
Dynamically Adapting Kernels in SupportVector MachinesNello CristianiniDept. of Engineering MathematicsUniversity of Bristol, UKnello.cristianini@bristol.ac.uk Colin CampbellDept. of Engineering MathematicsUniversity of Bristol, UKc.campbell@bristol.ac.ukJohn Shawe-TaylorDept. of Computer ScienceRoyal Holloway Collegejohn@dcs.rhbnc.ac.ukAbstractThe kernel-parameter is one of the few tunable parameters in Sup-port Vector machines, controlling the complexity of the resultinghypothesis. Its choice amounts to model selection and its value isusually found by means of a validation set. We present an algo-rithm which can automatically perform model selection with littleadditional computational cost and with no need of a validation set.In this procedure model selection and learning are not separate,but kernels are dynamically adjusted during the learning processto �nd the kernel parameter which provides the best possible upperbound on the generalisation error. Theoretical results motivatingthe approach and experimental results con�rming its validity arepresented.1 IntroductionSupport Vector Machines (SVMs) are learning systems designed to automaticallytrade-o� accuracy and complexity by minimizing an upper bound on the general-isation error provided by VC theory. In practice, however, SVMs still have a fewtunable parameters which need to be determined in order to achieve the right bal-ance and the values of these are usually found by means of a validation set. Oneof the most important of these is the kernel-parameter which implicitly de�nes thestructure of the high dimensional feature space where the maximal margin hyper-plane is found. Too rich a feature space would cause the system to over�t the data,



and conversely the system can be unable to separate the data if the kernels are toopoor. Capacity control can therefore be performed by tuning the kernel parametersubject to the margin being maximized. For noisy datasets, yet another quantityneeds to be set, namely the soft-margin parameter C.SVMs therefore display a remarkable dimensionality reduction for model selection.Systems such as neural networks need many di�erent architectures to be tested anddecision trees are faced with a similar problem during the pruning phase. On theother hand SVMs can shift from one model complexity to another by simply tuninga continuous parameter.Generally, model selection by SVMs is still performed in the standard way: bylearning di�erent SVMs and testing them on a validation set in order to determinethe optimal value of the kernel-parameter. This is expensive in terms of computingtime and training data. In this paper we propose a di�erent scheme which dy-namically adjusts the kernel-parameter to explore the space of possible models atlittle additional computational cost compared to �xed-kernel learning. Futhermorethis approach only makes use of training-set information so it is more e�cient in asample complexity sense.Before proposing the model selection procedure we �rst prove a theoretical result,namely that the margin and structural risk minimization (SRM) bound on the gen-eralization error depend smoothly on the kernel parameter. This can be exploitedby an algorithm which keeps the system close to maximal margin while the kernelparameter is changed smoothly. During this phase, the theoretical bound given bySRM theory can be computed. The best kernel-parameter is the one which gives thelowest possible bound. In section 4 we present experimental results showing thatmodel selection can be e�ciently performed using the proposed method (though weonly consider Gaussian kernels in the simulations outlined).2 Support Vector LearningThe decision function implemented by SV machines can be written as:f(x) = sign Xi2SV yi�oiK(x; xi)� �!where the �oi are obtained by maximising the following Lagrangian (where m is thenumber of patterns): L = mXi=1 �i � 1=2 mXi;j=1�i�jyiyjK(xi; xj)with respect to the �i, subject to the constraints�i � 0 mXi=1 �iyi = 0and where the functions K(x; x0) are called kernels. The kernels provide an expres-sion for dot-products in a high-dimensional feature space [1]:K(x; x0) = h�(x);�(x0)i



and also implicitly de�ne the nonlinear mapping �(x) of the training data intofeature space where they may be separated using the maximal margin hyperplane.A number of choices of kernel-function can be made e.g. Gaussians kernels:K(x; x0) = e�jjx�x0jj2=2�2The following upper bound can be proven from VC theory for the generalisationerror using hyperplanes in feature space [7, 9]:� � O� R2m2�where R is the radius of the smallest ball containing the training set, m the numberof training points and  the margin (cf. [2] for a complete survey of the generaliza-tion properties of SV machines).The Lagrange multipliers �i are usually found by means of a Quadratic Program-ming optimization routine, while the kernel-parameters are found using a validationset. As illustrated in Figure 1 there is a minimum of the generalisation error forthat value of the kernel-parameter which has the best trade-o� between over�ttingand ability to �nd an e�cient solution.
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2 3 4 5 6 7 8 9 10Figure 1: Generalization error (y-axis) as a function of � (x-axis) for the mirror sym-metry problem (for Gaussian kernels with zero training error and maximal margin,m = 200, n = 30 and averaged over 105 examples).3 Automatic Model Order SelectionWe now prove a theorem which shows that the margin of the optimal hyperplane is asmooth function of the kernel parameter, as is the upper bound on the generalisationerror. First we state the Implicit Function Theorem.Implicit Function Theorem [10]: Let F (x; y) be a continuously di�erentiablefunction, F : U � <� V � <p ! <and let (a; b) 2 U � V be a solution to the equation F (x; y) = 0. Let the partialderivatives matrix mi;j = (@Fi@yj ) w.r.t. y be full rank at (a; b). Then, near (a; b),



