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AbstractSupport Vector Machines �nd the hypothesis that corresponds to thecentre of the largest hypersphere that can be placed inside versionspace, i.e. the space of all consistent hypotheses given a training set.The boundaries of version space touched by this hypersphere de�nethe support vectors. An even more promising approach is to constructthe hypothesis using the whole of version space. This is achieved bythe Bayes point: the midpoint of the region of intersection of all hy-perplanes bisecting version space into two volumes of equal magnitude.It is known that the centre of mass of version space approximates theBayes point [30]. The centre of mass is estimated by averaging overthe trajectory of a billiard in version space. We derive bounds on thegeneralisation error of Bayesian classi�ers in terms of the volume ratioof version space and parameter space. This ratio serves as an e�ectiveVC dimension and greatly in
uences generalisation. We present ex-perimental results indicating that Bayes Point Machines consistentlyoutperform Support Vector Machines. Moreover, we show theoreticallyand experimentally how Bayes Point Machines can easily be extendedto admit training errors.1 IntroductionRecently, there has been considerable interest in the theory and applicationof Support Vector Machines (SVMs) [28]. Compared to neural networks theyhave a number of advantages. For example, the hypothesis modelling thedata is explicitly represented in terms of the most informative patterns (thesupport vectors), the learning task amounts to optimisation of a Lagrangianwhich is provably convex, and they exhibit good generalisation, a propertywhich is motivated by theoretical results from statistical learning theory [21,28]. The SVM classi�er corresponds to the centre of the largest inscribablehypersphere in version space, i.e. the space of all hypotheses consistentwith the training data. Those boundaries of version space with which thehypersphere makes tangential contact correspond to the support vectors.A potentially better approach is to use all of version space to de�ne thehypothesis. As illustrated in Figure 4 this is a superior strategy if theversion space is elongated and asymmetric. Here SVMs are condemned tofail. We will consider learning machines based on approximating the Bayespoint, i.e. the midpoint of the region of intersection of all hyperplanes whichdivide version space into two halves of equal volume. This approach ispurely Bayesian: if we consider a new test point x, the set of Bayes{optimal1



Introduction 2decision functions is given by those weight vectors w whose posterior on abinary decision at x is greater than 0:5. As in general the intersection ofBayes{optimal decision functions for all x is empty we could approximate itby the centroid wBayes having knowledge of PC(x). This hypothesis is calledthe Bayes point. It was shown elsewhere [30, 15] that in high{dimensionalspaces wBayes converges to the centre of mass of version space. An additionalinsight into the usefulness of the Bayes point comes from the statisticalmechanics approach to neural computing where the generalisation error forBayesian learning algorithms has been calculated for the case of randomlyconstructed and unbiased patterns x [15]. Thus if � is the number of trainingexamples per weight and � is large, the generalisation error of the centre ofmass scales as 0:44=� whereas scaling with � is poorer for the solutions foundby the linear Support Vector Machine (maximally stable perceptron) (scalesas 0:50=� [16]), Adaline (scales as 0:24=p� [17]) and other approaches.The paper is structured as follows: in Section2 we revisit methods of learninglinear classi�ers. In Section 3 we introduce the Bayes Point Machine (BPM)algorithm which approximates the centre of mass of the version space V(S)by a billiard. In Section 4 we investigate bounds on the generalisation errorfor Bayesian classi�ers, SVMs, and BPMs. In Section 5 we demonstrateone method to incorporate training errors in BPMs. Then, in Section 6 wepresent experimental results which support the usefulness of our approach.The detailed derivations have been relegated to the appendix for betterlegibility of the main document.We denote the logarithm to base 2 by log2, and the natural logarithm byln. If S is a set set, jSj denotes its cardinality. Vectors are denotes by boldletters, e.g. w. Vector components are denoted by subscripts, e.g. wi. Thenorm of a vector w in the metric space F is denoted by kwkF , whereasthe inner product between two elements a;b 2 F is given by ha;biF . Thesymbols R and N denote the set of real and natural numbers, respectively.We do not explicitly state the measurability conditions needed for our ar-guments to hold. We assume with no further discussion "permissibility" ofthe function classes involved. We denote real{valued functions by f whereasbinary classi�ers obtained by thresholding are denoted by h = sign(f).



Approaches to Learning Linear Classi�ers 32 Approaches to Learning Linear Classi�ersLet us consider the set of kernel classi�ers [28, 31]h(x) = sign(f(x)) = sign X̀i=1 �ik(xi;x)! � 2 R` : (1)Here, k is referred to as a kernel and is assumed to be symmetric and positivede�nite. Then it is known from the theory of reproducing kernel Hilbertspaces (RKHS) [31] that there exists a feature space F and a mapping � :X 7! F | not necessarily unique | such that f can be expressed as aninner product between the mapped point x and a vector w 2 F , i.e.f(x) = hw; �(x)iF = X̀i=1 �i�(xi) w 2 F ;� 2 R` : (2)Without loss of generality we assume in the following that F is the surfaceof a hypersphere k�(x)kF = 1. Suppose we are given a training set S =f(xi; yi)gì=1 � (X � f�1;+1g)`. In a similar fashion to PAC analysis [25]we assume that there exists a function f� such that yi = sign(f�(xi)). Thenthe space of consistent hypotheses | in the following referred to as theversion space | is de�ned byV(S) = ff 2 H � F : yif(xi) > 0; i = 1; : : : ; `g : (3)In order to enforce a unique parameterisation of f in w (see Equation (2))we restrict ourself to a compact bounded set H 2 F of linear classi�ers inthe feature space F . In the subsequent sections we will use the set H givenby H = nf(�) = hw; �(�)iF : kwk2F = 1o ; (4)which is known to have �nite volume i� k ful�ls the Mercer conditions [12]and X is restricted to a compact set (see [31]). For any probability measurePH over H we de�ne the volume vol(A;P ) of A � H to bevol(A;P ) = ZA P (f) df <1 ; (5)where vol(A) is understood as the volume under the uniform distribution.



Approaches to Learning Linear Classi�ers 4Given a version space V(S) the main question is: which linear classi�erin V(S) is optimal and consequently should be returned by a learning al-gorithm? From an empirical risk minimisation point of view every linearclassi�er in V(S) is optimal. Thus, besides the possibility of returning a ran-domly selected classi�er out of V(S) | as done by the classical perceptronalgorithm [18], or the Gibbs learning rule (e.g. [9]) | di�erent approacheshave been devised.2.1 PAC Style AnalysisBounding the complexity of a subset of classi�ers from above, the VC/PACtheory of learning recommends returning the classi�er hPAC = sign(fPAC)originating from a subset of small complexity. Hence, the term complexityrefers to the VC dimension, fat shattering dimension, or the margin attainedon the training set (for a detailed discussion and de�nition of these conceptssee [21, 28] or Section 4). The following theorem to be found in [21] canserve as a basis for the well known class of large margin algorithms.Theorem 1. Suppose inputs are drawn independently according to a distri-bution whose support is contained in the ball of radius R. If we succeed incorrectly classifying ` such inputs by a hyperplane f 2 V(S) (see Equation(3) and (4)) achieving a margin of 
 = minS (yif(xi)), then with con�dence1� � the generalisation error will be bounded from above by2̀ ��log2�8e`� � log2(32`) + log2�8�̀ �� ;where � = b577R2=
2c.Maximising the margin 
 minimises � and thus allows algorithms to controltheir generalisation. The corresponding learning problem is therefore givenby maximizew minS (yihw; �(xi)iF) � 
s:t: yihw; �(xi)iF � 
 > 0 i = 1; : : : ; `kwk2F = 1 :Let us relax the unit norm constraint on w but instead �xminS (yihw; �(xi)iF) = 1 = 
kwkF :



