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Abstract

From a Bayesian perspective Support Vector
Machines choose the hypothesis corresponding
to the largest possible hypersphere that can be
inscribed in wversion space, i.e. in the space of
all consistent hypotheses given a training set.
Those boundaries of version space which are
tangent to the hypersphere define the support
vectors. An alternative and potentially better
approach is to construct the hypothesis using
the whole of version space. This is achieved
by using a Bayes Point Machine which finds
the midpoint of the region of intersection of
all hyperplanes bisecting version space into two
halves of equal volume (the Bayes point). Tt is
known that the center of mass of version space
approximates the Bayes point [Watkin, 1993].
We suggest estimating the center of mass by
averaging over the trajectory of a billiard ball
bouncing in version space. Experimental re-
sults are presented indicating that Bayes Point
Machines consistently outperform Support Vec-
tor Machines.

1 Introduction

Recently, the study of classification learning has shown
that the generalization error of classifiers based on real-
valued functions can be controlled by making use of a
quantity known as the margin. Let us consider the set

Hy, of kernel classifiers [Weston and Herbrich, 1999]*

f(x) = Zaik’(xi,x) aeR'. (1)

Here, k is referred to as a kernel and is assumed to
be symmetric and positive definite. It is known from
the theory of reproducing kernel Hilbert spaces (RKHS)
[Whaba, 1990] that there exists a fixed feature space F
not necessarily unique and a mapping ¢ : X' — F such

'As a slight abuse of notation we refer to both f and
sgn(f) as classifiers.
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that f can be expressed as an inner product between the
mapped point x and a vector w € F | i.e.

flx) = (w,0(x))F

Z ozid)(xi) .

Without loss of generality we assume in the following
that F is the surface of a hypersphere ||¢(x)[|z = 1.
Suppose we are given a training set S = {(x;,v:)}_, C
(X x {—1,+1})%. In a similar fashion to PAC analysis
we assume that there is a function f* € Hj such that
yi = f*(x;). Then the space of consistent hypotheses
— 1n the following referred to as the version space — is

defined by?

weF,

V(S) = {W|yif(xi) >0i=1,...,6]w|F= 1} - (2)

Learning algorithms making use of the margin v =
ming (y; f(x;)) bound the volume of version space from
below by a ball of radius ~. If the radius of this ball is
large relative to the total size of parameter space, the
effective complexity of the functions contained in the
ball is small (c.f. [Shawe-Taylor and Williamson, 1997]).
Nevertheless, one can imagine circumstances where V(5)
covers a large volume, which is poorly approximated by
the volume of the largest inscribable ball (see Figure 2).
Hence, large-margin classifiers are condemned to fail.
We will present an algorithm which overcomes this dif-
ficulty. The algorithm estimates the center of mass by
sampling from the whole of version space. Note that
large-margin classifiers implicitly approximate the cen-
ter of mass by the center of the inscribed hypersphere.
Since it is very difficult to efficiently sample from V(S
we follow the idea of [Rujan, 1997] and average over the
trajectory of a billiard ball bounced in V(5).

The paper is structured as follows: in the subsequent
section we revisit methods of learning linear classifiers.
In Section 3 we introduce an example of a Bayes Point

2Since multiplying each a; by an arbitrary constant would
not change f, uniqueness is ensured by a length constraint
on w.



Machine (BPM) which uses a billiard algorithm to ap-
proximate the center of mass of V(S) in kernel space.
Then, in Section 4 we present experimental results that
support the usefulness of our approach. Finally we con-
clude the paper and discuss the proposed technique.

2 Approaches to Learning Classifiers

Given version space the main question is: which linear
classifier in V(S) is optimal and consequently should be
returned by a learning algorithm? From the point of
view of empirical risk minimization all the linear clas-
sifiers in V(S) are equivalent. Basically, two different
approaches have been devised.

PAC Style Analysis Bounding the complexity of a
subset of classifiers from above, the VC/PAC-theory
of learning recommends to return the classifier fpac
originating from a subset of small complexity. Hence,
the term complexity refers to the VC-dimension, fat—
shattering dimension, or the margin attained on the
training set (for a detailed discussion and definition of
these concepts see [Shawe-Taylor et al., 1996; Vapnik,
1998]). The following theorem can serve as a basis for
the well known class of large-margin algorithms.

