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Abstract

Support Vector Machines find the hypothesis that corresponds to the
centre of the largest hypersphere that can be placed inside version
space, 1.e. the space of all consistent hypotheses given a training set.
The boundaries of version space touched by this hypersphere define
the support vectors. An even more promising approach is to construct
the hypothesis using the whole of version space. This is achieved by
the Bayes point: the midpoint of the region of intersection of all hy-
perplanes bisecting version space into two volumes of equal magnitude.
It is known that the centre of mass of version space approximates the
Bayes point [30]. The centre of mass is estimated by averaging over
the trajectory of a billiard in version space. We derive bounds on the
generalisation error of Bayesian classifiers in terms of the volume ratio
of version space and parameter space. This ratio serves as an effective
VC dimension and greatly influences generalisation. We present ex-
perimental results indicating that Bayes Point Machines consistently
outperform Support Vector Machines. Moreover, we show theoretically
and experimentally how Bayes Point Machines can easily be extended
to admit training errors.

1 Introduction

Recently, there has been considerable interest in the theory and application
of Support Vector Machines (SVMs) [28]. Compared to neural networks they
have a number of advantages. For example, the hypothesis modelling the
data is explicitly represented in terms of the most informative patterns (the
support vectors), the learning task amounts to optimisation of a Lagrangian
which is provably convex, and they exhibit good generalisation, a property
which is motivated by theoretical results from statistical learning theory [21,
28]. The SVM classifier corresponds to the centre of the largest inscribable
hypersphere in wversion space, i.e. the space of all hypotheses consistent
with the training data. Those boundaries of version space with which the
hypersphere makes tangential contact correspond to the support vectors.

A potentially better approach is to use all of version space to define the
hypothesis. As illustrated in Figure 4 this is a superior strategy if the
version space is elongated and asymmetric. Here SVMs are condemned to
fail. We will consider learning machines based on approximating the Bayes
point, i.e. the midpoint of the region of intersection of all hyperplanes which
divide version space into two halves of equal volume. This approach is
purely Bayesian: if we consider a new test point x, the set of Bayes—optimal
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decision functions is given by those weight vectors w whose posterior on a
binary decision at x is greater than 0.5. As in general the intersection of
Bayes—optimal decision functions for all x is empty we could approximate it
by the centroid wpayes having knowledge of Fr(x). This hypothesis is called
the Bayes point. It was shown elsewhere [30, 15] that in high—dimensional
spaces WRayes converges to the centre of mass of version space. An additional
insight into the usefulness of the Bayes point comes from the statistical
mechanics approach to neural computing where the generalisation error for
Bayesian learning algorithms has been calculated for the case of randomly
constructed and unbiased patterns x [15]. Thus if ¢ is the number of training
examples per weight and ¢ is large, the generalisation error of the centre of
mass scales as 0.44/¢ whereas scaling with  is poorer for the solutions found
by the linear Support Vector Machine (maximally stable perceptron) (scales

as 0.50/¢ [16]), Adaline (scales as 0.24/,/C [17]) and other approaches.

The paper is structured as follows: in Section2 we revisit methods of learning
linear classifiers. In Section 3 we introduce the Bayes Point Machine (BPM)
algorithm which approximates the centre of mass of the version space V(9)
by a billiard. In Section 4 we investigate bounds on the generalisation error
for Bayesian classifiers, SVMs, and BPMs. In Section 5 we demonstrate
one method to incorporate training errors in BPMs. Then, in Section 6 we
present experimental results which support the usefulness of our approach.
The detailed derivations have been relegated to the appendix for better
legibility of the main document.

We denote the logarithm to base 2 by log,, and the natural logarithm by
In. If S is a set set, |.S| denotes its cardinality. Vectors are denotes by bold
letters, e.g. w. Vector components are denoted by subscripts, e.g. w;. The
norm of a vector w in the metric space F is denoted by ||w||z, whereas
the inner product between two elements a,b € F is given by (a,b)r. The
symbols R and N denote the set of real and natural numbers, respectively.
We do not explicitly state the measurability conditions needed for our ar-
guments to hold. We assume with no further discussion ”permissibility” of
the function classes involved. We denote real-valued functions by f whereas
binary classifiers obtained by thresholding are denoted by h = sign(f).
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2 Approaches to Learning Linear Classifiers

Let us consider the set of kernel classifiers [28, 31]

£
h(x) = sign(f(x)) = sign (Z aik(xi7x)) ac R (1)

Here, k is referred to as a kernel and is assumed to be symmetric and positive
definite. Then it is known from the theory of reproducing kernel Hilbert
spaces (RKHS) [31] that there exists a feature space F and a mapping ¢ :
X — F — not necessarily unique — such that f can be expressed as an
inner product between the mapped point x and a vector w € F, i.e.

¢
fx) = (w,o(x))F= Z%’¢(Xi) w e F,acRE. (2)

Without loss of generality we assume in the following that F is the surface
of a hypersphere ||¢(x)||r = 1. Suppose we are given a training set S =
{(xi ) 2, € (X x {=1,+1}* In a similar fashion to PAC analysis [25]
we assume that there exists a function f* such that y; = sign(f*(x;)). Then
the space of consistent hypotheses — in the following referred to as the
version space — is defined by

V()= {feHC Fiyf(xi)>0; i=1,...,0}. (3)

In order to enforce a unique parameterisation of f in w (see Equation (2))
we restrict ourself to a compact bounded set H € F of linear classifiers in
the feature space F. In the subsequent sections we will use the set H given

by

H={r0) = (w,o( s Wl =1}, (4)

which is known to have finite volume iff & fulfils the Mercer conditions [12]
and X is restricted to a compact set (see [31]). For any probability measure
Py over 1 we define the volume vol(A4; P) of A C H to be

vol(A; P) :/ P(f)df < oo, (5)

A

where vol(A) is understood as the volume under the uniform distribution.
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Given a version space V(S) the main question is: which linear classifier
in V(S5) is optimal and consequently should be returned by a learning al-
gorithm? From an empirical risk minimisation point of view every linear
classifier in V() is optimal. Thus, besides the possibility of returning a ran-
domly selected classifier out of V(S) — as done by the classical perceptron
algorithm [18], or the Gibbs learning rule (e.g. [9]) — different approaches
have been devised.

2.1 PAC Style Analysis

Bounding the complexity of a subset of classifiers from above, the VC/PAC
theory of learning recommends returning the classifier hpac = sign(fpac)
originating from a subset of small complexity. Hence, the term complexity
refers to the VC dimension, fat shattering dimension, or the margin attained
on the training set (for a detailed discussion and definition of these concepts
see [21, 28] or Section 4). The following theorem to be found in [21] can
serve as a basis for the well known class of large margin algorithms.

Theorem 1. Suppose inpuls are drawn independently according to a distri-
bution whose support is contained in the ball of radius R. If we succeed in
correctly classifying ( such inputs by a hyperplane f € V(S) (see Equation
(3) and (4)) achieving a margin of v = ming (y; f(x;)), then with confidence
1 — ¢ the generalisation error will be bounded from above by

2 8el 8¢
z (Hlogz (7) 10g2 (32£) + 10g2 (?)) s

where = |BTTR?*/+%].

Maximising the margin v minimises x and thus allows algorithms to control
their generalisation. The corresponding learning problem is therefore given

by
maximizey ming (y;(w, p(x;))r) =

yi{w, p(x;))r > Q>0 i=1,....(
s.t. HWH%— = 1.

Let us relax the unit norm constraint on w but instead fix

Q

ming (y;(w, ¢(x;))r) =1= ——.
Iwll=
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Then, the solution wpac to the above problem is equivalent — up to a scaling
— to the solution wgyp of the following problem

minimizey w5

st yi(w,o(xi))r > 1 i=1,....,0.

