
A Multiplicative Updating Algorithm forTraining Support Vector MachinesNello Cristianini, Colin CampbellDepartment of Engineering Mathematics,University of Bristol, UKfnello.cristianini,c.campbellg@bris.ac.ukJohn Shawe-TaylorDepartment of Computer Science, Royal Holloway College, UKjst@dcs.rhbnc.ac.ukAbstract. Support Vector Machines �nd maximal margin hyperplanesin a high dimensional feature space, represented as a sparse linear com-bination of training points. Theoretical results exist which guarantee ahigh generalization performance when the margin is large or when therepresentation is very sparse. Multiplicative-Updating algorithms area new tool for perceptron learning which are guaranteed to convergerapidly when the target concept is sparse. In this paper we present aMultiplicative-Updating algorithm for training Support Vector Machineswhich combines the generalization power provided by VC theory withthe convergence properties of multiplicative algorithms.1. IntroductionMultiplicative-updating algorithms are a relatively new technique for trainingperceptrons. They were �rst introduced by Littlestone (with his work on Win-now [6]) and Warmuth, and further studied and developed by others [4]. Inthis approach, weights are modi�ed by a multiplicative factor rather than anadditive correction. This is equivalent to performing standard gradient descentin a di�erent space, obtained by taking the logarithm of the weight vector.This strategy is known to perform particularly well in the case of sparse targetconcepts, i.e. when many of the weights of the target perceptron are set to zero[4, 6].In this paper we propose a multiplicative updating rule which �nds a largemargin perceptron in the feature space of Support Vector Machines (SVMs).SVMs can perform complex classi�cation tasks by using a nonlinear function� to map training points, xi, to a high-dimensional space (called the FeatureSpace) where the dataset is linearly separable. By �nding the maximal separat-ing hyperplane in Feature Space good generalisation is ensured [8]. Moreoverthe representation of the solution is frequently sparse in the space where theoptimization is performed. We brie
y describe Support Vector Machines in the

next section and a multiplicative rule for training them in Section 3. Experi-mental results on real and arti�cial datasets are presented in section 4.2. Support Vector Learning AlgorithmsHyperplanes can be represented in Feature Space by means of kernel functionswhich represent the dot products between mapped pairs of input points:K(x0; x) =Xi �i(x0)�i(x)Examples of particular kernel functions are Gaussians and polynomial kernels:K(x; x0) = e�jjx�x0jj2=2�2 K(x; x0) = (hx; x0i+ 1)dGiven p input points xi and corresponding targets yi (where yi = �1), thelearning task amounts to �nding the �i which maximise the Lagrangian:L(�) = pXi=1 �i � 12 pXi;j=1�i�jyiyjK(xi; xj) (1)subject to constraints �i � 0 and Ppi=1 �iyi = 0. Only those points which lieclosest to the hyperplane have �i > 0 (the rest have �i = 0) and these are thesupport vectors which are therefore the most informative patterns in the data.The resulting decision function can then be written:f(x) = sign Xi2SV�oi yiK(x; xi) + �! (2)where �oi are the �i found after maximising L(�) and SV represent the indexesof the support vectors only (� is the bias).Suppose inputs are drawn independently according to a distribution ona domain X , and let c be any concept in X . Then, the probability that aconsistent hypothesis generated by d support vectors has error larger than � isupper bounded by: dXi=1 �pi�(1� �)p�iwhich implies the following upper bound (with con�dence 1 � �) for the testerror of a consistent hypothesis consisting of d support vectors [5]:� � 1p� d �d log2 �epd �+ log2 �p���Thus concepts which are sparse with few support vectors in the featurespace are associated with good generalisation.

3. A Multiplicative Learning Algorithm forTraining Support Vector Machines.Experimental and theoretical results indicate that multiplicative updatingrules converge faster than the traditional additive corrections of gradient de-scent techniques when the perceptron to be learned has many weights set tozero and is therefore sparse [4]. For general target functions, however, additiveand multiplicative updatings have been proved to be incomparable: dependingon the unknown target function, each can be faster or slower than the other.In general a multiplicative learning algorithm has a weight vector wt, andits predictions are yt = wt � xt. The update rule is:wt+1;i = wt;ie�� @L(wt)@wt;iwhere L(wt) is the chosen loss function to be minimized.For Support Vector Machines we wish to maximise the function: W(�) =L(�) � �Pi �iyi, where L(�) is the Lagrangian given in equation (1) and thesecond term implements the constraint Ppi=1 �iyi = 0. Furthermore maximi-sation of W(�) must observe the constraints: �i � 0. For many datasetsthe vector � will be sparse with only a small fraction of training points posi-tioned close to the separating hyperplane and therefore constituting supportvectors. This suggests that a multiplicative algorithm should be e�cient formany datasets.The partial derivative of W with respect to � is@W(�)@�k = 1�
k � �yk with
k = yk pXi=1 �iyiK(xi; xk):The updating rule for the �k is hence:�k �ke�(1�
k��yk)The value of � can be obtained by imposing satisfaction of the constraintPi �iyi = 0 throughout. The �nal value of � can be identi�ed with the bias,�, in (2). This condition becomes Pk(�ke�(1�
k��yk))yk = 0 and yields:e�� =vuutPk2fpositiveg �ke�(1�
k)Pk2fnegativeg �ke�(1�
k)A convenient initialization can be obtained by choosing �i > 0 such that:Xi �iyi = 0is satis�ed. For example if Np = jfyi > 0gj is the number of positively labelleddata points and Nn = jfyi < 0gj the number of negatively labelled points then:

