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1 IntroductionFor classi�cation by thresholding a real valued function the margin of atraining point is the amount by which its output is on the right side ofthe threshold or, if misclassi�ed, minus the amount by which it fails tobe correctly classi�ed. In the case of linear hyperplanes with unit weightvectors, this value can also be seen as the distance of the input point fromthe hyperplane. The margin of a classi�er is the minimum margin over thetraining set.The idea that a large margin classi�er might be expected to give good gen-eralization is certainly not new [7, 19]. Despite this insight it was not untilcomparatively recently [12] that such a conjecture has been placed on a�rm footing in the probably approximately correct (pac) model of learning.Learning in this model entails giving a bound on the generalization errorwhich will hold with high con�dence over randomly drawn training sets. Inthis sense it can be said to ensure reliable learning, something that cannotbe guaranteed by bounds on the expected error of a classi�er.Despite successes in extending this style of analysis to the agnostic case [2]and applying it to neural networks [2], boosting algorithms [11], perceptrondecision trees [13] and Bayesian algorithms [6], there has been concern thatthe measure of the distribution of margin values attained by the trainingset is largely ignored in a bound that depends only on its minimal value.Intuitively, there appeared to be something lost with a bound that dependedso critically on the positions of possibly a small proportion of the trainingset, ignoring the margin attained by the majority of the points. Attemptsto address this problem have been made in for example [11], but they treatpoints that fail to meet the larger margin as errors and fall back on agnosticbounds for the generalization error. In contrast our results apply to thecase where there are training set errors, but have the form of bounds withno training set errors.The question of how to handle the situation of non linearly separable datahas received a lot of attention (see [4] for a review of some of the methodssuggested). The problem is that minimising the number of training errorsis NP-complete and so the various methods adopted are inherently heuristicrelative to the best bounds previously available for bounding the general-ization error. By showing that the generalization error can be bounded interms of a quantity that can be optimized by a polynomial time algorithm,we provide a solution to a long-standing conundrum of perceptron learning.2



The analysis is based on work of Freund and Schapire [8] (a similar tech-nique was employed by Klasner and Simon [10] for rendering a real valuedfunction learning algorithm noise tolerant), who developed a measure of themargin distribution which they showed could be used to bound the expectedgeneralization error more tightly than the minimal margin. In this paperwe show that the same measure can be used to obtain a pac style boundfor linear functions. This result provides a formal justi�cation for the softmargin heuristic introduced by Vapnik to render Support Vector machinesnoise-tolerant [18]. The same theoretical approach is then applied to moregeneral non-linear classes of functions with bounded fat-shattering dimen-sion.Algorithms arising from the approach are related to those of Cortes andVapnik [5] and directly justify the original proposal made to minimise the2-norm of the slack variables. We generalise the basic result to functionclasses with bounded fat-shattering dimension and the 1-norm of the slackvariables which gives rise to Vapnik's box constraint algorithm. Finally,application to regression is considered, which includes results for standardleast squares as a special case.The paper is structured as follows. In the next section we will summarise theresults in O notation to give a avour of what the paper aims to achieve. InSection 3 relevant background material and de�nitions are introduced. Thisis followed by a section describing the results for classi�cation using linearfunctions. This is the simplest case considered and provides insight into thebasic techniques employed. Section 5 describes the algorithm consequencesof these results for Support Vector Machine classi�cation algorithms. Wethen proceed to generalize the results to non-linear function spaces in Sec-tion 6. The penultimate section considers the problem of regression andshows how the results obtained for classi�cation readily generalize to thiscase.2 Summary of ResultsThe results in this section will be given in the ~O notation indicating asymp-totics ignoring log factors. The aim is to give the avour of the resultsobtained which might otherwise be obscured by the detailed technicalitiesof the proofs and precise bounds obtained.The �rst case considered is that of classi�cation using linear function classes3



that include the use of kernel functions such as those used in the SupportVector Machine. For this case consider a margin  about the separatinghyperplane and set (d()(x;y))(x;y)2S) to be the vector for training set S tobe the vector of the amounts by which the training points fail to achievethe margin . We bound the probability � of misclassi�cation of a randomlychosen test point by (see Theorem 4.3)� � ~O�(R+ kdk2)2jSj2 � ;where R is the radius of a ball about the origin which contains the supportof the input probability distribution.The results are generalized to non-linear function classes using a character-isation of their capacity at scale  known as the fat shattering dimensionfat(). In this case the bound obtained has the form (see Theorem 6.13)� � ~O� fat(=16)+ kdk22=2jSj � ;This result is generalized to obtain a bound in terms of the 1-norm of thevector d (see Corollary 6.14)� � ~O� fat(=16)+ kdk1=2jSj � ;which could of course also be applied to the linear case using a bound onthe fat shattering dimension for this case.Finally, the problem of estimating errors of regressors is addressed withthe techniques developed. We bound the probability � that for a randomlychosen test point the absolute error is greater than a given value �. Inthis case we de�ne a vector (@(x;y))(x;y)2S of amounts by which the error onthe training examples exceeds � � . Note that k@(�)k22 is simply the leastsquares error on the training set. We then bound the probability � by (seeTheorem 7.2) � � ~O� fat(=16)+ k@()k22=2jSj � :These results can be used for Support Vector Regression and give a way ofchoosing the optimal size �� of the tube for the insensitive loss function. Inaddition they can be applied to standard least square regression by setting4