Approaches to Learning Linear Classi�ers 5Then, the solution wPAC to the above problem is equivalent { up to a scaling{ to the solution wSVM of the following problemminimizew kwk2Fs:t: yihw; �(xi)iF � 1 i = 1; : : : ; ` :This optimisation problem is a QP problem and its solution wSVM corre-sponds to the solution found by the Support Vector Machine (SVM). Note,that yihw; �(xi)iF can also be read as the distance of w from the hyper-plane with normal yi�(xi) if k�(xi)kF = 1. Therefore SVMs can be viewedas �nding the centre of the largest hypersphere inscribable in version space(see Figure 4).2.2 Bayesian AnalysisAssuming an a{priori distribution PH over the space H of classi�ers and adistribution PX and PY over the objects and conditional classes, return thatfunction hMAP having the maximal posterior probability (MAP) or | usingthe posterior | the average decision hBayes of the linear classi�ers underthe posterior distribution. Note, that the latter is not necessarily containedin the original set of functions. In a similar fashion to PAC analysis let usmake a Bayesian model and consider hMAP as well as the average classi�erhBayes. Hence, we make the following assumptions:PY (yjx; f) = �(y � sign(f(x)) :where � refers to the delta function and f is de�ned by Equation(1) and(4). This distributional assumption can be viewed as a noise free learningscenario. Then given a training set S, we have the following estimate forthe posterior distributionPV(S)(f jS) iid= Qì=1 PY(yijxi; f)PH(f)P (S) = � PH(f)Z if f 2 V(S)0 otherwise ; (6)Z = P (S) = ZH PY(Sjf 0)PH(f 0) df 0 = vol(V(S);PH) :If we assume a uniform (
at) prior PH it becomes apparent that the MAPestimate hMAP is not unique and thus classical perceptron learning is well



Estimating the Bayes Point in Kernel Space 6justi�ed. Let us derive the Bayes decision hBayes at point x using the derivedposterior PV(S):fBayes �x;PV(S)� = ZH sign(f(x))PV(S)(f jS) df (7)= vol �W+1(S;x);PV(S)�� vol �W�1(S;x);PV(S)� ;where Wy(S;x) = ff 2 V(S) : sign(f(x)) = yg :We see that hBayes decides at a point x for the class y whose consistentfunctions Wy(S;x) occupy the larger volume under the posterior. Unfor-tunately, there is in general no unique function f 2 H which implementsfBayes. Given complete knowledge of PX we can single out the classi�erfbpwith the smallest distance to fBayes in the L2{metric, i.e.fbp = argminf2H Z �fBayes �x;PV(S)�� fbp(x)�2 PX (x) dx :This classi�er is called the Bayes point. It was shown elsewhere [30, 15]that under very mild conditions regarding PX in high dimensional spacesthe following approximation fcm converges at a fast rate to fbp:fcm(x) = ZH f(x)PV(S)(f jS) df = hwcm; �(x)iF ; (8)wcm = ZH vPV(S)(vjS) dv : (9)Note that fcm 2 H. The hyperplane wcm | which is merely the centre ofmass of V(S) | is also called the optimal perceptron [30]. In the followingsection we will present the BPM algorithm which is expected to return thecentre of mass of V(S) under the assumption of a uniform distribution PH.Note, that in this case PV(S) is also a uniform distribution over the versionspace. Finally note that there is no distribution independent rule to �ndthe Bayes point fbp solely on the basis of the training set S.3 Estimating the Bayes Point in Kernel SpaceWe now outline an algorithm for approximating the Bayes point by thecentre of mass assuming a uniform prior PH (the whole pseudo code is given



Estimating the Bayes Point in Kernel Space 7on page 39). The approach develops a method presented by Pal Ruj�an [19]:in order to obtain the centre of mass of V(S) we randomly and uniformlygenerate points (hyperplanes in input space) and average over them. Sinceit is di�cult to generate hyperplanes consistent with S we average over thetrajectory of a ball which is placed inside V(S) and bounced like a billiardball. The boundaries constraining the billiard are given by the hyperplaneswith normal vectors yi�(xi). This process converges to the centre of massunder the assumption of ergodicity with respect to the uniform distributionin V(S) [4].Based on the fact that we play billiards in V(S) each position b of the ball,direction vector v, and estimate wn of the centre of mass of V(S) can beexpressed as a linear combination of the mapped input points, i.e.wn = X̀i=1 �i�(xi) ; b = X̀i=1 
i�(xi) ; v = X̀i=1 �i�(xi) ; �;�;
 2 R` :Using this notation inner products and norms in F become, e.g.hb;viF = X̀i;j=1 �i
jk(xi;xj) ; kbk2F = X̀i;j=1 
i
jk(xi;xj) : (10)At the beginning we assume that w0 = 0, � = 0.Before generating a billiard trajectory in version space we �rst run any kernelperceptron learning algorithm to �nd an initial starting point b0 inside theversion space (e.g. SVM [27]). Then the algorithm consists of three steps:1. Determine the closest boundary starting from the current position binto direction v.Since it is computationally very demanding to calculate the 
ight timeof the ball on geodesics of the hypersphere H (see also [14]) we makeuse of the fact that the shortest distance in Euclidean space (if itexists) is also the shortest distance on the hypersphere H. Thus, wehave for the 
ight time �j of the ball at position b in direction vto the hyperplane with normal vector yj�(xj) (for further details seeAppendix A) �j = dj�j def= hb; �(xj)iFhv; �(xj)iF : (11)



Estimating the Bayes Point in Kernel Space 8After computing all ` 
ight times, we look for the smallest positive,i.e. m = argminj:�j>0�j :Computing the closest bounding hyperplane in Euclidean space ratherthan on geodesics causes problems if the curvature of the hypersphereH is almost orthogonal to the direction vector v, in which case �m !1. If this happens we randomly generate a direction vector v pointingtowards the version space. Assuming that the last bounce took placeat the hyperplane having normal ym�(xm) this condition can easily bechecked by ymhv; �(xm)iF > 0 : (12)2. Update the ball's position to b0 and the new direction vector to v0.The new point b0 and the new direction v0 are calculated from (seeAppendix A)b0 = b+ �mv = X̀i=1(
i + �m�i)�(xi) ; (13)v0 = v � 2�m�(xm) = X̀i=1 (�i � 2�im�i)�(xi) : (14)Afterwards the position b0 and the direction vector v0 need to benormalised. This can easily be achieved using Equation (10).3. Update the centre of mass wn of the whole trajectory by the new linesegment from b to b0 calculated on the hypersphere H.Since the solution w1 lies on the hypersphere H we cannot simplyupdate the centre of mass using a weighted vector addition. Let usintroduce the operation �� acting on vectors of unit length. Thisfunction has to have the following propertiesks�� tk2F = 1 ;kt � s�� tkF = � kt � skF ;s�� t = �1(s; t; �)s+ �2(s; t; �)t ;�1(s; t; �) � 0 ; �2(s; t; �) � 0 :



Bounds on the Generalisation Error 9This rather arcane de�nition implements a weighted addition of s and t suchthat � is the fraction between the resulting chord length kt� s�� tkF andthe total chord length kt � skF . A few lines of algebra (see Appendix A)then give the following formulae for �1(s; t; �) and �2(s; t; �)�1(s; t; �) = �s��2 � �2hs; tiF � 2hs; tiF + 1 ;�2(s; t; �) = ��1(s; t; �)hs; tiF � [�2(1� hs; tiF)� 1] :By assuming a constant line density on the manifold V(S) the whole linebetween b and b0 can be represented by the midpoint m on the manifoldV(S) given by m = b+ b0kb + b0kF :Thus, one updates the centre of mass of the trajectory bywn+1 = �1�wn;m; �n�n + �n�wn + �2�wn;m; �n�n + �n�m ;where �n = kbn � b0nkF is the length of the trajectory in the n{th step and�n =Pni=1 �i for the accumulated length up to the n{th step.As a stopping criterion we suggest computing an upper bound on �2, theweighting factor of the new part of the trajectory. If this value falls below apre-speci�ed threshold (TOL) we stop the algorithm. Note that the increasein �n will always lead to termination.4 Bounds on the Generalisation ErrorIn this section we start by deriving bounds on the generalisation error ofthe Bayesian classi�er hBayes given by Equation (7), i.e. the classi�er whichdecides at each point for the class whose functions occupy the larger volumeunder the posterior distribution PV(S). A similar study was done in [6, 23, 9].While the result presented in [6] is similar to ours in considering the ratio ofthe volume of parameter space to version space, we improve their bound ex-ponentially due to a fundamentally di�erent reasoning. The luckiness basedresults of [23] are limited to a set H of classi�ers with low dimensionality.Furthermore, only the spherical approximation is taken care of. Their luck-iness approach, however, is similar in spirit to our considerations. Lastly,