This optimisation problem is a QP problem and its solution wgyy corre-
sponds to the solution found by the Support Vector Machine (SVM). Note,
that y;(w, ¢(x;))r can also be read as the distance of w from the hyper-
plane with normal y;¢(x;) if ||¢(x;)|| 7 = 1. Therefore SVMs can be viewed
as finding the centre of the largest hypersphere inscribable in version space
(see Figure 4).

2.2 Bayesian Analysis

Assuming an a—priori distribution Py over the space H of classifiers and a
distribution Py and Py over the objects and conditional classes, return that
function hpap having the maximal posterior probability (MAP) or — using
the posterior — the average decision hipayes of the linear classifiers under
the posterior distribution. Note, that the latter is not necessarily contained
in the original set of functions. In a similar fashion to PAC analysis let us
make a Bayesian model and consider hyap as well as the average classifier
hBayes- Hence, we make the following assumptions:

Py(ylx, f) = d(y —sign(f(x)) .

where ¢ refers to the delta function and f is defined by Equation(1) and
(4). This distributional assumption can be viewed as a noise free learning
scenario. Then given a training set S, we have the following estimate for
the posterior distribution

Pys)(f15)

id HlePy@Axi,f)PH(f):{ BAL it fevis) ()

P(S) 0 otherwise

7 = P = [ PSP df = ol V(S P

If we assume a uniform (flat) prior Py it becomes apparent that the MAP
estimate hpap is not unique and thus classical perceptron learning is well
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justified. Let us derive the Bayes decision hBpayes at point x using the derived
posterior Py(gy:

fomes (63 Pogs)) = [ sienl ) Pogs(715) df ")
= vol (W_H(S, X); PV(S)) — vol (W_1(S, X); PV(S)) s
where
Wy (S,x) ={f € V(5) : sign(f(x)) = y}.

We see that hpayes decides at a point x for the class y whose consistent
functions W, (S,x) occupy the larger volume under the posterior. Unfor-
tunately, there is in general no unique function f € H which implements
fBayes- Given complete knowledge of Py we can single out the classifier
fopwith the smallest distance to fgpayes in the Ly—metric, i.e.

Jop = argmin ;4 / (fBayes (x; PV(S)) — fbp(x))2 Py(x)dx.

This classifier is called the Bayes point. It was shown elsewhere [30, 15]
that under very mild conditions regarding Py in high dimensional spaces
the following approximation f., converges at a fast rate to fip:

fom(x) = /% F(5) Posy (119) df = (Wean, $(x)) 7 (8)

Wem = /vav(s)(V|S)dV. (9)

Note that fo,, € H. The hyperplane w.,, — which is merely the centre of
mass of V(S) — is also called the optimal perceptron [30]. In the following
section we will present the BPM algorithm which is expected to return the
centre of mass of V(.9) under the assumption of a uniform distribution Py.
Note, that in this case Py(g) is also a uniform distribution over the version
space. Finally note that there is no distribution independent rule to find
the Bayes point fi,, solely on the basis of the training set 5.

3 Estimating the Bayes Point in Kernel Space

We now outline an algorithm for approximating the Bayes point by the
centre of mass assuming a uniform prior Py (the whole pseudo code is given



Estimating the Bayes Point in Kernel Space 7

on page 39). The approach develops a method presented by Pal Rujan [19]:
in order to obtain the centre of mass of V(S) we randomly and uniformly
generate points (hyperplanes in input space) and average over them. Since
it is difficult to generate hyperplanes consistent with S we average over the
trajectory of a ball which is placed inside V(S) and bounced like a billiard
ball. The boundaries constraining the billiard are given by the hyperplanes
with normal vectors y;¢(x;). This process converges to the centre of mass
under the assumption of ergodicity with respect to the uniform distribution

in V(S) [4].
Based on the fact that we play billiards in V(.S) each position b of the ball,

direction vector v, and estimate w,, of the centre of mass of V(S) can be
expressed as a linear combination of the mapped input points, i.e.

¢ ¢ ¢
W, = Z%’¢(Xi) , b= Z%’¢(Xi) , V= Zﬁi¢(xi) , a,By€eR.
=1 =1 =1

Using this notation inner products and norms in F become, e.g.

4 4
(b,v)r= Y Bivik(xixj),  |blF= D yvik(xi,x;). (10)

i,j=1 =1
At the beginning we assume that wo = 0 < a = 0.

Before generating a billiard trajectory in version space we first run any kernel
perceptron learning algorithm to find an initial starting point bg inside the
version space (e.g. SVM [27]). Then the algorithm consists of three steps:

1. Determine the closest boundary starting from the current position b
into direction v.

Since it is computationally very demanding to calculate the flight time
of the ball on geodesics of the hypersphere H (see also [14]) we make
use of the fact that the shortest distance in Euclidean space (if it
exists) is also the shortest distance on the hypersphere H. Thus, we
have for the flight time 7; of the ball at position b in direction v
to the hyperplane with normal vector y;¢(x;) (for further details see

Appendix A)

(11)
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After computing all £ flight times, we look for the smallest positive,
i.e.

m = argming . o7 .

Computing the closest bounding hyperplane in Euclidean space rather
than on geodesics causes problems if the curvature of the hypersphere
‘H is almost orthogonal to the direction vector v, in which case 7, —
oo. If this happens we randomly generate a direction vector v pointing
towards the version space. Assuming that the last bounce took place
at the hyperplane having normal y,,¢(x,,) this condition can easily be

checked by

Ym (v, d(xm))x > 0. (12)

. Update the ball’s position to b’ and the new direction vector to v’.

The new point b’ and the new direction v’ are calculated from (see

Appendix A)

£

b = btrav=> (yi+mmbi)e(xi), (13)

=1

¢
vVi= v = 20,0(x) = Z (B: = 28imvi) P(x:) - (14)

=1

Afterwards the position b’ and the direction vector v/ need to be
normalised. This can easily be achieved using Equation (10).

. Update the centre of mass w,, of the whole trajectory by the new line
segment from b to b’ calculated on the hypersphere #.

Since the solution w,, lies on the hypersphere H we cannot simply
update the centre of mass using a weighted vector addition. Let us
introduce the operation ¢, acting on vectors of unit length. This
function has to have the following properties

2
s @utH}' = 1,
[t —s@utllz = pllt —sllxz,
S@Mt = pl(s,t,u)s—l—pg(s,t,u)t,

P1(57t7ﬂ)20 ) p?(svtmu)zo-
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This rather arcane definition implements a weighted addition of s and t such
that y is the fraction between the resulting chord length ||t — s @, t||  and
the total chord length ||t —s|| . A few lines of algebra (see Appendix A)
then give the following formulae for pi (s, t, u) and pa(s, t, p)

P2 — pP(s, t)r — 2
S7t7 = - 3
pi(s,t, 1) u\/ A

pQ(Svtmu) = _pl(svtmu)<svt>}-i [:uz(l B <Svt>}-) - 1] :
By assuming a constant line density on the manifold V(S) the whole line

between b and b’ can be represented by the midpoint m on the manifold

V(S) given by

o — b+ b’
b +bllx

Thus, one updates the centre of mass of the trajectory by

A, Ay
wass =or (o 5wt s (o m 25

where A, = ||b, — bl ||z is the length of the trajectory in the n—th step and
A, =37 A for the accumulated length up to the n-th step.

As a stopping criterion we suggest computing an upper bound on po, the
weighting factor of the new part of the trajectory. If this value falls below a
pre-specified threshold (TOL) we stop the algorithm. Note that the increase
in A, will always lead to termination.