 = � to obtain the bound (see Corollary 7.4)� � ~O� fat(�=16) + k@(�)k22=�2jSj � :3 Background ResultsWe consider learning from examples, initially of a binary classi�cation.We denote the domain of the problem by X and a sequence of inputsby x = (x1; : : : ; xm) 2 Xm. A training sequence is typically denoted byz = ((x1; y1); : : : ; (xm; ym)) 2 (X � f�1; 1g)m and the set of training exam-ples by S. By Erz(h) we denote the number of classi�cation errors of thefunction h on the sequence z. As we will typically be classifying by thresh-olding real valued functions we introduce the notation T�(f) to denote thefunction giving output 1 if f has output greater than or equal to � and �1otherwise. For a class H the class T�(H) is the set of derived classi�cationfunctions.We �rst give some necessary de�nitions.De�nition 3.1 Let H be a set of binary valued functions. We say that aset of points X is shattered by H if for all binary vectors b indexed by X,there is a function fb 2 H realising b on X. The Vapnik-Chervonenkis (VC)dimension, VCdim(H), of the set H is the size of the largest shattered set,if this is �nite or in�nity otherwise.The following theorem is well known in a number of di�erent forms. Wequote the result here as a bound on the generalization error rather than asa required sample size for given generalization.Theorem 3.2 [12] Let Hi, i = 1; 2; : : : be a sequence of hypothesis classesmapping X to f0; 1g such that VCdim(Hi) = i, and let P be a probability dis-tribution on X. Let pd be any set of positive numbers satisfyingP1d=1 pd = 1:With probability 1� � over m independent examples drawn according to P ,for any d for which a learner �nds a consistent hypothesis h in Hd, thegeneralization error of h is bounded from above by�(m; d; �) = 4m �d ln�2emd �+ ln� 1pd�+ ln�4��� ;provided d � m. 5



We now introduce the generalization of the VC dimension which makes itpossible to generalize Theorem 3.2 to large margin classi�cation.De�nition 3.3 Let H be a set of real valued functions. We say that a set ofpoints X is -shattered by H if there are real numbers rx indexed by x 2 Xsuch that for all binary vectors b indexed by X, there is a function fb 2 Hsatisfying fb(x)� � rx +  if bx = 1� rx �  otherwise:The fat shattering dimension fatH of the set H is a function from the positivereal numbers to the integers which maps a value  to the size of the largest-shattered set, if this is �nite or in�nity otherwise.We will make critical use of the following result contained in Shawe-Taylor etal [12] which involves the fat shattering dimension of the space of functions.Theorem 3.4 Consider a real valued function class H having fat shatteringfunction bounded above by the function afat : < ! N which is continuousfrom the right. Fix � 2 <. Then with probability at least 1� � a learner whocorrectly classi�es m independently generated examples z with h = T�(f) 2T�(H) such that erz(h) = 0 and  = min jf(xi) � �j will have error of hbounded from above by�(m; k; �) = 2m �k log2�8emk � log2(32m) + log2�8m� �� ;where k = afat(=8) � em.Note how the fat shattering dimension at scale =8 plays the role of the VCdimension in this bound. This result motivates the use of the term e�ectiveVC dimension for this value. In order to make use of this theorem, we musthave a bound on the fat shattering dimension and then calculate the mar-gin of the classi�er. We begin by considering bounds on the fat shatteringdimension. The �rst bound on the fat shattering dimension of bounded lin-ear functions in a �nite dimensional space was obtained by Shawe-Taylor etal. [12]. Gurvits [9] generalised this to in�nite dimensional Banach spaces.We will quote an improved version of this bound for Hilbert spaces which iscontained in [3] (slightly adapted here for an arbitrary bound on the linearoperators). 6



Theorem 3.5 [3] Consider a Hilbert space and the class of linear functionsL of norm less than or equal to B restricted to the sphere of radius R aboutthe origin. Then the fat shattering dimension of L can be bounded byfatL() � �BR �2 :In order to apply Theorems 3.4 and 3.5 we need to bound the radius of thesphere containing the points and the norm of the linear functionals involved.Clearly, scaling by these quantities will give the margin appropriate forapplication of the theorem.4 Linear Function ClassesLet X be a Hilbert space. We de�ne the following Hilbert space derivedfrom X .De�nition 4.1 Let Lf (X) be the set of real valued functions f on X withsupport supp(f) �nite, that is functions in Lf(X) are non-zero only for�nitely many points. We de�ne the inner product of two functions f; g 2Lf (X), by hf � gi = Xx2supp(f)f(x)g(x):Note that the sum which de�nes the inner product is well-de�ned since thefunctions have �nite support. Clearly the space is closed under addition andmultiplication by scalars.Now for any �xed � > 0 we de�ne an embedding ofX into the Hilbert spaceX � Lf (X) as follows. �� : x 7! X� = (x;��x);where �x 2 Lf (X) is de�ned by�x(y) = � 1; if y = x;0; otherwise.We begin by considering the case where � is �xed. In practice we wish tochoose this parameter in response to the data. In order to obtain a bound7



over di�erent values of � it will be necessary to apply the following theoremseveral times.For a linear classi�er u on X and threshold b 2 < we de�ned((x; y); (u; b); ) = maxf0;  � y(hu � xi � b)g:This quantity is the amount by which u fails to reach the margin  on thepoint (x; y) or 0 if its margin is larger than . Similarly for a training setS, we de�ne D(S; (u; b); ) =s X(x;y)2S d((x; y); (u; b); )2:Theorem 4.2 Fix � > 0, b 2 <. Consider a �xed but unknown probabilitydistribution on the input space X with support in the ball of radius R aboutthe origin. Then with probability 1� � over randomly drawn training sets Sof size m for all  > 0 the generalization of a linear classi�er u on X withkuk = 1, thresholded at b is bounded by�(m; k; �) = 2m �k log2�8emk � log2(32m) + log2�720m log2(1 +mR2=�2)� �� ;where k = �64:5(R2+ �2)(kuk2 +D(S; (u; b); )2=�2)2 � ;provided m � 2=�, k � em and there is no discrete probability on misclassi-�ed training points.Proof : Consider the �xed mapping �� and the augmented linear functionalover the space X � Lf (X),û = 0@u; 1� X(x;y)2S d((x; y); (u; b); )y�x1A :We claim that1. for x 62 S, hu � xi = hû � ��(x)i, and2. the margin of û with threshold b on the training set ��(S) is .8