Bounds on the Generalisation Error 10the analysis of [9] aims at deriving upper bounds on the expected loss overthe prior PH and PD . While such a result is of use if the prior is knownto be correct, their worst case bounds are essentially as bad as classical VCbounds. Let us start with some de�nitions and background results.De�nition 1. Let f 2 H be a real valued function. Let S be a set of ` points(xi; yi) drawn randomly according to PD = PYPX . Then the quantityRemp(f ;S) = 1̀ jf(xi; yi) 2 S : sign(f(xi)) 6= yigjis de�ned as the training error of f on S. Furthermore, we de�neR(f ;PD) = PD f(x; y) : sign(f(xi)) 6= yigas the generalisation error of f w.r.t. the distribution PD .The ultimate goal of a learning algorithm is the minimisation of the gen-eralisation error based on the iid sample S, i.e. based on the training er-ror Remp(f ;S) accessible during learning.Since the learning task is usuallyviewed as selecting a function femp from a given set of functions H, distri-bution independent bounds are inherently connected with results about theuniform convergence of means to expectation values1 (see [29, 26, 28, 1]).Hence, all these bounds involve a complexity measure of the set of func-tions H known as the VC dimension. It was shown elsewhere [?] that theminimal real valued output used in a thresholded classi�cation provides ascale{sensitive VC dimension of H (from which the classi�cation functionwas chosen). Moreover, this real{valued complexity measure allows algo-rithms to minimise an upper bound on the generalisation error (e.g. SVMs[21], Adaboost [20], Weight decay [2]).In order to derive upper bounds on the generalisation error of a Bayesianclassi�er we note that the �nal prediction is solely based on the posteriordistribution PV(S) (given a set of functions H) and the Bayesian decisionrule. Hence, the task of learning2 cannot be viewed as selecting a certainmember femp from H but from the space HX of posteriors over H. Since the1Given an unknown probability PD the (in�nite) set of expectations is given byfR(f ;PD) : f 2 Hg.2Since without any test point x, the Bayesian inference method does not return anyclassi�er it is questionable if one can speak about learning. One potential idea to use theposterior is to calculate the posterior probability of certain labelings of a test set. Thisinference approach is also known as transduction.



Bounds on the Generalisation Error 11latter is usually too complex, classical PAC style analysis fails to explain theexcellent generalisation behaviour of Bayesian classi�ers.To set the stage for our result let us introduce the average generalisationerror of classi�ers.De�nition 2. Let H be a measurable space of real valued functions. LetPQ denote a probability measure on H. Let S be a set of ` points (xi; yi)drawn randomly according to PD. Then the quantityRemp(PQ;S) = ZH Remp(f ;S)PQ(f) dfis de�ned as the PQ{average training error on S. Furthermore, we de�neR(PQ;PD) = ZH R(f ;PD)PQ(f) dfas the PQ{average generalisation error of f .The following theorem due to McAllester[11] serves as the basis for ouranalysis.Theorem 2. For any probability measure PH over the spaceH of classi�ers,for any probability measure PD over the input space, with probability at least1 � � over the selection of the sample S of size ` we have the following forall measurable subsets Q � V(S)R(PQ;PD) � ln 1vol(Q;PH) + ln 1� + 2 ln `+ 1` ; (15)PQ(f) = ( PH(f)vol(Q;PH) f 2 Q0 else : (16)We are prepared to give our main result.Theorem 3. For any probability measure PH over the spaceH of classi�ers,for any probability measure PD over the input space with probability at least1� � over the selection of the sample S of size `, for any measurable subsetQ � V(S) the generalisation error of the Bayesian classi�er fBayes (�;PQ)whose posterior is given by Equation (16) is bounded from above byR (fBayes (�;PQ) ;PD) � 2̀ �ln 1vol (Q;PH) + ln 1� + 2 ln `+ 1� :



Bounds on the Generalisation Error 12Proof. In order to prove the theorem we show that for any probability PDand PQ, R (fBayes (�;PQ) ;PD) � 2R(PQ;PD). The result follows directlyfrom Theorem 2.Using Fubinis theorem (see e.g. [7]) let us rewrite R(PQ;PD) byR(PQ;PD) = ZH �ZD L(sign(f(x)); y)PD(x; y) dx dy�PQ(f) df= ZD �ZH L(sign(f(x)); y)PQ(f) df�PD(x; y) dx dy ;where the function L in the inner integral captures the 0{1 loss of f at point(x; y) and is de�ned by L(ŷ; y) = � 1 ŷ 6= y0 ŷ = y :At each (x; y) the set H boils down to two disjunctive sets H0(x; y) = ff :L(sign(f(x)); y) = 0g and H1(x; y) = ff : L(sign(f(x)); y) = 1g. Hence, thePQ{average generalisation error is given byR(PQ;PD) = ZD vol(H1(x; y);PQ)PD(x; y) dxdy :Similarly, dividing the set of points intoD0 = f(x; y) : L(sign(fBayes(x;PQ)); y) =0g and D1 = f(x; y) : L(sign(fBayes(x;PQ)); y) = 1g the generalisation errorof fBayes (;PQ) can be written asR (fBayes (�;PQ) ;PD) = ZD1 PD(x; y) dxdy :If (x; y) 2 D1, it follows that 8f 2 H1(x; y) : fBayes(x;PQ) = f(x). Byde�nition, at any point x the Bayesian classi�er fBayes(�;PQ) gives the sameoutput as the functions occupying the larger volume (under the posteriorPQ). Therefore, vol(H1(x; y);PQ) � 12 , or equivalently2vol(H1(x; y);PQ) � 1 = L(sign(fBayes(x;PQ)); y)This proves R(fBayes(�;PQ);PD) � 2R(PQ;PD).In contrast to the known results from PAC/VC theory (where the r.h.s. canbe evaluated before learning) the above bound is to be evaluated after train-ing. The result is essentially data{dependent and in the spirit of the luckiness



