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Abstract

We present a new learning architecture: the Decision Dackéicyclic
Graph (DDAG), which is used to combine many two-class cl&ssi
into a multi-class classifier. For aN-class problem, the DDAG con-
tains N (N — 1)/2 classifiers, one for each pair of classes. We present a
VC analysis of the case when the node classifiers are hypeglthe re-
sulting bound on the test error dependsand on the margin achieved
at the nodes, but not on the dimension of the space. This atei\an
algorithm, DAGSVM, which operates in a kernel-induced featspace
and uses two-class maximal margin hyperplanes at eachiatecisde
of the DDAG. The DAGSVM is substantially faster to train angle-
ate than either the standard algorithm or Max Wins, whilentzaning
comparable accuracy to both of these algorithms.

1 Introduction

The problem of multiclass classification, especially fasteyns like SVMs, doesn’t present
an easy solution. Itis generally simpler to construct ¢festheory and algorithms for two
mutually-exclusive classes than for mutually-exclusive classes. We believe constructing
N-class SVMs is still an unsolved research problem.

The standard method fd¥-class SVMs [9] is to construct SVMs. Theith SVM will be
trained with all of the examples in thith class with positive labels, and all other examples
with negative labels. We refer to SVMs trained in this waylasr SVMs (short for one-
versus-rest). The final output of thé 1-v-r SVMs is the class that corresponds to the SVM
with the highest output value. Unfortunately, there is narmon the generalization error
for the 1-v-r SVM, and the training time of the standard meltkoales linearly withv.

Another method for constructinly-class classifiers from SVMs is derived from previous
research into combining two-class classifiers. Knerr [glggsted constructing all possible



two-class classifiers from a training set@fclasses, each classifier being trained on only
two out of N classes. There would thus Be= N (N —1)/2 classifiers. When applied to
SVMs, we refer to this as-v-1SVMs (short for one-versus-one).

Knerr suggested combining these two-class classifiers anthAND” gate [5]. Fried-
man [4] suggested a Max Wins algorithm: each 1-v-1 classifists one vote for its pre-
ferred class, and the final result is the class with the mastsvd-riedman shows circum-
stances in which this algorithm is Bayes optimal.

A significant disadvantage of the 1-v-1 approach is thatessthe individual classifiers
are carefully regularized (as in SVMs), the overdliclass classifier system will tend to
overfit. The “AND” combination method and the Max Wins comdtion method do not
have bounds on the generalization error. Finally, the sizheo1-v-1 classifier may grow
superlinearly withV, and hence, may be slow to evaluate on large problems.

In Section 2, we introduce a new multiclass learning archite, called the Decision Di-
rected Acyclic Graph (DDAG). The DDAG contaim§(N — 1)/2 nodes, each with an
associated 1-v-1 classsifer. In Section 3, we present a \&ysis of DDAGs whose clas-
sifiers are hyperplanes, showing that the margins achieivdtalecision nodes and the
size of the graph both affect their performance, while tmeatisionality of the input space
does not. The VC analysis indicates that building large madP@\Gs in high-dimensional
feature spaces can yield good generalization performddsig such bound as a guide,
in Section 4, we introduce a novel algorithm for multiclasssification, based on placing
1-v-1 SVMs into nodes of a DDAG. This algorithm, called DAGS8\/is efficient to train
and evaluate. Empirical evidence for such efficiency is shinmSection 5.

2 Decision DAGs

A Directed Acyclic Graph (DAG) is a graph whose edges haveremtation and no cycles.
A Rooted DAG has a unique node such that it is the only nodewids no arcs pointing
into it. A Rooted Binary DAG has nodes which have either 0 onr&adeaving them.
We will use Rooted Binary DAGs in order to define a class of fioms to be used in
classification tasks. The class of functions computed byt&bBinary DAGs is formally
defined as follows.

Definition 1 Decision DAGs (DDAGSs).Given a spaceX and a set of boolean functions
F={f:X — {0,1}}, the clasDDAG(.F) of Decision DAGs oV classes ovef are
functions which can be implemented using a rooted binary RAG N leaves labelled by
the classes where each of the= N (N — 1)/2 internal nodes is labeled with an element
of 7. The nodes are arranged in a triangle with the single rooteatithe top, two nodes
in the second layer and so on until the final layef\dfeaves. Thé-th node in layer < N

is connected to théth and(i + 1)-st node in thej + 1)-st layer.