Hence, the o� training set behaviour of the linear classi�er (u; b) can becharacterised by the behaviour of (û; b), while (û; b) is a large margin clas-si�er in the space X � Lf(X). Since for x 2 S, k�(x)k2 � R2 + �2and kûk2 = kuk2 + D(S; (u; b); )2=�2, the result will then follow froman application of Theorems 3.4 and 3.5 provided that there are no mis-classi�ed training points with discrete probability. Since Theorem 3.4 canonly be applied for a �xed space of functions we must apply the two the-orems for a discrete set of values for the bound B on the norm of the lin-ear functions. This corresponds to choosing a discrete set of values forthe product (BR)2 of Theorem 3.5. We will choose the arithmetic series�i(R2 + �2), for i = 1; : : : ; ` = 90 log2(1 +mR2=�2), where � is chosen sothat �`(R2+�2) = (R2+�2)(1+mR2=�2) which is an upper bound on theproduct k�(x)k2kûk2, since D2 � mR2. Hence, � = 21=90 and it is readilyveri�ed that 64:005�� < 64:5. This implies that if we replace the constant64 of Theorem 3.4 by 64.005 to ensure the continuity from the right, thenfor the observed value of k�(x)k2kûk2 there is an application of the theoremfor a value of (BR)2 within a factor � of this value and the required boundholds. Note that for each application of the theorem we must replace the� of Theorem 3.4 by �0 = �=` in order to ensure that all applications holduniformly with probability 1� �.1. The �rst claim follows immediately from the observation that for z 62S, * X(x;y)2S d((x; y); (u; b); )y�x � �z+ = 0:2. For (x0; y0) 2 S, we havey0(hû; ��(x0)i � b) = y0(hu; x0i � b) + y0* X(x;y)2S d((x; y); (u; b); )y0�x � �x0+�  � d((x0; y0); (u; b); )+ d((x0; y0); (u; b); ) = :The theorem follows.We now apply this theorem several times to allow a choice of � whichapproximately minimises the expression for k. Note that the minimum ofthe expression (ignoring the constant and suppressing the denominator 2)is (R+D)2 attained when � = pRD .9



Theorem 4.3 Fix b 2 <. Consider a �xed but unknown probability distri-bution on the input space X with support in the ball of radius R about theorigin. Then with probability 1 � � over randomly drawn training sets S ofsize m for all  > 0 such that d((x; y); (u; b); ) = 0, for some (x; y) 2 S, thegeneralization of a linear classi�er u on X satisfying kuk � 1 is bounded by�(m; k; �) = 2m �k log2�8emk � log2(32m) + log2�180m(21+ log2(m))2� �� ;where k = �65[(R+D)2 + 2:25RD]2 � ;for D = D(S; (u; b); ), and provided m � maxf2=�; 6g, k � em and thereis no discrete probability on misclassi�ed training points.Proof : Consider a �xed set of values for �, �1 = Rb2m0:25 � 1c, �i+1 =�i=2, for i = 2; : : : ; t, where t satis�es, R=32 � �t > R=64. Hence, t �log2(128m0:25) = 0:25(28 + log2(m)). We apply Theorem 4.2 for each ofthese values of �, using �0 = �=t in each application. Note that we havealso loosely upper bounded the expression (28+ log2(m)) log2(1+mR2=�2)by (21 + log2(m))2 in each application. For a given value of  and D =D(S;u; ), it is easy to check that the value of k is minimal for � = pRDand is monotonically decreasing for smaller values of � and monotonicallyincreasing for larger values. Note that pRD � Rp2pm� 1, as the largestabsolute di�erence in the values of the linear function on two training pointsis 2R and since d((x; y); (u; b); ) = 0, for some (x; y) 2 S, we must haved((x0; y0); (u; b); )� 2R, for all (x0; y0) 2 S. Hence, as 2m0:25�1 > p2(m�1)0:25 for m � 6, we can �nd a value of �i satisfying pRD=2 � �i � pRD,provided pRD � R=32. The value of the expression(R2 + �2)(1 +D(S;u; )2=�2)at the value �i will be upper bounded by its value at � = pRD=2. Aroutine calculation con�rms that for this value of �, the expression is equalto (R + D)2 + 2:25RD. Now suppose pRD < R=32. In this case we willshow that (R2 +�2t )(1 +D2=�2t ) � 130129 �(R+D)2 + 2:25RD	 ;10



so that the application of Theorem 4.2 with � = �t covers this case oncethe constant 64:5 is replaced by 65. Recall that R=32 � �t > R=64 andnote that pD=R < 1=32. We therefore have(R2 + �2t )(1 +D2=�2t ) � R2(1 + 1=322)(1 + 642D2=R2)� R2�1 + 11024��1 + 642324�� R2�1 + 11024��1 + 1256�< 130129R2 � 130129 �(R+D)2 + 2:25RD	as required. The result follows.5 AlgorithmicsThe theory developed in the previous section provides a principled answerto a long standing question: what is the \best" linear separation of a set ofpoints that are not linearly separable?Many heuristics have been proposed (see [4] for a review), mainly aimedat reducing the empirical risk, but most of them su�er from computationalproblems. The question is a practically interesting one, expecially afterthe revival of perceptron-like systems due to the success of Support VectorMachines [5, 18]. The inability of the original Support Vector Machinesto deal with noise (and tolerate outliers) is a serious practical limitation,expecially because - when combined with the use of kernels - it can easilylead to over�tting. The solution developed for Support Vector machines isa heuristic known as the \Soft Margin", which will be described below.The bound proven in the previous section implies the following algorithm:minimize D(S; (u; b); ) for a given �xed value of , and subsequently min-imize the bound over di�erent choices of . This would ensure that thehyperplane coincides with the minimum of the upper bound on the gen-eralization error. Moreover, as we will see, it can be found in polynomialtime.The approach taken by Vapnik [18, Section 5.5.1] for his Soft Margin Clas-sifer is similar, albeit with totally di�erent motivations: in order to minimize11



the training error of the output hypothesis (an NP-complete task) he ap-proximates it with the quantity Pmj=1 d�j , which tends to the training errorfor � ! 0. This gives rise to the following algorithm: for non-negativevariables di � 0, minimize the functionF�(d) = mXj=1 d�j ;subject to the constraints:yj [hu � xji � b] � 1� dj ; j = 1; : : : ; m (1)hu � ui � C: (2)which can be solved in polynomial time for � = 1 or � = 2. This constrainedoptimization problem is then solved by minimizing the following quantity(problem (1)): � mXj=1 d�j + 12hu � uifor di�erent, �xed, values of �. A suitable value of � is then usually chosen bymeans of a validation set. Once translated into dual variables, this problemturns out to be a quadratic programming problem for each �xed value of �,and can be solved e�ciently using standard methods.The algorithm which follows from the theory presented in the previous sec-tion can, in contrast, be described as follows (problem (2)): minimizekdk2 = mXj=1 d2jsubject to constraintsyj [hu � xji � b] � 1� dj ; j = 1; : : : ; m (3)hu � ui = C (4)which corresponds exactly to minimizing D(S; (u; b); ), where  = 1pC .This follows from considering the hyperplane (u0; b0) = (u=pC; b=pC) whichhas norm 1 and classi�es the point (xj ; yj) such thatd((xj; yj); (u0; b0); ) = dj=pC;12