Bounds on the Generalisation Error 13framework: It measures how well aligned the true (unknown) distributionPD is with the assumed prior on dependencies PC. Note that for a �xedloss L each input distribution PD singles out an optimal decision functionf . The main di�erence to the luckiness results given in [21] is how classi�ersare characterised, i.e. in the above result the e�ective decrease of complexityof the Bayesian classi�er results from the fact that it summarises the clas-si�cations of all classi�ers f 2 V(S). In contrast, the luckiness frameworktreats each classi�er separately and | as a consequence | has to considerworst{case scenarios for single classi�ers. In the following we will study thevalue of the bound for the classical Bayesian decision. Furthermore, we willpresent an application of that bound to linear SVMs which leads to an ex-ponential improvement over previous bounds. At the end of this section wegive a bound for the classi�er estimated by the billiard algorithm.4.1 Applications to Classical Bayesian Classi�ersAccording to Equation (6) we see that for a PAC likelihood the posteriorPV(S) ful�ls the assumptions of Theorem 3 for any sample S from any dis-tribution PD. Noticing that vol(V(S);PH) is always less than or equal toone we see that the bound is minimized by choosing Q = V(S). This givesthe following corollary.Corollary 1. For any prior PH over the space H of classi�ers, for anyprobability measure PD over the input space with probability at least 1 � �over the selection of the sample S of size ` the generalisation error of the(classical) Bayesian classi�er fBayes ��;PV(S)� is bounded from above by2̀ �ln� 1vol(V(S);PH)� + ln 1� + 2 ln `+ 1� : (17)This result is very powerful because it relates the prior assumption PH on thefunctions to the unknown probability distribution PD underlying the data.In fact, if vol(V(S);PH) � 2�` the bound is trivial, i.e. greater than one.This does not imply that fBayes ��;PV(S)� has a high generalisation error, butonly that we are unable to give any guarantee on the generalisation error. Ifthe volume of version space under the posterior is signi�cantly larger than2�` the theorem gives tight bounds. Assuming that vol(V(S);PH) > !�12�`we plotted the value of the bound for varying values of ! versus increasingtraining set size in Figure 1 (a). Interestingly, even for small training sets (ofsize less than 100) we get nontrivial guarantees on the generalisation error of
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triviality line(a) (b)Figure 1: (a) Upper bound on the generalisation error of the Bayesian classi�erfBayes ��;PV(S)� (see Equation (17)) using a posterior vol(V(S);PH) > !�12�` versustraining set size ` for � = 0:05. The dotted line shows the \triviality line", i.e. all valuesabove that line are trivial bounds. (b) Upper bound versus the e�ective VC dimensionln� 1vol(V(S);PH)�. Clearly, the bound scales linearly in this quantity.fBayes(�;PV(S)). Note, that vol(V(S);PH) = 100 � 2�` (! = 0:01) for ` = 100is a posterior probability of 7:8 � 10�29. Even for such a small probabilityour result gives a guarantee for less than 70% generalisation error.In Figure 1 (b) we plotted the upper bound on the generalisation errorversus ln � 1vol(V(S);PH)� for varying training set sizes. Apart from the factthat this measure can be viewed as an e�ective VC{dimension we see thatfor ` = 1000 the value of the bound is consistently less than 0.5. This canbe made use of for the purpose of model selection. Nonetheless, we wouldlike to remark that it is di�cult in general to estimate the volume of versionspace accurately. Curiously, it seems possible to improve the bound byadjusting the prior probability. Note that it is assumed to �x PH before thetraining data arrives. Hence, if we have knowledge which functions suit theproblem at hand well (expressed by the unknown PD) we are able to bias ourcon�dence. If this expectation fails, i.e. if we have chosen an incorrect priorPH then the bound will report. This is clearly an advantage over classicalguarantees on Bayesian classi�ers.4.2 Applications to Support Vector MachinesIn order to make use of the result for SVMs we denote the largest inscrib-able ball in version space by B(S) � V(S). If we now de�ne a posterior



Bounds on the Generalisation Error 15distribution PSVM according toPSVM(f) = ( PH(f)vol(B(S);PH) f 2 B(S)0 otherwise ;we see that PSVM ful�ls the assumptions of Theorem 3 for all training sets Sand all distributions PD. Furthermore, fBayes ��;PB(S)�, the Bayesian classi-�er over PSVM (see Equation (7)) coincides with wSVM due to the fact thatB(S) ball being a ball is pointsymmetric w.r.t. its centre.A linear SVM bound Let us assume that our data space X is Rn endowedwith the kernel k(x;x0) = Pni=1 xix0i = hx;x0iRn. Furthermore, we assumethat for all x the kernel satis�es k(x;x) = 1, i.e the data lives on the unithypersphere in Rn. Then, given the margin 
 we know that for a uniformprior PH (see Appendix B.1)ln� vol(H)vol(B(S))� � n ln� 4
2� :This gives the following bound on the generalisation error for linear SVMclassi�ers.Corollary 2. Suppose inputs are drawn independently according to a dis-tribution whose support is contained on the sphere of radius one in Rn. Ifwe succeed in correctly classifying ` such inputs by a hyperplane f 2 V(S)(see Equation (3) and (4)) achieving a margin of 
 = minS(yif(xi)), thenwith con�dence 1� � over the selection of the samples S the generalisationerror will be bounded from above by2̀ �n ln �+ 2 ln `+ ln 1� + 1� ;where � = 4
2 .In contrast to the known result of Theorem 1 we see that our bound is oforder O(n ln �) whilst the former is of order O(� ln(`=�) ln(`)). Also, theconstants in 2 are much smaller than the constants in the classical SVMbounds. Furthermore, we see that the ratio of volumes simpli�es to the wellknown margin complexity. Once again this demonstrates that this ratioserves as an e�ective VC dimension. In Figure 2 (a) we plotted the valueof the upper bound for varying training set size as a function of increasing
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 � 0:01) the bound in Corollary 2 could report the superiority of\large" margins while the known result is in no regime non{trivial.4.3 Application to Bayes Point MachinesIn order to apply the result given by Theorem 3 to the Bayes point wcm wehave to de�ne a region R (wcm) � V(S) such that the Bayesian classi�erfBayes ��;PR(wcm)� under a uniform distribution over R (wcm) always agreeswith wcm. This is easily achieved by constructing an auxiliary mirroredversion space V (S0 (w)) w.r.t. any w 2 V(S). Formally, this space is givenby the set of all hyperplanes consistent with the auxiliary training set (seeAppendix A)S0 (w) = f2 hw; � (xi)iF � � (xi) ;+1 : (xi; yi) 2 Sg :



Bayes Point Estimation with Soft Boundaries 17The training set S0 (w) can be viewed as bounding hyperplanes yi� (xi)point{mirrored at point w. The subset R (w) of version space point sym-metric w.r.t. w is de�ned as the intersection of V(S) and V (S 0 (w)), i.e.R (w) = V �S 0 (w)� \ V (S) :Note, that the intersection of two convex sets is always convex [10]. More-over, by construction w agrees with the Bayesian classi�er using a uniformdistribution overR (w): For every data point � (x) bisecting R (w),w lies inthe half of larger volume. Consider only those � (x) where3 hw; � (x)iF = 0.Then for each classi�er w 2 W+1 = fw0 2 R (w) : hw0; � (x)iF > 0g thereexists a corresponding classi�er w 2 W�1 = fw0 2 R (w) : hw0; � (x)iF < 0gby mirror{symmetry, and vice versa (see Lemma 4). Hence, the volumesvol (W+1) and vol (W�1) are of equal magnitude under the uniform measureover R (w).The above argument holds for any classi�er w 2 V(S) and thus allows theapplication of Theorem 3 to arbitrary version space members. The volume tobe considered in the bound is vol (R (w)). Although the centre of mass wcmdoes not maximise R (w) it appears that under quite general circumstancesvol (R (wcm)) > vol (R (wSVM)) (for an example see Figure 4). Furtherinvestigations aim at constructing the true maximiser of vol (R (w)).5 Bayes Point Estimation with Soft BoundariesTo allow for training errors we will introduce the following version spaceconditions in place of those in Equation (3).yj X̀i=1 �ik(xi;xj) � ��yj�jk(xj;xj) ; (18)where � � 0 is an adjustable parameter related to the \softness" of versionspace boundaries.Clearly, considering this from the billiard viewpoint Equation (18) can beinterpreted as allowing penetration of the walls, an idea already hinted atin [19]. Since the decision function based on Equation (1) is invariant underany positive rescaling of the �i a factor �j on the right hand side makes� scale{invariant as well. Although other ways of incorporating training3For a �xed � (x) the resulting w form a so called Bayes line.



