
Bayes Point Machines: Estimating the Bayes Point in Kernel SpaceRalf Herbrich�;y, Thore Graepel��Computer Science DepartmentTechnical University of Berlin10587 Berlin, Germany Colin CampbellyyDepartment of Engineering MathematicsBristol UniversityBristol BS8 1TR, United KingdomAbstractFrom a Bayesian perspective Support VectorMachines choose the hypothesis correspondingto the largest possible hypersphere that can beinscribed in version space, i.e. in the space ofall consistent hypotheses given a training set.Those boundaries of version space which aretangent to the hypersphere de�ne the supportvectors. An alternative and potentially betterapproach is to construct the hypothesis usingthe whole of version space. This is achievedby using a Bayes Point Machine which �ndsthe midpoint of the region of intersection ofall hyperplanes bisecting version space into twohalves of equal volume (the Bayes point). It isknown that the center of mass of version spaceapproximates the Bayes point [Watkin, 1993].We suggest estimating the center of mass byaveraging over the trajectory of a billiard ballbouncing in version space. Experimental re-sults are presented indicating that Bayes PointMachines consistently outperform Support Vec-tor Machines.1 IntroductionRecently, the study of classi�cation learning has shownthat the generalization error of classi�ers based on real{valued functions can be controlled by making use of aquantity known as the margin. Let us consider the setHk of kernel classi�ers [Weston and Herbrich, 1999]1f(x) = X̀i=1 �ik(xi;x) � 2 R` : (1)Here, k is referred to as a kernel and is assumed tobe symmetric and positive de�nite. It is known fromthe theory of reproducing kernel Hilbert spaces (RKHS)[Whaba, 1990] that there exists a �xed feature space Fnot necessarily unique and a mapping � : X 7! F such1As a slight abuse of notation we refer to both f andsgn(f) as classi�ers.

that f can be expressed as an inner product between themapped point x and a vector w 2 F , i.e.f(x) = hw; �(x)iF w 2 F ;w = X̀i=1 �i�(xi) :Without loss of generality we assume in the followingthat F is the surface of a hypersphere k�(x)kF = 1.Suppose we are given a training set S = f(xi; yi)gì=1 �(X � f�1;+1g)`. In a similar fashion to PAC analysiswe assume that there is a function f� 2 Hk such thatyi = f�(xi). Then the space of consistent hypotheses| in the following referred to as the version space | isde�ned by2V(S) = nwjyif(xi) > 0; i = 1; : : : ; `; kwk2F = 1o : (2)Learning algorithms making use of the margin 
 =minS(yif(xi)) bound the volume of version space frombelow by a ball of radius 
. If the radius of this ball islarge relative to the total size of parameter space, thee�ective complexity of the functions contained in theball is small (c.f. [Shawe-Taylor and Williamson, 1997]).Nevertheless, one can imagine circumstances where V(S)covers a large volume, which is poorly approximated bythe volume of the largest inscribable ball (see Figure 2).Hence, large{margin classi�ers are condemned to fail.We will present an algorithm which overcomes this dif-�culty. The algorithm estimates the center of mass bysampling from the whole of version space. Note thatlarge{margin classi�ers implicitly approximate the cen-ter of mass by the center of the inscribed hypersphere.Since it is very di�cult to e�ciently sample from V(S)we follow the idea of [Ruj�an, 1997] and average over thetrajectory of a billiard ball bounced in V(S).The paper is structured as follows: in the subsequentsection we revisit methods of learning linear classi�ers.In Section 3 we introduce an example of a Bayes Point2Since multiplying each �i by an arbitrary constant wouldnot change f , uniqueness is ensured by a length constrainton w.