so that D(S; (u0; b0); ) =pF2(d)=C.Once translated into dual variables, problem (2) gives rise to a convex max-imization problem [14]F (�0; �) = �14 mXj=1 �2j + mXj=1 �j � 14�C mXi;j=1�i�jyiyjhxi � xji � �0C;which must be solved subject to the constraints, �j � 0, j = 0; : : : ; m, andPmj=1 �jyj = 0 for each value of  = 1pC , giving the optimal (according toour bound) hyperplane of �xed norm jjwjj = 1 . Its solution can be foundin polynomial time by applying a gradient based path algorithm followinggrad(F ) with an appropriate learning rate �, but this convex optimizationproblem is more di�cult than a standard quadratic programming one. Thebest  is then chosen again using the bound derived in the previous section,namely: w� = argmin minkwk=1=�R+D �2We will now show that the same result can be obtained by solving the(simpler) quadratic problem used by Vapnik, with � = 2 and � is optimisedwith respect to our bound. The idea is that the class of functions de�nedby problem (1) for � 2 <+ is identical to the class of functions de�ned byproblem (2) for  2 <+. The optimal function according to our bound ishence the same in both classes.First we need to prove a technical lemma, and state some de�nitions.Lemma 5.1 The hyperplane implicitly de�ned by the optimization problem(1) depends continuously on the parameter �.Proof : This follows from the fact that the dual function equivalent to prob-lem (1) (once maximized in the positive quadrant for each value of �) [5]W(�) =X�i � 12Xi;j yiyj�i�jK(xi; xj)� 1�X�2i + �CX�iyiis continuous both in � and in �, and is strictly convex in � for any �xedvalue of �. 13



Strict convexity follows from the fact that its HessianHij = @Fi@�jj = �yjiyjjK(xji ; xjj)� 1� = Hji; i; j � 1;is negative de�nite.De�nition 5.2 We de�ne W� to be the set of the solutions of problem (1)for all values of �, and W to be the set of the solutions of problem (2) forall values of . Formally:W� = fu 2 <kj9� 2 <+;u = argmin�� mXj=1 d2j + 12hu;uigW = fu 2 <k j9 2 <+;u = argminjjujj=1= �R+D �2gTheorem 5.3 The sets of functions W� and W de�ned above are equiva-lent.Proof : let w� be the solution of the problem (1) for a �xed value of �.Then, jjw�jj ! 0 if �! 0, and jjw�jj ! 1 if �!1.By lemma 5.1 we know that the function jjw(�)jj is continuous in �, andhence the norm of the solutions of problem (1) ranges through all possiblepositive values for suitably chosen values of �.Since jjwjj = 1pC , considering the solution for value of � in problem (1) isequivalent solving problem (2) with C = kw�k.This implies that for each function w� 2 W� there exists a value of  suchthat the corresponding w 2 W , and w� = w.An obvious, but important, consequence of this theorem is the followingcorollary:Corollary 5.4 The minima of the bound on W� and W coincide:minw�2W� �R+D �2 = minw2W �R+D �214



This means that the optimal separating hyperplane (according to our bound)can be found by solving the quadratic optimization problem (2) with � = 2for di�erent values of �, and choosing the value of � which minimizes thebound itself.This analysis provides a theoretical justi�cation to the Soft Margin heuristics(using the 2-norm of the vector d described in the appendix of [5]), as wellas a theoretically sound way to choose the optimal value of � in that case.In the next sections we will generalize the theoretical results given so far, andthis will lead to a further description of soft-margin heuristics for SupportVector Machines as well as non-linear function classes.6 Non-linear Function Spaces6.1 Further Background ResultsBefore we can quote the next lemma, we need another de�nition.De�nition 6.1 Let (X; d) be a (pseudo-) metric space, let A be a subset ofX and � > 0. A set B � X is an �-cover for A if, for every a 2 A, thereexists b 2 B such that d(a; b)� �. The �-covering number of A, Nd(�; A), isthe minimal cardinality of an �-cover for A (if there is no such �nite coverthen it is de�ned to be 1). We will say the cover is proper if B � A.Note that we have used less than or equal to in the de�nition of a cover.This is somewhat unconventional, but will not change the bounds we use.It does, however, prove technically useful in the proofs. The idea is that Bshould be �nite but approximate all of A with respect to the pseudometricd. we will use the l1 distance over a �nite sample x = (x1; : : : ; xm) for thepseudo-metric in the space of functions,dx(f; g) = maxi jf(xi)� g(xi)j:We write N (�;F ;x) = Ndx(�;F) We will consider the covers to be chosenfrom the set of all functions with the same domain as F and range the reals.We now quote a lemma from [12] which follows immediately from a resultof Alon et al. [1]. 15



Corollary 6.2 [12] Let F be a class of functions X ! [a; b] and P a dis-tribution over X. Choose 0 < � < 1 and let d = fatF (�=4). Thensupx2XmN (�;F ;x)� 2�4m(b� a)2�2 �d log2(2em(b�a)=(d�)) :We de�ne a clipping function � .�(�) := 8<: � if � > �� � 2:01 if � < � � 2:01� otherwise,and let �(F) = f�(f): f 2 Fg. The choice of the threshold � is arbitrarybut will be �xed before any analysis is made. If the value of � needs to beincluded explicitly we will denote the clipping function by �� .For a monotonic function f() we de�nef(�) = lim�!0+ f( � �);that is the left limit of f at . Note that the minimal cardinality of an�-cover is a monotonically decreasing function of �, as is the fat shatteringdimension as a function of .De�nition 6.3 We say that a class of functions F is sturdy its imagesunder the evaluation maps~xF :F �! <; ~xF : f 7! f(x)are compact subsets of < for all x 2 X.Note that this de�nition di�ers slightly from that introduced in [15]. Thecurrent de�nition is more general, but at the same time simpli�es the proofof the required properties.Lemma 6.4 Let F be a sturdy class of functions. Then for each N 2 Nand any �xed sequence x 2 Xm, the in�mum N = inffjN (;F ;x) = Ng;is attained.Proof : The straightforward proof follows exactly the proof of Lemma 2.6of [15]. 16