Bayes Point Estimation with Soft Boundaries 18errors are conceivable our formulation allows for a simple modi�cation ofthe algorithm described in Section 3. To see this we note that Equation(18) can be re-written asyj "X̀i=1 �i(1 + ��ij)k(xi;xj)# � 0Hence we can use the above algorithm but with an additive correction to thediagonal terms of the kernel matrix computed at the start of the algorithmk(xj ;xj) k(xj ;xj)+�. This additive correction to the kernel diagonals issimilar to the L2 error norm [5] used to introduce a soft margin during train-ing of SVMs which has recently been theoretically motivated [22]. Anotherinsight into the introduction of soft boundaries comes from noting that thedistance between two points �(xi) and �(xj) can be writtenk�(xi)� �(xj)k2F = k�(xi)k2F + k�(xj)k2F � 2h�(xi); �(xj)iF ;which in the case of soft boundaries becomes 2(1 + �� k(xi;xj)). Thus, ifwe add � to the diagonal elements of the kernel matrix, the points becomeequidistant for �! 1. This would give the resulting version space a moreregular shape. As a consequence, the centre of the largest inscribable sphere(SVM solution) would tend towards the centre of mass of the whole of versionspace.We want to note that our scheme of incorporating training errors allows usto bound the generalisation error using Theorem 3. Considering that thewhole parameter space is given by8<:w = X̀i=1 �i� (xi) : kwk2F =Xi Xj �i�j h� (xi) ; � (xj)i = 19=; :This can be rewritten asn� 2 R` : �TK� = 1o Kij = h� (xi) ; � (xj)iF = k (xi;xj) :Let us represent the kernel matrix by its spectral decomposition, i.e. K =UTDU where UTU = I and D = diag (�1; : : : ; �`) being the diagonalmatrix of eigenvalues �i. Thus we know that the parameter space is the setof all coe�cients e� = U� which ful�llne� 2 R` : e�TDe� = 1o :
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Figure 4: Version spaces V(S) for two 3D{toy problems. One can see that theapproximation of the Bayes point (diamond) by the centre of the largest inscribablesphere (cross) is reasonable if the version space is regularly shaped (left). The situationchanges in the case of an elongated and asymmetric version space V(S) (right).6 ExperimentsIn Figures 4 we illustrate the potential bene�ts of a BPM over a SVMfor elongated version spaces. We randomly generated two datasets with10 training and 10000 test points in R3. The data points were uniformlygenerated in [�1; 1]3 and labelled by a randomly generated linear decisionrule using the kernel k(x;x0) = hx;x0iR3. By tracking all positions bn wherethe billiard ball hits a version space boundary we can easily visualise theversion spaces. For the example illustrated in Figure 4 (right) the SVM andBayes point solutions with hard margins/boundaries are far apart resultingin a noticeable reduction in generalisation error of the BPM (8.0%) comparedto the SVM (15.1%) solution. For another toy example involving RBFkernels k(x;x0) = exp�kx� x0k2 =2�2� Figure 5 shows the resulting decisionfunctions in the hard margin case. Clearly, the BPM solution appears muchsmoother than the SVM solution although its minimal margin of 0:020 issigni�cantly smaller.To investigate the performance on real{world datasets we compared hardmargin SVMs to BPMs with hard boundaries (� = 0). We studied theperformance on 5 standard benchmarking datasets from the UCI Repository
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Figure 5: Decision functions for a 2D toy problem of a SVM (left) and BPM (right)using hard margins (� = 0) and RBF kernels with the same sigma � = 1. Note, thatthe BPM result in a much \
atter" function sacri�cing margin (
(wSV M) = 0:036!
(wcm) = 0:020) for smoothness.[24], and banana and waveform, two toy datasets4. In each case the data wasrandomly partitioned into 100 training and test sets in the ratio 60%:40%.The means and standard deviations of the average generalisation errors onthe test sets are presented as percentages in the columns headed SVM (hardmargin) and BPM (� = 0) in Table 1. The BPM outperforms SVMs onalmost all datasets at a statistically signi�cant level.In order to demonstrate the e�ect of positive � (soft boundaries) we traineda BPM with soft boundaries and compared it to training a SVM with softmargin using the same kernel matrix (see Equation (18)). Figure 6 showsthe generalisation error as a function of � for the toy problem from Figure 4and the dataset thyroid using the same setup as in the previous experiment.We observe that the SVM with an L2 soft margin achieves a minimum ofthe generalisation error which is close to, or just above, the minimum errorwhich can be achieved using a BPM with positive �. This may not be toosurprising taking the change of geometry into account (see Section 5). Thus,4Publically available at http://horn.�rst.gmd.de/~raetsch/data/benchmarks.htm.
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BPMFigure 6: Comparison of soft boundary BPM with soft margin SVM. Plotted is theGeneralisation error versus � for a toy problem using linear kernels (left) and the thyroiddataset using RBF kernels with � = 3:0 (right). The error bars indicate one standarddeviation of the estimated mean.also the soft margin SVMs approximates BPMs with soft boundaries.SVM (hard margin) BPM (hard boundary) � p-valueHeart 25.4�0.40 22.8�0.34 10.0 1.00Thyroid 5.3�0.24 4.4�0.21 3.00 1.00Diabetes 33.1�0.24 32.0�0.25 5.0 1.00Waveform 13.0�0.10 12.1�0.09 20.0 1.00Banana 16.2�0.15 15.1�0.14 0.5 1.00Sonar 15.4�0.37 15.9�0.38 1.0 0.01Ionosphere 11.9�0.25 11.5�0.25 1.5 0.99Table 1: Experimental results on seven benchmark datasets. Shown is the estimatedgeneralisation error in percent. The standard deviation was obtained on 100 di�erentruns. The �nal column gives the p-values of a paired t-test for the hypothesis \BPMis better than SVM" indicating that the improvement is statistically signi�cant.7 Discussion and ConclusionIn this paper we presented an estimation method for the Bayes point forlinear functions in Hilbert space. We showed how the SVM can be viewedas an (spherical) approximation method to the Bayes point hyperplane.By randomly generating consistent hyperplanes playing billiards in versionspace we showed how to stochastically approximate this point. In the �eld ofMarkov Chain Monte Carlo methods such approaches are known as re
ective



Discussion and Conclusion 23slice sampling [14]. Current investigations in this �eld include the questionof ergodicity of such methods.We presented theoretical results which indicate that the fraction of the vol-ume of parameter space to the volume of version space plays a crucial rolein the generalisation error of Bayesian classi�ers. The analysis presented ex-ploits the idea of representing a classi�er by its posterior distribution. Theresults motivate the centre of mass as a classi�er with good volume ratioand thus good generalisation. The results also indicate that under circum-stances where the shape of the version space is almost spherical the classicalSVM gives the best result. All these results were supported by experimentsindicating that the centre of mass has excellent generalisation behaviour.Bayes points in kernel space constitute an interesting bridge between theBayesian approach to machine learning and statistical learning theory. Inthis paper we showed that they outperform hard margin SVMs. We couldalso improve on further bounds by casting the SVM classi�er into a Bayesianframework. However, it is well known that introduction of a soft margin im-proves the generalisation performance of SVMs on most datasets by allowingfor training errors. Consequently we introduced a mechanism for Bayesianlearning with training errors admitted. A comparison of the generalisationperformance of the two types of systems shows they exhibit a much closergeneralisation performance than in the hard boundary/margin case.Although our approach has an impressive generalisation performance furtherwork is required to improve the usability and performance. For example,it may be possible to introduce simpler algorithms for approximating theBayes Point in kernel space [30].AcknowledgementsThis work was partially done during a research stay of Ralf Herbrich atUniversity of Bristol and Royal Holloway University London. He would liketo thank Colin Campbell and John Shawe{Taylor for the excellent researchenvironment and also for the warm hospitality during that stay. We are alsogreatly indebted to Matthias Burger, S�ren Fiig Jarner, Klaus Obermayer,Craig Saunders, Matthias Seeger, John Shawe{Taylor, Alex Smola, and Ja-son Weston for fruitful discussions. In particular we would like to thankUlrich Kockelkorn and Peter Bollmann{Sdorra for their great support inproving Lemmata 2 and 3.