4 Bounds on the Generalisation Error

In this section we start by deriving bounds on the generalisation error of
the Bayesian classifier hpayes given by Equation (7), i.e. the classifier which
decides at each point for the class whose functions occupy the larger volume
under the posterior distribution P (g). A similar study was done in [6, 23, 9].
While the result presented in [6] is similar to ours in considering the ratio of
the volume of parameter space to version space, we improve their bound ex-
ponentially due to a fundamentally different reasoning. The luckiness based
results of [23] are limited to a set H of classifiers with low dimensionality.
Furthermore, only the spherical approximation is taken care of. Their luck-
iness approach, however, is similar in spirit to our considerations. Lastly,
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the analysis of [9] aims at deriving upper bounds on the expected loss over
the prior Py and Pp. While such a result is of use if the prior is known
to be correct, their worst case bounds are essentially as bad as classical VC
bounds. Let us start with some definitions and background results.

Definition 1. Let f € H be a real valued function. Let S be a set of £ points
(xi, y;) drawn randomly according to Pp = PyPy. Then the quantity

1 .
Remp(f? S) = 7 H(Xiv yZ) €5: Slgn(f(xi)) # yz}|
is defined as the training error of f on S. Furthermore, we define

R(f; Pp) = Pp{(x,y) : sign(f(x:)) # v}

as the generalisation error of f w.r.t. the distribution Pp.

The ultimate goal of a learning algorithm is the minimisation of the gen-
eralisation error based on the iid sample S, i.e. based on the training er-
101 Remp(f;.5) accessible during learning.Since the learning task is usually
viewed as selecting a function femp from a given set of functions H, distri-
bution independent bounds are inherently connected with results about the
uniform convergence of means to expectation values! (see [29, 26, 28, 1]).
Hence, all these bounds involve a complexity measure of the set of func-
tions H known as the VC dimension. It was shown elsewhere [?] that the
minimal real valued output used in a thresholded classification provides a
scale—sensitive VC dimension of H (from which the classification function
was chosen). Moreover, this real-valued complexity measure allows algo-
rithms to minimise an upper bound on the generalisation error (e.g. SVMs

[21], Adaboost [20], Weight decay [2]).

In order to derive upper bounds on the generalisation error of a Bayesian
classifier we note that the final prediction is solely based on the posterior
distribution Py(s) (given a set of functions H) and the Bayesian decision
rule. Hence, the task of learning? cannot be viewed as selecting a certain
member femp from #H but from the space MY of posteriors over H. Since the

!Given an unknown probability Pp the (infinite) set of expectations is given by
{R(f;Pp): fe N}

2Since without any test point x, the Bayesian inference method does not return any
classifier it is questionable if one can speak about learning. One potential idea to use the
posterior is to calculate the posterior probability of certain labelings of a test set. This
inference approach is also known as transduction.
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latter is usually too complex, classical PAC style analysis fails to explain the
excellent generalisation behaviour of Bayesian classifiers.

To set the stage for our result let us introduce the average generalisation
error of classifiers.

Definition 2. Let H be a measurable space of real valued functions. Let
Pg denote a probability measure on H. Let S be a set of ¢ points (x;,y;)
drawn randomly according to Pp. Then the quantity

Remp(PQ; S) - /7.( Remp(f; S)PQ(f) df

is defined as the Pg—average training error on S. Furthermore, we define

R(PoiPo) = | R Po)Pol)
as the Po—average generalisation error of f.

The following theorem due to McAllester[11] serves as the basis for our
analysis.

Theorem 2. For any probability measure Py over the space H of classifiers,
for any probability measure Pp over the input space, with probability at least
1 — ¢ over the selection of the sample S of size £ we have the following for
all measurable subsets Q@ C V(9)

lnm—l—ln%—l—anK—l—l

R(Pg; Pp) < 7 7 (15)
Py (f)
Polf) = {gowﬂ’m ree (16)

We are prepared to give our main result.

Theorem 3. For any probability measure Py over the space H of classifiers,
for any probability measure Pp over the input space with probability at least
1 — € over the selection of the sample S of size £, for any measurable subset
Q C V(S) the generalisation error of the Bayesian classifier fgayes (+; Po)
whose posterior is given by Fquation (16) is bounded from above by

9 1
R (fBayes (7 PQ) 7PD) <7 (ln VOI(

+1 1—|—21 {41
7 Q;Py) n6 n .
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Proof. In order to prove the theorem we show that for any probability Pp
and Pg, R(fBayes (; Po); Pp) < 2R(Po; Pp). The result follows directly
from Theorem 2.

Using Fubinis theorem (see e.g. [7]) let us rewrite R(Pg; Pp) by
RiPoiPo) = | ( | Lsign(r6).m Potx. ) dx dy) Po(f) df
= [ ([ st petnar) o) axas.

where the function L in the inner integral captures the 0-1 loss of f at point

(x,y) and is defined by

. L g#y
L(g,y) = J
(9,9) { 0 G=y
At each (x,y) the set H boils down to two disjunctive sets Ho(x,y) = {f :
L(sign(f(x)),y) =0} and Hq(x,y) ={f : L(sign(f(x)),y) = 1}. Hence, the

Po—average generalisation error is given by

R(Pos Pp) = [ vol(#s (x.): Po) Po(x, ) dxdy.
D

Similarly, dividing the set of points into Dy = {(x,y) : L(sign(fBayes(x: Po)),y) =

0} and Dy = {(x,y) : L(sign(fBayes(x; Po)), y) = 1} the generalisation error

of fBayes (; Po) can be written as

R(fBayes (7PQ)7PD):/D PD(va) dXdy

If (x,y) € Dy, it follows that Vf € Hi(x,y) : [fBayes(x:Po) = f(x). By
definition, at any point x the Bayesian classifier frayes(-; Po) gives the same
output as the functions occupying the larger volume (under the posterior
Pg). Therefore, vol(H1(x,y); Po) > %, or equivalently

2vol(H1(x,y); Po) > 1 = L(sign(fBayes(x: Po)), )

This proves R(fBayes(; Po); Pp) < 2R(Po; Pp). O
In contrast to the known results from PAC/VC theory (where the r.h.s. can

be evaluated before learning) the above bound is to be evaluated after train-
ing. The result is essentially data—dependent and in the spirit of the luckiness
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framework: It measures how well aligned the true (unknown) distribution
Pp is with the assumed prior on dependencies Fy. Note that for a fixed
loss L each input distribution Pp singles out an optimal decision function
f. The main difference to the luckiness results given in [21] is how classifiers
are characterised, i.e. in the above result the effective decrease of complexity
of the Bayesian classifier results from the fact that it summarises the clas-
sifications of all classifiers f € V(5). In contrast, the luckiness framework
treats each classifier separately and — as a consequence — has to consider
worst—case scenarios for single classifiers. In the following we will study the
value of the bound for the classical Bayesian decision. Furthermore, we will
present an application of that bound to linear SVMs which leads to an ex-
ponential improvement over previous bounds. At the end of this section we
give a bound for the classifier estimated by the billiard algorithm.

4.1 Applications to Classical Bayesian Classifiers

According to Equation (6) we see that for a PAC likelihood the posterior
Py sy fulfils the assumptions of Theorem 3 for any sample S from any dis-
tribution Pp. Noticing that vol(V(9); Py) is always less than or equal to
one we see that the bound is minimized by choosing @ = V(S). This gives
the following corollary.

