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Abstract

A number of results have bounded generalization of a classifier in
terms of its margin on the training points. There has been some de-
bate about whether the minimum margin is the best measure of the
distribution of training set margin values with which to estimate the
generalization. Freund and Schapire [8] have shown how a different
function of the margin distribution can be used to bound the number
of mistakes of an on-line learning algorithm for a perceptron, as well
as an expected error bound. We show that a slight generalization of
their construction can be used to give a pac style bound on the tail
of the distribution of the generalization errors that arise from a given
sample size. Algorithms arising from the approach are related to those
of Cortes and Vapnik [5]. We generalise the basic result to function
classes with bounded fat-shattering dimension and the 1-norm of the
slack variables which gives rise to Vapnik’s box constraint algorithm.
We also extend the results to the regression case and obtain bounds
on the probability that a randomly chosen test point will have error
greater than a given value. The bounds apply to the e-insensitive loss
function proposed by Vapnik for Support Vector Machine regression. A
special case of this bound gives a bound on the probabilities in terms of
the least squares error on the training set showing a quadratic decline
in probability with margin.



1 Introduction

For classification by thresholding a real valued function the margin of a
training point is the amount by which its output is on the right side of
the threshold or, if misclassified, minus the amount by which it fails to
be correctly classified. In the case of linear hyperplanes with unit weight
vectors, this value can also be seen as the distance of the input point from
the hyperplane. The margin of a classifier is the minimum margin over the
training set.

The idea that a large margin classifier might be expected to give good gen-
eralization is certainly not new [7, 19]. Despite this insight it was not until
comparatively recently [12] that such a conjecture has been placed on a
firm footing in the probably approximately correct (pac) model of learning.
Learning in this model entails giving a bound on the generalization error
which will hold with high confidence over randomly drawn training sets. In
this sense it can be said to ensure reliable learning, something that cannot
be guaranteed by bounds on the expected error of a classifier.

Despite successes in extending this style of analysis to the agnostic case [2]
and applying it to neural networks [2], boosting algorithms [11], perceptron
decision trees [13] and Bayesian algorithms [6], there has been concern that
the measure of the distribution of margin values attained by the training
set is largely ignored in a bound that depends only on its minimal value.
Intuitively, there appeared to be something lost with a bound that depended
so critically on the positions of possibly a small proportion of the training
set, ignoring the margin attained by the majority of the points. Attempts
to address this problem have been made in for example [11], but they treat
points that fail to meet the larger margin as errors and fall back on agnostic
bounds for the generalization error. In contrast our results apply to the
case where there are training set errors, but have the form of bounds with
no training set errors.

The question of how to handle the situation of non linearly separable data
has received a lot of attention (see [4] for a review of some of the methods
suggested). The problem is that minimising the number of training errors
is NP-complete and so the various methods adopted are inherently heuristic
relative to the best bounds previously available for bounding the general-
ization error. By showing that the generalization error can be bounded in
terms of a quantity that can be optimized by a polynomial time algorithm,
we provide a solution to a long-standing conundrum of perceptron learning.



The analysis is based on work of Freund and Schapire [8] (a similar tech-
nique was employed by Klasner and Simon [10] for rendering a real valued
function learning algorithm noise tolerant), who developed a measure of the
margin distribution which they showed could be used to bound the expected
generalization error more tightly than the minimal margin. In this paper
we show that the same measure can be used to obtain a pac style bound
for linear functions. This result provides a formal justification for the soft
margin heuristic introduced by Vapnik to render Support Vector machines
noise-tolerant [18]. The same theoretical approach is then applied to more
general non-linear classes of functions with bounded fat-shattering dimen-
sion.

Algorithms arising from the approach are related to those of Cortes and
Vapnik [5] and directly justify the original proposal made to minimise the
2-norm of the slack variables. We generalise the basic result to function
classes with bounded fat-shattering dimension and the 1-norm of the slack
variables which gives rise to Vapnik’s box constraint algorithm. Finally,
application to regression is considered, which includes results for standard
least squares as a special case.

The paper is structured as follows. In the next section we will summarise the
results in O notation to give a flavour of what the paper aims to achieve. In
Section 3 relevant background material and definitions are introduced. This
is followed by a section describing the results for classification using linear
functions. This is the simplest case considered and provides insight into the
basic techniques employed. Section 5 describes the algorithm consequences
of these results for Support Vector Machine classification algorithms. We
then proceed to generalize the results to non-linear function spaces in Sec-
tion 6. The penultimate section considers the problem of regression and
shows how the results obtained for classification readily generalize to this
case.

2 Summary of Results

The results in this section will be given in the O notation indicating asymp-
totics ignoring log factors. The aim is to give the flavour of the results
obtained which might otherwise be obscured by the detailed technicalities
of the proofs and precise bounds obtained.

The first case considered is that of classification using linear function classes



that include the use of kernel functions such as those used in the Support
Vector Machine. For this case consider a margin v about the separating
hyperplane and set (d(Y)(z))(2,y)es) to be the vector for training set S to
be the vector of the amounts by which the training points fail to achieve
the margin v. We bound the probability € of misclassification of a randomly
chosen test point by (see Theorem 4.3)

) (Rl
e<o (L),
SRENINEIEE

where R is the radius of a ball about the origin which contains the support
of the input probability distribution.

The results are generalized to non-linear function classes using a character-
isation of their capacity at scale v known as the fat shattering dimension
fat(y). In this case the bound obtained has the form (see Theorem 6.13)

~ (fat(v/16) + ||d||3/~*
e<O ( 5] ) ’

This result is generalized to obtain a bound in terms of the 1-norm of the
vector d (see Corollary 6.14)

- (fat(7/16) + [|d[1/7?
<0 ( 5] ) ’

which could of course also be applied to the linear case using a bound on
the fat shattering dimension for this case.

