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2 Margin Distribution and Soft MarginJohn Shawe-TaylorDepartment of Computer ScienceRoyal Holloway, University of LondonEgham, Surrey TW20 0EX, UKj.shawe-taylor@dcs.rhbnc.ac.ukhttp://www.cs.rhbnc.ac.uk/people/sta�/shawe-taylor.shtmlNello CristianiniDepartment of Engineering Mathematics, University of BristolQueen's Building, University Walk, Bristol BS8 1TR, UKnello.cristianini@bristol.ac.ukhttp://zeus.bris.ac.uk/�ennc/nello.htmlTypical bounds on generalization of Support Vector Machines are based onthe minimum distance between training examples and the separating hyperplane.There has been some debate as to whether a more robust function of the margindistribution could provide generalization bounds. Freund and Schapire (1998) haveshown how a di�erent function of the margin distribution can be used to boundthe number of mistakes of an on-line learning algorithm for a perceptron, as wellas to give an expected error bound. We show that a slight generalization of theirconstruction can be used to give a pac style bound on the tail of the distributionof the generalization errors that arise from a given sample size. Furthermore,we show that the approach can be viewed as a change of kernel and that thealgorithms arising from the approach are exactly those originally proposed by Cortesand Vapnik (1995). Finally, we discuss the relations of this approach with othertechniques, such as regularization and shrinkage methods1.1. Parts of this work have appeared in Shawe-Taylor and Cristianini (1999b,a)
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6 Margin Distribution and Soft Margin2.1 IntroductionThe presence of noise in the data introduces a trade-o� in every learning problem:complex hypotheses can be very accurate on the training set, but have worsepredictive power than simpler and slightly inaccurate hypotheses. Hence the rightbalance between accuracy and simplicity of a hypothesis needs to be sought and thisis usually attained by minimizing a cost function formed of two parts, one describingthe complexity of the hypothesis, the other measuring its training error. In the caseof linear functions this leads to an additional di�culty as the problem of minimisingthe number of training errors is computationally infeasible if we parametrize theproblem in terms of the dimension of the inputs (Arora et al., 1997). We avoid thisapparent impasse by bounding the generalization in terms of a di�erent functionof the training set performance, namely one based on the distribution of marginvalues, but not directly involving training error. We will show in this paper thatminimising this new criterion can be performed e�ciently.When considering large margin classi�ers, where the complexity of a hypothesisis measured by its margin with respect to the data, the presence of noise can leadto further problems, for example datasets may be non-separable, and hence theirnon-separabledata margin would be negative, making application of the non-agnostic result impossible.Moreover solutions found by maximizing the margin are not stable with respect tothe training points { slight modi�cations in the training set can signi�cantly changethe hypothesis { a brittleness which makes the maximal margin solution somehowundesirable. These problems have led to the technique of the \soft-margin", aprocedure aimed at extending the large margin algorithms to the noisy case bypermitting a trade-o� between accuracy and margin.Despite successes in extending this style of analysis to the agnostic case (Bartlett,1998) (see (??) in this book) and applying it to neural networks (Bartlett, 1998),boosting algorithms (Schapire et al., 1998) and Bayesian algorithms (Cristianiniet al., 1998), there has been concern that the measure of the distribution of marginvalues attained by the training set is largely ignored in a bound in terms of itsminimal value. Intuitively, there appeared to be something lost in a bound thatdepended so critically on the positions of possibly