Corollary 1. For any prior Py over the space H of classifiers, for any
probability measure Pp over the input space with probability at least 1 — ¢
over the selection of the sample S of size { the generalisation error of the
(classical) Bayesian classifier feayes (-; PV(S)) s bounded from above by

%(m (m)—l—ln%—l—ﬂnﬂ—kl) . (17)

This result is very powerful because it relates the prior assumption Py on the
functions to the unknown probability distribution Pp underlying the data.
In fact, if vol(V(S); Px) < 27 the bound is trivial, i.e. greater than one.
This does not imply that frayes (-; PV(S)) has a high generalisation error, but
only that we are unable to give any guarantee on the generalisation error. If
the volume of version space under the posterior is significantly larger than
27¢ the theorem gives tight bounds. Assuming that vol(V(S); Py) > w™127¢
we plotted the value of the bound for varying values of w versus increasing
training set size in Figure 1 (a). Interestingly, even for small training sets (of
size less than 100) we get nontrivial guarantees on the generalisation error of
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Figure 1: (a) Upper bound on the generalisation error of the Bayesian classifier
[Bayes (; PV(S)) (see Equation (17)) using a posterior vol(V(S); Py ) > w™127¢ versus
training set size £ for ¢ = 0.05. The dotted line shows the “triviality line”, i.e. all values
above that line are trivial bounds. (b) Upper bound versus the effective VC dimension

In (m) Clearly, the bound scales linearly in this quantity.

Upper Bound on the Generalisation Error
\

Upper Bound on the Generalisation Error

0.0

JBayes(; Py(s)).- Note, that vol(V(S); Py) = 100 - 27¢ (w =0.01) for £ =100
is a posterior probability of 7.8 - 10729, Even for such a small probability
our result gives a guarantee for less than 70% generalisation error.

In Figure 1 (b) we plotted the upper bound on the generalisation error
versus In m for varying training set sizes. Apart from the fact

that this measure can be viewed as an effective VC—-dimension we see that
for £ = 1000 the value of the bound is consistently less than 0.5. This can
be made use of for the purpose of model selection. Nonetheless, we would
like to remark that it is difficult in general to estimate the volume of version
space accurately. Curiously, it seems possible to improve the bound by
adjusting the prior probability. Note that it is assumed to fix Py before the
training data arrives. Hence, if we have knowledge which functions suit the
problem at hand well (expressed by the unknown Pp) we are able to bias our
confidence. If this expectation fails, i.e. if we have chosen an incorrect prior
Py then the bound will report. This is clearly an advantage over classical
guarantees on Bayesian classifiers.

4.2 Applications to Support Vector Machines

In order to make use of the result for SVMs we denote the largest inscrib-
able ball in version space by B(S) C V(S). If we now define a posterior
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distribution Pgyy according to

_ Pulf)
Psym(f) = { VOI(B?S);PH) f e B(S)

0 otherwise

we see that Pgyy fulfils the assumptions of Theorem 3 for all training sets S
and all distributions Pp. Furthermore, fgayes (-; PB(S))7 the Bayesian classi-
fier over Psym (see Equation (7)) coincides with wgyy due to the fact that
B(S) ball being a ball is pointsymmetric w.r.t. its centre.

A linear SVM bound Let us assume that our data space X' is R" endowed
with the kernel k(x,x’) = > " 2;2) = (x,x')pn. Furthermore, we assume
that for all x the kernel satisfies k(x,x) = 1, i.e the data lives on the unit
hypersphere in R”. Then, given the margin v we know that for a uniform
prior Py (see Appendix B.1)

() <o (1)

This gives the following bound on the generalisation error for linear SVM
classifiers.

Corollary 2. Suppose inputs are drawn independently according to a dis-
tribution whose support is contained on the sphere of radius one in R™. If
we succeed in correctly classifying { such inputs by a hyperplane f € V(S5)
(see Equation (3) and (4)) achieving a margin of v = ming(y; f(x;)), then
with confidence 1 — € over the selection of the samples S the generalisation
error will be bounded from above by

%(nlnm—l—anK—l—lnl—l—l) ,
€

4

where Kk = =.
7y

In contrast to the known result of Theorem 1 we see that our bound is of
order O(nln k) whilst the former is of order O(x1n(¢/k)In(f)). Also, the
constants in 2 are much smaller than the constants in the classical SVM
bounds. Furthermore, we see that the ratio of volumes simplifies to the well
known margin complexity. Once again this demonstrates that this ratio
serves as an effective VC dimension. In Figure 2 (a) we plotted the value
of the upper bound for varying training set size as a function of increasing
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Figure 2: (a) Upper bound on the generalisation error (given by Corollary 2) vs.
margin complexity 1/+?% for varying training set sizes (¢ = 0.05). As can be seen these
bounds grow logarithmically in 1/~4%. Note, that the corresponding upper bounds given
by Theorem 1 are far above the “triviality line”. (b) The two SVM bounds vs. 1/4?
for the NIST task (n = 400, ¢ = 60000, ¢ = 0.05).

margin complexity. We chose n = 100 input dimensions. As can be seen
from these plots, our bound becomes predictive in a large regime as soon as
the training set size exhibits a ratio of £/n > 20. Although this heuristic
was already given by Vapnik (see [27]) we would like to emphasise that the
classical bound is far beyond the triviality line (R = 1) in this parameter
regime. In Figure 2 (b) we applied our bound to one domain where SVM
showed promising generalisation performance — the field of handwritten
digit recognition. For the particular task of NIST zip codes we know that
n = 20 x 20 = 400 and ¢ = 60000 [28]. Promisingly, even for very small
margins (y < 0.01) the bound in Corollary 2 could report the superiority of
“large” margins while the known result is in no regime non—trivial.

4.3 Application to Bayes Point Machines

In order to apply the result given by Theorem 3 to the Bayes point w,, we
have to define a region R (Wem) C V(S) such that the Bayesian classifier
[Bayes (-; PR(wcm)) under a uniform distribution over R (w) always agrees
with wey,. This is easily achieved by constructing an auxiliary miérrored
version space V (S' (w)) w.r.t. any w € V(S5). Formally, this space is given
by the set of all hyperplanes consistent with the auxiliary training set (see

Appendix A)

ST (w) ={2(w, 6 () r — ¢ (i) s +1 2 (x5, m1) € 5}
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The training set S’ (w) can be viewed as bounding hyperplanes y;¢ (x;)
point-mirrored at point w. The subset R (w) of version space point sym-
metric w.r.t. w is defined as the intersection of V(S) and V (S’ (w)), i.e.

R(W)=V (S (w))NV(S).

Note, that the intersection of two convex sets is always convex [10]. More-
over, by construction w agrees with the Bayesian classifier using a uniform
distribution over R (w): For every data point ¢ (x) bisecting R (w), w lies in
the half of larger volume. Consider only those ¢ (x) where® (w, ¢ (x)) = 0.
Then for each classifier w € Wi, = {w' € R (w): (W', ¢(x))r > 0} there
exists a corresponding classifier w € W_; = {w' € R (w) : (W', ¢ (x))r < 0}
by mirror-symmetry, and vice versa (see Lemma 4). Hence, the volumes
vol (Wy41) and vol (W_;) are of equal magnitude under the uniform measure

over R (w).

The above argument holds for any classifier w € V(S) and thus allows the
application of Theorem 3 to arbitrary version space members. The volume to
be considered in the bound is vol (R (w)). Although the centre of mass wep,
does not maximise R (w) it appears that under quite general circumstances
vol (R (Wem)) > vol (R (wsym)) (for an example see Figure 4). Further
investigations aim at constructing the true maximiser of vol (R (w)).

5 Bayes Point Estimation with Soft Boundaries

To allow for training errors we will introduce the following version space
conditions in place of those in Equation (3).

£
yi Y k(i %)) > =Ayjaik(x;,x;) (18)

=1

where A > 0 is an adjustable parameter related to the “softness” of version
space boundaries.