Theorem 1 ([Shawe-Taylor et al., 1996]). Suppose
mputs are drawn independently according to a dis-
tribution whose support is contained in the ball of
radius R. If we succeed in correctly classifying ¢ such
inputs by a hyperplane w € V(S) achieving a margin
of v = ming(y; f(x;)), then with confidence 1 — § the
generalization error will be bounded from above by

2 8el 8¢
z (K? 10g2 (7) 10g2(32£) + 10g2 ?) s
where k = |BTTR? /7).

Maximizing the margin v minimizes £ and thus con-
trols the generalization ability of the learning algorithm.
The corresponding learning problem is therefore given

by

maXy ming (y;(w, ¢(x;))r) = A
pilw,6(x:))r > A0 i=1,.. 1
s.t. 2
Wiz = 1.

Let us relax the unit norm constraint on w but instead
fix ming (yi(w, ¢(x;))r) =1 = W. Then, the solution
w1 to the former problem is up to a scaling equivalent
to the solution ws of the following problem

[[wll%

st ylw,o(x))r>1 i=1,....¢.

This optimization task is a QP problem and its solution
corresponds to the solution found by the Support Vec-
tor Machine (SVM). Note, that y;(w, ¢(x;))7 can also
be read as the distance of w from the hyperplane with
normal y;¢(x;) if ||¢(x;)]] = 1. Therefore SVMs can be
viewed as finding the center of the largest hypersphere
inscribable in version space (see Figure 1 and 2).

ming,

(3)

Bayesian analysis Assuming an a—priori distribution
over the space of classifiers and the data, return that
function fyrap having the maximal posterior probability
(MAP) or — using the posterior — the average linear
classifier fpayes under the posterior distribution®. In a
similar fashion to PAC analysis let us make a Bayesian
model and consider fyrap as well as the average classifier

[Bayes. Hence, we make the following assumptions:

Plylx,w) = d(y —sgn((w, ¢(x))5)) ,
I(1 —[Iwli%)
Jo(L—=1IvliF) dv
where J refers to the delta function. The first distribu-
tional assumption can be viewed as a noise—free learning
scenario. The second distributional assumption assumes
that each linear classifier is equally likely. Then given
a training set S, we have the following estimate for the

posterior distribution

= constant .

P(w)

P(w|S) id 1HP(yi|xi,w)P(w)

El:l
_ ~ if w e V(5)
0 otherwise ’
Z = P(9) :/ P(S|v)dP(v).
V(S)

It can be seen from these expressions that the fyrap 1s
not unique and thus classical perceptron learning is well
justified from a MAP perspective using PAC-like priors.
With a slight abuse of notation let us derive the Bayes
decision fpayes at point x using the posterior

o) = [ (w,0(x))5 dP(w]3)
= <WBayesa ¢(X)>}'
WBayes = / w dP(W|S) :
V(S)

It turns out that the center of mass in V(S) coincides
with the so called Bayes point wpayes. Here we made
use of the fact that our decision functions f are real
valued and linear, which gives for any prior P(w) that
fBayes € Hi. Another motivation for Wpayes 18 given
by the following: if we consider a new test point x, we
see that the Bayes—optimal decision functions are given
by {w]|P(sgn({w,¢(x))7)|x) > 0.5}. Tt was shown else-
where [Watkin, 1993; Opper and Haussler, 1991] that in
high-dimensional spaces Wgayes converges to the point
w* that is with high probability (over the choice of x)
within the set of Bayes—optimal decision functions.

3 Billiards in Kernel Space

In this section we present a BPM algorithm for esti-
mating the Bayes point by the center of mass?. The

®Note that this function need not necessarily be contained
in the original set of functions.
“For further details see [Herbrich et al., 1999].



approach utilized is similar to the method presented in
[Rujan, 1997]: in order to obtain the center of mass of
V(S) we randomly generate points (hyperplanes in input
space) and average over them. Since it is very difficult
to generate hyperplanes consistent with S we average
over the trajectory of a ball which is placed inside V(5)
and bounced like a billiard ball. Note that the bound-
aries of the billiard are given by the hyperplanes having
normal vectors y;¢(x;). This process converges to the
center of mass if our billiard is ergodic w.r.t. the uni-
form distribution in V(S). Although we cannot prove
this property, we introduce a randomization step in our
algorithm which is expected to produce ergodic billiards.