Machine (BPM) which uses a billiard algorithm to ap-proximate the center of mass of V(S) in kernel space.Then, in Section 4 we present experimental results thatsupport the usefulness of our approach. Finally we con-clude the paper and discuss the proposed technique.2 Approaches to Learning Classi�ersGiven version space the main question is: which linearclassi�er in V(S) is optimal and consequently should bereturned by a learning algorithm? From the point ofview of empirical risk minimization all the linear clas-si�ers in V(S) are equivalent. Basically, two di�erentapproaches have been devised.PAC Style Analysis Bounding the complexity of asubset of classi�ers from above, the VC/PAC{theoryof learning recommends to return the classi�er fPACoriginating from a subset of small complexity. Hence,the term complexity refers to the VC{dimension, fat{shattering dimension, or the margin attained on thetraining set (for a detailed discussion and de�nition ofthese concepts see [Shawe-Taylor et al., 1996; Vapnik,1998]). The following theorem can serve as a basis forthe well known class of large{margin algorithms.Theorem 1 ([Shawe-Taylor et al., 1996]). Supposeinputs are drawn independently according to a dis-tribution whose support is contained in the ball ofradius R. If we succeed in correctly classifying ` suchinputs by a hyperplane w 2 V(S) achieving a marginof 
 = minS(yif(xi)), then with con�dence 1 � � thegeneralization error will be bounded from above by2̀ �� log2�8e`� � log2(32`) + log2 8�̀ � ;where � = b577R2=
2c.Maximizing the margin 
 minimizes � and thus con-trols the generalization ability of the learning algorithm.The corresponding learning problem is therefore givenbymaxw minS (yihw; �(xi)iF ) � �s:t: yihw; �(xi)iF � � > 0 i = 1; : : : ; `kwk2F = 1 :Let us relax the unit norm constraint on w but instead�x minS(yihw; �(xi)iF ) = 1 = �kwkF . Then, the solutionw1 to the former problem is up to a scaling equivalentto the solution w2 of the following problemminw kwk2Fs:t: yihw; �(xi)iF � 1 i = 1; : : : ; ` : (3)This optimization task is a QP problem and its solutioncorresponds to the solution found by the Support Vec-tor Machine (SVM). Note, that yihw; �(xi)iF can alsobe read as the distance of w from the hyperplane withnormal yi�(xi) if k�(xi)k = 1. Therefore SVMs can beviewed as �nding the center of the largest hypersphereinscribable in version space (see Figure 1 and 2).

Bayesian analysis Assuming an a{priori distributionover the space of classi�ers and the data, return thatfunction fMAP having the maximal posterior probability(MAP) or | using the posterior | the average linearclassi�er fBayes under the posterior distribution3. In asimilar fashion to PAC analysis let us make a Bayesianmodel and consider fMAP as well as the average classi�erfBayes. Hence, we make the following assumptions:P (yjx;w) = �(y � sgn(hw; �(x)iF )) ;P (w) = �(1� kwk2F )R �(1� kvk2F ) dv = constant :where � refers to the delta function. The �rst distribu-tional assumption can be viewed as a noise{free learningscenario. The second distributional assumption assumesthat each linear classi�er is equally likely. Then givena training set S, we have the following estimate for theposterior distributionP (wjS) iid= 1Z Ỳi=1P (yijxi;w)P (w)= � 1Z if w 2 V(S)0 otherwise ;Z = P (S) = ZV(S) P (Sjv)dP (v) :It can be seen from these expressions that the fMAP isnot unique and thus classical perceptron learning is welljusti�ed from a MAP perspective using PAC{like priors.With a slight abuse of notation let us derive the Bayesdecision fBayes at point x using the posteriorfBayes(x) = Z hw; �(x)iF dP (wjS)= hwBayes; �(x)iFwBayes = ZV(S)w dP (wjS) :It turns out that the center of mass in V(S) coincideswith the so called Bayes point wBayes. Here we madeuse of the fact that our decision functions f are realvalued and linear, which gives for any prior P (w) thatfBayes 2 Hk. Another motivation for wBayes is givenby the following: if we consider a new test point x, wesee that the Bayes{optimal decision functions are givenby fwjP (sgn(hw; �(x)iF )jx) � 0:5g. It was shown else-where [Watkin, 1993; Opper and Haussler, 1991] that inhigh{dimensional spaces wBayes converges to the pointw� that is with high probability (over the choice of x)within the set of Bayes{optimal decision functions.3 Billiards in Kernel SpaceIn this section we present a BPM algorithm for esti-mating the Bayes point by the center of mass4. The3Note that this function need not necessarily be containedin the original set of functions.4For further details see [Herbrich et al., 1999].