Finally, the problem of estimating errors of regressors is addressed with
the techniques developed. We bound the probability € that for a randomly
chosen test point the absolute error is greater than a given value 6. In
this case we define a vector (8(x,y))(x,y)65 of amounts by which the error on
the training examples exceeds § — v. Note that ||3(8)]|3 is simply the least
squares error on the training set. We then bound the probability € by (see

Theorem 7.2)
- (fat(v/16) + ||0(7)]13/+
e<O ( 15| ) :

These results can be used for Support Vector Regression and give a way of
choosing the optimal size 8§ —+ of the tube for the insensitive loss function. In
addition they can be applied to standard least square regression by setting




v = 6 to obtain the bound (see Corollary 7.4)

 (1at(8/16) + [19(6) 3/6°
<0 ( 5| ) |

3 Background Results

We consider learning from examples, initially of a binary classification.
We denote the domain of the problem by X and a sequence of inputs
by x = (21,...,2m) € X™. A training sequence is typically denoted by
z=((z1,%1),- -, (Tm,Um)) € (X x {—1,1})™ and the set of training exam-
ples by S. By Er,(h) we denote the number of classification errors of the
function h on the sequence z. As we will typically be classifying by thresh-
olding real valued functions we introduce the notation Ty(f) to denote the
function giving output 1 if f has output greater than or equal to 8 and —1
otherwise. For a class H the class Tp(H) is the set of derived classification
functions.

We first give some necessary definitions.

Definition 8.1 Let H be a set of binary valued functions. We say that a
set of points X 1is shattered by H if for all binary vectors b indexed by X,
there is a function f, € H realisingb on X. The Vapnik-Chervonenkis (VC)
dimension, VCdim(H), of the set H is the size of the largest shattered set,
if this is finite or infinity otherwise.

The following theorem is well known in a number of different forms. We
quote the result here as a bound on the generalization error rather than as
a required sample size for given generalization.

Theorem 3.2 [12] Let H;, i = 1,2,... be a sequence of hypothesis classes
mapping X to {0, 1} such that VCdim(H;) = ¢, and let P be a probability dis-
tribution on X . Let pq be any set of positive numbers satisfying > 5~ pa = 1.
With probability 1 — & over m independent examples drawn according to P,
for any d for which a learner finds a consistent hypothesis h in Hy, the
generalization error of h is bounded from above by

cm,d,0) = (dm (2€dm) +In (pid) +In (%)) ,

provided d < m.




We now introduce the generalization of the VC dimension which makes it
possible to generalize Theorem 3.2 to large margin classification.

Definition 3.3 Let H be a set of real valued functions. We say that a set of
points X is y-shattered by H if there are real numbers r, indexed by x € X
such that for all binary vectors b indexed by X, there is a function f, € H
satisfying

>ry+v ifby,=1

<r,—7 otherwise.

Jo(z) {

The fat shattering dimension faty of the set H is a function from the positive
real numbers to the integers which maps a value v to the size of the largest
~v-shattered set, if this is finite or infinity otherwise.

We will make critical use of the following result contained in Shawe-Taylor et
al [12] which involves the fat shattering dimension of the space of functions.

Theorem 3.4 Consider a real valued function class H having fat shattering
function bounded above by the function afat : ® — N which is continuous
from the right. Fiz 8 € R. Then with probability at least 1 — § a learner who
correctly classifies m independently generated examples z with h = Typ(f) €
Ty(H) such that erg(h) = 0 and v = min|f(z;) — 0| will have error of h
bounded from above by

e(m, k,0) = % (k log, (86777”&) log,(32m) + log, (STm)) ,

where k = afat(y/8) < em.

Note how the fat shattering dimension at scale v/8 plays the role of the VC
dimension in this bound. This result motivates the use of the term effective
VC dimension for this value. In order to make use of this theorem, we must
have a bound on the fat shattering dimension and then calculate the mar-
gin of the classifier. We begin by considering bounds on the fat shattering
dimension. The first bound on the fat shattering dimension of bounded lin-
ear functions in a finite dimensional space was obtained by Shawe-Taylor et
al. [12]. Gurvits [9] generalised this to infinite dimensional Banach spaces.
We will quote an improved version of this bound for Hilbert spaces which is
contained in [3] (slightly adapted here for an arbitrary bound on the linear
operators).



Theorem 3.5 [3] Consider a Hilbert space and the class of linear functions
L of norm less than or equal to B restricted to the sphere of radius R about
the origin. Then the fat shattering dimension of L can be bounded by

fatr (7) < (?)

In order to apply Theorems 3.4 and 3.5 we need to bound the radius of the
sphere containing the points and the norm of the linear functionals involved.
Clearly, scaling by these quantities will give the margin appropriate for
application of the theorem.

4 Linear Function Classes

Let X be a Hilbert space. We define the following Hilbert space derived
from X.

Definition 4.1 Let L{(X) be the set of real valued functions f on X with
support supp(f) finite, that is functions in Ly(X) are non-zero only for
finitely many points. We define the inner product of two functions f, g €

Li(X), by
(f-9="Y,

f
v€SUpPP(f)

(2)g(x).

Note that the sum which defines the inner product is well-defined since the
functions have finite support. Clearly the space is closed under addition and
multiplication by scalars.

Now for any fixed A > 0 we define an embedding of X into the Hilbert space
X x L¢(X) as follows.

At @ = XA = (2,Ad,),
where 8, € L#(X) is defined by

1; ify=u;
(S — 1 . 1
=) { 0; otherwise.
We begin by considering the case where A is fixed. In practice we wish to
choose this parameter in response to the data. In order to obtain a bound



over different values of A it will be necessary to apply the following theorem
several times.

For a linear classifier u on X and threshold & € R we define

d((xv y)7 (uvb)77) = maX{077 - y((u ) $> - b)}

This quantity is the amount by which u fails to reach the margin + on the
point (z,y) or 0 if its margin is larger than . Similarly for a training set

S, we define

D(S, (u,0),7) = Z d((z,y), (u,b),7)*

(z,y)€S

Theorem 4.2 Fiz A > 0, b € R. Consider a fized but unknown probability
distribution on the input space X with support in the ball of radius R about
the origin. Then with probability 1 — § over randomly drawn training sets S

of size m for all v > 0 the generalization of a linear classifier u on X with
|lu|| = 1, thresholded at b is bounded by

2 2
e(m, k,0) = % (klogz (&Tm) log,(32m) + log, (720m10g2(15_|_ mR?/A ))) |

where

- {64-5(1‘32 + A%)(Jul* + D(S, (u,b), V)Z/AZ)J
72 ’
provided m > 2/e, k < em and there is no discrete probability on misclassi-

fied training points.