3.1 Notation

Based on the fact that we only play billiards in version
space we know that for each position b, direction vector
v of the ball, and each estimate w, of the center of mass
of V(S) we can write

4

b = Z%’¢(Xi) v € RY, (4)
221

v o= ) Bidx) Bi€R, (5)
221

w, = ZOzld)(Xl) aiERZ. (6)
i=1

Due to the uniqueness constraint we have to rescale these
vectors several times to unit length. This can be achieved
by virtue of

ZZ'yi’yjk(Xi,X]’), (7)

i=1 j=1

IbllF =

and similarly for v and w,,. At the beginning we assume
that wo = 0 < a = 0.

3.2 Playing Billiards

Once we have a starting point by inside version space
the algorithm can be subdivided into three steps

1. Determine the closest boundary starting from b into
direction v.

2. Update the ball’s position b’ at reflection and cal-
culate the new direction vector v'.

3. Update the center of mass of the trajectory by the
new line segment from b to b’ calculated on the
Riemannian manifold V(5).

Bouncing the ball Since it is very complicated to
compute the flight time of the ball on the Riemannian
manifold we can make use of the fact that the dis-
tances in Fuclidean and Riemannian spaces are order—
preserving (if the Euclidean distance exists). Thus, we

have for the flight time 7; of the ball at position b in di-
rection v to the hyperplane with normal vector y;¢(x;)

4
di =y > vik(xi,x;)
i=1
4
vi =y ) Bik(xix;)
i=1
d.
o= —V—j, (8)

After computing all ¢ flight times, we look for the small-
est positive, 1.e.

m = argmin; ., qT7; .

Update the ball position and the direction vector
The new point b’ and the new direction v’ are calculated
from

J2

b = b+TmVIZ(%’+Tmﬁi)¢(Xi) 9)
)
Vo= Ve 2o S (19)
205y
= 30 (- i) o).

i=1

Afterwards the position b’ and the direction vector v’
need to be normalized. This can easily be achieved using
Equation (7).

Updating the Center of Mass Since our solution
Woo has to live in V(S) we cannot simply take the
weighted vector addition to update w. Let us introduce
the operation @, acting on vectors of unit length. This
function has to have the following properties

la®ubllz = 1,
la—a@,bllr = plla—blr,
a®,b = gi(ab p)ates(ab,u)b.

A few lines of algebra then give the following formulas

for o1 and o9
p* —p*a,b)r —2
Ql(aaba/'t) \/_ <a b>}'—|— 1 M,

o2(a,b,p) = 1—p*+p*(a,b)r — o1(a,b)x

By assuming a constant line density on the manifold
V(S) the whole line between b and b’ can be represented
by the midpoint m on the manifold V(S) given by

b+ b’
- - 11
T e (1D
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Figure 1: Shown is the version space V(S) for a 3D-
toy problem. One can see that the approximation of the
Bayes point by the center of the largest inscribed sphere
is reasonable. For further details see the text.

Thus, one updates the center of mass of the trajectory

by
)
w, +

n
Wnt1 = 01 (Wn,m,m
n n+1

/\n+1 )
ny ’7 bl 12
o2 (W " An + /\n+1 " ( )

where we have used the A, = [|bl, — by ||+ for the length

of the trajectory in the n—th step and A,, = Zle A; for
the accumulated length up to the n—th step.

Exceptions and stopping criterion The only ap-
proximate step in the algorithm is made by comput-
ing the closest bounding hyperplane in Euclidean space
rather than Riemannian space. This can cause problems
if the curvature of the manifold is almost orthogonal to
the direction vector v in which case 7, — co. Here, we
suggest randomly generating a direction vector pointing
towards version space. Assuming that the last bounce
took place at the hyperplane having normal y,¢(xm)
this can easily be checked by

‘
YU (V, $(Xm ))F = tm Y _ Bik(xi, xm) > 0. (13)
i=1
This kind of “reset” also has the advantage of introduc-
ing a randomization to the billiard which 1s expected to
produce an ergodic billiard.

As astopping criterion we suggest computing an upper
bound on gy, the weighting factor of the new part of
the trajectory. If this value falls below a prespecified
threshold (TOL) we stop the algorithm. Note that the
increase in A,, will always lead to termination.