To evaluate a particular DDAG on inputz € X, starting at the root node, the binary
function at a node is evaluated. The node is then exited \@ddft edge, if the binary
function is zero; or the right edge, if the binary functioroise. The next node’s binary
function is then evaluated. The value of the decision funmci? () is the value associated
with the final leaf node (see Figure 1(a)). The path takenutjincthe DDAG is known

as theevaluation path The inputz reaches a node of the graph, if that node is on the
evaluation path for:. We refer to the decision node distinguishing clagsasdj as the
ij-node. Assuming that the number of a leaf is its class, thitens thei-th node in the

(N — j +i)-th layer provided < j. Similarly thej-nodes are those nodes involving class
j, that is, the internal nodes on the two diagonals contaitiindeaf labelled by.

The DDAG is equivalent to operating on a list, where each reditieinates one class from
the list. The list is initialized with a list of all classes. t&st point is evaluated against the
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Figure 1: (a) The decision DAG for finding the best class odioof classes. The equivalent
list state for each node is shown next to that node. (b) A diagof the input space of a
four-class problem. A 1-v-1 SVM can only exclude one classificonsideration.

decision node that corresponds to the first and last elenoétite list. If the node prefers
one of the two classes, the other class is eliminated frortigheand the DDAG proceeds
to test the first and last elements of the new list. The DDA®eates when only one class
remains in the list. For a problem withi classes)N — 1 decision nodes will be evaluated
in order to derive an answer.

The current state of the list is the total state of the syst€herefore, since a list state is
reachable in more than one possible path through the sysfendecision graph that the
algorithm traverses is a DAG, not simply a tree.

Decision DAGs naturally generalize the class of Decisioae$t allowing for a more ef-

ficient representation of redundancies and repetitiorniscéya occur in different branches
of the tree, by allowing the merging of different decisiorthga The class of functions
implemented is the same as that of Generalized Decisiors Ttgebut this particular rep-

resentation presents both computational and learningrdiieal advantages.

3 Analysis of Generalization

In this paper we study DDAGs where the node-classifiers apefipjanes. We define a
Perceptron DDAGIo be a DDAG with a perceptron at every node. kebe the (unit)
weight vector correctly splitting théandj classes at théj-node with threshold. We
define the margin of thej-node to bey = min,(,)—; ; {|(w, =) — 0|}, wherec(z) is the
class associated to training exampleéNote that in this definition we only take into account
examples with class labels equalitor ;.

Theorem 1 Suppose we are able to classify a randensample of labeled examples using
a Perceptron DDAG orV classes containingg decision nodes with marging at nodei,
then we can bound the generalization error with probabifjtgater thanl — 4 to be less

than )
130R?

mE
(D' log(4em) log(4m) + log %)

whereD' = Zfil 715 andR is the radius of a ball containing the support of the distribu
tion. '



Proof: see Appendixd

Theorem 1 implies that we can control the capacity of DDAGgbhrging their margin.
Note that, in some situations, this bound may be pessimisitie DDAG partitions the
input space into polytopic regions, each of which is mapped keaf node and assigned
to a specific class. Intuitively, the only margins that sldomlatter are the ones relative to
the boundaries of the cell where a given training point isgaesl, whereas the bound in
Theorem 1 depends on all the margins in the graph.

By the above observations, we would expect that a DDAG wheasede margins are large
would be accurate at identifying clagseven when other nodes do not have large margins.
Theorem 2 makes this idea precise by showing that the apgptejmound depends only on
the j-node margins, but first we introduce the notation() = P{z : (« in classj andx

is misclassified by~) or = is misclassified as clagsby G'}.

Theorem 2 Suppose we are able to correctly distinguish clag®m the other classes in
a randomm-sample with a DDAGG over N classes containing’ decision nodes with
marginsy; at nodei, then with probabilityl — 4,

130R?

€;(G) < (D' log(4em) log(4m) + log M)

4]

. 1 : . -
w.hereD. = Ziej—nodesﬁ’ and R is the radius of a ball containing the support of the
distribution.

Proof: follows exactly Lemma 4 and Theorem 1, but is omitted.
Note that we can express

€ (@)

P{z : x misclassified b inclassj } < ————~—~ .
{z:w ¥l J )< P{zinclassj}

)

We may know the probability in the denominator a priori, diraate it from the data with
high confidence. Note that taking the sumepfG) over the classes will give a larger
bound on the overall generalization error than that givefhiaorem 1.