Proof: Consider the fixed mapping 7a and the augmented linear functional
over the space X x L¢(X),

. 1
u= w3 Z d((z,y), (u,b),v)ydx
(z,y)eS

We claim that
1. forz ¢ S, {(u-2)={(a-ra(z)), and

2. the margin of @ with threshold b on the training set 74 (S) is 7.



Hence, the off training set behaviour of the linear classifier (u,b) can be
characterised by the behaviour of (u,b), while (u,b) is a large margin clas-
sifier in the space X x L(X). Since for z € S, ||7(2)|* < R? + A?
al|? = ||Jul]* + D(S, (u,b),v)?/A? the result will then follow from
an application of Theorems 3.4 and 3.5 provided that there are no mis-
classified training points with discrete probability. Since Theorem 3.4 can
only be applied for a fixed space of functions we must apply the two the-
orems for a discrete set of values for the bound B on the norm of the lin-
ear functions. This corresponds to choosing a discrete set of values for
the product (BR)? of Theorem 3.5. We will choose the arithmetic series

a (R?+ A%, fori = 1,...,0 = 90logy (1 + mR?*/A?%), where « is chosen so
that o (R2+A2) (R2+A2)(1—|—mR2/A2) which is an upper bound on the
product ||7(2)|]?||a)|?, since D* < mR?. Hence, o = 2179 and it is readily
verified that 64.005 x o« < 64.5. This implies that if we replace the constant
64 of Theorem 3.4 by 64.005 to ensure the continuity from the right, then
for the observed value of ||7(2)||?||||* there is an application of the theorem
for a value of (BR)? within a factor o of this value and the required bound
holds. Note that for each application of the theorem we must replace the
8 of Theorem 3.4 by &' = ¢/¢ in order to ensure that all applications hold
uniformly with probability 1 — é.

1. The first claim follows immediately from the observation that for z ¢

S,
< Z d(($79)7 (u,b)77)y§x. 5z> —
(

z,y)ES

2. For (2,y') € S, we have

y'((a,ma(e’)) =b) = y'((u,2’) - b) +y< > d((x,y), (u,b),7) ’5x-5x'>
(z

v
.
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=
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e
e
e
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e
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The theorem follows. n

We now apply this theorem several times to allow a choice of A which
approximately minimises the expression for k. Note that the minimum of
the expression (ignoring the constant and suppressing the denominator v?%)

s (R+ D)? attained when A = VRD .



Theorem 4.3 Fiz b € R. Consider a fived but unknown probability distri-
bution on the input space X with support in the ball of radius R about the
origin. Then with probability 1 — § over randomly drawn training sets S of
sizem for all v > 0 such that d((z,y), (u,b),v) =0, for some (z,y) € S, the
generalization of a linear classifier w on X satisfying ||u|| < 1 is bounded by

2
e(m, k,0) = % (k10g2 (&Tm) log,(32m) + log, (180m(21 —ElogZ(m)) )) ;

where

b 65[(R+ D)% + 2.25RD]
= - ,
for D = D(S, (u,b),7v), and provided m > max{2/¢,6}, k < em and there
1s no discrete probability on misclassified training points.

Proof: Consider a fixed set of values for A, Ay = R[2m%% — 1], Ay =
A;/2, for ¢ = 2,... t, where t satisfies, R/32 > A; > R/64. Hence, t <
log,(128m%2%) = 0.25(28 + log,(m)). We apply Theorem 4.2 for each of
these values of A, using §' = ¢/t in each application. Note that we have
also loosely upper bounded the expression (28 +log,(m)) log,(1+mR?%/A?)
by (21 + log,(m))? in each application. For a given value of v and D =
D(S,u,7), it is easy to check that the value of k is minimal for A = RD
and is monotonically decreasing for smaller values of A and monotonically
increasing for larger values. Note that vRD < Rv/2v/m — 1, as the largest
absolute difference in the values of the linear function on two training points
is 2R and since d((z,y), (u,b),v) = 0, for some (z,y) € S, we must have
d((z',y"), (0, b),7) < 2R, for all (z',y') € S. Hence, as 2m%?° —1 > /2(m —
1)%%5 for m > 6, we can find a value of A; satisfying vVRD/2 < A; < VRD,
provided vRD > R/32. The value of the expression

(R* + A%)(1+ D(S,u,7)*/A%)

at the value A; will be upper bounded by its value at A = RD/2. A
routine calculation confirms that for this value of A, the expression is equal
to (R + D)2 + 2.25RD. Now suppose vRD < R/32. In this case we will
show that

130

(R* + A})(1+ D*/A}) < o9 (R+ D)*+2.25RD},

10



so that the application of Theorem 4.2 with A = A; covers this case once
the constant 64.5 is replaced by 65. Recall that R/32 > A; > R/64 and
note that /D/R < 1/32. We therefore have

(R*+ A} (1+ D?*/A}) < R*(1+1/32%) (1—|—642D2/R2)
< (1 i) (1 )
< s %)( 256)
< Eg 7{R+D )’ +2.25RD}

as required. The result follows. m

5 Algorithmics

The theory developed in the previous section provides a principled answer
to a long standing question: what is the “best” linear separation of a set of
points that are not linearly separable?

Many heuristics have been proposed (see [4] for a review), mainly aimed
at reducing the empirical risk, but most of them suffer from computational
problems. The question is a practically interesting one, expecially after
the revival of perceptron-like systems due to the success of Support Vector
Machines [5, 18]. The inability of the original Support Vector Machines
to deal with noise (and tolerate outliers) is a serious practical limitation,
expecially because - when combined with the use of kernels - it can easily
lead to overfitting. The solution developed for Support Vector machines is
a heuristic known as the “Soft Margin”, which will be described below.

The bound proven in the previous section implies the following algorithm:
minimize D(S, (u,b),v) for a given fixed value of v, and subsequently min-
imize the bound over different choices of 7. This would ensure that the
hyperplane coincides with the minimum of the upper bound on the gen-
eralization error. Moreover, as we will see, it can be found in polynomial
time.