Clearly, considering this from the billiard viewpoint Equation (18) can be
interpreted as allowing penetration of the walls, an idea already hinted at
n [19]. Since the decision function based on Equation (1) is invariant under
any positive rescaling of the a; a factor «; on the right hand side makes
A scale-invariant as well. Although other ways of incorporating training

®For a fixed ¢ (x) the resulting w form a so called Bayes line.
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errors are conceivable our formulation allows for a simple modification of
the algorithm described in Section 3. To see this we note that Equation
(18) can be re-written as

4
yi | il 4 A6 k(xi,x;) | >0
=1

Hence we can use the above algorithm but with an additive correction to the
diagonal terms of the kernel matrix computed at the start of the algorithm
k(x;,x;) < k(x;,x;)+A. This additive correction to the kernel diagonals is
similar to the Ly error norm [5] used to introduce a soft margin during train-
ing of SVMs which has recently been theoretically motivated [22]. Another
insight into the introduction of soft boundaries comes from noting that the
distance between two points ¢(x;) and ¢(x;) can be written

lo(xi) = d(e)llF = lloellz + 10017 — 2o (i), o)) 7+

which in the case of soft boundaries becomes 2(1 + A — k(x;,x;)). Thus, if
we add A to the diagonal elements of the kernel matrix, the points become
equidistant for A — oo. This would give the resulting version space a more
regular shape. As a consequence, the centre of the largest inscribable sphere
(SVM solution) would tend towards the centre of mass of the whole of version
space.

We want to note that our scheme of incorporating training errors allows us
to bound the generalisation error using Theorem 3. Considering that the
whole parameter space is given by

¢
w = Zomb (i)« [IwllF = ZZO@%‘ (0 (xi), ¢ (x5)) =1

This can be rewritten as
{a cR:aTKa = 1} Kij = (6(x:), 0 (x,)) 5 = k (x5, %;) -

Let us represent the kernel matrix by its spectral decomposition, i.e. K =
U'DU where UTU = I and D = diag(oy,...,0,) being the diagonal
matrix of eigenvalues o;. Thus we know that the parameter space is the set
of all coefficients @ = Ua which fulfill

{aeRf:aTDa:1}.



Experiments 19

Figure 3: Parameter spaces for a 2D toy problem obtained by introducing training
error via an additive correction to the diagonal term of the kernel matrix. In order to
visualise the resulting parameter space we fixed £ = 3 and normalised all axes by the
product of eigenvalues /010503 (see text for further explanation). This gives the same
scaling for all ellipsoids. Clearly, for no training errors (A = 0) the parameter space is
a 2D ellipse. By introducing an additive correction to the diagonal term of the kernel
matrix K the parameter space expands in the third dimension and finally results in a

3D ball (A = 2.5).

This is the defining equation of an {~dimensional axis—parallel ellipsoid. Now
adding the term X to the diagonal of K makes K a full rank matrix (see
[13]). In Figure 3 we plotted the parameter space for a 2D toy problem using
only ¢ = 3 training points. Although the parameter space is 3—dimensional
for all A > 0 we obtain a pancake like parameter space for small values of A.
For A — oo the set a of admissible coefficients becomes the {—dimensional
ball. As shown in Corollary 1 and 2 this gives a trivial upper bound in the
limit of A = oo. In the range 0 < A < oo the size of the resulting version
space can be evaluated using the approaches outlined in Subsection 4.2 and
4.3. Hence the bound given by Theorem 3 can be applied to learning with
training errors admitted. Furthermore, a similar reasoning is applicable to
general Mercer kernels.
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Figure 4: Version spaces V(S) for two 3D—toy problems. One can see that the
approximation of the Bayes point (diamond) by the centre of the largest inscribable
sphere (cross) is reasonable if the version space is regularly shaped (left). The situation
changes in the case of an elongated and asymmetric version space V(.S) (right).

6 Experiments

In Figures 4 we illustrate the potential benefits of a BPM over a SVM
for elongated version spaces. We randomly generated two datasets with
10 training and 10000 test points in R®. The data points were uniformly
generated in [—1,1] and labelled by a randomly generated linear decision
rule using the kernel k(x,x’) = (x,x')gz. By tracking all positions b,, where
the billiard ball hits a version space boundary we can easily visualise the
version spaces. For the example illustrated in Figure 4 (right) the SVM and
Bayes point solutions with hard margins/boundaries are far apart resulting
in a noticeable reduction in generalisation error of the BPM (8.0%) compared
to the SVM (15.1%) solution. For another toy example involving RBF

kernels k(x,x’) = exp (Hx —x'||? /202) Figure 5 shows the resulting decision

functions in the hard margin case. Clearly, the BPM solution appears much
smoother than the SVM solution although its minimal margin of 0.020 is
significantly smaller.

To investigate the performance on real-world datasets we compared hard
margin SVMs to BPMs with hard boundaries (A = 0). We studied the
performance on 5 standard benchmarking datasets from the UCI Repository
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SVM BPM

Figure 5: Decision functions for a 2D toy problem of a SVM (left) and BPM (right)
using hard margins (A = 0) and RBF kernels with the same sigma ¢ = 1. Note, that
the BPM result in a much “flatter” function sacrificing margin (y(wsv ) = 0.036 —
¥(Wem ) = 0.020) for smoothness.

[24], and banana and waveform, two toy datasets?. In each case the data was
randomly partitioned into 100 training and test sets in the ratio 60%:40%.
The means and standard deviations of the average generalisation errors on
the test sets are presented as percentages in the columns headed SVM (hard
margin) and BPM (A = 0) in Table 1. The BPM outperforms SVMs on

almost all datasets at a statistically significant level.

In order to demonstrate the effect of positive A (soft boundaries) we trained
a BPM with soft boundaries and compared it to training a SVM with soft
margin using the same kernel matrix (see Equation (18)). Figure 6 shows
the generalisation error as a function of A for the toy problem from Figure 4
and the dataset thyroid using the same setup as in the previous experiment.
We observe that the SVM with an Ly soft margin achieves a minimum of
the generalisation error which is close to, or just above, the minimum error
which can be achieved using a BPM with positive A. This may not be too
surprising taking the change of geometry into account (see Section 5). Thus,

*Publically available at http://horn.first.gmd.de/ raetsch/data/benchmarks.htm.
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Figure 6: Comparison of soft boundary BPM with soft margin SVM. Plotted is the
Generalisation error versus A for a toy problem using linear kernels (left) and the thyroid
dataset using RBF kernels with ¢ = 3.0 (right). The error bars indicate one standard
deviation of the estimated mean.

also the soft margin SVMs approximates BPMs with soft boundaries.

SVM (hard margin) | BPM (hard boundary) o | p-value
Heart 25.440.40 22.8+0.34 10.0 1.00
Thyroid 5.3+0.24 4.440.21 3.00 1.00
Diabetes 33.140.24 32.0+0.25 5.0 1.00
Waveform 13.0+0.10 12.14+0.09 20.0 1.00
Banana 16.240.15 15.1+0.14 0.5 1.00
Sonar 15.4+0.37 15.940.38 1.0 0.01
Tonosphere 11.940.25 11.540.25 1.5 0.99

Table 1: Experimental results on seven benchmark datasets. Shown is the estimated
generalisation error in percent. The standard deviation was obtained on 100 different
runs. The final column gives the p-values of a paired i-test for the hypothesis “"BPM
is better than SVM" indicating that the improvement is statistically significant.

7 Discussion and Conclusion

In this paper we presented an estimation method for the Bayes point for
linear functions in Hilbert space. We showed how the SVM can be viewed
as an (spherical) approximation method to the Bayes point hyperplane.
By randomly generating consistent hyperplanes playing billiards in version
space we showed how to stochastically approximate this point. In the field of
Markov Chain Monte Carlo methods such approaches are known as reflective
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slice sampling [14]. Current investigations in this field include the question
of ergodicity of such methods.

