, J. Shawe-Taylor, and D. Wu. Enlarging the margin in perceptron
decision trees.submitted to Machine Learning. http://lara.enm.bris.ac.uk/cig/pubs/ML-PDT.ps.

[2] C. Blake, E. Keogh, and C. Merz. UCI repository of machinelearning databases. Dept. of
information and computer sciences, University of California, Irvine, 1998.
http://www.ics.uci.edu/�mlearn/MLRepository.html.

[3] T. G. Dietterich. Approximate statistical tests for comparing supervised classification learning
algorithms.Neural Computation, 10:1895–1924, 1998.

[4] J. H. Friedman. Another approach to polychotomous classification. Technical report, Stanford
University, Department of Statistics, 1996.
http://www-stat.stanford.edu/reports/friedman/poly.ps.Z.

[5] S. Knerr, L. Personnaz, and G. Dreyfus. Single-layer learning revisited: A stepwise procedure
for building and training a neural network. In Fogelman-Soulie and Herault, editors,
Neurocomputing: Algorithms, Architectures and Applications, NATO ASI Series. Springer,
1990.

[6] J. Platt. Fast training of support vector machines usingsequential minimal optimization. In
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors,Advances in Kernel Methods — Support
Vector Learning, pages 185–208, Cambridge, MA, 1999. MIT Press.

[7] J. Shawe-Taylor and N. Cristianini. Data dependent structural risk minimization for perceptron
decision trees. In M. Jordan, M. Kearns, and S. Solla, editors,Advances in Neural Information
Processing Systems, volume 10, pages 336–342. MIT Press, 1999.

[8] V. Vapnik. Estimation of Dependences Based on Empirical Data [in Russian]. Nauka, Moscow,
1979. (English translation: Springer Verlag, New York, 1982).

[9] V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.