The approach taken by Vapnik [18, Section 5.5.1] for his Soft Margin Clas-
sifer is similar, albeit with totally different motivations: in order to minimize

11



the training error of the output hypothesis (an NP-complete task) he ap-
proximates it with the quantity Z;n 1 d7, which tends to the training error
for ¢ — 0. This gives rise to the following algorithm: for non-negative

variables d; > 0, minimize the function

m
>
=1
subject to the constraints:
yil{u-x;) — ]
(u-u)

which can be solved in polynomial time for ¢ = 1 or ¢ = 2. This constrained
optimization problem is then solved by minimizing the following quantity

(problem (1)):
oez di + 5
7=1

for different, fixed, values of &. A suitable value of « is then usually chosen by
means of a validation set. Once translated into dual variables, this problem
turns out to be a quadratic programming problem for each fixed value of «,
and can be solved efficiently using standard methods.

1—dj, j=1,...,m (1)

>
e 2)

The algorithm which follows from the theory presented in the previous sec-
tion can, in contrast, be described as follows (problem (2)): minimize

d]* = E:f

subject to constraints

yi{u-x;) =8 > 1—-d;, j=1,....m (3)
(ww = C (4)
which corresponds exactly to minimizing D(S, (u,b),7), where v = %

This follows from considering the hyperplane (u’,b) = (u/v/C, b/v/C) which

has norm 1 and classifies the point (2}, y;) such that
d((xjv yj)? (ulv b/)v v) = dj/\/av

12



so that D(S, (', V), v) = v/ F2(d)/C.
Once translated into dual variables, problem (2) gives rise to a convex max-
imization problem [14]

F(Xo, X :——Z/\2+2/\ 4A Z/\/\]y,y]<x, x;) — AoC,

1,J=1

which must be solved subJect to the constraints, A\; > 0, 7 =0,...,m, and
Z;n:l Ajy; = 0 for each value of v = %, giving the optimal (according to
our bound) hyperplane of fixed norm ||w|| = % Its solution can be found
in polynomial time by applying a gradient based path algorithm following
grad(F') with an appropriate learning rate 7, but this convex optimization
problem is more difficult than a standard quadratic programming one. The

best 7 is then chosen again using the bound derived in the previous section,

w* = argmin, min (R+ D)2
S e VAR Y

We will now show that the same result can be obtained by solving the
(simpler) quadratic problem used by Vapnik, with ¢ = 2 and « is optimised
with respect to our bound. The idea is that the class of functions defined
by problem (1) for @ € R7 is identical to the class of functions defined by
problem (2) for v € ®*. The optimal function according to our bound is
hence the same in both classes.

namely:

First we need to prove a technical lemma, and state some definitions.

Lemma 5.1 The hyperplane implicitly defined by the optimization problem
(1) depends continuously on the parameter o.

Proof: This follows from the fact that the dual function equivalent to prob-
lem (1) (once maximized in the positive quadrant for each value of «) [5]

=> Ai- Zy,y]/\/\ K (2, 1) Z/\2+/\CZ/\ y;

is continuous both in A and in «, and is strictly convex in A for any fixed
value of a.

13



Strict convexity follows from the fact that its Hessian

J0F; . 1 .
H’] = 8A]J = _y]zy]J-K (x]l7x]‘]) - a = Hjivh] Z 17

is negative definite. m

Definition 5.2 We define W, to be the set of the solutions of problem (1)
for all values of o, and W,, to be the set of the solutions of problem (2) for
all values of v. Formally:

. 1
Woa={ueRF3a e Rt u= argminaerdg + §<u7 u)}

=1

R+D)3

W, ={ueRFye Rt u= ar gmin|u|j=1/~ ( S

Theorem 5.3 The sets of functions W, and W., defined above are equiva-
lent.

Proof: let w, be the solution of the problem (1) for a fixed value of «a.
Then, ||wa|| = 0if @ — 0, and ||w,|| = oo if & — oo.

By lemma 5.1 we know that the function ||w(«)|| is continuous in «, and
hence the norm of the solutions of problem (1) ranges through all possible
positive values for suitably chosen values of a.

Since ||w|| = \/LU’ considering the solution for value of « in problem (1) is
equivalent solving problem (2) with C' = ||w,]|.

This implies that for each function w, € W, there exists a value of v such
that the corresponding w, € W,, and w, = w,. n

An obvious, but important, consequence of this theorem is the following
corollary:

Corollary 5.4 The minima of the bound on W, and W, coincide:

i, (52) = mineon, (2)
MM, €W, 5 = MMy, eW, 5

14



This means that the optimal separating hyperplane (according to our bound)
can be found by solving the quadratic optimization problem (2) with o =2
for different values of «, and choosing the value of o which minimizes the
bound itself.

This analysis provides a theoretical justification to the Soft Margin heuristics
(using the 2-norm of the vector d described in the appendix of [5]), as well
as a theoretically sound way to choose the optimal value of « in that case.

In the next sections we will generalize the theoretical results given so far, and

this will lead to a further description of soft-margin heuristics for Support
Vector Machines as well as non-linear function classes.

6 Non-linear Function Spaces

6.1 Further Background Results

Before we can quote the next lemma, we need another definition.

Definition 6.1 Let (X, d) be a (pseudo-) metric space, let A be a subset of
X and e > 0. A set B C X 1is an e-cover for A if, for every a € A, there
exists b € B such that d(a,b) < e. The e-covering number of A, Ny(e, A), is
the minimal cardinality of an e-cover for A (if there is no such finite cover
then it is defined to be oco). We will say the cover is proper if B C A.

Note that we have used less than or equal to in the definition of a cover.
This is somewhat unconventional, but will not change the bounds we use.
It does, however, prove technically useful in the proofs. The idea is that B
should be finite but approximate all of A with respect to the pseudometric
d. we will use the [*® distance over a finite sample x = (z1,...,2,,) for the
pseudo-metric in the space of functions,

dx(f,9) = max|f(z;) — g (i)l

We write N (e, F,x) = Ny, (¢, F) We will consider the covers to be chosen

from the set of all functions with the same domain as F and range the reals.