4 The DAGSVM algorithm

Based on the previous analysis, we propose a new algorithiledahe Directed Acyclic
Graph SVM (DAGSVM) algorithm, which combines the resultsled-1 SVMs. We will
show that this combination method is efficient to train analeate.

The analysis of Section 3 indicates that maximizing the rinaof all of the nodes in a
DDAG will minimize a bound on the generalization error. Thizund is also independent
of input dimensionality. Therefore, we will create a DDAG oge nodes are maximum
margin classifiers over a kernel-induced feature spaceh SIIDAG is obtained by train-
ing eachij-node only on the subset of training points labelleditmyr j. The final class
decision is derived by using the DDAG architecture, desatiim Section 2.

The DAGSVM separates the individual classes with large maitjis safe to discard the
losing class at each 1-v-1 decision because, for the hardimeaise, all of the examples
of the losing class are far away from the decision surface Eagure 1(b)).

For the DAGSVM, the choice of the class order in the list (orAZ) is arbitrary. One
possible heuristic is to place the most frequent classebdancenter of the list. If the
DDAG decisions are random coin flips, then the distributidértlass outputs would be
binomial. The experiments in Section 5 simply use a list asés in the natural numerical



(or alphabetical) order. Limited experimentation withamering the list did not yield
significant changes in accuracy performance.

The DAGSVM algorithm is superior to existing multiclass S\Aligorithms in both training
and evaluation time. Empirically, SVM training is obsertedcale super-linearly with the
training set sizen [6], according to a power law:

Tsingle =cm”, (2)

for v = 2 for algorithms that are based on the decomposition methitd,seme propro-
tionality constant. For the standard 1-v-r multiclass SVM training algorithithe entire
training set is used to create Al classifiers, hence the training time is
Ti—y_r =cNm". 3)

Assuming that the classes have the same number of exanmlie#ng each 1-v-1 SVM
only require2m /N training examples. Thus, trainirfg 1-v-1 SVMs would require
N(N-1) (2m

2 N
For a typical case, wherg= 2, the amount of time required to train all of the 1-v-1 SVMs

is independent ofV, and is only twice that of training a single 1-v-r SVM. Using/il
SVMs with a combination algorithm is thus preferred forniag time.

-
Ti_v_1=c ) ~ 27 LeN2 T, (4)

5 Empirical Comparisons and Conclusions

The DAGSVM algorithm was evaluated on two different tesssétte USPS handwritten
digit data set [9] and the UCI Letter data set [2]. The USP& da&fa consists of 10 classes
(0-9), whose inputs are pixels of a scaled input image. Therer291 training examples
and 2007 test examples. The UCI Letter data consists of 26e&$qA-Z), whose inputs are
measured statistics of printed font glyphs. We used theX8600 examples for training,
and the last 4000 for testing. All inputs of the UCI Letteralaet were scaled to lie in
[—1,1].

On each data set, we train@d1-v-r SVMs andK 1-v-1 SVMs, using projected conjugate
gradient, with soft margins. We combined the 1-v-1 SVMs heitih the Max Wins algo-
rithm and with DAGSVM. The choice of kernel and of the regiding parameteC' was
determined via performance on a validation set. The vaidgierformance was measured
by training on 70% of the training set and testing on 30% ofthaiming set. The best kernel
was selected from a set of polynomial kernels (from degréedugh 6), both homogenous
and inhomogenous; and Gaussian kernels, with various

Kernel o C  Numberof Number of Training
Chosen Errors Kernel CPU Time
Evaluations (sec)
USPS
1-v-r Gaussian 3.58 100 92/2007 2986 3968
Max Wins | Gaussian 5.06 100 91/2007 1887 326
DAGSVM | Gaussian 5.06 100 88/2007 828 326
UCI Letter
1-v-r Gaussian 0.447 100 86/4000 8227 3775
Max Wins | Gaussian 0.632 100 96/4000 7320 744
DAGSVM | Gaussian 0.447 10 90/4000 3844 1738

Table 1: Experimental Results

Table 1 shows the results of the experiments. The optimapeters for all three multi-
class SVM algorithms are very similar for both data sets.oAthe error rates are similar



for all three algorithms for both data sets. Neither 1-v-r Max Wins is statistically
significantly better than DAGSVM using McNemar's test [3pad.05 significance level.