Geometry in an RKHS 24A Geometry in an RKHSThis appendix gives a detailed derivation of geometrical results in Reproduc-ing Kernel Hilbert spaces (some of them are extensively used in the kernelbilliard algorithm). Most of the results are well known from linear algebraand can be found in many textbooks, e.g. [8].A.1 Flight times in Kernel Space��d b v �(x)v0Figure 7: Bouncing the ball in an RKHS. See text for further details.Assume v;b 2 F are normalised and �(x) is the normal vector (not neces-sarily of unit length) of the hyperplane (see Figure 7). Here, � is a mappingfrom X into the RKHS F endowed with the reproducing kernel k(�; �), i.e.h�(xi); �(xj)iF = k(xi;xj). Clearlyhb; �(x)iFk�(x)kFis the distance of the ball b from the hyperplane. Moreover, for directionvectors pointing towards the hyperplane,hv; �(x)iFk�(x)kFis negative and its absolute value is the distance of v from the hyperplane.Thus, the negative fraction � of both terms, i.e.� = �hb; �(x)iFhv; �(x)iFgives the 
ight time for a ball at position b when v is the direction vectorpointing towards the hyperplane. This justi�es Equation (11).



Geometry in an RKHS 25One can easily check the validity of the update rule (13)b0 = b+ � � vby calculating the distance of b0 to the hyperplane with normal vector �(x),i.e. hb0; �(x)iFph�(x); �(x)iF = hb+ � � v; �(x)iFk�(x)kF= hb; �(x)iF � hb;�(x)iFhv;�(x)iF hv; �(x)iFk�(x)kF= 0k�(x)kF = 0 :kb� b0kSb kb� b0kF0 b0Figure 8: The relation between the 
ight time kb� b0kF in the Euclidean span andthe 
ight time kb� b0kS on the unit hypersphere.Let us assume that the vectors b0 and b are normalised to unit length.Then we know the following relation between kb� b0kF (the length of theshortest line between these two points in F) and kb� b0kS (the length ofthe shortest path on the unit hypersphere in F) (see Figure 8)

b� b0

S = arccos 1� � jb� b0jFp2 �2! :



Geometry in an RKHS 26This follows from the fact that

b � b0

S = arccos(hb;b0iF) ;

b� b0

F = phb� b0;b� b0iF= phb;biF � 2hb;b0iF + hb0;b0iF= p1� 2hb;b0iF + 1= p2 (1� hb;b0iF) :A.2 Re
ections in Kernel Space
� �v �(x) v0 v �(x) v0c � �(x)v(a) (b)Figure 9: (a): A re
ection of v at the hyperplane with normal vector �(x). Note,that cos(�) = hv; �(x)iF= (kvkF � k�(x)kF ) = �hv0; �(x)iF= (kv0kF � k�(x)kF ).(b): Shifting the vector �(x) shows, that for the re
ection vector v0 the equalityv0 = v + c � �(x) has to hold. For calculation of c see the text.Again, assume v;v0 2 F are normalised and �(x) is the normal of thehyperplane where the re
ection takes place. Then for a re
ection (see Figure9 (a)) the following equality holds,hv; �(x)iF = �hv0; �(x)iF : (19)It is also easy to see (Figure 9 (b)) that the re
ected vector v0 has to be ofthe form v0 = v + c � �(x) ; (20)



Geometry in an RKHS 27where c has to chosen such that Equation (20) is ful�lled. Thus, insertingEquation (20) into Equation (19) giveshv; �(x)iF = �hv+ c � �(x); �(x)iFhv; �(x)iF = �hv; �(x)iF � ch�(x); �(x)iFc = �2hv; �(x)iFk�(x)k2F = �2� 1k(x;x) ;which justify the usage of Equation (14). Here we used � = hv; �(x)iF.A.3 Point{Mirroring in Kernel SpaceGiven a point w0 2 F and a hyperplane fw : hw; � (x)iF = 0g characterisedby its normal vector � (x) the task is to �nd the normal � (x0) of the point{mirror image of the hyperplane with respect tow0. This situation is depictedin Figure 10. Clearly, this task is equivalent to the re
ection of the vector� (x) at the normal to the hyperplane where w0 lives on. Thus, we have the
�(x)��(x0)�(x0) w0

fw : hw;�(x0)iF = 0g fw : hw; �(x)iF = 0g�2hw0; �(x)iw0
Figure 10: The re
ection of the hyperplane with normal vector � (x) at the point w0.Note the close similarity to Figure 9.



Geometry in an RKHS 28following relationship for � (x)�� �x0� = � (x)� 2 
w0; � (x)�F� �x0� = 2 
w0; � (x)�F � � (x) :If kw0k = k� (x)k = 1 we automatically obtain a normal � (x0) of unit length.

� �x0�

2 = 
2 
w0; � (x)�F � � (x) ; 2 
w0; � (x)�F � � (x)�F= 4 �
w0; � (x)�F�2 � 4 �
w0; � (x)�F�2 + k� (x)k2 = 1 :A.4 A derivation of the operation ��Let us derive operation �� acting on vectors of unit length. This functionhas to have the following properties (see Section 3)ks�� tk2F = 1 ; (21)kt� s�� tkF = � kt� skF ; (22)s�� t = �1s+ �2t ; (23)�1 � 0 ; �2 � 0 : (24)Here we assume that ksk2F = ktk2F = 1. Inserting Equation (23) into (21)results in k�1s+ �2tk2F = h�1s+ �2t; �1s+ �2tiF= �21 ksk2F + �22 ktk2F + 2�1�2hs; tiF= �21 + �22 + 2�1�2hs; tiF = 1 : (25)In a similar fashion combining Equation (23) and (22) giveskt � s�� tk2F = �2 kt � sk2Fk(1� �2)t� �1sk2F = �2 kt � sk2F(1� �22) ktk2F � 2(1� �2)�1hs; tiF + �21 ksk2F = �2(ktk2F � 2hs; tiF + ksk2F )(1� �2)2 � 2(1� �2)�1hs; tiF + �21 = �2(2� 2hs; tiF) : (26)Note that Equation (25) is quadratic in �2 and has the following solution�2 = ��1hs; tiF �q�21(hs; tiF)2 � �21 + 1 = ��1hs; tiF +A : (27)



Geometry in an RKHS 29Let us insert Equation (27) into the r.h.s. of Equation (26). This gives thefollowing quadratic equation in �1(1� �2)2 � 2(1� �2)�1hs; tiF + �21 =1� 2�2 + �22 � 2�1hs; tiF + 2�2�1hs; tiF + �21 =1 + 2�1hs; tiF + 2A+ �22 � 2�1hs; tiF + 2�2�1hs; tiF + �21 =1 + 2A+ �21 + (�1hs; tiF +A)2 � 2�1hs; tiF(�1hs; tiF + A) =1 + 2A+ �21 + �21(hs; tiF)2 + 2�1hs; tiFA+ A2�2�21(hs; tiF)2 � 2�1hs; tiFA =1 + 2A+ �21 � �21(hs; tiF)2 + A2 =1 + 2A+ �21 � �21(hs; tiF)2 + �21(hs; tiF)2 � �21 + 1 =2 + 2A = 2�2(1� hs; tiF) :Rearranging terms then gives the following1�q�21(hs; tiF)2 � �21 + 1 = ��2(1� hs; tiF)�q�21(hs; tiF)2 � �21 + 1 = �2(1� hs; tiF)� 1�21(hs; tiF)2 � �21 + 1 = (�2(1� hs; tiF)� 1)2�21((hs; tiF)2 � 1) = (�2(1� hs; tiF)� 1)2 � 1�21 = (�2(1� hs; tiF)� 1)2 � 1(hs; tiF)2 � 1 (28)= �4(1� hs; tiF)2 � 2�2(1� hs; tiF)(hs; tiF)2 � 1= �2[�2(1� hs; tiF)2 � 2 + 2hs; tiF ](hs; tiF � 1)(hs; tiF + 1) :Making use of the identity�2(1� hs; tiF)2 � 2 + 2hs; tiF = �(�2 � �2hs; tiF � 2)(hs; tiF � 1) ;�nally gives the desired result�21 = ��2(�2 � �2hs; tiF � 2)(hs; tiF � 1)(hs; tiF � 1)(hs; tiF + 1)= �2(�2 � �2hs; tiF � 2)hs; tiF + 1�1 = s��2 � �2hs; tiF � 2hs; tiF + 1 � : (29)