We now quote a lemma from [12] which follows immediately from a result

of Alon et al. [1].

15



Corollary 6.2 [12] Let F be a class of functions X — [a,b] and P a dis-
tribution over X. Choose 0 < € < 1 and let d = fatr(e/4). Then

(4m(b _ a)z)dlog2(2€m(b—a)/(d5))

€2

sup N(e, F,x) <2
xexXm

We define a clipping function .

0 ifa>0
my(a) ;=< §—-2.01y ifa<§—-201y
«@ otherwise,

and let 7 (F) = {7 (f): f € F}. The choice of the threshold  is arbitrary
but will be fixed before any analysis is made. If the value of 8 needs to be
included explicitly we will denote the clipping function by ﬂ'g.

For a monotonic function f(y) we define

f(y7) = lim_ f(y - a),

a—0t

that is the left limit of f at +. Note that the minimal cardinality of an
e-cover is a monotonically decreasing function of €, as is the fat shattering
dimension as a function of ~.

Definition 6.3 We say that a class of functions F is sturdy its images
under the evaluation maps

i F— R, zrfe f(2)
are compact subsets of R for all x € X.

Note that this definition differs slightly from that introduced in [15]. The
current definition is more general, but at the same time simplifies the proof
of the required properties.

Lemma 6.4 Let F be a sturdy class of functions. Then for each N € N
and any fized sequence x € X™, the infimum vy = inf{y|N (v, F,x) = N},

18 attained.

Proof: The straightforward proof follows exactly the proof of Lemma 2.6
of [15]. m
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Corollary 6.5 Let F be a sturdy class of functions. Then for each N € N
and any fived sequence x € X™, the infimum vy = inf{y|N (v, 7,(F),x) =
N}, is attained.

Proof: Suppose that the assertion does not hold for some x € X™ and
N € N. Let N = N (yn, 7y (F),x) > N. Consider the following supremum

N = sup{y|NV (7, T (F), x) = N'}.

Since the assertion does not hold we have vV > . By the lemma we
must have vV’ > vy, since otherwise the infimum of the 4 required for the
next size of cover will not be attained. Hence, there exists v > vy with
N (V' 7y (F),x) = N'. Let v = (v'+7n)/2. Note that N'(y, 7, (F),x) < N.
Let B be a minimal cover in this case. Claim that B is also a 4’ cover for
Tyn (F) in the dx metric. To show this consider f € F and let f; € B be
within v of 7 (f) in the dx metric. Hence, for all @ € x, | f;(z) — 7 (f)(2)] <
~. But this implies that

|fi(2) =7 (f) (@) < v+ (v =)

= ’)/ .

Hence, we have N (v, 7, (F),x) < N, a contradiction. m

We will make use of the following lemma, which in the form below is due to
Vapnik [17, page 168].

Lemma 6.6 Let X be a set and S a system of sets on X, and P a probability
measure on X. For x € X™ and A € S, define vx(A) = |xN A|/m. If
m > 2/e, then

P {xisup () = P(A) > e} <20 fyisup isl4) =y (4)] > /2

The following two theorems are essentially quoted from [12] but they have
been reformulated here in terms of the covering numbers involved. The
difference will be apparent if Theorem 6.8 is compared with Theorem 3.4
quoted in Section 3.
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Lemma 6.7 Suppose F is a sturdy set of functions that map from X to R.
Then for any distribution P on X, and any k € N and any 6§ ¢ R

p2m {xy: dfe F,r= m]ax{f(xj)}, 2y < 0 —r, [logy (N (v, 7y (F), xy))| =k,

= {11 () > 0}] > elm, ) } <5

where e(m, k,8) = L (k + log, 3).

Proof: We have omitted the detailed proof since it is essentially the same
as the corresponding proof in [12] with the simplification that Corollary 6.2
is not required and the property of sturdiness ensures by Corollary 6.5 that
we can find a v cover where

Tk = inf{7|N(77 777(‘7:)7)(}’) = 2k}

which can be used for all v satisfying [log, (N (v, 7 (F),xy))| = k. Note
also that an inequality is required 2y < 8 — r, as we have coverings using
closed rather than open balls. m

Theorem 6.8 Consider a sturdy real valued function class F having a uni-
form bound on the covering numbers

N7, my=(F),x) < B(L, ),

? My

for all x € X*¢, for all £. Fiz 6 € R. If a learner correctly classifies m inde-
pendently generated examples z with h = Ty(f) € Ty(F) such that er,(h) =0
and v = min |f(z;) — 0|, then with confidence 1 — § the expected error of h
is bounded from above by

e(mvkv(s) = % (k—l_lOgZ (877”)) )

where k = [log, B(2m,~v/2)].

Proof: Making use of lemma 6.6 we will move to the double sample and
stratify by k. By the union bound, it thus suffices to show that ZZZI P (Jy) <
§/2, where

Jy=Axy : Fh=Ty(f) € Ty(F),Erx(h) = 0,k = [logy, B(2m,~/2)],
v = min |f(z;) — 0|, Ery(h) > me(m, k,5)/2}.
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(The largest value of k we need consider is 2m, since for larger values the
bound will in any case be trivial). It is sufficient if P?™(J;) < 2 = &' We
will in fact work with the set

Je(Y)=A4{xy : Fh=Ty(f) € To(F),Erx(h) = 0,k = [log, N'(7'/2, 777//2(?)7Xy)—|7
v < min |f(2;) — 6|, Ery(h) > me(m, k,d)/2}.

We will show that for any 7/ < 7, we have P*™(Ji(v')) < &. Hence,

considering the limit 4/ — v from below, the result will follow.