The three algorithms distinguish themselves in both trgrand evaluation time. The
number of kernel evaluations is a good indication of evaduatime. For 1-v-r and Max
Wins, the number of kernel evaluations is the total numbemnafue support vectors for all
SVMs. For the DAGSVM, the number of kernel evaluations isrhenber of unique sup-
port vectors, averaged over the evaluation paths throwgDPAG taken by the test set. As
can be seen in Table 1, Max Wins can be faster than 1-v-r SVMaewhe DAGSVM has
the fastest evaluation. The DAGSVM uses a factor of 2.1 a6dever kernel evaluations
than the 1-v-r algorithm, which should translate into a Emévaluation time decrease.

The DAGSVM algorithm is also substantially faster to trdian the standard 1-v-r SVM
algorithm: a factor of 2.2 and 11.9 times faster for these data sets. The Max Wins
algorithm shares a similar training speed advantage.

In summary, we have created a Decision DAG architectureghvis amenable to a VC-
style bound of generalization error. Using this bound, veated the DAGSVM algorithm,
which places a two-class SVM at every node of the DDAG. The BXG! algorithm
was tested versus the standard 1-v-r multiclass SVM alyariand Friedman’s Max Wins
combination algorithm. The DAGSVM algorithm yields comglle accuracies to the other
two algorithms, but yields substantial improvements irhldodining and evaluation time.

6 Appendix: Proof of Main Theorem

Definition 2 Let F be a set of real valued functions. We say that a set of pdinis ~-
shattered byF relative tor = (r,).ex, if there are real numbers,, indexed by: € X,
such that for all binary vector$ indexed byX, there is a functionf, € F satisfying
(2by — 1) fo(z) > (2b, — 1)r, + . Thefat shattering dimensioriatz, of the setF is a
function from the positive real numbers to the integers Wiiaps a value to the size of
the largesty-shattered set, if the set is finite, or maps to infinity othsew

As a relevant example, consider the cld&g = {z — (w,z ) — 0 : ||w|| = 1}. We quote
the following result from [1].

Theorem 3 Let 7, be restricted to points in a ball of dimensions of radiug about the
origin. Then
fat]:Iin () < min{R?*/y* n + 1}.

We will bound generalization with a technique that closegambles the technique used
in [1] to study Perceptron Decision Trees. We will now giveemima and a theorem: the
lemma bounds the probability over a double sample that tsiehfalf has zero error and the
second error greater than an appropriat&Ve assume that the DDAG aN classes has
K = N(N - 1)/2 nodes and we denote ﬁﬁﬁtn (v) by fat(y).

Lemma 4 Let G be a DDAG onN classes withk' = N(N — 1)/2 decision nodes with
marginsy!,~?%,...,v% at the decision nodes satisfyig = fat(;/8), wherefat is con-
tinuous from the right. Then the following bound hold¥™{xy:3 a graphG : G
which separates classésand j at theij-node for allz in x, a fraction of points mis-
classified iny > e(m, K,6).} < 6 wheree(m,K,d) = L(Dlog(8m) + log %) and
D =" kilog(4em/k;).

Proof The proof of Lemma 4 is omitted for space reasons, but is flyraaalogous to the
proof of Lemma 4.4 in [7], and can easily be reconstructerhfito O

Lemma 4 applies to a particular DDAG with a specified margiat each node. In practice
we observe these quantities after generating the DDAG. élénmbtain a bound that can



be applied in practice we must bound the probabilities unifg over all of the possible
margins that can arise. We can now give the proof for Theorem 1

Proof of Main Theorem : We must bound the probabilities over different margins.fiiég
use a standard result due to Vapnik [8, page 168] to boundrtteapility of error in terms
of the probability of the discrepancy between the perforoeaon two halves of a double
sample. Then we combine this result with Lemma 4. We mustidenall possible patterns
of k;'s over the decision nodes. The largest allowed valuk; & m, and so, for fixedk,
we can bound the number of possibilitiesdy<. Hence, there areX of applications of
Lemma 4 for a fixedV. SinceK = N (N — 1)/2, we can let, = §/mX, so that the sum
> e, 8, = 4. Choosing

2 K
€ (m, K, 6—k> _ bR (D’ log(4em) log(4m) + log m) (5)
2 m 0

in the applications of Lemma 4 ensures that the probabifigng of the statements failing
to hold is less thaid/2. Note that we have replaced the constgt= 64 by 65 in order
to ensure the continuity from the right required for the #&gilon of Lemma 4 and have
upperboundedog(4em/k;) by log(4em). Applying Vapnik’s Lemma [8, page 168] in
each case, the probability that the statement of the thefaisro hold is less thah. O

More details on this style of proof, omitted in this paper$peace constraints, can be
foundin [1].
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