a small proportion of the trainingset.Though more robust algorithms have been introduced, the problem of robustbounds has remained open until recently. Freund and Schapire (1998) showed thatfor on-line learning a measure of the margin distribution can be used to givemistake bounds for a perceptron algorithm, and a bound on the expected error.Following a similar technique, in this paper we provide theoretical pac bounds onmargindistribution generalization using a more general function of the margin distribution achieved onthe training set; we show that this technique can be viewed as a change of kernel andthat algorithms arising from the approach correspond exactly to those originallyproposed by Cortes and Vapnik (1995) as techniques for agnostic learning. Finally,we will show that the algorithms obtained in this way are intimately related to
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2.2 Margin Distribution Bound on Generalization 7certain techniques, usually derived in the framework of regularization or of Bayesiananalysis and hence this work can be used to provide a learning-theoretic justi�cationfor such techniques.Note that this style of analysis can also be used to transfer other hard marginresults into a soft margin setting, and furthermore it can be extended to cover thenonlinear and regression cases (Shawe-Taylor and Cristianini, 1998).2.2 Margin Distribution Bound on GeneralizationWe consider learning from examples of a binary classi�cation.We denote the domainof the problem byX and a sequence of inputs by x = (x1; : : : ; xm) 2 Xm. A trainingsequence is typically denoted by z = ((x1; y1); : : : ; (xm; ym)) 2 (X �f�1; 1g)m andthe set of training examples by S. By Erz(f) we denote the number of classi�cationerrors of the function f on the sequence z.As we will typically be classifying by thresholding real valued functions weintroduce the notation T�(f) to denote the function giving output 1 if f has outputgreater than or equal to � and �1 otherwise. For a class of real-valued functions Hthe class T�(H) is the set of derived classi�cation functions.fat shatteringdimension De�nition 2.1Let H be a set of real valued functions. We say that a set of points X is 
-shatteredby H if there are real numbers rx indexed by x 2 X such that for all binary vectorsb indexed by X, there is a function fb 2 H satisfying fb(x) � rx + 
, if bx = 1 andfb(x) � rx � 
, otherwise.The relevance of the fat shattering dimension and margin for learning is illus-trated in the following theorem which bounds the generalization error in terms ofthe fat shattering dimension of the underlying function class measured at a scaleproportional to the margin.Theorem 2.1(Shawe-Taylor et al., 1998) Consider a real valued function class H having fat-shattering dimension bounded above by the function fat : R ! N which iscontinuous from the right. Fix � 2 R. Then with probability at least 1 � �a learner who correctly classi�es m independently generated examples S withh = T�(f) 2 T�(H) such that 
 = mini yi(f(xi) � �) > 0 will have the error ofh bounded from above by�(m; k; �) = 2m �k log2�8emk � log2(32m) + log2�8m� �� ;where k = fat(
=8) � em.The �rst bound on the fat shattering dimension of bounded linear functions in a�nite dimensional space was obtained by Shawe-Taylor et al. (1998). Gurvits (1997)generalised this to in�nite dimensional Banach spaces. We will quote an improved



Smola, Bartlett, Sch�olkopf, and Schuurmans: Advances in Large Margin Classi�ers 1999/10/06 12:53

8 Margin Distribution and Soft Marginversion of this bound for inner product spaces which is contained in (Bartlett andShawe-Taylor, 1999) (slightly adapted here for an arbitrary bound on the norm ofthe linear operators).Theorem 2.2 Fat shattering of linear functions(Bartlett and Shawe-Taylor, 1999) Consider a Hilbert space and the class of linearfunctions L of norm less than or equal to B restricted to the sphere of radius Rabout the origin. Then the fat shattering dimension of L can be bounded byfatL(
) � �BR