We presented theoretical results which indicate that the fraction of the vol-
ume of parameter space to the volume of version space plays a crucial role
in the generalisation error of Bayesian classifiers. The analysis presented ex-
ploits the idea of representing a classifier by its posterior distribution. The
results motivate the centre of mass as a classifier with good volume ratio
and thus good generalisation. The results also indicate that under circum-
stances where the shape of the version space is almost spherical the classical
SVM gives the best result. All these results were supported by experiments
indicating that the centre of mass has excellent generalisation behaviour.

Bayes points in kernel space constitute an interesting bridge between the
Bayesian approach to machine learning and statistical learning theory. In
this paper we showed that they outperform hard margin SVMs. We could
also improve on further bounds by casting the SVM classifier into a Bayesian
framework. However, it is well known that introduction of a soft margin im-
proves the generalisation performance of SVMs on most datasets by allowing
for training errors. Consequently we introduced a mechanism for Bayesian
learning with training errors admitted. A comparison of the generalisation
performance of the two types of systems shows they exhibit a much closer
generalisation performance than in the hard boundary/margin case.

Although our approach has an impressive generalisation performance further
work is required to improve the usability and performance. For example,
it may be possible to introduce simpler algorithms for approximating the
Bayes Point in kernel space [30].
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A Geometry in an RKHS

This appendix gives a detailed derivation of geometrical results in Reproduc-
ing Kernel Hilbert spaces (some of them are extensively used in the kernel
billiard algorithm). Most of the results are well known from linear algebra
and can be found in many textbooks, e.g. [8].

A.1 Flight times in Kernel Space

Figure 7: Bouncing the ball in an RKHS. See text for further details.

Assume v, b € F are normalised and ¢(x) is the normal vector (not neces-
sarily of unit length) of the hyperplane (see Figure 7). Here, ¢ is a mapping
from A into the RKHS F endowed with the reproducing kernel &(-,-), i.e.

(0(x4), &(x;)) 7 = k(x4,%;). Clearly
<b7 ¢(X)>}'

o)l

is the distance of the ball b from the hyperplane. Moreover, for direction
vectors pointing towards the hyperplane,

(v, 0(x))#

o)l

is negative and its absolute value is the distance of v from the hyperplane.
Thus, the negative fraction 7 of both terms, i.e.

(b, 0(x))#
(v,0(x)7

gives the flight time for a ball at position b when v is the direction vector
pointing towards the hyperplane. This justifies Equation (11).

T = -
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One can easily check the validity of the update rule (13)
b = b+7-v

by calculating the distance of b’ to the hyperplane with normal vector ¢(x),

le.

(b, 6(x)r  _ (b+7v,6(x)r
(60x), 6(x)) IR
(b)) r — 2SRV, 6(x)) 5
- R
J— 0 —
oGl
[b—b||s

b/

I[b—b|| =

0

Figure 8: The relation between the flight time ||b — b’|| - in the Euclidean span and
the flight time ||b — b’||g on the unit hypersphere.

Let us assume that the vectors b’ and b are normalised to unit length.
Then we know the following relation between ||b — b’|| z (the length of the
shortest line between these two points in F) and ||b — b’||g (the length of
the shortest path on the unit hypersphere in F) (see Figure 8)

/ 2
Hb - b/HS = arccos (1 — (%) ) .
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This follows from the fact that

Hb—b’HS = arccos({(b, b)),

[b-b|, = V(b—b ,b—b)r
= V/(b,b)r —2(b,b)x + (b b) £
= V1-2(b,b)r+1
= 2(1—(b,b)s).

A.2 Reflections in Kernel Space

Figure 9: (a): A reflection of v at the hyperplane with normal vector ¢(x). Note,

that cos() = (v,¢(x))x/ (|Vllz-lle(x)ll£) = =(v,6(x))=/ (IV]|= - [0 (x)ll£)-

(b): Shifting the vector ¢(x) shows, that for the reflection vector v’ the equality
v/ = v + ¢ ¢(x) has to hold. For calculation of ¢ see the text.

Again, assume v,v’ € F are normalised and ¢(x) is the normal of the
hyperplane where the reflection takes place. Then for a reflection (see Figure
9 (a)) the following equality holds,

(v,o(x))r = —(v,o(x))r. (19)

It is also easy to see (Figure 9 (b)) that the reflected vector v/ has to be of
the form

vi = v ox), (20)
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where ¢ has to chosen such that Equation (20) is fulfilled. Thus, inserting
Equation (20) into Equation (19) gives

(v,o(x))r = —(v+e o(x),0(x)r
(v,o(x))r = —(v,6(x)F = c(d(x), 6(x))
P 23(5.3) £ W

oGOl kGex)

which justify the usage of Equation (14). Here we used v = (v, ¢(x))~.

A.3 Point—Mirroring in Kernel Space

Given a point w’ € F and a hyperplane {w : (w, ¢ (x)) r = 0} characterised
by its normal vector ¢ (x) the task is to find the normal ¢ (x') of the point—
mirror image of the hyperplane with respect to w’. This situation is depicted
in Figure 10. Clearly, this task is equivalent to the reflection of the vector
¢ (x) at the normal to the hyperplane where w’ lives on. Thus, we have the

{w: (w,6(x'))r =0}

Figure 10: The reflection of the hyperplane with normal vector ¢ (x) at the point w'.
Note the close similarity to Figure 9.
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following relationship for ¢ (x)

—¢(x) = o(x)-2(w,6(x)),
(b(x') = 2<W/7¢(X)>}.—(b(x).

If ||w']| = ||¢ (x)|| = 1 we automatically obtain a normal ¢ (x’) of unit length.

le (" = (W, 6x)r—06x),2(W, ¢ x)r—¢(x),
4 (W', (x)) )" =4 (W6 () ) +1lo )P =1.

w', ¢
= w', ¢

A.4 A derivation of the operation &,

Let us derive operation @, acting on vectors of unit length. This function
has to have the following properties (see Section 3)

ls @tz = 1, (21)
[t =s@utllz = pllt=slz, (22)
sd,t = pis+pat, (23)
pr>0 , p2>0. (24)

Here we assume that ||s||5> = |[t||= = 1. Inserting Equation (23) into (21)
results in

lp1s+ pat||z = (p1s+ pat, p1s+ pat)r
= o1 Isll%E + 3 Itl[% + 2p1p2(s, t)
= P+t 2pipa(s,t)r=1. (25)

In a similar fashion combining Equation (23) and (22) gives

[t —s@utlz = K*lit —s|z

10 = p2)t—puslz = w2t |z
(L= p) [ItF = 201 = p2)pr(s, )+ pi sz = w*([tlF — 2(s,t) = + [Is][%)
(1= p2)? =2(1=p2)pi(sit)r +pi = p*(2-2(s,t)7). (26)

Note that Equation (25) is quadratic in py and has the following solution

pr = —prls t)r oA, 0)F)2 — 4 L= —pi(s t)r AL (27)
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Let us insert Equation (27) into the r.h.s. of Equation (26). This gives the
following quadratic equation in pq

(1= p2)* = 2(1 = p2)pu(s, t)r + pi =

1= 2py + p3 — 2pi(s, )7 + 2p2p1 (s, t) 7 + pi

L4 2p1(s, 6) 7 + 24+ p3 — 2p1(s, t) 7 + 2papi (s, t) 7 + pi

L+ 244 pi + (pifs, )7 + A)° =21 (s, t)r(pi(s, t)F + A) =
L+ 244 pt + pi((s,6)7)* + 2p1 (s, t) 2 A + A

—2pi({s,t)7)% = 2p1(s,t)FA =

L+ 244 pf = pi((s,t)7)* + A?