4 Experiments

For the purpose of visualization we randomly gener-
ated two datasets having 10 training and 10000 test
points in R3. The data points were labeled by a ran-
domly generated linear decision rule using the kernel

'Bounces’
'SVM solution’ &
“Circle’
N\, "BPM solution’ +

Figure 2: Shown is the version space V(.5) and the largest
inscribed sphere found by the SVM. Here, the approx-
imation for the whole version space 1s bad. This also
results in a significant difference in the generalization
errors (see text).

k(x,x") = (x,x')grs. We ran SVM learning and used
this solution as the starting point by of the BPM which
was terminated by setting TOL to 0.001 (around 7000
bounces). By tracking all the positions b, of the bil-
liard ball we could easily visualize the version space (see
Figure 1 and 2). From Figure 1 it can be seen that the
spherical approximation of V(S) by SVMs was reason-
able which consequently resulted in a very small gen-
eralization error estimated on the test set (SVM: 6.5%,
BPM: 6.1%). The situation dramatically changes if the
version space 1s more elongated as can be seen in Figure
2. Here the SVM solution and the Bayes point are far
apart, which results in a notable decrease of the general-
ization error using the Bayes point (SVM: 15.1%, BPM:
8.0%). Note, that in both cases the data points were
normalized to unit length.

To study the generalization performance on real world
data we used 7 standard datasets. These were heart,
thyroid, diabetes, sonar, and ionosphere from the
UCI Repository [UCIL, 1990], and banana and waveform,
two toy dataset studied by® [Ratsch et al., 1998]. In
each case the data has been randomly partitioned into
100 training and test sets generally in the ratio 60%:40%.
The means and standard deviations of the average gen-
eralization errors on the test sets are presented as per-
centages in the columns headed SVM and BPM in Table
1. Asin the toy example we used the hard margin SVM
(see Equation (3)). In every experiment we used RBF
kernels k(x,x’) = exp(—||x — x'||?/20?) with o speci-
fied in the third column. We fixed the tolerance TOL
for termination of the BPM algorithm to 0.01. As can
be seen, the BPM significantly outperforms the SVM on
almost all datasets. This justifies the advantage of us-
ing the Bayes point rather than the center of the largest
inscribed sphere.

5These datasets have been made publically available at
http://horn.first.gmd.de/~raetsch/data/benchmarks.htm.



SVM BPM o
Heart 25.440.40 22.84+0.34 | 10.0
Thyroid 5.340.24 4.440.21 3.00
Diabetes 33.14+0.24 32.0+0.25 5.0
Waveform 13.0+0.10 12.14+0.09 | 20.0
Banana 16.240.15 15.14+0.14 0.5
Sonar 15.440.37 15.940.38 1.0
lonosphere 11.940.25 11.5+0.25 1.5

Table 1: Experimental results on seven benchmark datasets.
The standard deviation was obtained on 100 different runs.
See the text for details.

5 Discussion and Conclusion

In this paper we presented an estimation method for the
Bayes point considering linear functions in Hilbert space.
We showed how the SVM can be viewed as a (spherical)
approximation method to the Bayes point hyperplane.
By randomly generating consistent hyperplanes playing
billiards in the version space we showed how to stochas-
tically approximate this point. In the field of Markov
Chain Monte Carlo methods such approaches are known
as reflective slice sampling [Neal, 1997]. Current investi-
gations in this field include the question of ergodicity of
such methods.

We would like to emphasize that an interesting prop-
erty of the algorithm was the ongoing decrease of the
test error even though we always enforced zero train-
ing error. This phenomenon was also observed in the
application of boosting methods (c.f. [Schapire et al.,
1997]). For boosting this could be explained by the max-
imization of the margin in the class of convex combina-
tions of base classifiers. In fact, we see that playing
billiards in kernel space can also be viewed as averaging
of base classifiers given by all the midpoints m (Section
2 and 3). Hence, our current investigation of theoret-
ical results for the Bayes point are made in a similar
way (see [Herbrich et al., 1999]6. The difference to the
studies made so far (see, e.g. |Cristianini et al., 1998;
Schapire et al., 1997]) is the fact that instead of averag-
ing binary classifiers the Bayes point is obtained as an
average of real valued classifiers. This recommends the
use of margin distribution bounds rather than hard mar-
gin bounds (see [Shawe-Taylor and Cristianini, 1998]).
Note that in our analysis the convex hull of H; coincides
with Hy itself which consequently changes the notion of
a margin compared to SVMs. Investigations of the gen-
eralization bounds for the Bayes point are also necessary
for resolving a major drawback of the presented method,
namely 1ts limitation to zero training error.
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