 �2 :We �rst summarise results from Shawe-Taylor and Cristianini (1999b). Let X bean inner product space. We de�ne the following inner product space derived fromX.De�nition 2.2Let Lf (X) be the set of real valued functions f on X with countable supportsupp(f) (that is functions in Lf (X) are non-zero for only countably many points)for which the sum of the squared valueskfk2 = Xx2supp(f) f(x)2converges. We de�ne the inner product of two functions f; g 2 Lf (X), byhf; gi = Xx2supp(f) f(x)g(x):Note that the sum which de�nes the inner product can be shown to converge byusing the Cauchy-Schwartz inequality on the di�erence of partial sums and henceshowing that the partial sums form a Cauchy sequence. Clearly the space is closedunder addition and multiplication by scalars.Now for any �xed � > 0 we de�ne an embedding of X into the inner productmap to a separa-tion space space X � Lf (X) as follows: �� : x 7! (x;��x), where �x 2 Lf (X) is de�nedby �x(y) = 1, if y = x and 0, otherwise. Embedding the input space X intoX � Lf (X) maps the training data into a space where it can be separated by alarge margin classi�er and hence we can apply Theorem 2.1. The cost of performingthis separation appears in the norm of the linear operator acting in Lf (X) whichforces the required margin. The following de�nition speci�es the amount by whicha training point has to be adjusted to reach the desired margin 
.For a linear classi�er (u; b) on X and margin 
 2 Rwe de�ned((x; y); (u; b); 
) = maxf0; 
 � y(hu; x i � b)g:This quantity is the amount by which (u; b) fails to reach the margin 
 on the point(x; y) or 0 if its margin is larger than 
. For a misclassi�ed point (x; y) we will haved((x; y); (u; b); 
) > 
, and so misclassi�cation is viewed as a worse margin error,but is not distinguished into a separate category. We now augment (u; b) to the
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2.2 Margin Distribution Bound on Generalization 9linear functionalû = 0@u; 1� X(x;y)2S d((x; y); (u; b); 
)y�x1A :in the space X �Lf (X). The action of the additional component is exactly enoughto ensure that those training points that failed to reach margin 
 in the inputspace now do so in the augmented space. The cost of the additional componentis in its e�ect of increasing the square of the norm of the linear functional byD(S; (u; b); 
)2=�2, whereD(S; (u; b); 
) =s X(x;y)2S d((x; y); (u; b); 
)2:At the same time the norm of the training points has been increased by the addi-tional component ��x. Taking both these adjustments into account and verifyingthat the o�-training set performance of the augmented classi�er matches exactlythe original linear function gives the following theorem as a consequence of Theo-rems 2.1 and 2.2.Theorem 2.3(Shawe-Taylor and Cristianini, 1999b) Fix � > 0, b 2 R. Consider a �xed butbound for a �xedmap unknown probability distribution on the input space X with support in the ballof radius R about the origin. Then with probability 1 � � over randomly drawntraining sets S of size m for all 
 > 0 the generalization of a linear classi�er u onX with kuk = 1, thresholded at b is bounded by�(m;h; �) = 2m �h log2�8emh � log2(32m) + log2�8m� �� ;whereh = �64:5(R2+�2)(1 +D(S; (u; b); 
)2=�2)
2 � ;provided m � 2=�, h � em and there is no discrete probability on misclassi�edtraining points.Note that unlike Theorem 2.1 the theorem does not require that the linear clas-si�er (u; b) correctly classi�es the training data. Misclassi�ed points will contributemore to the quantity D(S; (u; b); 
), but will not change the structure of the result.This contrasts with their e�ect on Theorem 2.1 where resorting to the agnosticversion introduces a square root into the expression for the generalization error.In practice we wish to choose the parameter � in response to the data in order tominimize the resulting bound. In order to obtain a bound which holds for di�erentvalues of � it will be necessary to apply the Theorem 2.3 several times for a�nite subset of values. Note that the minimum of the expression for h (ignoringthe constant and suppressing the denominator 
