Margin Distribution and Soft Margin

John Shawe-Taylor

Department of Computer Science

Royal Holloway, University of London

Egham, Surrey TW20 OEX, UK
j.shawe-taylor@des.rhbne.ac.uk
hitp://www.cs.rhbne.ac.uk/people /staff/shawe-taylor.shiml

Nello Cristianing

Department of Engineering Mathematics, University of Bristol
Queen’s Building, University Walk, Bristol BS8 1TR, UK
nello.cristianini@bristol.ac.uk
hitp://zeus.bris.ac.uk/~ennc/nello.html

Typical bounds on generalization of Support Vector Machines are based on
the minimum distance between training examples and the separating hyperplane.
There has been some debate as to whether a more robust function of the margin
distribution could provide generalization bounds. Freund and Schapire (1998) have
shown how a different function of the margin distribution can be used to bound
the number of mistakes of an on-line learning algorithm for a perceptron, as well
as to give an expected error bound. We show that a slight generalization of their
construction can be used to give a pac style bound on the tail of the distribution
of the generalization errors that arise from a given sample size. Furthermore,
we show that the approach can be viewed as a change of kernel and that the
algorithms arising from the approach are exactly those originally proposed by Cortes
and Vapnik (1995). Finally, we discuss the relations of this approach with other
techniques, such as regularization and shrinkage methodsl.

1. Parts of this work have appeared in Shawe-Taylor and Cristianini (1999b,a)
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Margin Distribution and Soft Margin

2.1 Introduction

non-separable
data

margin
distribution

The presence of noise in the data introduces a trade-off in every learning problem:
complex hypotheses can be very accurate on the training set, but have worse
predictive power than simpler and slightly inaccurate hypotheses. Hence the right
balance between accuracy and simplicity of a hypothesis needs to be sought and this
is usually attained by minimizing a cost function formed of two parts, one describing
the complexity of the hypothesis, the other measuring its training error. In the case
of linear functions this leads to an additional difficulty as the problem of minimising
the number of training errors is computationally infeasible if we parametrize the
problem in terms of the dimension of the inputs (Arora et al., 1997). We avoid this
apparent impasse by bounding the generalization in terms of a different function
of the training set performance, namely one based on the distribution of margin
values, but not directly involving training error. We will show in this paper that
minimising this new criterion can be performed efficiently.

When considering large margin classifiers, where the complexity of a hypothesis
is measured by its margin with respect to the data, the presence of noise can lead
to further problems, for example datasets may be non-separable, and hence their
margin would be negative, making application of the non-agnostic result impossible.
Moreover solutions found by maximizing the margin are not stable with respect to
the training points — slight modifications in the training set can significantly change
the hypothesis — a brittleness which makes the maximal margin solution somehow
undesirable. These problems have led to the technique of the “soft-margin”, a
procedure aimed at extending the large margin algorithms to the noisy case by
permitting a trade-off between accuracy and margin.

Despite successes in extending this style of analysis to the agnostic case (Bartlett,
1998) (see (??) in this book) and applying it to neural networks (Bartlett, 1998),
boosting algorithms (Schapire et al., 1998) and Bayesian algorithms (Cristianini
et al., 1998), there has been concern that the measure of the distribution of margin
values attained by the training set is largely ignored in a bound in terms of its
minimal value. Intuitively, there appeared to be something lost in a bound that
depended so critically on the positions of possibly a small proportion of the training
set.

Though more robust algorithms have been introduced, the problem of robust
bounds has remained open until recently. Freund and Schapire (1998) showed that
for on-line learning a measure of the margin distribution can be used to give
mistake bounds for a perceptron algorithm, and a bound on the expected error.
Following a similar technique, in this paper we provide theoretical pac bounds on
generalization using a more general function of the margin distribution achieved on
the training set; we show that this technique can be viewed as a change of kernel and
that algorithms arising from the approach correspond exactly to those originally
proposed by Cortes and Vapnik (1995) as techniques for agnostic learning. Finally,
we will show that the algorithms obtained in this way are intimately related to
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2.2 Margin Distribution Bound on Generalization

certain techniques, usually derived in the framework of regularization or of Bayesian
analysis and hence this work can be used to provide a learning-theoretic justification
for such techniques.

Note that this style of analysis can also be used to transfer other hard margin
results into a soft margin setting, and furthermore it can be extended to cover the
nonlinear and regression cases (Shawe-Taylor and Cristianini, 1998).

2.2 Margin Distribution Bound on Generalization

fat shattering
dimension

We consider learning from examples of a binary classification. We denote the domain
of the problem by X and a sequence of inputs by x = (#1,...,2m») € X™. A training
sequence is typically denoted by z = ((x1,¥1), -+, (¥m, ym)) € (X x {—1,1})™ and
the set of training examples by S. By Er, (f) we denote the number of classification
errors of the function f on the sequence z.