Corollary 6.5 Let F be a sturdy class of functions. Then for each N 2 Nand any �xed sequence x 2 Xm, the in�mum N = inffjN (; �(F);x) =Ng; is attained.Proof : Suppose that the assertion does not hold for some x 2 Xm andN 2 N. Let N 0 = N (N ; �N (F);x)> N . Consider the following supremumN 0 = supfjN (; �N(F);x) = N 0g:Since the assertion does not hold we have N 0 � N . By the lemma wemust have N 0 > N , since otherwise the in�mum of the  required for thenext size of cover will not be attained. Hence, there exists 0 > N withN (0; �N (F);x) = N 0. Let  = (0+N )=2. Note thatN (; �(F);x)� N .Let B be a minimal cover in this case. Claim that B is also a 0 cover for�N (F) in the dx metric. To show this consider f 2 F and let fi 2 B bewithin  of �(f) in the dx metric. Hence, for all x 2 x, jfi(x)��(f)(x)j �. But this implies thatjfi(x)� �N (f)(x)j �  + ( � N)= 0:Hence, we have N (0; �N (F);x)� N , a contradiction.We will make use of the following lemma, which in the form below is due toVapnik [17, page 168].Lemma 6.6 LetX be a set and S a system of sets on X, and P a probabilitymeasure on X. For x 2 Xm and A 2 S, de�ne �x(A) := jx \ Aj=m. Ifm > 2=�, thenPm �x: supA2S j�x(A)� P (A)j > �� � 2P 2m�xy: supA2S j�x(A)� �y(A)j > �=2� :The following two theorems are essentially quoted from [12] but they havebeen reformulated here in terms of the covering numbers involved. Thedi�erence will be apparent if Theorem 6.8 is compared with Theorem 3.4quoted in Section 3. 17



Lemma 6.7 Suppose F is a sturdy set of functions that map from X to <.Then for any distribution P on X, and any k 2 N and any � 2 <P 2m(xy: 9f 2 F ; r = maxj ff(xj)g; 2 < � � r; dlog2(N (; �(F);xy))e= k;1m jfijf(yi) � �gj > �(m; k; �)) < �;where �(m; k; �) = 1m(k + log2 2� ).Proof : We have omitted the detailed proof since it is essentially the sameas the corresponding proof in [12] with the simpli�cation that Corollary 6.2is not required and the property of sturdiness ensures by Corollary 6.5 thatwe can �nd a k cover wherek = inffjN (; �(F);xy) = 2kgwhich can be used for all  satisfying dlog2(N (; �(F);xy))e = k. Notealso that an inequality is required 2 < � � r, as we have coverings usingclosed rather than open balls.Theorem 6.8 Consider a sturdy real valued function class F having a uni-form bound on the covering numbersN (�; ��(F);x)� B(`; );for all x 2 X`, for all `. Fix � 2 <. If a learner correctly classi�es m inde-pendently generated examples z with h = T�(f) 2 T�(F) such that erz(h) = 0and  = min jf(xi) � �j, then with con�dence 1 � � the expected error of his bounded from above by�(m; k; �) = 2m �k + log2�8m� �� ;where k = dlog2 B(2m; =2)e.Proof : Making use of lemma 6.6 we will move to the double sample andstratify by k. By the union bound, it thus su�ces to show thatP2mk=1 P 2m(Jk) <�=2, whereJk = fxy : 9h = T�(f) 2 T�(F);Erx(h) = 0; k = dlog2 B(2m; =2)e; = min jf(xi)� �j;Ery(h) � m�(m; k; �)=2g:18



(The largest value of k we need consider is 2m, since for larger values thebound will in any case be trivial). It is su�cient if P 2m(Jk) � �4m = �0. Wewill in fact work with the setJk( 0) = fxy : 9h = T�(f) 2 T�(F);Erx(h) = 0; k = dlog2N ( 0=2; �0=2(F);xy)e;0 < min jf(xi)� �j;Ery(h) � m�(m; k; �)=2g:We will show that for any  0 < , we have P 2m(Jk( 0)) � �0. Hence,considering the limit 0!  from below, the result will follow.Consider F̂ = F̂� . The probability distribution on X̂ = X � f0; 1g is givenby P on X with the second component determined by the target value ofthe �rst component. Note that for a point y 2 y to be misclassi�ed, it musthave f̂(ŷ) � � > maxff̂(x̂): x̂ 2 x̂g+ , so thatJk( 0) � nx̂ŷ 2 (X � f0; 1g)2m : 9f̂ 2 F̂ ; r = maxff̂(x̂): x̂ 2 x̂g;  0 < � � r;k = dlogN ( 0=2; �0=2(F);xy)e; ���fŷ 2 ŷ: f̂(ŷ) � �g��� � m�(m; k; �)=2oReplacing  by 0=2 in Lemma 6.7 and appealing to Lemma 6.6 we obtainP 2m(Jk( 0)) � �0, for �(m; k; �) = 2m �k + log(2=�0)� ;as required. Note that the condition of Lemma 6.6 are satis�ed by � andm.6.2 Margin distribution and fat shatteringIn this section we will generalise the results of Section 4 to function classesfor which a bound on their fat-shattering dimension is known. The basictrick is to bound the covering numbers of the sum of two function classesin terms of the covering numbers of the individual classes. If F and G areal valued function classes de�ned on a domain X we denote by F + G thefunction class F + G = ff + gjf 2 F ; g 2 Gg:Lemma 6.9 Let F and G be two real valued function classes both de�ned ona domain X. Suppose G has range [a; b]. Then we can bound the cardinalityof a minimal  cover of F + G byN (; �(F + G);x)� N (=2; ���a+(b�a)=2(F);x)N (=2;G;x):19