2) is (R + D)2 attained when� = pRD. The discrete set of values must be chosen to ensure that we can get
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10 Margin Distribution and Soft Margina good approximation to this optimal value. The solution is to choose a geometricsequence of values { see Shawe-Taylor and Cristianini (1999b) for details.Theorem 2.4(Shawe-Taylor and Cristianini, 1999b) Fix b 2 R. Consider a �xed but unknownprobability distribution on the input space X with support in the ball of radius Rbound for optimalmap about the origin. Then with probability 1 � � over randomly drawn training setsS of size m for all 
 > 0 such that d((x; y); (u; b); 
) = 0, for some (x; y) 2 S, thegeneralization of a linear classi�er u on X satisfying kuk � 1 is bounded by�(m;h; �) = 2m �h log2�8emh � log2(32m) + log2�2m(28 + log2(m))� �� ;whereh = �65[(R+D)2 + 2:25RD]
2 � ;for D = D(S; (u; b); 
), and provided m � maxf2=�; 6g, h � em and there is nodiscrete probability on misclassi�ed training points.As discussed above the bound can be used for classi�ers that misclassify sometraining points. The e�ect of misclassi�ed points will only be felt in the value ofD. Such points do not change the form of the expression. This is in contrast withtraditional agnostic bounds which involve the square root of the ratio of the fatshattering dimension and sample size (see for example expression (??) in this book).If a point is an extreme outlier, it is possible that its e�ect on D might be such thatthe bound will be worse than that obtained using the agnostic approach (where the`size' of misclassi�cation is irrelevant). However, it is likely that in usual situationsthe bound given here will be signi�cantly tighter than the standard agnostic one.The other advantage of the new bound will be discussed in the next section wherewe show that in contrast to the computational di�culty of minimizing the numberof misclassi�cations, there exists an e�cient algorithm for optimizing the value ofh given in Theorem 2.4.2.3 An Explanation for the Soft Margin AlgorithmThe theory developed in the previous section provides a way to transform a nonlinearly separable problem into a separable one by mapping the data to a higherdimensional space, a technique that can be viewed as using a kernel in a similarway to Support Vector Machines.Is it possible to give an e�ective algorithm for learning a large margin hyperplanein this augmented space? This would automatically give an algorithm for choosingthe hyperplane and value of 
, which result in a margin distribution in the originalspace for which the bound of Theorem 2.4 is minimal. It turns out that not only isthe answer yes, but also that such an algorithm already exists.
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2.3 An Explanation for the Soft Margin Algorithm 11The mapping � de�ned in the previous section implicitly de�nes a kernel asfollows:separation kernels k(x; x0) = h��(x); ��(x0) i= h(x;��x); (x0;��x0) i= hx; x0 i +�2h�x; �x0 i= hx; x0 i +�2�x(x0)By using these kernels, the decision function of a SV machine would be:f(x) = mXi=1 �iyik(x; xi) + b= mXi=1 �iyi �hx; xi i +�2�x(xi)� + band the Lagrange multipliers �i would be obtained by solving the QuadraticProgramming problem of minimizing in the positive quadrant the dual objectivefunction:L = mXi=1 �i � 12 mXi;j=1yiyj�i�jk(xi; xj)= mXi=1 �i � 12 mXi;j=1yiyj�i�j[hxi; xj i+�2�i(j)]= mXi=1 �i � 12 mXi;j=1yiyj�i�jhxi; xj i ��2 12 mXi;j=1yiyj�i�j�i(j)= mXi=1 �i � 12 mXi;j=1yiyj�i�jhxi; xj i ��2 12 mXi=1 �2iThis is exacly the dual QP problem that one would obtain by solving the softmargin problem in one of the cases stated in the appendix of Cortes and Vapnik(1995):soft margin minimize : 12hu;u i +CX �2isubjectto : yj [hu; xj i � b] � 1� �j�i � 0The solution they obtain is:L =X�i �X yiyj�i�jhxi; xji � 14C X�2iwhich makes clear how the trade o� parameter C in their formulation is related tothe kernel parameter �.