�i = 1=Np for yi>0�i = 1=Nn for yi � 0The multiplicative updating algorithm is therefore:� Initialize �� For epoch = 1 to T{ For i = 1 to p calculate:
i = yiPk �kykK(xi; xk) endfor{ Calculate: � = 12� �logPk2pos �ke�(1�
k) � logPk2neg �ke�(1�
k)�{ For i = 1 to p: �i �i exp (�(1�
i � �yi)) endfor� endfor3.1. Analysis of ConvergenceA theoretical analysis shows that the same convergence properties ofMultiplicative-Updating algorithms also apply to multiplicative SV machines(see [1] for the proof): when there are few support vectors they outperformclassical gradient descent. In the bounds given in Corollaries 3.3 and 3.4 of [1],after a certain sequence S of updates the value of the objective function fallswithin a di�erence " from the optimal. Both the bound for gradient descentand the one for multiplicative updatings involve a pjSj in the denominator -hence we get the same rate of convergence in both cases - the di�erences lyingin the constants involved. The comparison of the two algorithms then involvescomparing the form of the two ":"GD = ppjSj j����0j�1 + R2
2 � "MU = 2
pjSjvuut�1 + R2
2 � pXi=1 �i ln���i�0i �where �� is the optimal solution and �0 is the initial point. The MU factoris signi�cantly smaller than the GD when we have a sparse �� (i.e. few supportvectors). Thus for an equivalent number of epochs, the multiplicative algorithmgoes much closer to the optimal point than an additive algorithm if the numberof support vectors is small. See [1] for futher details.4. Experimental ResultsWe have evaluated the performance of the algorithm on four classi�cationdatasets. For classi�cation with binary-valued inputs we have used the ma-jority rule and the mirror symmetry problem as examples. For classi�cation

datasets with analogue inputs we have used real-life datasets, namely, the sonarclassi�cation task of Gorman and Sejnowski [3] and the Wisconsin breast cancerdataset [7].4.1. Majority Rule. The majority rule is a straightforward binary classi�ca-tion task in which the inputs have binary-valued components �1 and the targetis +1 if the majority of bits in the input string are +1 with the output is a �1otherwise. For bit strings of length 40 and 200 training instances the �guresbelow display the margin (Fig. 1(left)) and generalisation error (Fig. 1(right):500 test examples were used) versus the number of epochs (for � = 5:0). Thetraining error reached 0 in the second epoch.
-0.2

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 50 100 150 200 250 300 350 400 450 500Figure 1: Margin evolution (left) and generalisation error vs number of epochs(right) for the Majority Rule4.2. Mirror Symmetry Problem. For the mirror symmetry problem theoutput is a 1 if the input pattern is exactly symmetrical about its centre,otherwise the output is a �1 (the input patterns have components �1). For� = 5:0, 200 training instances and inputs with 30 component values, themargin evolution (against number of epochs) is illustrated in Fig. 2(left). The�nal generalisation error was 0.0455 (or 95.5% generalisation) on a test set of10,000 (allowing repetitions).
-0.2

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0 500 1000 1500 2000Figure 2: Margin evolution: mirror symmetry problem (left). Generalisationerror vs number of epochs: sonar classi�cation experiment(right)4.3. Sonar classi�cation experiment. For the aspect-angle dependent

sonar classi�cation problem of Gorman and Sejnowski [3] the 208 instances areequally divided into a training and test set. For � = 1:0 the �nal generalisationperformance was 92.31% (Fig. 2(right)) which exceeded the maximum perfor-mance of 90.4% reported by Gorman and Sejnowski for a multi-layered neuralnetwork trained with the Back-Propagation algorithm and using a variablenumber of hidden nodes.4.4. Wisconsin Breast Cancer Dataset. The Wisconsin breast cancerdataset[7] contains 699 patterns with 9 attributes. There are 16 instanceswith missing values which we discarded from the training and test sets. With� = 1:0, a training set of 550 and test set of 133 instances we obtained a gener-alisation of 95.56% which compares favourably with results presented elsewhere[7]. The training error fell to 0 at the end of the �rst epoch.We have veri�ed that the solution obtained is identical to that for a Sup-port Vector Machine trained using a Quadratic Programming (QP) algorithm.Furthermore, the algorithm presented here can be readily extended to handleregression. However, the choice of the learning rate � remains unclear: if �is too large, the algorithm does not converge, too small and it is slow to con-verge. Currently the algorithm is slower than conventional QP algorithms forthis reason but this issue may be resolved with further research.References[1] Cristianini N., Campbell C,. Shawe-Taylor J., Multiplicative Updatings forSupport Vector Machines; Neurocolt Technical Report; www.neurocolt.com[2] Friess T., Cristianini N., Campbell C., The Kernel-Adatron: a Fast andSimple Learning Procedure for Support Vector Machines. In Shavlik, J.(ed), Proceedings of the Fifteenth International Conference on MachineLearning, 1998, p. 188-196.[3] Gorman, R.P. and Sejnowski, T.J., Neural Networks, 1(1988) p. 75-89.[4] Kivinen, J. and Warmuth, M., Journal of Information and Computation,vol. 132, no. 1, pp. 1-64, 1997[5] Littlestone, N. and Warmuth, M., Relating Data Compression and Learn-ability, unpublished manuscript, University of California Santa Cruz, 1986.[6] Littlestone, N., Machine learning, 2:285-318, 1994[7] Ster, B. and Dobnikar, in A. Bulsari et al. (ed.), Proceedings of the Inter-national Conference EANN'96, 1996, p. 427-430.[8] V.Vapnik, The Nature of Statistical Learning Theory, Springer Verlag 1995