L+ 24+ pi = pi((s,t)7)* + pT((s,t)7)* — pi + 1

2424 = 2u%(1— (s, t) 7).

Rearranging terms then gives the following

L (s, )2 —p 41 = (1 (s,t)5)
/o )P~ pi A1 = WPl (s.t)F) - 1
PSR~ i1 = (21— (s, b)) — 1)?
P62 —1) = (1 (s,t)r) — 1>~ 1
, _ (BP0 (st)p) - 121
N (A E >
i (L= (s, 6)7)” = 22(1 — (s.t)7)

Making use of the identity
B = (5, 6)5)% — 24 2(s, thr = —(u — (s, hr — 2) ({5, 6) — 1),
finally gives the desired result
. —p (= s, t)r — 2)((s, t)r — 1)
(s, )7 = D((s, )7 + 1)

P = (s t)r — 2)
<S,t>}'—|— 1

_ P2 — pA(s, t)r — 2
p1 = ¢— <&®f+ﬁ i (29)
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Inserting this formula back into Equation (27) and making use of the identity
(28) we obtain for po

p2 = —p1<svt>fi\/p1 s, t)7)? — pi + 1
= —pi(s,t)r £ \/,01 (s,t)r)2—1)+1
= e thr V1= () — P =14 1
= —pilst)r £ (p ( <s,t>]:)—1). (30)

B Proofs

B.1 Volume Ratio in Terms of Margins

In this section we explicitly derive the volume ratio between the largest
inscribable ball in version space and the whole parameter space for the
special case of linear kernels in R”. According to definition (3) we know
that the whole parameter space is given by

So={wrlwl =1},

where in the following (-,-) and ||-|]| denote the classical inner product and
norm in R”, i.e.

n

by =Y et [l = .
=1

=1

Given a point w’ € §,, and a positive number 0 < v < r we can characterise
the ball of radius v in the parameter space by

Sn(wl,'y) = {W:WESmHW—W'H2§72}

= {wiwe Sulwl -2 (w,w) + W < 5]
= {wiweS,2-2(w,w) <4

2
= {W:WESn,<W7W/>21—%}

In the following we will calculate the exact value of the ratio %

where w’ can be chosen arbitrarily (due to the symmetry of the sphere) and
~ equals the observed margin.
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Lemma 1. Forlinear kernels in R™ the fraction of the whole surface vol (S,,)
of the unit sphere to the surface vol (S, (w', 7)) with Euclidean distance less
than v from any point w' € S,, is given by

wol(s) Of[sin (0)]"% do

vol (Sp(w', 7)) farccos=2272) (i ()72 df -

Proof. As the derivation requires the calculation of surface integrals on the
hypersphere in R” we define each admissible w by its polar coordinates and
carry out the integration over the angles. Thus we specify the coordinate
transformation f : R® — R” from polar coordinates into Cartesian coordi-
nates, i.e. every w € §,, C R” is expressed via n—2 angles @ = (64,...,0,,_2)
ranging from 0 to 7, one angle 0 < ¢ < 27, and the radius r. This transfor-
mation reads

wy =1 (r,e,0) = r-sin(e)sin(fy)---sin(d,-2) (31)

wy =fa(r,e,0) = r-cos(p)sin(fy)---sin(d,-2) (32)

: (33)

W1 = fre1 (r,9,0) = 1 -cos(f,—3)sin(0,—2) (34)
Wy, =fu (r,9,0) = r-cos(f,_2). (35)

Without loss of generality we choose w' to be 8 = 0, ¢’ = 0. Hence the ball
of radius v can be expressed as

2
Sn (7) = {7‘799,02 <f(7‘7g070)7f<r799/70/)> 2 1— l}

2
= {r,cp,@ 1cos(f,—2) > 1 — ?}

~?
= {r,cp,@ :0,_9 < arccos (1 — 7)} 7

using sin (0) = 0 and cos (0) = 1 in the third line. As can be seen from this
expression the margin v characterising the ball simply possesses a restriction
on the angle 6, 5 in the integration. Thus, the quantity of interest is given
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by

Vol (8,(2)) ST S JT 1T (ry 0,01, Ba)| dB_y -+ dBy dp

Vol (Su(7)) [ [ [ T (ry s O, B a)| g - dOy dip
(36)

where U = arccos (1 - g) and J, is the functional determinant of { given

by Equation (31) to (35). .J, is given by

Jn(r79‘97017--- 7071—2) = detJn7 (37)
i(rp,8) Oh(re8) Ohi(reb)
or 8@ 8077,—2
afn(ﬁ%e) afn(7’7@76) .. afn(n%e)
or 8@ 8077,—2

Hence the n—th row of this matrix contains only two nonzero elements

Ot (1, ¢, 6) 01 (r, ¢, 0)
87‘ 80n_2

= cos(6,—2) = —r-sin (f,—2) .

Now using the Laplace—expansion of (37) in the n—th row we obtain
Jo (ry, 61, .. ,0,_2) =cos (0,_2) A(z,,r) —rsin (6,-2) A (2, 0,—2) ,

where A(x,,r) is the algebraic complement of the element (J,), . of the

Jacobian, similarly A(z,,,0,—2). Let us decompose A(z,,r) and A(z,,0,—2)
into

Axp,r) = Juo1 (ry,601,...,0,-3) - (—1)“’1 . (—1)71_2 o [sin (6,—2)]""

Aln, 0p_a) = Juo1 (r,0,01, ..., 0,_s) - (=1)*" - [sin (6,_2)]" " .

The first factor is the determinant of the submatrix of J,_{ obtained by
deletion of the n—th row and n—th column of J. The second factor is the
checkerboard term of the algebraic complement whereas the third factor
in the term A(x,,r) specifies the number of column flips to transform the
column order of the matrix obtained by deletion of the first column and n—th
row into the column order of J,,_;. The last factor gives the factor which is
missing in J,—1 (r,¢,61,...,0,-3). As an example consider the special case

2 cos (B,_2) ,
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of n =3 and n = 4:

cos (p)sin (1) —rsin (p)sin (01) rcos(p)cos (61)

Js (ryp,01) = det sin () sin (1) 7 cos(g)sin (61)  rsin (¢) cos (61)

cos (61) —rsin (61) ’
g1 12 Js
_ sin (62) j1 sin (62) j2 sin (62)js rcos(02) 1
Ji(rig,01,02) = det ( cos (63) 0 0 —rsin (62) /) °

Hence, J,, (r,¢,601,...,0,_2) is given by

Jn(f‘7§07017...70n_2) = Jn—l (7‘7997017...7071_3)'
—r ([sin (62)]"72 [c0s (B52))” + [sin (B—2)]" 2 [sin (6 )])

As a result, we obtain

Jo(rye, 01, ..., 0,2) = —r [sin(On_g)]n_2 T (ry @, 61, ..., 0,_3)

which back-inserted into Equation (36) gives

vol (8,) [y [sin (0,-2)]" "% db,,_,
vol (Sn(¥)) [ [sin (6,-9)]" "% db,_s

where W = arccos (1 — g) The lemma is proven. O

Now we prove a lemma which can be used to bound the ratio %

above. Note that for tighter bounds on the volume ratio one only needs to
evaluate the previous expression. Here, one can make use of an expansion
of the fraction in terms of the binomial coeflicients.

from

Lemma 2. Forallk e Nand all) < z < %

Of[sin (O db

Oarccos(l—Zac) [sin (0)]2k—l—1 do

In

< —(2k+1)In(x). (39)
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Proof. From [3] we know that for all k£ € N