As we will typically be classifying by thresholding real valued functions we
introduce the notation Ty(f) to denote the function giving output 1 if f has output
greater than or equal to # and —1 otherwise. For a class of real-valued functions H
the class Tp(H) is the set of derived classification functions.

Definition 2.1

Let H be a set of real valued functions. We say that a set of points X is 7y-shattered
by H if there are real numbers 7, indexed by x € X such that for all binary vectors
b indexed by X, there is a function f, € H satisfying fo(2) > ry + 7, if b, = 1 and
fo(z) <1y — 7, otherwise.

The relevance of the fat shattering dimension and margin for learning is illus-
trated in the following theorem which bounds the generalization error in terms of
the fat shattering dimension of the underlying function class measured at a scale
proportional to the margin.

Theorem 2.1

(Shawe-Taylor et al., 1998) Consider a real valued function class X having fat-
shattering dimension bounded above by the function fat : R — N which is
continuous from the right. Fix # € R. Then with probability at least 1 — §
a learner who correctly classifies m independently generated examples S with
h = Ty(f) € Ty(H) such that v = min; y;(f(x;) — 0) > 0 will have the error of
h bounded from above by

2
e(m, k,d) = - <l<7 log, <867m> log,(32m) + log, <87m>> )

where k = fat(y/8) < em.

The first bound on the fat shattering dimension of bounded linear functions in a
finite dimensional space was obtained by Shawe-Taylor et al. (1998). Gurvits (1997)
generalised this to infinite dimensional Banach spaces. We will quote an improved
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version of this bound for inner product spaces which is contained in (Bartlett and
Shawe-Taylor, 1999) (slightly adapted here for an arbitrary bound on the norm of
the linear operators).

Theorem 2.2 Fat shattering of linear functions

(Bartlett and Shawe-Taylor, 1999) Consider a Hilbert space and the class of linear
functions L of norm less than or equal to B restricted to the sphere of radius R
about the origin. Then the fat shattering dimension of L can be bounded by

fatz (v) < <B,y—R>2-

We first summarise results from Shawe-Taylor and Cristianini (1999b). Let X be
an inner product space. We define the following inner product space derived from

X.

Definition 2.2

Let L;(X) be the set of real valued functions f on X with countable support
supp(f) (that is functions in L;(X) are non-zero for only countably many points)
for which the sum of the squared values

1= > J@?

f
T€SUPp(/f)
converges. We define the inner product of two functions f,g € L¢(X), by

Foy = > [fgx).
T€SUPp(/f)

Note that the sum which defines the inner product can be shown to converge by
using the Cauchy-Schwartz inequality on the difference of partial sums and hence
showing that the partial sums form a Cauchy sequence. Clearly the space is closed
under addition and multiplication by scalars.

Now for any fixed A > 0 we define an embedding of X into the inner product
space X x L;(X) as follows: 7a : 2 + (2, Ad;), where §; € L¢(X) is defined
by é6,(y) = 1, if y = « and 0, otherwise. Embedding the input space X into
X X L;(X) maps the training data into a space where it can be separated by a
large margin classifier and hence we can apply Theorem 2.1. The cost of performing
this separation appears in the norm of the linear operator acting in L;(X) which
forces the required margin. The following definition specifies the amount by which
a training point has to be adjusted to reach the desired margin ~.

For a linear classifier (u, ) on X and margin v € R we define

d((l‘, y)v (uv b)v 7) = max{0,y — y((u, z > - b)}

This quantity is the amount by which (u, b) fails to reach the margin v on the point
(z,y) or 0 if its margin is larger than . For a misclassified point (z, y) we will have
d((z,y), (u,b),v) > v, and so misclassification is viewed as a worse margin error,
but is not distinguished into a separate category. We now augment (u,b) to the
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2.2 Margin Distribution Bound on Generalization 9

bound for a fixed

map

linear functional

u= u,% Z d((z,y), (u,b), 7)yés

(z,y)€s

in the space X x L¢(X). The action of the additional component is exactly enough
to ensure that those training points that failed to reach margin v in the input
space now do so in the augmented space. The cost of the additional component
is in its effect of increasing the square of the norm of the linear functional by

D(S, (u,b),v)?/AZ% where

D(S, (u,b),7) = Z d((z,y), (u,b),7)*.

(z,y)€s

At the same time the norm of the training points has been increased by the addi-
tional component Ad,. Taking both these adjustments into account and verifying
that the off-training set performance of the augmented classifier matches exactly
the original linear function gives the following theorem as a consequence of Theo-
rems 2.1 and 2.2.