approach utilized is similar to the method presented in[Ruj�an, 1997]: in order to obtain the center of mass ofV(S) we randomly generate points (hyperplanes in inputspace) and average over them. Since it is very di�cultto generate hyperplanes consistent with S we averageover the trajectory of a ball which is placed inside V(S)and bounced like a billiard ball. Note that the bound-aries of the billiard are given by the hyperplanes havingnormal vectors yi�(xi). This process converges to thecenter of mass if our billiard is ergodic w.r.t. the uni-form distribution in V(S). Although we cannot provethis property, we introduce a randomization step in ouralgorithmwhich is expected to produce ergodic billiards.3.1 NotationBased on the fact that we only play billiards in versionspace we know that for each position b, direction vectorv of the ball, and each estimate wn of the center of massof V(S) we can writeb = X̀i=1 
i�(xi) 
i 2 R` ; (4)v = X̀i=1 �i�(xi) �i 2 R` ; (5)wn = X̀i=1 �i�(xi) �i 2 R` : (6)Due to the uniqueness constraint we have to rescale thesevectors several times to unit length. This can be achievedby virtue ofkbk2F = X̀i=1 X̀j=1 
i
jk(xi;xj) ; (7)and similarly for v and wn. At the beginning we assumethat w0 = 0, � = 0.3.2 Playing BilliardsOnce we have a starting point b0 inside version spacethe algorithm can be subdivided into three steps1. Determine the closest boundary starting from b intodirection v.2. Update the ball's position b0 at re
ection and cal-culate the new direction vector v0.3. Update the center of mass of the trajectory by thenew line segment from b to b0 calculated on theRiemannian manifold V(S).Bouncing the ball Since it is very complicated tocompute the 
ight time of the ball on the Riemannianmanifold we can make use of the fact that the dis-tances in Euclidean and Riemannian spaces are order{preserving (if the Euclidean distance exists). Thus, we

have for the 
ight time �j of the ball at position b in di-rection v to the hyperplane with normal vector yj�(xj)dj = yj X̀i=1 
ik(xi;xj)�j = yj X̀i=1 �ik(xi;xj)�j = �dj�j (8)After computing all ` 
ight times, we look for the small-est positive, i.e. m = argminj:�j>0�j :Update the ball position and the direction vectorThe new point b0 and the new direction v0 are calculatedfrom b0 = b+ �mv = X̀i=1(
i + �m�i)�(xi) (9)v0 = v � 2�mym �(xm)k�(xm)k2F (10)= X̀i=1 ��i � �(i;m) 2�iyik(xi;xi)��(xi) :Afterwards the position b0 and the direction vector v0need to be normalized. This can easily be achieved usingEquation (7).Updating the Center of Mass Since our solutionw1 has to live in V(S) we cannot simply take theweighted vector addition to update w. Let us introducethe operation �� acting on vectors of unit length. Thisfunction has to have the following propertieska�� bk2F = 1 ;ka� a�� bkF = �ka � bkF ;a �� b = %1(a;b; �)a+ %2(a;b; �)b :A few lines of algebra then give the following formulasfor %1 and %2%1(a;b; �) = s��2 � �2ha;biF � 2ha;biF + 1 � ;%2(a;b; �) = 1� �2 + �2ha;biF � %1ha;biF :By assuming a constant line density on the manifoldV(S) the whole line between b and b0 can be representedby the midpointm on the manifold V(S) given bym = b+ b0kb+ b0kF : (11)
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Figure 1: Shown is the version space V(S) for a 3D{toy problem. One can see that the approximation of theBayes point by the center of the largest inscribed sphereis reasonable. For further details see the text.Thus, one updates the center of mass of the trajectoryby wn+1 = %1�wn;m; �n�n + �n+1�wn +%2�wn;m; �n+1�n + �n+1�m ; (12)where we have used the �n = kb0n�bnkF for the lengthof the trajectory in the n{th step and �n =Pì=1 �i forthe accumulated length up to the n{th step.Exceptions and stopping criterion The only ap-proximate step in the algorithm is made by comput-ing the closest bounding hyperplane in Euclidean spacerather than Riemannian space. This can cause problemsif the curvature of the manifold is almost orthogonal tothe direction vector v in which case �m !1. Here, wesuggest randomly generating a direction vector pointingtowards version space. Assuming that the last bouncetook place at the hyperplane having normal ym�(xm)this can easily be checked byymhv; �(xm)iF = ym X̀i=1 �ik(xi;xm) > 0 : (13)This kind of \reset" also has the advantage of introduc-ing a randomization to the billiard which is expected toproduce an ergodic billiard.As a stopping criterion we suggest computing an upperbound on %2, the weighting factor of the new part ofthe trajectory. If this value falls below a prespeci�edthreshold (TOL) we stop the algorithm. Note that theincrease in �n will always lead to termination.4 ExperimentsFor the purpose of visualization we randomly gener-ated two datasets having 10 training and 10000 testpoints in R3. The data points were labeled by a ran-domly generated linear decision rule using the kernel