/ [sin ()] 4o = gzsfl ( B(k,0) +Z sin ( )) . (40)

. 2(i+1)-2(i+2)---2k

Bik,o) = (2i+1)-(2i—|—3)---(2k—1) (4D
242k 1-3; (2i—1)

1-3--(2k=1) 4. (24) (42)

2.
cwran o ()

= I Z, (2:) (43)

Let us introduce the abbreviation

arccos(1—2x)
S(k,x)= / [sin (§)]*"F! d6.
0

Then the numerator of (39) is given by S(k, 1) whereas the denominator of
(39) is simply S(k, ). From Equation (40) we see

arccos(1—2x)

cos(6) SYTRDACE
S(k,z) = SE T B(k,O)—|—Z[sm(0)] B(k, 1)

0

1 K o
= i1 (B(k,O)—(I—Qx)B(k,O)—(1—236);(436—430 ) B(m))
1 4k LY
B 2k—|—1(2,€)(1‘|‘(2$ (2 - 1) ;(l) 1_96)),
k

where we have used
[sin(6)]* = [sin2(0)]i =[1- COS(@)Q]i = (1-(1-22) ) (42 — 4 ) .

For the fraction we obtain

St _
m( 1)_1 Qx—l—(Qxl)ZZ?(

2

. )xiu—x)i

1
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In Lemma 3 we show that for any £k € NT and 0 < 2 < %

3

=1

Back—inserted into the last expression we obtain
S (k, 1)) 2 ( 2 )
In ( < In =ln|——
Sk, —= 2 p2k+1 _ o 2p2k+1
(k,) 2$+(2$—1)% )

):—(Qk—l—l)ln(ac)7

I
=
TN
=
(3]
o
+
—

which proves the lemma. O

Lemma 3. For any k € Nt and 0 < v < §

9 <$2k-|—1 _ $)

k % . .
g S (l-a) < —=
: 1 20— 1
=1
Proof. In order to prove the lemma we note that

i ( 2; ) S-a)= g 396296 ‘ (44)

=1

This can be seen by considering

1 u2i—|—1

: [ 2i
arcsin (u) = u—l—;( ; )Z?i—l—l

d arcsin (u) 20\ 1, 1
— — 1 . - [ N —
du —I—;(’)@u VI—u?’

Using v = 24/ (1 — z) we obtain Equation (44). In the next step we show
the following lower bound

© : ) ) 9 2k+1

E 2.2 ' (1—a) > ! .
) 7 1 -2z
i=k+1

This can be achieved by renumbering and componentwise comparison of the
resulting sequence, i.e.
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= 21 7 T = Q(k—l_]) k+ k47
3 ( Z )xu_x) _ Z( e ) i (1= gyt
i=k+1 7=1
S 2 2k+ ok 2T
> . 7 i
> 3 (Y )eamay =ty

where we used ( 255_:_]]) ) > ( 2]‘] ) which holds for all & € N*, and
aFi (1 — 2)f > g2k (1 - 2)7 < (1 —2)® > 2% which holds for all 0 <
z < % Finally, we combine the two statements to prove the lemma. Thus

we see
k % : : i % : : i % : :
(i)avl(l—ac)Z = Z(i)xl(l—x)Z—Z(i)xl(l—x)l
=1 =1 i=k+1
P 20 202k 41 2 (z — 22h+1)
- 1-2z 1-2z 1 -2z
9 <$2k+1 1)

2 — 1

B.2 Bayes—Admissibility and Point—-Symmetry

Let us formally introduce the property of point—symmetry and Bayes—admissibility
of a compact convex set V in any metric space.

Definition 3. A compact convex set V in a vector space is said to be point—
symmetric iff

weV:ivWweVv42(w—-v)eV.

A compact convex set V in a metric space is said to be Bayes—admissible iff
there exists a w such that
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mH(n,W) = w,

H (n,w) = {vi{(v—w,n)r =0Avol (W4 (w,n)) =vol W_; (w,n))} ,
W, (w,n)= {v'eV:sign((v'-w,n);)=y}.

The following lemma is of interest for the construction of Bayes—admissible
sets given a point w.

Lemma 4. The following two statements are equivalent

e A compact convex set V is point—symmetric.

e A compact convex set V is Bayes—admissible.

Proof. First we show that any point—symmetric set is Bayes—admissible.

Consider any normal vector n, the symmetry centre w € V, and any v €

Wi1 (w,n). Then we know from the property of point-symmetry that there

exists a unique vector v =v+2(w—v) € V and v € W_; (w,n). Since

this holds for any n and any v € W, (w, n) it follows that vol W1, (w,n)) =
vol W_1 (w, n)). Hence, point-symmetry implies Bayes—admissibility.

Now we prove that any Bayes—admissible set V' is point—symmetric. Let us
represent the convex set V by polar coordinates. Hence, we represent the
convex set V' by a boundary function f (¢, 8) > 0. Without loss of generality
we assume that the Bayes—point is located at the origin of the coordinate
system. Hence, points are represented by one angle 0 < ¢ < 27, n angles
0 <6, <, and a radius 0 < r < f(¢,8). Then, V is point-symmetric
w.r.t. to the origin iff

vS‘QV/Olven f(@‘ove) :f(g‘o—ﬂ-vﬂ-]-_e) :

Without loss of generality we can assume that the two subvolumes of equal
volume (induced by the intersection of n 4+ 2 Bayes-lines) are given by 0 <
P<Ap0<O <A i=1l...nandr < <n+Ag7<O<7-A, =
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1...n. Hence by the Bayes—admissibility we have

Ao A An pf(e,8)
/ / / / sz (10, 0) drdf, - -dby dp =
0 0 0 0
T+Ag T—A T—Ap f(v,8)
/ / / / Joso (ry0,8) drd6, ---db, dp =
s s s 0
Ao A Ap  rfle—m71-0)
/ / / / Jot2 (ryo—m, 71— 8) drdb, ---db, dy
0 0 0 0

Now using the following two properties of the functional determinant J, 4o

|Jn+2 (T‘, s 0) | = rn+1|l(n+2 (997 0) | )
[tz (r,0,0)| = |Jpg2 (r,p— 7,71 = 0) ],

we see that by Bayes—admissibility
f((p76) f(ap—7r,7r1—0)
/ Pt dr = / ot dr
0 0

which gives

f(go70):f(99—777771—0) :

This is the defining property of point—symmetry and proves the lemma.
O
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Algorithm 1 Pseudocode of the Billiard algorithm
Require: TOL < 1
Require: 7pa € RT
Ensure: y; >, vik(x;,x;) > 0 j=1,...,¢

a=20

B = random; normalise 3 using Equation (10)

A= Pmax = Amax =0

while ps (Pmax; Amax/A) > TOL do

repeat
for:=1,...,/do
di = yi 325 vik (x5, %)

vi = yi > k(x,%)
= —d; /v
end for

m/ — mini:7i>0 Ti
if 7.,/ > Tmax then
B = random, but fulfils Equation (12)
normalise 3 using Equation (10)
else
m=m'
end if
until 7,/ < Tmax
~' =~ + 7,»3; normalise 3’ using Equation (10)
B = Bm — 2V Ym [ k(Xum, Xm); normalise 3 using Equation (10)
¢ =~ +~'; normalise ¢ using Equation (10)
A= \/Zm (vi = 7)) (%‘ = ’V}) k(xi, x;)
P= 2o Giok(xi, x;)
a =M (p7AL_|_/\)a+p2 (vaAﬂ)C
Pmax = max (p7pmax)
Amax = max (Av Amax)
A=A+
=9
end while
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