Theorem 2.3

(Shawe-Taylor and Cristianini, 1999b) Fix A > 0, b € R. Consider a fixed but
unknown probability distribution on the input space X with support in the ball
of radius R about the origin. Then with probability 1 — § over randomly drawn
training sets S of size m for all v > 0 the generalization of a linear classifier u on

X with ||u]| = 1, thresholded at b is bounded by
2 8em 8m
e(m, h,8) = — <h log, <T> log, (32m) + log, <T>> )

where
h— {64.5(}%2 + A?%)(1 4+ D(S, (u,b), 7)2/A2)J
oa ’

provided m > 2/e, h < em and there is no discrete probability on misclassified

training points.

Note that unlike Theorem 2.1 the theorem does not require that the linear clas-
sifier (u, b) correctly classifies the training data. Misclassified points will contribute
more to the quantity D(S, (u, ), v), but will not change the structure of the result.
This contrasts with their effect on Theorem 2.1 where resorting to the agnostic
version introduces a square root into the expression for the generalization error.

In practice we wish to choose the parameter A in response to the data in order to
minimize the resulting bound. In order to obtain a bound which holds for different
values of A it will be necessary to apply the Theorem 2.3 several times for a
finite subset of values. Note that the minimum of the expression for h (ignoring
the constant and suppressing the denominator 4%) is (R + D)? attained when
A = VRD. The discrete set of values must be chosen to ensure that we can get
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a good approximation to this optimal value. The solution is to choose a geometric
sequence of values — see Shawe-Taylor and Cristianini (1999b) for details.

Theorem 2.4

(Shawe-Taylor and Cristianini, 1999b) Fix b € R. Consider a fixed but unknown
probability distribution on the input space X with support in the ball of radius R
about the origin. Then with probability 1 — § over randomly drawn training sets
S of size m for all ¥ > 0 such that d((z,y), (u,b),v) = 0, for some (z,y) € S, the
generalization of a linear classifier u on X satisfying ||u|| < 1 is bounded by

e(m, h,6) = 2 hlog, Sem log,(32m) + log, 2m(28 + logy (m)) ’
where
b {65[(}% + D)? + 2.25RD]J

= = ’

for D = D(S, (u,b),7), and provided m > max{2/e,6}, h < em and there is no
discrete probability on misclassified training points.

As discussed above the bound can be used for classifiers that misclassify some
training points. The effect of misclassified points will only be felt in the value of
D. Such points do not change the form of the expression. This is in contrast with
traditional agnostic bounds which involve the square root of the ratio of the fat
shattering dimension and sample size (see for example expression (??) in this book).
If a point is an extreme outlier, it is possible that its effect on D might be such that
the bound will be worse than that obtained using the agnostic approach (where the
‘size’ of misclassification is irrelevant). However, it is likely that in usual situations
the bound given here will be significantly tighter than the standard agnostic one.
The other advantage of the new bound will be discussed in the next section where
we show that in contrast to the computational difficulty of minimizing the number
of misclassifications, there exists an efficient algorithm for optimizing the value of
h given in Theorem 2.4.

2.3 An Explanation for the Soft Margin Algorithm

The theory developed in the previous section provides a way to transform a non
linearly separable problem into a separable one by mapping the data to a higher
dimensional space, a technique that can be viewed as using a kernel in a similar
way to Support Vector Machines.

Is it possible to give an effective algorithm for learning a large margin hyperplane
in this augmented space? This would automatically give an algorithm for choosing
the hyperplane and value of v, which result in a margin distribution in the original
space for which the bound of Theorem 2.4 is minimal. It turns out that not only is
the answer yes, but also that such an algorithm already exists.
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2.8 An Fzplanation for the Soft Margin Algorithm 11

separation kernels

soft margin

The mapping 7 defined in the previous section implicitly defines a kernel as
follows:

k(z,2') = (ra(z), ma(2’) )

{

((z, ASy), (2, Adyr) )
(r,2") + A%(0e, 000 )
:<x,x>—|—A 8 ()

By using these kernels, the decision function of a SV machine would be:

= Zaiyik’(l‘, i) +b
i=1

=i [(w,2i ) + A% (2:)] +b

i=1
and the Lagrange multipliers «; would be obtained by solving the Quadratic
Programming problem of minimizing in the positive quadrant the dual objective

function:
m 1 m
L = Z:Ozi — 5 ']z_:l yiyjaiajk(a:i, l‘j)
—Zaz__ Z yiyjeiog] xl,l‘]>—|—A 6i(7)]
i,j=1
=> ai- 3 Z yiyjoio(Ti, ;) — A2§ Z yiyjaiogdi(j)
i=1 i,7=1 i,7=1
- ia, _1 i yiyjaiazi, x;) —AZliaz
i=1 Z 2ij:lljlj v 2i:1 Z

