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Abstract

A number of results have bounded generalization of a classifier in terms
of its margin on the training points. There has been some debate about
whether the minimum margin is the best measure of the distribution of
training set margin values with which to estimate the generalization. Fre-
und and Schapire [6] have shown how a different function of the margin
distribution can be used to bound the number of mistakes of an on-line
learning algorithm for a perceptron, as well as an expected error bound.
We show that a slight generalization of their construction can be used to
give a pac style bound on the tail of the distribution of the generalization
errors that arise from a given sample size.

Introduction

The idea that a large margin classifier might be expected to give good gen-
eralization is certainly not new [5, 12]. Despite this insight it was not until
comparatively recently [10] that such a conjecture has been placed on a firm
footing in the probably approximately correct (pac) model of learning. Learn-
ing in this model entails giving a bound on the generalization error which will
hold with high confidence over randomly drawn training sets. In this sense it
can be said to ensure robust learning, something that cannot be guaranteed by
bounds on the expected error of a classifier.

Despite successes in extending this style of analysis to the agnostic case [1]
and applying it to neural networks [1], boosting algorithms [9] and Bayesian
algorithms [4], there has been concern that the measure of the distribution of
margin values attained by the training set is largely ignored in a bound that
depends only on its minimal value. Intuitively, there appeared to be something
lost with a bound that depended so critically on the positions of possibly a small
proportion of the training set, ignoring the margin attained by the majority of
the points.

Freund and Schapire [6] (a similar technique was employed by Klasner and
Simon [8] for rendering a real valued function learning algorithm noise tolerant)
developed a measure of the margin distribution which they showed could be
used to bound the expected generalization error more tightly than the minimal
margin. The aim of this paper is to show that the same measure can also be
used to provide a pac style bound on the generalization error. We will also
develop an algorithm for a modified Kernel based linear machine which directly
optimises the new measure.

2 Background Results

We first give some necessary definitions.

Definition 2.1 Let H be a set of binary valued functions. We say that a set of
points X 1is shattered by H if for all binary vectors b indexed by X, there is a
function f, € H realising b on X. The Vapnik-Chervonenkis (VC) dimension,
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VCdim(H), of the set H is the size of the largest shattered set, if this is finite
or infinity otherwise.

Definition 2.2 Let H be a set of real valued functions. We say that a set of
points X is y-shattered by H if there are real numbers r, indexed by v € X such
that for all binary vectors b indexed by X, there is a function f, € H satisfying

<r,—7 otherwise.

The fat shattering dimension faty of the set H is a function from the positive
real numbers to the integers which maps a value v to the size of the largest
~v-shattered set, if this is finite or infinity otherwise.

We will make critical use of the following result contained in Shawe-Taylor et
al [10] which involves the fat shattering dimension of the space of functions.

Theorem 2.3 Consider a real valued function class H having fat shattering
function bounded above by the function afat : ® — AN which is continuous from
the right. Fiz 8 € R. Then with probability at least 1 — 6 a learner who correctly
classifies m independently generated examples z with h = Ty(f) € To(H) such
that er,(h) = 0 and v = min | f(x;) — 0| will have error of h bounded from above
by

e(m,k,8) = % <k log, <8eTm> log,(32m) + log, <87m>> ,

where k = afat(y/8) < em.

Note how the fat shattering dimension at scale /8 plays the role of the VC
dimension in this bound. This result motivates the use of the term effective
VC dimension for this value. In order to make use of this theorem, we must
have a bound on the fat shattering dimension and then calculate the margin of
the classifier. We begin by considering bounds on the fat shattering dimension.
The first bound on the fat shattering dimension of bounded linear functions in
a finite dimensional space was obtained by Shawe-Taylor et al. [10]. Gurvits [7]
generalised this to infinite dimensional Banach spaces. We will quote an im-
proved version of this bound for Hilbert spaces which is contained in [2] (slightly
adapted here for an arbitrary bound on the linear operators).

Theorem 2.4 [2] Consider a Hilbert space and the class of linear functions L
of norm less than or equal to B restricted to the sphere of radius R about the
origin. Then the fat shattering dimension of L can be bounded by

BR>2

fatr(v) < < -

In order to apply Theorems 2.3 and 2.4 we need to bound the radius of the
sphere containing the points and the norm of the linear functionals involved.
Clearly, scaling by these quantities will give the margin appropriate for appli-
cation of the theorem.
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3 Main Result

Let X be a Hilbert space. We define the following Hilbert space derived from
X.

Definition 3.1 Let L;(X) be the set of real valued functions f on X with
support supp(f) finite, that is functions in L¢(X) are non-zero only for finitely
many points. We define the inner product of two functions f,g € L;(X), by

(f-9y=>_ [fla)g(a).

f
v€SUpPP(f)

Note that the sum which defines the inner product is well-defined since the
functions have finite support. Clearly the space is closed under addition and
multiplication by scalars.

Now for any fixed A > 0 we define an embedding of X into the Hilbert space
X x L¢(X) as follows.
At @ = XA = (2, Ady),

where 6, € L#(X) is defined by

=3

0; otherwise.

We begin by considering the case where A is fixed. In practice we wish to
choose this parameter in response to the data. In order to obtain a bound over
different values of A it will be necessary to apply the following theorem several
times.

For a linear classifier u on X and threshold b € R we define

d((X7 y)7 (u7 b)77) = maX{Ov v y((u ) X> - b)}

This quantity is the amount by which u fails to reach the margin v on the point
(x,y) or 0 if its margin is larger than . Similarly for a training set S, we define

D(Sv (uvb)77): Z d((x7y),(u,b),7)2.