Proofs 30Inserting this formula back into Equation (27) and making use of the identity(28) we obtain for �2�2 = ��1hs; tiF �q�21(hs; tiF)2 � �21 + 1= ��1hs; tiF �q�21((hs; tiF)2 � 1) + 1= ��1hs; tiF �p(�2(1� hs; tiF)� 1)2 � 1 + 1= ��1hs; tiF � (�2(1� hs; tiF)� 1) : (30)B ProofsB.1 Volume Ratio in Terms of MarginsIn this section we explicitly derive the volume ratio between the largestinscribable ball in version space and the whole parameter space for thespecial case of linear kernels in Rn. According to de�nition (3) we knowthat the whole parameter space is given bySn = nw : kwk2 = 1o ;where in the following h�; �i and k�k denote the classical inner product andnorm in Rn, i.e. ha;bi = nXi=1 aibi; kwk2 = nXi=1 w2i :Given a point w0 2 Sn and a positive number 0 � 
 � r we can characterisethe ball of radius 
 in the parameter space bySn �w0; 
� = nw : w 2 Sn; 

w �w0

2 � 
2o= nw : w 2 Sn; kwk2 � 2 
w;w0�+ 

w0

2 � 
2o= �w : w 2 Sn; 2� 2 
w;w0� � 
2	= �w : w 2 Sn; 
w;w0� � 1� 
22 �In the following we will calculate the exact value of the ratio vol(Sn)vol(Sn(w0;
))where w0 can be chosen arbitrarily (due to the symmetry of the sphere) and
 equals the observed margin.



Proofs 31Lemma 1. For linear kernels inRn the fraction of the whole surface vol (Sn)of the unit sphere to the surface vol (Sn (w0; 
)) with Euclidean distance lessthan 
 from any point w0 2 Sn is given byvol (Sn)vol (Sn(w0; 
)) = 2�R0 [sin (�)]n�2 d�R arccos(1�
2=2)0 [sin (�)]n�2 d� :Proof. As the derivation requires the calculation of surface integrals on thehypersphere in Rn we de�ne each admissible w by its polar coordinates andcarry out the integration over the angles. Thus we specify the coordinatetransformation f : Rn 7! Rn from polar coordinates into Cartesian coordi-nates, i.e. everyw 2 Sn � Rn is expressed via n�2 angles � = (�1; : : : ; �n�2)ranging from 0 to �, one angle 0 � ' � 2�, and the radius r. This transfor-mation reads w1 = f1 (r; '; �) = r � sin(') sin(�1) � � �sin(�n�2) (31)w2 = f2 (r; '; �) = r � cos(') sin(�1) � � �sin(�n�2) (32)... ... ... (33)wn�1 = fn�1 (r; '; �) = r � cos(�n�3) sin(�n�2) (34)wn = fn (r; '; �) = r � cos(�n�2) : (35)Without loss of generality we choose w0 to be �0 = 0; '0 = 0. Hence the ballof radius 
 can be expressed asSn (
) = �r; '; � : 
f (r; '; �) ; f �r; '0; �0�� � 1� 
22 �= �r; '; � : r � cos(�n�2)r � cos ��0n�2�+ � � � � 1� 
22 �= �r; '; � : cos(�n�2) � 1� 
22 �= �r; '; � : �n�2 � arccos�1� 
22 �� ;using sin (0) = 0 and cos (0) = 1 in the third line. As can be seen from thisexpression the margin 
 characterising the ball simply possesses a restrictionon the angle �n�2 in the integration. Thus, the quantity of interest is given



Proofs 32by vol (Sn(2))vol (Sn(
)) = R 2�0 R �0 � � �R �0 jJn (r; '; �1; : : : ; �n�2)j d�n�2 � � � d�1 d'R 2�0 R �0 � � �R 	0 jJn (r; '; �1; : : : ; �n�2)j d�n�2 � � � d�1 d' ;(36)where 	 = arccos�1� 
22 � and Jn is the functional determinant of f givenby Equation (31) to (35). Jn is given byJn(r; '; �1; : : : ; �n�2) = detJn ; (37)Jn = 0BB@ @f1(r;';�)@r @f1(r;';�)@' � � � @f1(r;';�)@�n�2... ... . . . ...@fn(r;';�)@r @fn(r;';�)@' � � � @fn(r;';�)@�n�2 1CCA :(38)Hence the n{th row of this matrix contains only two nonzero elements@fn (r; '; �)@r = cos(�n�2) @fn (r; '; �)@�n�2 = �r � sin (�n�2) :Now using the Laplace{expansion of (37) in the n{th row we obtainJn (r; '; �1; : : : ; �n�2) = cos (�n�2)A (xn; r)� r sin (�n�2)A (xn; �n�2) ;where A(xn; r) is the algebraic complement of the element (Jn)xn;r of theJacobian, similarly A(xn; �n�2). Let us decompose A(xn; r) and A(xn; �n�2)intoA(xn; r) = Jn�1 (r; '; �1; : : : ; �n�3) � (�1)n+1 � (�1)n�2 � r [sin (�n�2)]n�2 cos (�n�2) ;A(xn; �n�2) = Jn�1 (r; '; �1; : : : ; �n�3) � (�1)2n � [sin (�n�2)]n�1 :The �rst factor is the determinant of the submatrix of Jn�1 obtained bydeletion of the n{th row and n{th column of J. The second factor is thecheckerboard term of the algebraic complement whereas the third factorin the term A(xn; r) speci�es the number of column 
ips to transform thecolumn order of the matrix obtained by deletion of the �rst column and n{throw into the column order of Jn�1. The last factor gives the factor which ismissing in Jn�1 (r; '; �1; : : : ; �n�3). As an example consider the special case



Proofs 33of n = 3 and n = 4:J3 (r; '; �1) = det 0BB@ cos (') sin (�1) �r sin (') sin (�1) r cos (') cos (�1)sin (') sin (�1) r cos (') sin (�1) r sin (') cos (�1)cos (�1)| {z }j1 0| {z }j2 �r sin (�1)| {z }j3 1CCA ;J4 (r; '; �1; �2) = det � sin (�2) j1 sin (�2) j2 sin (�2) j3 r cos (�2) j1cos (�2) 0 0 �r sin (�2) � :Hence, Jn (r; '; �1; : : : ; �n�2) is given byJn (r; '; �1; : : : ; �n�2) = Jn�1 (r; '; �1; : : : ; �n�3) ��r �[sin (�n�2)]n�2 [cos (�n�2)]2 + [sin (�n�2)]n�2 [sin (�n�2)]2�As a result, we obtainJn(r; '; �1; : : : ; �n�2) = �r [sin(�n�2)]n�2 � Jn�1(r; '; �1; : : : ; �n�3) ;which back{inserted into Equation (36) givesvol (Sn)vol (Sn(
)) = R �0 [sin (�n�2)]n�2 d�n�2R 	0 [sin (�n�2)]n�2 d�n�2 ;where 	 = arccos�1� 
22 �. The lemma is proven.Now we prove a lemma which can be used to bound the ratio vol(Sn(2))vol(Sn(
)) fromabove. Note that for tighter bounds on the volume ratio one only needs toevaluate the previous expression. Here, one can make use of an expansionof the fraction in terms of the binomial coe�cients.Lemma 2. For all k 2 N and all 0 < x < 12ln0BB@ �R0 [sin (�)]2k+1 d�R arccos(1�2x)0 [sin (�)]2k+1 d�1CCA � � (2k + 1) ln(x) : (39)