Proof : Fix � 2 (0; ) and let B (respectively C) be a minimal � (respectively��) cover of ���a+(b�a)=2(F) (respectively G) in the dx metric. Consider theset of functions B + C. For any f + g 2 F + G, there is an fi 2 B within �of ���a+(b�a)=2(f) in the dx metric and a gj 2 C within � � of g in the samemetric. For x 2 x we claimj�(f + g)(x)� �(fi + gj)(x)j � : (5)Hence, �(B + C) forms a  cover of �(F + G). SincejB + Cj � N (�; ���a+(b�a)=2(F);x)N (� �;G;x);the result follows by setting � = =2. To justify the claim, assume �rst that� � 2 � (f + g)(x) � �. This implies that� � 2 � b � � � 2 � g(x) � f(x) � � � g(x) � � � a:Hence, in this case using the fact that � only reduces distances,j�(f + g)(x)� �(fi + gj)(x)j � j(f + g)(x)� (fi + gj)(x)j= j(���a+(b�a)=2(f) + g)(x)� (fi + gj)(x)j� j���a+(b�a)=2(f)(x)� fi(x)j+ jg(x)� gj(x)j� � +  � � = :If on the other hand (f + g)(x) � �, we need only show that (fi + gj)(x) ��� in order for (5) to be satis�ed. But we have fi(x) � minff(x); ��ag��,while gj(x) � g(x)� ( � �). Hence,(fi + gj)(x) � minf(f + g)(x); g(x)+ � � ag � � � � :Finally, if (f + g)(x) � � � 2, we must show that (fi + gj)(x) � � �  tosatisfy equation (5). In this case fi(x) � maxff(x); � � 2 � bg + �, whilegj(x) � g(x) + ( � �). Hence,(fi + gj)(x) � maxf(f + g)(x); g(x)+ � � 2 � bg+ � � � :as required. 20



Before proceeding we need a further technical lemma to show that the prop-erty of sturdiness is preserved under the addition operator.Lemma 6.10 Let F and G be sturdy real valued function classes. ThenF + G is also sturdy.Proof : Consider x 2 X . ~xF (F) is a compact subset of < as is ~xG(G). Notethat ~xF+G(F + G) = ~xF (F) + ~xG(G);where the addition of two sets A and B of real numbers is de�nedA+ B = fa+ bja 2 A; b 2 Bg:Since, ~xF (F)� ~xG(G) is a compact set of <2 and + is a continuous functionfrom <2 to <, we have that ~xF(F) + ~xG(G) being the image of a compactset under + is also compact.De�nition 6.11 Fix a threshold � 2 <. For a function f on X we de�ned((x; y); f; ) = maxf0;  � y(f(x)� �)g:This quantity is the amount by which f fails to reach the margin  on thepoint (x; y) or 0 if its margin is larger than . Let gf 2 Lf (X) be thefunction gf = X(x;y)2S d((x; y); f; )y�x:Proposition 6.12 Fix � 2 <. Let F be a sturdy class of real-valued func-tions with range [a; b] � < having a uniform bound on the covering numbersN (�; ��+A2�+A(F);x)� B(`; ; A);for all x 2 X`, for all `. Let G be a sturdy subset of Lf (X) with the uniformbound on the covering numbers,N (�;G;x)� A(`; );for x 2 �`, where � = f�xjx 2 Xg. Consider a �xed but unknown prob-ability distribution on the input space X. Then with probability 1 � � over21



randomly drawn training sets S of size m for all  > 0 the generalization ofa function f 2 F thresholded at � satisfying gf 2 G is bounded by�(m; k; �) = 2m �k + log2�8m� �� ;where k = dlog2 B(2m; =4;A)+ log2A(2m; =4)e ;where A � supfhg; �xijg 2 G; x 2 Xg, provided m � 2=� and there is nodiscrete probability on misclassi�ed training points.Proof : Consider the �xed mapping �1. We extend the function class F toact on the space X � Lf (X) by its action on X . We similarly extend thefunction class G by composing with a projection. We claim that1. for x 62 S, f(x) = (f + gf)(x), and2. the margin of f + gf with threshold � on the training set �1(S) is .Hence, the o� training set behaviour of the classi�er f can be characterisedby the behaviour of f + gf , while f + gf is a large margin classi�er inthe space X � Lf (X). In order to bound the generalization error we willapply Theorem 6.8 for F + G which gives a bound in terms of the coveringnumbers. These we will bound using Lemma 6.9. The space F + G issturdy by Lemma 6.10, since both F and G are. Note that the range ofG is contained in [�A;A] on the input domain. In this case we obtain thefollowing bound on the covering numbers,lim�!0+ log2 �N (( � �)=2; �(��)=2(F + G);x)� � lim�!0+ log2 �N (( � �)=4; ��+A(��)=2+A(F);x)�+ lim�!0+ log2 (N (( � �)=4;G;x))� log2(B(2m; =4;A))+ log2(A(2m; =4));as required.1. The �rst claim follows immediately from the observation that for z 62S, * X(x;y)2S d((x; y); f; )y�x � �z+ = 0:22



2. For (x0; y0) 2 S, we havey0((f + gf )(x0)� �) = y0(f(x0)� �) + y0* X(x;y)2S d((x; y); f; )y0�x � �x0+�  � d((x0; y0); f; )+ d((x0; y0); f; ) = :The theorem follows.For a training set S, we de�neD(S; f; ) =s X(x;y)2S d((x; y); f; )2:Theorem 6.13 Let F be a sturdy class of real-valued functions with range[a; b] and fat shattering dimension bounded by fatF (). Fix � 2 < and ascaling of the output range � 2 <. Consider a �xed but unknown probabilitydistribution on the input space X. Then with probability 1�� over randomlydrawn training sets S of size m for all b� a >  > 0 the generalization of afunction f 2 F thresholded at � is bounded by�(m; k; �) = 2m �k log2�65m�1 + ~D�2� log2 �9em�1 + ~D��+ log2�64m1:5(b� a)�� �� ;where k = hfatF (�=16) + 64 ~D2i and ~D = 2(D(S; f; )+ �)=;provided m � 2=� and there is no discrete probability on misclassi�ed train-ing points.Proof : We de�ne a sequence of function classes Gj � Lf(X) to be thelinear functionals with norm at most Bj on the space Lf (X). We will applyProposition 6.12 for each class Gj . Note that the range of Gj is [�Bj ; Bj ]on the input domain. Note also that the image of Gj under the evaluationmap is a closed bounded subset of the reals and hence is compact. It followsthat Gj is sturdy. We choose Bj = j�, for j = 1; : : : ; ` = pm(b � a)=�.Hence, B` = pm(b�a) � D(S; f; ), for all f 2 F and all  < b�a. Hence,for any value of D = D(S; f; ) obtained there is a value of Bj satisfyingD � Bj < D + �. Substituting the upper bound D + � for this Bj will give23