Consider F = Fy. The probability distribution on X = X x {0,1} is given

by P on X with the second component determined by the target value of

the first component. Note that for a point y € y to be misclassified, it must
have f(7) > 6 > max{f(Z):Z € x} + v, so that

B C iy e (X x {01 ¢ 3f € Fr=max{f(i):i € %) <01,

F=[log N (/2. moF)x3)1, [10 €32 F(3) > 0] > me(m, 1, 6)/2]

Replacing v by 4'/2 in Lemma 6.7 and appealing to Lemma 6.6 we obtain
PP (7)) < &, for
em, 1, 6) = 2 (k -+ log(2/5')),

as required. Note that the condition of Lemma 6.6 are satisfied by € and m. n

2
m

6.2 Margin distribution and fat shattering

In this section we will generalise the results of Section 4 to function classes
for which a bound on their fat-shattering dimension is known. The basic
trick is to bound the covering numbers of the sum of two function classes
in terms of the covering numbers of the individual classes. If F and G a
real valued function classes defined on a domain X we denote by F 4+ G the
function class

F+G={f+ylfeF,geg}

Lemma 6.9 Let F and G be two real valued function classes both defined on
a domain X . Suppose G has range [a,b]. Then we can bound the cardinality
of a minimal v cover of F + G by

N(77 777(-7:+ g)7 X) S N(7/27 7734__((15_(,)/2(‘7:)7 X)N(7/27 g7 X)‘
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Proof: Fix n € (0,v) and let B (respectively C') be a minimal 7 (respectively

v —n) cover of ﬂz_l__‘('b_a)/z(]:) (respectively G) in the dyx metric. Consider the

set of functions B+ C. For any f+ g € F + G, there is an f; € B within 7

of ﬂg;‘(’b_a)/z(f) in the dx metric and a g; € C' within v — 7 of g in the same

metric. For 2 € x we claim
|73 (f +9)(2) = 7 (fi + 95) (2)] < - (5)
Hence, 7, (B + C) forms a v cover of 7, (F + G). Since
|B+C| <N (10,7575 o(F) )N (3= 0,6, %),

the result follows by setting nn = v/2. To justify the claim, assume first that
6 —2v < (f+g)(xz) <86. This implies that

0-2y-0<0-2y-g(x) < flz) <0-g(z) <O—a
Hence, in this case using the fact that 7 only reduces distances,

o (f 4 9) (@) = o (fik g) (@) < 1(F+9) (@)~ (fi +9,) ()]
(7 aF) + (@) = (4 9)(2)]
703 (D(@) = £i(@)] + () — ()]
n+y—-—n=r.

VAN VAN

If on the other hand (f 4 ¢)(z) > 6, we need only show that (f; + ¢;)(z) >
§— in order for (5) to be satisfied. But we have f;(z) > min{f(z),0—a}—n,
while g;(z) > ¢g(z) — (v — n). Hence,

(fi+g;)(x) > min{(f+g)(z),9(x)+0—-a} -~
> 0—n.

Finally, if (f + g)(2) < 8 — 27, we must show that (f; +¢;)(z) <8 —~ to
satisfy equation (5). In this case f;(z) < max{f(z),0 — 2y — b} + n, while
g;(z) < g(x)+ (v — n). Hence,

(fi +95)(2) max{(f+g)(z),g(x)+60 -2y - b} + 7

<
< 8—n.

as required. m
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Before proceeding we need a further technical lemma to show that the prop-
erty of sturdiness is preserved under the addition operator.

Lemma 6.10 Let F and G be sturdy real valued function classes. Then

F + G 1is also sturdy.

Proof: Consider z € X. Zx(F) is a compact subset of R as is Z5(G). Note
that
Trig(F +9) = 27 (F) + 2(9),

where the addition of two sets A and B of real numbers is defined
A+ B={a+blae A be B}.

Since, Zx(F) X Tg(G) is a compact set of ®2 and + is a continuous function
from R? to R, we have that #x(F) + #¢(G) being the image of a compact
set under + is also compact. m

Definition 6.11 Fiz a threshold 8 € R. For a function f on X we define

d((xv y)7 5 7) = maX{077 - y(f($) - 0)}

This quantity is the amount by which f fails to reach the margin v on the
point (z,y) or 0 if its margin is larger than . Let g5 € Ly(X) be the
function

gr=>_ d((z,y), f,7)y6..

(z,y)€S

Proposition 6.12 Fiz 0 € R. Let F be a sturdy class of real-valued func-
tions with range [a,b] C R having a uniform bound on the covering numbers

N(y= w2 (F)x) < B(ly, A),

for allx € X¢, for all (. Let G be a sturdy subset of L;(X) with the uniform
bound on the covering numbers,

N(7,6,x) < AL, 7),

for x € AY, where A = {8.|x € X}. Consider a fized but unknouwn prob-
ability distribution on the input space X. Then with probability 1 — & over
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randomly drawn training sets S of size m for all v > 0 the generalization of
a function f € F thresholded at 0 satisfying g¢ € G s bounded by

e(mvkv(s) = % (k—l_lOgZ (877”)) )

k= [IOgZ B(2m7 7/47 A) + 10g2 A(2m7 7/4)1 j

where A > sup{{g,d)|lg € G,x € X}, provided m > 2/e and there is no
discrete probability on misclassified training points.

where

Proof: Consider the fixed mapping 7. We extend the function class F to
act on the space X x Ly(X) by its action on X. We similarly extend the
function class G by composing with a projection. We claim that

L for z ¢ S, f(x) = (f + g7)(x), and

2. the margin of f 4 ¢g; with threshold é on the training set 7 (5) is 7.

Hence, the off training set behaviour of the classifier f can be characterised
by the behaviour of f 4 gy, while f + g; is a large margin classifier in
the space X X L¢(X). In order to bound the generalization error we will
apply Theorem 6.8 for F 4+ G which gives a bound in terms of the covering
numbers. These we will bound using Lemma 6.9. The space F 4+ G is
sturdy by Lemma 6.10, since both F and G are. Note that the range of
G is contained in [—A, A] on the input domain. In this case we obtain the
following bound on the covering numbers,

O{li}rg+ log, (M((y — a)/2, T(y—a)/2(F +G), x)) < ali_}rg+ log, (N((’y —a)/4, 77(97+—Aa)/2+A(7:)7 X))
+ lim, log, (V{3 - a)/4,6.0)
S 10g2 (B(2m7 7/47 A)) + 10g2 (A(2m7 7/4))7

as required.