Proofs 34Proof. From [3] we know that for all k 2 NZ [sin (�)]2k+1 d� = � cos(�)2k + 1  B(k; 0) + kXi=1 [sin (�)]2iB(k; i)! ;(40)B(k; i) = 2 (i+ 1) � 2 (i+ 2) � � �2k(2i+ 1) � (2i+ 3) � � � (2k � 1) (41)= 2 � 4 � � �2k1 � 3 � � �(2k � 1) � 1 � 3 � � �(2i� 1)2 � 4 � � �(2i) (42)= 4k (k!)2 (2i)!(2k)! (i!)2 4i = 4k4i � 2ii �� 2kk � : (43)Let us introduce the abbreviationS(k; x) = Z arccos(1�2x)0 [sin (�)]2k+1 d� :Then the numerator of (39) is given by S(k; 1) whereas the denominator of(39) is simply S(k; x). From Equation (40) we seeS(k; x) = � cos(�)2k + 1  B(k; 0) + kXi=1 [sin (�)]2iB(k; i)!�����arccos(1�2x)0= 12k + 1  B(k; 0)� (1� 2x)B (k; 0)� (1� 2x) kXi=1 �4x� 4x2�iB(k; i)!= 12k + 1 4k� 2kk �  1 + (2x� 1) + (2x� 1) kXi=1 � 2ii � xi (1� x)i! :where we have used[sin(�)]2i = �sin2(�)�i = �1� cos(�)2�i = �1� (1� 2x)2�i = �4x� 4x2�i :For the fraction we obtainln�S(k; 1)S(k; x)� = ln0BB@ 22x+ (2x� 1)Pki=1 � 2ii � xi (1� x)i1CCA



Proofs 35In Lemma 3 we show that for any k 2 N+ and 0 < x < 12kXi=1 � 2ii � xi (1� x)i � 2 �x2k+1 � x�2x� 1 :Back{inserted into the last expression we obtainln�S(k; 1)S(k; x)� � ln0@ 22x+ (2x� 1) 2(x2k+1�x)(2x�1) 1A = ln� 22x2k+1�= ln� 1x2k+1� = � (2k + 1) ln (x) ;which proves the lemma.Lemma 3. For any k 2 N+ and 0 < x < 12kXi=1 � 2ii � xi (1� x)i � 2 �x2k+1 � x�2x� 1 :Proof. In order to prove the lemma we note that1Xi=1 � 2ii � xi(1� x)i = 2x1� 2x : (44)This can be seen by consideringarcsin (u) = u+ 1Xi=1 � 2ii � 14i u2i+12i+ 1d arcsin (u)du = 1 + 1Xi=1 � 2ii � 14iu2i = 1p1� u2 ;Using u = 2px (1� x) we obtain Equation (44). In the next step we showthe following lower bound1Xi=k+1� 2ii � xi(1� x)i � 2x2k+11� 2x :This can be achieved by renumbering and componentwise comparison of theresulting sequence, i.e.



Proofs 361Xi=k+1� 2ii � xi(1� x)i = 1Xj=1 � 2 (k + j)k + j � xk+j(1� x)k+j� 1Xj=1 � 2jj � x2k+j(1� x)j = x2k 2x1� 2x ;where we used � 2 (k + j)k + j � � � 2jj � which holds for all k 2 N+, andxk+j (1� x)k+j � x2k+j (1� x)j , (1� x)k � xk which holds for all 0 <x < 12 . Finally, we combine the two statements to prove the lemma. Thuswe seekXi=1 � 2ii � xi(1� x)i = 1Xi=1 � 2ii � xi(1� x)i � 1Xi=k+1� 2ii � xi(1� x)i� 2x1� 2x � 2x2k+11� 2x = 2 �x� x2k+1�1� 2x= 2 �x2k+1 � x�2x� 1 :B.2 Bayes{Admissibility and Point{SymmetryLet us formally introduce the property of point{symmetry and Bayes{admissibilityof a compact convex set V in any metric space.De�nition 3. A compact convex set V in a vector space is said to be point{symmetric i� 9w 2 V : 8v 2 V v+ 2 (w� v) 2 V :A compact convex set V in a metric space is said to be Bayes{admissible i�there exists a w such that



Proofs 37\n H (n;w) = w ;H (n;w) = fv : hv�w;niF = 0 ^ vol (W+1 (w;n)) = vol (W�1 (w;n))g ;Wy (w;n) = �v0 2 V : sign �
v0 �w;n�F� = y	 :The following lemma is of interest for the construction of Bayes{admissiblesets given a point w.Lemma 4. The following two statements are equivalent� A compact convex set V is point{symmetric.� A compact convex set V is Bayes{admissible.Proof. First we show that any point{symmetric set is Bayes{admissible.Consider any normal vector n, the symmetry centre w 2 V , and any v 2W+1 (w;n). Then we know from the property of point{symmetry that thereexists a unique vector v0 = v + 2 (w � v) 2 V and v0 2 W�1 (w;n). Sincethis holds for any n and any v 2 W+1 (w;n) it follows that vol (W+1 (w;n)) =vol (W�1 (w;n)). Hence, point{symmetry implies Bayes{admissibility.Now we prove that any Bayes{admissible set V is point{symmetric. Let usrepresent the convex set V by polar coordinates. Hence, we represent theconvex set V by a boundary function f ('; �) � 0. Without loss of generalitywe assume that the Bayes{point is located at the origin of the coordinatesystem. Hence, points are represented by one angle 0 � ' � 2�, n angles0 � �i � �, and a radius 0 � r � f ('; �). Then, V is point{symmetricw.r.t. to the origin i�8'8�1 � � �8�n f ('; �) = f ('� �; �1� �) :Without loss of generality we can assume that the two subvolumes of equalvolume (induced by the intersection of n + 2 Bayes{lines) are given by 0 �' � �0; 0 � �i � �n; i = 1 : : :n and � � '0 � �+�0; � � �0i � ���n; i =



Proofs 381 : : :n. Hence by the Bayes{admissibility we haveZ �00 Z �10 � � �Z �n0 Z f(';�)0 Jn+2 (r; '; �) dr d�n � � �d�1 d' =Z �+�0� Z ���1� � � �Z ���n� Z f(';�)0 Jn+2 (r; '; �) dr d�n � � �d�1 d' =Z �00 Z �10 � � �Z �n0 Z f('��;�1��)0 Jn+2 (r; '� �; �1� �) dr d�n � � �d�1 d' :Now using the following two properties of the functional determinant Jn+2jJn+2 (r; '; �) j = rn+1jKn+2 ('; �) j ;jJn+2 (r; '; �) j = jJn+2 (r; '� �; �1� �) j ;we see that by Bayes{admissibilityZ f(';�)0 rn+1 dr = Z f('��;�1��)0 rn+1 dr ;which gives f ('; �) = f ('� �; �1� �) :This is the de�ning property of point{symmetry and proves the lemma.



Proofs 39Algorithm 1 Pseudocode of the Billiard algorithmRequire: TOL < 1Require: �max 2 R+Ensure: yjPi 
ik(xi;xj) > 0 j = 1; : : : ; `� = 0� = random; normalise � using Equation (10)� = pmax = �max = 0while �2 (pmax; �max=�) > TOL dorepeatfor i = 1; : : : ; ` dodi = yiPj 
jk(xj ;xi)�i = yiPj k(xj ;xi)�i = �di=�iend form0 = mini:�i>0 �iif �m0 � �max then� = random, but ful�ls Equation (12)normalise � using Equation (10)elsem = m0end ifuntil �m0 < �max
0 = 
 + �m�; normalise �0 using Equation (10)�m = �m � 2�mym=k(xm;xm); normalise � using Equation (10)� = 
 + 
0; normalise � using Equation (10)� =rPi;j (
i � 
0i)�
j � 
 0j� k(xi;xj)p =Pi;j �i�jk(xi;xj)� = �1 �p; ��+���+ �2�p; ��+�� �pmax = max (p; pmax)�max = max (�; �max)� = � + �
 = 
0end while
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