the result, when we use �0 = �=` and bound the covering numbers of thecomponent function classes using Corollary 6.2 and Theorem 3.5. In thiscase we obtain the following bounds on the covering numbers,lim�!0+ log2 �N (( � �)=4; ��+Bj��+Bj(F);x)� � 1 + d1 log2�260m(=2+ Bj)22 �log2 �18em(=2+Bj)d1 �=: log2(B(2m; =4; Bj))where d1 = fatF(�=16), andlim�!0+ log2 (N (( � �)=4;Gj;x)) � 1 + d2 log2 260mB2j2 ! log2 �18emBjd2 �=: log2(A(2m; =4))where d2 = (16Bj=)2. Hence, in this case we can bound dlog2 B(2m; =4;Bj)+log2A(2m; =4)e bydlog2 B(2m; =4; Bj) + log2A(2m; =4)e � 3 + "fatF (�=16) + �16Bj �2#log2 65m(1 + 2Bj=)2 log2 9em(1 + 2Bj=)giving the result where the 3 contributes a factor of 8 into the argument ofthe �nal log term.The theorem can of course be applied for linear function classes, using thebound on the fat shattering dimension given in Theorem 3.5. The boundobtained is very comparable, though a lot less clean than Theorem 4.3.For a training set S, we de�neD0(S; f; ) = X(x;y)2S d((x; y); f; ):This is the l1 sum of the slack variables which is optimised in Vapnik's boxconstraint maximal margin hyperplane algorithm. The following Corollaryshows that optimising this quantity does indeed lead to good generalization.24



Corollary 6.14 Let F be a sturdy class of real-valued functions with range[a; b] and fat shattering dimension bounded by fatF (). Fix � 2 < and ascaling of the output range � 2 <. Consider a �xed but unknown probabilitydistribution on the input space X. Then with probability 1�� over randomlydrawn training sets S of size m for all b� a >  > 0 the generalization of afunction f 2 F thresholded at � is bounded by�(m; k; �) = 2m �k log2�65m�1 + ~D�2� log2 �9em�1 + ~D��+ log2�64m1:5(b� a)�� �� ;wherek = hfatF(�=16) + 64 ~D2i and ~D = 2(pD0(S; f; )(b� a) + �)=;provided m � 2=� and there is no discrete probability on misclassi�ed train-ing points.Proof : The corollary follows by observing thatD(S; f; ) = s X(x;y)2S d((x; y); f; )2� s(b� a) X(x;y)2S d((x; y); f; )= pD0(S; f; )(b� a)and applying the theorem.If we choose the hyperplane to minimise D0(S; f; ) and apply the Corollary,we will necessarily obtain a weaker bound than we would if we minimisedD(S; f; ) and then applied the Theorem. In the case of linear functionclasses, better bounds for the generalization in terms of D and D0 should beobtained using recent results which bound the covering numbers for di�erentnorms directly [21].It is worth noting that we can apply Corollary 6.14 to the case of linearfunctions with norm 1 and recover a result similar to Theorem 4.3. Thebound would involve an expression R2 + D2 rather than (R + D)2, whichappears preferable. The constants, however, are signi�cantly worse so thatoverall the bound will not be as tight.25



7 RegressionIn order to apply the results of the last section to the regression case weformulate the error estimation as a classi�cation problem. Consider a real-valued function class F and a target real-valued function t(x). For f 2 Fwe de�ne the function e(f) and the class e(F),e(f)(x) = jf(x)� t(x)j;e(F) = fe(f)jf 2 Fg:For a training point (x; y) 2 X � < we de�ne@((x; y); f; ) = maxf0; jf(x)� yj � (� � )g:This quantity is the amount by which f exceeds the error margin � �  onthe point (x; y) or 0 if f is within � �  of the target value. Hence, thisis the � insensitive loss measure considered by Vapnik with � = � � . Letgf 2 Lf (X) be the functiongf = � X(x;y)2S @((x; y); f; )�x:Proposition 7.1 Fix � 2 <, � > 0. Let F be a sturdy class of real-valuedfunctions with range [a; b] � < having a uniform bound on the coveringnumbers N (�;F ;x)� B(m; );for all x 2 Xm. Let G be a sturdy subset of Lf (X) with the uniform boundon the covering numbers, N (�;G;x)� A(m; );for x 2 �m, where � = f�xjx 2 Xg. Consider a �xed but unknown prob-ability distribution on the input space X. Then with probability 1 � � overrandomly drawn training sets S of size m for all  > 0 the probability thata function f 2 F has error greater than � with respect to target function ton a randomly chosen input is bounded by�(m; k; �) = 2m �k + log2�8m� �� ;26



where k = dlog2 B(2m; =4)+ log2A(2m; =4)e ;where A � supfhg; �xijg 2 G; x 2 Xg, provided m � 2=�, there is no discreteprobability on training points with error greater than � and ge(f) 2 GProof : The result follows from an application of Proposition 6.12 to thefunction class e(F), noting that we treat all training examples as negative,and hence correct classi�cation corresponds to having error less than �.Finally, we can bound the covering numbersN (; ��+A2+A(e(F));x)� N (;F ;x)� B(m; ):The result follows.For a training set S, we de�neD(S; f; ) =s X(x;y)2S @((x; y); f; )2:The above result can be used to obtain a bound in terms of the observedvalue of D(S; f; ) and the fat shattering dimension of the function class.Theorem 7.2 Let F be a sturdy class of real-valued functions with range[a; b] and fat shattering dimension bounded by fatF(). Fix � 2 <, � > 0and a scaling of the output range � 2 <. Consider a �xed but unknownprobability distribution on the input space X. Then with probability 1 � �over randomly drawn training sets S of size m for all  with � �  > 0the probability that a function f 2 F has error larger than � on a randomlychosen input is bounded by�(m; k; �) = 2m  k log2 65m�b� a �2! log2�9em�b� a �� + log2�64m1:5(b� a)�� �! ;where k = hfatF (�=16) + 64 ~D2i and ~D = 2(D(S; f; )+ �)=;provided m � 2=� and there is no discrete probability on misclassi�ed train-ing points.Proof : The proof follows the same pattern as that of Theorem 6.13, withthe exception that the bounds on the covering numbers must use the fullrange of the function class F in the log factors.27