This is exacly the dual QP problem that one would obtain by solving the soft
margin problem in one of the cases stated in the appendix of Cortes and Vapnik

(1995):
1
minimize : §<u, u)+C Zf?
subjectto :  y;[{u,z;) —b]>1-¢;
& >0
The solution they obtain is:

L= Zal Zyly]aa] xl,x] 4CZa

which makes clear how the trade off parameter C' in their formulation is related to
the kernel parameter A.
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2.4 Related Techniques

covariance
of augmented
data

equivalent  tech-
niques

Another way of looking at this technique is that optimizing the soft margin, or
enlarging the margin distribution, is equivalent to replacing the covariance matrix
K with the covariance K’

K' =K+ M

which has a heavier diagonal. Again, there is a simple relationship between the
trade off parameter A and the A and C' of the previous formulations. So rather
than using a soft margin algorithm, one can use a (simpler) hard margin algorithm
after adding Al to the covariance matrix. This approach has also been considered
by Smola and Schélkopf (1998) for the regression case where they also introduce
an upper bound on the size of the a’s in order to improve robustness to outliers.

Figure 2.4 shows the results of experiments performed on the ionosphere data
of the UCT repository (Merz and Murphy, 1998). The plot is of the generalization
error for different values of the parameter A.

This technique is well known in classical statistics, where it is sometimes called
the “shrinkage method” (see Ripley (1996)). Basically, in Bayesian discrimination
(see section ?7) it suggests replacing the empirical covariance function ¥ with some
function closer to the identity I, by choosing an element of the line joining them
(1 = X)X 4+ AI. A redundant degree of freedom is then removed, leaving with the
new covariance X + Al. In the case of linear regression this technique, known as
ridge regression, can be derived from assuming Gaussian noise on the target values.
It was originally motivated by the trade off between bias and variance (Hoerl and
Kennard, 1970) and leads to a form of weight decay. This approach is equivalent to
a form of regularization in the sense of Tikhonov. The theory of ill-posed problems
was developed by Tikhonov in the context of solving inverse problems (Tikhonov
and Arsenin, 1977). Smola and Schélkopf (1998) derived ridge regression using
dual variables and for example C. Saunders (1998) have applied this to benchmark
problems. It is well known that one can perform regularization by replacing the
covariance matrix X7 X with X7 X 4 AI, and learning machines based on Gaussian
Processes implicitly exploit this fact in addition to the choice of kernel.

Another explanation proposed for the same technique is that it reduces the
number of effective free parameters, as measured by the trace of K. Note finally
that from an algorithmical point of view these kernels still give a positive definite
matrix, and a better conditioned problem than the hard margin case, since the
eigenvalues are all increased by A. The so-called box constraint algorithm which
minimises the 1-norm of the slack variables is not directly comparable with the
2-norm case considered here.

Remark 2.1
Note that

Z 1
¢ A 4C
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2.4 Related Techniques 13

0.14 T T T T T

Figure 2.1 Generalization error as a function of A, in a hard margin problem with
augmented covariance K’ = K + A, for ionosphere data.

so a choice of v in the margin distribution bound controls the parameter C' in the
soft margin setting, and the trade-off parameter A in the regularization setting. A
reasonable choice of v can be one that minimizes some VC bound on the capacity,
for example maximising the margin in the augmented space, or controlling other
parameters (margin; eigenvalues; radius; etc). Note also that this formulation also
makes intuitive sense: a small v corresponds to a small A and to a large C": little
noise is assumed, and so there is little need for regularization; vice versa a large
corresponds to a large A and a small C', which corresponds to assuming a high level
of noise. Similar reasoning leads to similar relations in the regression case.

2.5 Conclusion
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The analysis we have presented provides a principled way to deal with noisy data in
large margin classifiers, and justifies the like the soft margin algorithm as originally
proposed by Cortes and Vapnik. We have proved that one such algorithm exactly
minimizes the bound on generalization provided by our margin distribution analysis,
and is equivalent to using an augmented version of the kernel. Many techniques
developed for the hard margin case can then be extended to the soft-margin case,
as long as the quantities they use can be measured in terms of the modified kernel
(margin, radius of the ball, eigenvalues).

The algorithms obtained in this way are strongly related to regularization tech-
niques, and other methods developed in different frameworks in order to deal with
noise. Computationally, the algorithm can be more stable and better conditioned
than the standard maximal margin approach.

Finally, the same proof technique can also be used to produce analogous bounds
for nonlinear functions in the classification case, and for the linear and nonlinear
regression case with different losses, as reported in the full paper (Shawe-Taylor
and Cristianini, 1998).
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