there exists one and only one function y = g(x) such that F (x; g(x)) = 0, and suchfunction is continuous.Theorem: Themargin  of SV machines depends smoothly on the kernel parameter�.Proof: Consider the function g : � � < ! A � <p, g : � 7! (�o; �) which given thedata maps the choice of � to the optimal parameters �o and lagrange parameter �of the SV machine with Kernel matrix Gij = yiyjK(�;xi; xj)). LetW�(�) = pXi=1 �i � 1=2Xi;j �i�jyiyjK(�;xi; xj) + �(Xi yi�i)be the functional that the SV machine maximizes. Fix a value of � and let �o(�) bethe corresponding solution ofW�(�). Let I be the set of indices for which �oj (�) 6= 0.We may assume that the submatrix of G indexed by I is non-singular since otherwisethe maximal margin hyperplane could be expressed in terms of a subset of indices.Now choose a maximal set of indices J containing I such that the correspondingsubmatrix of G is non-singular and all of the points indexed by J have margin 1.Now consider the function F (�; �; �)i = �@W�@� �ji ; i � 1, F (�; �; �)0 = Pj yj�j inthe neighbourhood of �, where ji is an enumeration of the elements of J ,@W�@�j = 1� yjXi �iyiK(�;xi; xj) + �yjand satis�es the equation F (�; �o(�); �(�)) = 0 at the extremal points of W�(�).Then the SV function is the implicit function, (�o; �) = g(�), and is continuous(and unique) i� F is continuously di�erentiable and the partial derivatives matrixw.r.t. �; � is full rank. But the partial derivatives matrix H is given byHij = @Fi@�jj = yjiyjjK(�;xji ; xjj ) = Hji; i; j � 1;for ji; jj 2 J , which was non-degenerate by de�nition of J , whileH00 = @F0@� = 0 and H0j = @F0@�jj = yjj = @Fj@� = Hj0; j � 1:Consider any non-zero � satisfying Pj �jyj = 0, and any �. We have(�; �)TH(�; �) = �TG�+ 2��T y = �TG� > 0:Hence, the matrix H is non-singular for � satisfying the given linear constraint.Hence, by the implicit function theorem g is a continuous function of �. Thefollowing is proven in [2]: 2 =  pXi=1 �oi!�1which shows that  is a continuous function of �. As the radius of the ball containingthe points is also a continuous function of �, and the generalization error bound hasthe form � � CR(�)2k�o(�)k1 for some constant C, we have the following corollary.Corollary: The bound on the generalization error is smooth in �.This means that, when the margin is optimal, small variations in the kernel pa-rameter will produce small variations in the margin (and in the bound on thegeneralisation error). Thus � � �+�� and after updating the �, the system will



still be in a sub-optimal position. This suggests the following strategy for Gaussiankernels, for instance:Kernel Selection Procedure1. Initialize � to a very small value2. Maximize the margin, then� Compute the SRM bound (or observe the validation error)� Increase the kernel parameter: �  � + ��3. Stop when a predetermined value of � is reached else repeat step 2.This procedure takes advantage of the fact that for very small � convergence isgenerally very rapid (over�tting the data, of course), and that once the system isnear the equilibrium, few iterations will always be su�cient to move it back to themaximal margin situation. In other words, this system is brought to a maximalmargin state in the beginning, when this is computationally very cheap, and then itis actively kept in that situation by continuously adjusting the � while the kernel-parameter is gradually increased.In the next section we will experimentally investigate this procedure for real-lifedatasets. In the numerical simulations we have used the Kernel-Adatron (KA)algorithm recently developed by two of the authors [4] which can be used to train SVmachines. We have chosen this algorithm because it can be regarded as a gradientascent procedure for maximising the Kuhn-Tucker Lagrangian L. Thus the �i fora sub-optimal state are close to those for the optimum and so little computationale�ort will be needed to bring the system back to a maximal margin position:The Kernel-Adatron Algorithm.1. �i = 1.2. FOR i = 1 TO m� zi =Pmj=1 �jyjK(xi; xj)� i = yizi� ��i = �(1� i)� IF (�i + ��i) � 0 THEN �i = 0 ELSE �i  �i + ��i.� margin = 12 �min�z+i ��max �z�i ��(z+i (z�i ) = positively (negatively) labelled patterns)3. IF(margin = 1) THEN stop, ELSE go to step 2.4 Experimental ResultsIn this section we implement the above algorithm for real-life datasets and plot theupper bound given by VC theory and the generalization error as functions of �. Inorder to compute the bound, � � R2=m2 we need to estimate the radius of the ballin feature space. In general his can be done explicitly by maximising the followingLagrangian w.r.t. �i using convex quadratic programming routines:L =Xi �iK(xi; xi)�Xi;j �i�jK(xi; xj)subject to the constraintsPi �i = 1 and �i � 0. The radius is then found from [3]:



R =Xi;j �i�jK(xi; xj)� 2Xi;j �jK(xi; xj) +Xi K(xi; xi)However, we can also get an upper bound for this quantity by noting that Gaussiankernels always map training points to the surface of a sphere of radius 1 centered onthe origin of the feature space. This can be easily seen by noting that the distanceof a point from the origin is its norm:jj�(x)jj =ph�(x);�(x)i =pK(x; x) =pejjx�xjj=2�2 = 1In Figure 2 we give both these bounds (the upper bound is Pi �i=m) and general-isation error (on a test set) for two standard datasets: the aspect-angle dependentsonar classi�cation dataset of Gorman and Sejnowski [5] and the Wisconsin breastcancer dataset [8]. As we see from these plots there is little need for the addi-tional computational cost of determining R from the above quadratic progammingproblem, at least for Gaussian kernels. In Fig. 3 we plot the bound Pi �i=m andgeneralisation error for 2 �gures from a United States Postal Service dataset ofhandwritten digits [6]. In these, and other instances we have investigated, the mini-mum of the bound approximately coincides with the minimum of the generalisationerror. This gives a good criterion for the most suitable choice for �. Furthermore,this estimate for the best � is derived solely from training data without the needfor an additional validation set.
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