Corollary 7.3 Let F be a the set of linear functions with norm 1 restrictedto inputs in a ball of radius R about the origin. Fix � 2 <, � > 0 and ascaling of the output range � 2 <. Consider a �xed but unknown probabilitydistribution on the input space X. Then with probability 1�� over randomlydrawn training sets S of size m for all , with � �  > 0 the probability thata function f 2 F has error larger than � on a randomly chosen input isbounded by�(m; k; �) = 2m  k log2 260m�R �2! log2 �18emR �+ log2 �128m1:5R�� �! ;where k = h256R2=2 + 64 ~D2i and ~D = 2(D(S; f; )+ �)=;provided m � 2=� and there is no discrete probability on misclassi�ed train-ing points.Proof : The range of linear functions with unit weight vectors when re-stricted to the unit ball is [�R;R]. Their fat shattering dimension is boundedby Theorem 3.5. The result follows.Note that we obtain a generalization bound for standard least squares re-gression by taking  = � in Theorem 7.2. In this case D(S; f; �) is the leastsquares error on the training set, while the bound gives the probability of arandomly chosen input having error greater than �. This is summarised inthe following corollary.Corollary 7.4 Let F be a sturdy class of real-valued functions with range[a; b] and fat shattering dimension bounded by fatF(). Fix � 2 <, � > 0and a scaling of the output range � 2 <. Consider a �xed but unknownprobability distribution on the input space X. Then with probability 1 � �over randomly drawn training sets S of size m the probability that a functionf 2 F has error larger than � on a randomly chosen input is bounded by�(m; k; �) = 2m  k log2 65m�b� a� �2! log2�9em�b� a� �� + log2�64m1:5(b� a)�� �! ;wherek = hfatF(��=16) + 64 ~D2i and ~D = 2qP(x;y)2S(f(x)� y)2 + �� ;28



provided m � 2=� and there is no discrete probability on misclassi�ed train-ing points.As mentioned in the section dealing with classi�cation we could bound thegeneralization in terms of other norms of the vector of slack variables(@((x; y); f; ))(x;y)2S :The aim of this paper, however, is not to list all possible results, it is ratherto illustrate how such results can be obtained.Another application of these results is to choose the best � for the � insensi-tive loss function for Support Vector Regression. This problem has usuallybeen solved by using a validation set, but Corollary 7.3 could be used bychoose the value of � which gives the best bound on the generalization. Weassume here that a target accuracy � has been set and we wish to minimisethe probability that the error exceeds this value. The optimum will be the� which minimises R2 + D(S; f�; � � �)2(� � �)2 ;where f� is the solution obtained when using the �-insensitive loss function.8 ConclusionsWe have shown how an approach developed by Freund and Schapire [8] formistake bounded learning can be adapted to give pac style bounds whichdepend on the margin distribution rather than the margin of the closestpoint to the hyperplane. The bounds obtained can be signi�cantly betterthan previously obtained bounds, particularly when some of the points aremisclassi�ed and agnostic bounds would need to be applied were a classicalanalysis to be adopted in which the square root of the sample size replacesthe sample size in the denominator. The bound is also more robust thatthat derived for the maximal margin hyperplane where a single point canhave a dramatic e�ect on the hyperplane produced.We have gone on to show how optimizing the measure of the margin dis-tribution that appears in the bound corresponds to an algorithm proposedby Cortes and Vapnik [5]. This formulation also allows the problem to besolved in kernel spaces such as those used with the Support Vector Machine.29



We believe that this paper presents the �rst pac style bound for a mar-gin distribution measure that is neither critically dependent on the nearestpoints to the hyperplane nor is an agnostic version of that approach. In ad-dition, we believe it is the �rst paper to give a provably optimal algorithmfor optimizing the generalization performance of agnostic learning with hy-perplanes, by showing that the criterion to be minimised should not be thenumber of training errors, but rather a more exible criterion which couldbe termed a `soft margin'. The problem of �nding a more informative andtheoretically well-founded measure of the margin distribution has been anopen problem for some time. This paper suggests one candidate for such ameasure which has the advantage of being robust in the sense that it is notcritically sensitive to the behaviour of individual training points.The results have been further generalized to non-linear function classes withbounded fat-shattering dimensions, other norms on the vector of shortfallsof individual training points and to the regression case. For regression onebyproduct is a bound in terms of the least square error on the training setof the probability that a randomly drawn test point will have error greaterthan a given value.References[1] Noga Alon, Shai Ben-David, Nicol�o Cesa-Bianchi and David Haussler,\Scale-sensitive Dimensions, Uniform Convergence, and Learnability,"Journal of the ACM 44(4), 615{631, (1997)[2] Peter L. Bartlett, \The Sample Complexity of Pattern Classi�cationwith Neural Networks: The Size of the Weights is More Importantthan the Size of the Network," IEEE Trans. Inf. Theory, 44(2), 525{536, (1998).[3] Peter Bartlett and John Shawe-Taylor, Generalization Performance ofSupport Vector Machines and Other Pattern Classi�ers, In `Advancesin Kernel Methods - Support Vector Learning', Bernhard Sch�olkopf,Christopher J. C. Burges, and Alexander J. Smola (eds.), MIT Press,Cambridge, USA, 1998.[4] C. Campbell, Constructive Learning Techniques for Designing NeuralNetwork Systems, in (ed CT Leondes) Neural Network Systems Tech-nologies and Applications. San Diego: Academic Press. 1997.30
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