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12 Margin Distribution and Soft Margin2.4 Related TechniquesAnother way of looking at this technique is that optimizing the soft margin, orenlarging the margin distribution, is equivalent to replacing the covariance matrixK with the covariance K0K0 = K + �Icovarianceof augmenteddata which has a heavier diagonal. Again, there is a simple relationship between thetrade o� parameter � and the � and C of the previous formulations. So ratherthan using a soft margin algorithm, one can use a (simpler) hard margin algorithmafter adding �I to the covariance matrix. This approach has also been consideredby Smola and Sch�olkopf (1998) for the regression case where they also introducean upper bound on the size of the �'s in order to improve robustness to outliers.Figure 2.4 shows the results of experiments performed on the ionosphere dataof the UCI repository (Merz and Murphy, 1998). The plot is of the generalizationerror for di�erent values of the parameter �.This technique is well known in classical statistics, where it is sometimes calledthe \shrinkage method" (see Ripley (1996)). Basically, in Bayesian discrimination(see section ??) it suggests replacing the empirical covariance function � with someequivalent tech-niques function closer to the identity I, by choosing an element of the line joining them(1 � �)� + �I. A redundant degree of freedom is then removed, leaving with thenew covariance � + �I. In the case of linear regression this technique, known asridge regression, can be derived from assuming Gaussian noise on the target values.It was originally motivated by the trade o� between bias and variance (Hoerl andKennard, 1970) and leads to a form of weight decay. This approach is equivalent toa form of regularization in the sense of Tikhonov. The theory of ill-posed problemswas developed by Tikhonov in the context of solving inverse problems (Tikhonovand Arsenin, 1977). Smola and Sch�olkopf (1998) derived ridge regression usingdual variables and for example C. Saunders (1998) have applied this to benchmarkproblems. It is well known that one can perform regularization by replacing thecovariance matrixXTX with XTX+�I, and learning machines based on GaussianProcesses implicitly exploit this fact in addition to the choice of kernel.Another explanation proposed for the same technique is that it reduces thenumber of e�ective free parameters, as measured by the trace of K. Note �nallythat from an algorithmical point of view these kernels still give a positive de�nitematrix, and a better conditioned problem than the hard margin case, since theeigenvalues are all increased by �. The so-called box constraint algorithm whichminimises the 1-norm of the slack variables is not directly comparable with the2-norm case considered here.Remark 2.1Note that RqX �2i = RD = �2 = � = 14C
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2.4 Related Techniques 13
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Figure 2.1 Generalization error as a function of �, in a hard margin problem withaugmented covariance K 0 = K + �I, for ionosphere data.so a choice of 
 in the margin distribution bound controls the parameter C in thesoft margin setting, and the trade-o� parameter � in the regularization setting. Areasonable choice of 
 can be one that minimizes some VC bound on the capacity,for example maximising the margin in the augmented space, or controlling otherparameters (margin; eigenvalues; radius; etc). Note also that this formulation alsomakes intuitive sense: a small 
 corresponds to a small � and to a large C: littlenoise is assumed, and so there is little need for regularization; vice versa a large 
corresponds to a large � and a smallC, which corresponds to assuming a high levelof noise. Similar reasoning leads to similar relations in the regression case.2.5 Conclusion
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14 Margin Distribution and Soft MarginThe analysis we have presented provides a principled way to deal with noisy data inlarge margin classi�ers, and justi�es the like the soft margin algorithm as originallyproposed by Cortes and Vapnik. We have proved that one such algorithm exactlyminimizes the bound on generalization provided by our margin distribution analysis,and is equivalent to using an augmented version of the kernel. Many techniquesdeveloped for the hard margin case can then be extended to the soft-margin case,as long as the quantities they use can be measured in terms of the modi�ed kernel(margin, radius of the ball, eigenvalues).The algorithms obtained in this way are strongly related to regularization tech-niques, and other methods developed in di�erent frameworks in order to deal withnoise. Computationally, the algorithm can be more stable and better conditionedthan the standard maximal margin approach.Finally, the same proof technique can also be used to produce analogous boundsfor nonlinear functions in the classi�cation case, and for the linear and nonlinearregression case with di�erent losses, as reported in the full paper (Shawe-Taylorand Cristianini, 1998).AcknowledgementsThis work was supported by the European Commission under the Working GroupNr. 27150 (NeuroCOLT2) and by the UK EPSRC funding council. The authorswould like to thank Colin Campbell and Bernhard Sch�olkopf for useful discussions.They would also like to thank useful comments from an anonymous referee thathelped to re�ne De�nition 2.2.
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