1. The first claim follows immediately from the observation that for z ¢

S,
< Z d((x7y)7f77)y5x‘5z> =0.
(

z,y)ES
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2. For (2,y') € S, we have

V((f+ap)@) —0) = y’(f(w’)—9)+y’< > d((wyy)7f77)y’5x-5x/>

v

Y= d(($/7 y/)7 f7 7) —I_ d(($/7 y/)7 f7 7) =7
The theorem follows. n

For a training set S, we define

D(S, f,y)= | > dl(x,y), f,7)

(z,y)€S

Theorem 6.13 Let F be a sturdy class of real-valued functions with range
[a,b] and fat shattering dimension bounded by fatr(y). Fiz 0 € R and a
scaling of the output range n € R. Consider a fized but unknown probability
distribution on the input space X. Then with probability 1 —4 over randomly
drawn training sets S of size m for allb—a > v > 0 the generalization of a

function f € F thresholded at 8 is bounded by

e(m, b, 5) = % (k10g2 (65m (1+ [))2) tog, (9em (14 D)) + log, (w)) ,

on

where
k= {fatf('y_/m) + 64[)2} and D =2(D(S, f,v)+n)/7,

provided m > 2/€ and there is no discrete probability on misclassified train-
myg points.

Proof: We define a sequence of function classes G; C L(X) to be the
linear functionals with norm at most B, on the space L;(X). We will apply
Proposition 6.12 for each class G;. Note that the range of G, is [-B;, B,]
on the input domain. Note also that the image of G; under the evaluation
map is a closed bounded subset of the reals and hence is compact. It follows
that G is sturdy. We choose B; = jn, for j = 1,...,0 = \/m(b — a)/n.
Hence, By = /m(b—a) > D(S, f,v),for all f € F and all ¥ < b—a. Hence,
for any value of D = D(S, f,~) obtained there is a value of B; satisfying
D < B; < D+ 7. Substituting the upper bound D + 7 for this B; will give
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the result, when we use ¢/ = §/¢ and bound the covering numbers of the
component function classes using Corollary 6.2 and Theorem 3.5. In this
case we obtain the following bounds on the covering numbers,

N2
o}gg log, (N(( B Oé)/4’ﬂ-v f—l—B (F), X)) < 14dlog, (260m(7422_|_ Bj) )

og, (12022 50)
= 10g2 (B(2m7 7/47 B]))

where d; = faty(y~/16), and

‘ 260m B2 18emB;
i Togy V(7 — )/4,G;,%)) < 1+ d;los, (Tz ’)logZ( )
=: logz (A(2m7 7/4))

where dy = (16B;/7)*. Hence, in this case we can bound [log, B(2m, v /4, B,)+
log, A(2m,~/4)] b

16B:\?
llogy B(2m, /4, B) + log, A(2m,1/4)] < 3+ fatf<v-/16>+( 7])

log, 65m (1 + 2B;/v)*log, 9em(1 + 2B, /)

giving the result where the 3 contributes a factor of 8 into the argument of
the final log term. m

The theorem can of course be applied for linear function classes, using the
bound on the fat shattering dimension given in Theorem 3.5. The bound
obtained is very comparable, though a lot less clean than Theorem 4.3.

For a training set S, we define

D'(S, f,y)= > d((z,y), 7).

(xy)€S

This is the I3 sum of the slack variables which is optimised in Vapnik’s box
constraint maximal margin hyperplane algorithm. The following Corollary
shows that optimising this quantity does indeed lead to good generalization.
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Corollary 6.14 Let F be a sturdy class of real-valued functions with range
[a,b] and fat shattering dimension bounded by fatr(y). Fiz 0 € R and a
scaling of the output range n € R. Consider a fized but unknown probability
distribution on the input space X. Then with probability 1 —4 over randomly
drawn training sets S of size m for allb—a > v > 0 the generalization of a

function f € F thresholded at 8 is bounded by

e(m, b, 5) = % (k10g2 (65m (1+ [))2) log, (9em (14 D)) + log, (w)) ,

on

where

f = {fatf(’y_/16) + 64[)2] and D =2(/D'(S, f.7)(b—a) + 1)/,

provided m > 2/€ and there is no discrete probability on misclassified train-
myg points.

Proof: The corollary follows by observing that

D(S, fiy) = > dl(w,y), £,7)?

(z,y)€S

\/<b—a> S (@), £.7)

(z,y)€S
= VD'(S, f,7)(b—a)

and applying the theorem. m

IA

If we choose the hyperplane to minimise D’(S, f,v) and apply the Corollary,
we will necessarily obtain a weaker bound than we would if we minimised
D(S, f,v) and then applied the Theorem. In the case of linear function
classes, better bounds for the generalization in terms of D and D’ should be
obtained using recent results which bound the covering numbers for different
norms directly [21].

It is worth noting that we can apply Corollary 6.14 to the case of linear
functions with norm 1 and recover a result similar to Theorem 4.3. The
bound would involve an expression R? + D? rather than (R+ D)27 which
appears preferable. The constants, however, are significantly worse so that
overall the bound will not be as tight.
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7 Regression

In order to apply the results of the last section to the regression case we
formulate the error estimation as a classification problem. Consider a real-
valued function class F and a target real-valued function t(z). For f € F
we define the function e(f) and the class e(F),

e(f)(z) = [f(x) —t(2)];
e(F) = HelNlf e F}.

For a training point (z,y) € X x R we define

8(($7y)7f7 7) = maX{Ov |f($) - y| - (0 - 7)}

This quantity is the amount by which f exceeds the error margin 8 — + on
the point (z,y) or 0 if f is within # — v of the target value. Hence, this
is the € insensitive loss measure considered by Vapnik with ¢ = 6§ — . Let
g¢ € L#(X) be the function

gr=— Y (z.y), f,7)b.