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Figure 2: Shown is the version space V(S) and the largestinscribed sphere found by the SVM. Here, the approx-imation for the whole version space is bad. This alsoresults in a signi�cant di�erence in the generalizationerrors (see text).k(x;x0) = hx;x0iR3 . We ran SVM learning and usedthis solution as the starting point b0 of the BPM whichwas terminated by setting TOL to 0.001 (around 7000bounces). By tracking all the positions bn of the bil-liard ball we could easily visualize the version space (seeFigure 1 and 2). From Figure 1 it can be seen that thespherical approximation of V(S) by SVMs was reason-able which consequently resulted in a very small gen-eralization error estimated on the test set (SVM: 6:5%,BPM: 6:1%). The situation dramatically changes if theversion space is more elongated as can be seen in Figure2. Here the SVM solution and the Bayes point are farapart, which results in a notable decrease of the general-ization error using the Bayes point (SVM: 15:1%, BPM:8:0%). Note, that in both cases the data points werenormalized to unit length.To study the generalization performance on real worlddata we used 7 standard datasets. These were heart,thyroid, diabetes, sonar, and ionosphere from theUCI Repository [UCI, 1990], and banana and waveform,two toy dataset studied by5 [R�atsch et al., 1998]. Ineach case the data has been randomly partitioned into100 training and test sets generally in the ratio 60%:40%.The means and standard deviations of the average gen-eralization errors on the test sets are presented as per-centages in the columns headed SVM and BPM in Table1. As in the toy example we used the hard margin SVM(see Equation (3)). In every experiment we used RBFkernels k(x;x0) = exp(�kx � x0k2=2�2) with � speci-�ed in the third column. We �xed the tolerance TOLfor termination of the BPM algorithm to 0.01. As canbe seen, the BPM signi�cantly outperforms the SVM onalmost all datasets. This justi�es the advantage of us-ing the Bayes point rather than the center of the largestinscribed sphere.5These datasets have been made publically available athttp://horn.�rst.gmd.de/�raetsch/data/benchmarks.htm.



SVM BPM �Heart 25.4�0.40 22.8�0.34 10.0Thyroid 5.3�0.24 4.4�0.21 3.00Diabetes 33.1�0.24 32.0�0.25 5.0Waveform 13.0�0.10 12.1�0.09 20.0Banana 16.2�0.15 15.1�0.14 0.5Sonar 15.4�0.37 15.9�0.38 1.0Ionosphere 11.9�0.25 11.5�0.25 1.5Table 1: Experimental results on seven benchmark datasets.The standard deviation was obtained on 100 di�erent runs.See the text for details.5 Discussion and ConclusionIn this paper we presented an estimation method for theBayes point considering linear functions in Hilbert space.We showed how the SVM can be viewed as a (spherical)approximation method to the Bayes point hyperplane.By randomly generating consistent hyperplanes playingbilliards in the version space we showed how to stochas-tically approximate this point. In the �eld of MarkovChain Monte Carlo methods such approaches are knownas re
ective slice sampling [Neal, 1997]. Current investi-gations in this �eld include the question of ergodicity ofsuch methods.We would like to emphasize that an interesting prop-erty of the algorithm was the ongoing decrease of thetest error even though we always enforced zero train-ing error. This phenomenon was also observed in theapplication of boosting methods (c.f. [Schapire et al.,1997]). For boosting this could be explained by the max-imization of the margin in the class of convex combina-tions of base classi�ers. In fact, we see that playingbilliards in kernel space can also be viewed as averagingof base classi�ers given by all the midpoints m (Section2 and 3). Hence, our current investigation of theoret-ical results for the Bayes point are made in a similarway (see [Herbrich et al., 1999]). The di�erence to thestudies made so far (see, e.g. [Cristianini et al., 1998;Schapire et al., 1997]) is the fact that instead of averag-ing binary classi�ers the Bayes point is obtained as anaverage of real valued classi�ers. This recommends theuse of margin distribution bounds rather than hard mar-gin bounds (see [Shawe-Taylor and Cristianini, 1998]).Note that in our analysis the convex hull of Hk coincideswith Hk itself which consequently changes the notion ofa margin compared to SVMs. Investigations of the gen-eralization bounds for the Bayes point are also necessaryfor resolving a major drawback of the presented method,namely its limitation to zero training error.AcknowledgmentsWe are greatly indebted to discussions with Craig Saun-ders, John Shawe{Taylor, and Jason Weston. We wouldalso like to thank S�ren Fiig Jarner for pointers to re-
ective slice sampling and interesting discussions aboutergodicity.
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