(z,y)€S

Proposition 7.1 Fiz § € R, 8 > 0. Let F be a sturdy class of real-valued
functions with range [a,b] C R having a uniform bound on the covering
numbers

NG, F,x) < B(m,7),
for allx € X™. Let G be a sturdy subset of L¢(X) with the uniform bound
on the covering numbers,

N(7,6,x) < A(m,v),

for x € A™, where A = {é,|x € X}. Consider a fized but unknown prob-
ability distribution on the input space X. Then with probability 1 — & over
randomly drawn training sets S of size m for all v > 0 the probability that
a function f € F has error greater than 6 with respect to target function t
on a randomly chosen input is bounded by

e(mvkv(s) = % (k—l_lOgZ (877”)) )
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where
k = “OgZ B(2m7 7/4) + 10g2 A(2m7 7/4)1 9

where A > sup{(g,0.)|g € G,z € X}, provided m > 2/e, there is no discrete
probability on training points with error greater than 6 and g.(y) € G

Proof: The result follows from an application of Proposition 6.12 to the
function class e(F), noting that we treat all training examples as negative,
and hence correct classification corresponds to having error less than 6.
Finally, we can bound the covering numbers

N, m g (e(F)),x) S N (7, F,x) < B(m, ).

The result follows. n

For a training set S, we define

DS, fy)= [ Y. 0(z.y), £,7)*

(z,y)€S

The above result can be used to obtain a bound in terms of the observed
value of D(S, f,7v) and the fat shattering dimension of the function class.

Theorem 7.2 Let F be a sturdy class of real-valued functions with range
[a,b] and fat shattering dimension bounded by fatr(vy). Fiz § € R, § > 0
and a scaling of the output range n € R. Consider a fired but unknown
probability distribution on the input space X. Then with probability 1 — ¢
over randomly drawn training sets S of size m for all v with 6 > ~ > 0
the probability that a function f € F has error larger than 8 on a randomly
chosen input is bounded by

— 2 — 1.5¢7 _
e(m, k,8) = % (k log, (65m (bTa) ) log, (Qem (bTa)) + log, ((%m(s—?(?ba)

where
k= {fatf('y_/16)—|—64ﬁ2} and D =2(D(S, f,7v)+1)/7,

provided m > 2/€ and there is no discrete probability on misclassified train-
myg points.

Proof: The proof follows the same pattern as that of Theorem 6.13, with
the exception that the bounds on the covering numbers must use the full
range of the function class F in the log factors. m
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Corollary 7.3 Let F be a the set of linear functions with norm 1 restricted
to inputs in a ball of radius R about the origin. Fiz § € R, 8 > 0 and a
scaling of the output range n € R. Consider a fized but unknown probability
distribution on the input space X. Then with probability 1 —4 over randomly
drawn training sets S of size m for all ~, with 8 > v > 0 the probability that
a function f € F has error larger than 6 on a randomly chosen input is

bounded by

2 2 19815
e(m, k, 0) = m (k log, (260m (g) ) log, (186m§) + log, (S?TR)) :

where
= {2561%2/72 + 64752} and D =2(D(S, f,7)+1)/7,

provided m > 2/€ and there is no discrete probability on misclassified train-
myg points.

Proof: The range of linear functions with unit weight vectors when re-
stricted to the unit ball is [ R, R]. Their fat shattering dimension is bounded
by Theorem 3.5. The result follows. m

Note that we obtain a generalization bound for standard least squares re-
gression by taking v = @ in Theorem 7.2. In this case D(S, f,0) is the least
squares error on the training set, while the bound gives the probability of a
randomly chosen input having error greater than #. This is summarised in
the following corollary.

Corollary 7.4 Let F be a sturdy class of real-valued functions with range
[a,b] and fat shattering dimension bounded by fatr(vy). Fiz § € R, § > 0
and a scaling of the output range n € R. Consider a fired but unknown
probability distribution on the input space X. Then with probability 1 — ¢
over randomly drawn training sets S of size m the probability that a function
f € F has error larger than 6 on a randomly chosen input is bounded by

)= 2 (s, (63 (57) o (3 (5)) 1o, (125211,

where

) iy  mesF@) — w2
k= {fatf(H /16) + 64D } and D=2 ; ,
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provided m > 2/€ and there is no discrete probability on misclassified train-
myg points.

As mentioned in the section dealing with classification we could bound the
generalization in terms of other norms of the vector of slack variables

O(@, 9): f:7)) @ mpes -

The aim of this paper, however, is not to list all possible results, it is rather
to illustrate how such results can be obtained.

Another application of these results is to choose the best ¢ for the € insensi-
tive loss function for Support Vector Regression. This problem has usually
been solved by using a validation set, but Corollary 7.3 could be used by
choose the value of € which gives the best bound on the generalization. We
assume here that a target accuracy € has been set and we wish to minimise
the probability that the error exceeds this value. The optimum will be the
¢ which minimises
R*+D(S, f,0 — €)*
(6 —e)? ’

where f. is the solution obtained when using the e-insensitive loss function.

8 Conclusions

We have shown how an approach developed by Freund and Schapire [8] for
mistake bounded learning can be adapted to give pac style bounds which
depend on the margin distribution rather than the margin of the closest
point to the hyperplane. The bounds obtained can be significantly better
than previously obtained bounds, particularly when some of the points are
misclassified and agnostic bounds would need to be applied were a classical
analysis to be adopted in which the square root of the sample size replaces
the sample size in the denominator. The bound is also more robust that
that derived for the maximal margin hyperplane where a single point can
have a dramatic effect on the hyperplane produced.

We have gone on to show how optimizing the measure of the margin dis-
tribution that appears in the bound corresponds to an algorithm proposed
by Cortes and Vapnik [5]. This formulation also allows the problem to be
solved in kernel spaces such as those used with the Support Vector Machine.
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We believe that this paper presents the first pac style bound for a mar-
gin distribution measure that is neither critically dependent on the nearest
points to the hyperplane nor is an agnostic version of that approach. In ad-
dition, we believe it is the first paper to give a provably optimal algorithm
for optimizing the generalization performance of agnostic learning with hy-
perplanes, by showing that the criterion to be minimised should not be the
number of training errors, but rather a more flexible criterion which could
be termed a ‘soft margin’. The problem of finding a more informative and
theoretically well-founded measure of the margin distribution has been an
open problem for some time. This paper suggests one candidate for such a
measure which has the advantage of being robust in the sense that it is not
critically sensitive to the behaviour of individual training points.

The results have been further generalized to non-linear function classes with
bounded fat-shattering dimensions, other norms on the vector of shortfalls
of individual training points and to the regression case. For regression one
byproduct is a bound in terms of the least square error on the training set
of the probability that a randomly drawn test point will have error greater
than a given value.
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