(x,y)€S

Theorem 3.2 Fizr A > 0, b € R. Consider a fived but unknown probability
distribution on the input space X with support in the ball of radius R about the
origin. Then with probability 1 — § over randomly drawn training sets S of size
m for all v > 0 the generalization of a linear classifier u on X thresholded at b
is bounded by

e(m, k,0) = % <k log, <8eTm> log,(32m) + log, <87m>> ,

where

b {64-5(1‘32 + A% ([lufl* + D(S, (u, b),y)z/Az)J
2 ’
provided m > 2/e and k < em.
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Proof: Consider the fixed mapping 7o and the augmented linear functional
over the space X x L¢(X),

u= (uvi Z d((xvy)v(uvb)v7)y5x) .

(x,y)€S

We claim that
1. forx ¢ S, {(u-x) = (- 7a(x)), and
2. the margin of @ with threshold b on the training set 74 (S) is 7.

Hence, the behaviour of the linear classifier (u, b) can be characterised by the be-
haviour of (&, b), while (1, d) is a large margin classifier in the space X x L¢(X).
Since for z € S, ||7(x)||*> < R? + A% and ||u]]? = ||[u]|* + D(S, (u,b),7)%/ A%
the result will then follow from an application of Theorems 2.3 and 2.4. Note
that we have replaced the constant 64 by 64.5 to ensure the continuity from the
right required by Theorem 2.3.

1. The first claim follows immediately from the observation that for z ¢ S,

< Z d((xvy)v(uvb)77)y5x'5z>:0.
(

X,y)€S

2. For (x',y') € S, we have

y/(<ﬁ7 TA(X/)> - b) = y/(<u, X/> - b) + y/ < Z d((X7 y)7 u77)y5x : 5x’>

v

Y= d((X/7 y/)7 u, 7) + d((X/7 y/)7 u, 7) =7

The theorem follows. m

We now apply this theorem several times to allow a choice of A which approxi-
mately minimises the expression for k. Note that the minimum of the expression
(ignoring the constant and suppressing the denominator v?) is (R+ D)? attained
when A = VRD .

Theorem 3.3 Fiz b € R. Consider a fized but unknown probability distribution
on the input space X with support in the ball of radius R about the origin. Then
with probability 1 — § over randomly drawn training sets S of size m for all
v > 0 such that d((x,y), (u,b),v) =0, for some (x,y) € S, the generalization
of a linear classifier u on X satisfying ||u|| < 1 is bounded by

clm k. 8) = % <klog2 <8eTm> log, (32m) + log, <2m(28 +510g2(m))>>7

where

~2
for D = D(S, (u,b),7), and provided m > max{2/e,6} and k < em.

. {65[(1% + D)% + 2.25RD]J
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Proof: Consider a fixed set of values for A, Ay = R[2m%?® — 1|, Aj1y =
A;/2, for i = 2,...,t, where t satisfies, R/32 > A; > R/64. Hence, t <
log,(128m%%%) = 7 + 0.25log,(m). We apply Theorem 3.2 for each of these
values of A, using 6’ = 4/t in each application. For a given value of v and
D = D(S,u,7), it is easy to check that the value of k is minimal for A =
V/RD and is monotonically decreasing for smaller values of A and monotonically

increasing for larger values. Note that v/RD < Ry/2v/m — 1, as the largest
absolute difference in the values of the linear function on two training points
is 2R and since d((x,y), (u,b),v) = 0, for some (x,y) € S, we must have
d((x',y"), (u,b),v) < 2R, for all (x',y') € S. Hence, as 2m®% —1 > /2(m —
1)%25 for m > 6, we can find a value of A; satisfying

VRD/2 < A; < VRD,
provided vV RD > R/32. The value of the expression
(R* + A%)(1+ D(S,u,7)*/A%)

at the value A; will be upper bounded by its value at A =V RD/2. A routine
calculation confirms that for this value of A, the expression is equal to (R +
D)? 4+ 2.25RD. Now suppose VRD < R/32. In this case we will show that

130
(R? + A1+ D*/A}) < T35 { (R+ D)* + 2.25RD},
so that the application of Theorem 3.2 with A = A; covers this case once the
constant 64.5 is replaced by 65. Recall that R/32 > A; > R/64 and note that

vD/R < 1/32. We therefore have
(R*+A})(1+ D?*/A?) < R*(1+41/32%)(1+64°D*/R?)

1 642
< R2<1+M> (1+3?)
1 1
< R (14 55) (14 555)
< %RZ
< % (R+ D)?+2.25RD}

as required. The result follows. m

4 Algorithmics

Theorem 3.3 suggests a different learning goal from the maximal margin hy-
perplane sought by the Support Vector Machine [3]. We should instead seek to
minimise D(S, (u,b),v) for a given fixed value of v and subsequently minimise
over different choices of v. Vapnik has posed this problem in a slightly more
general form [11, Section 5.5.1] as follows.
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For non-negative variables & > 0, we minimise the function
m
FO’ (5) = Z 55'-7
=1

subject to the constraints:

y]‘[<ll'X]‘>—b] > 1_€j7 J=1...,m (1)
(u-uy < C. (2)

He is most interested in values of o close to 0 when F' approximates the num-
ber of training set errors. If, however, we take ¢ = 2 and make the con-
straint (2) an equality constraint, the problem corresponds exactly to min-
imising D(S, (u,b),7), where ¥ = 1/+/C. This follows from considering the
hyperplane (u’,d') = (u/v/C,b/+/C) which has norm 1 and classifies the point
(xj, ;) such that d((x;,y;), (0, V'), 7) = &/V/C, so that

D(Sv (ulv b/)77) =V FZ(f)/C

We now consider converting to the dual problem by introducing Lagrange mul-
tipliers o for constraint (2) and «; > 0, j = 1,...,m, for constraints (1).
Setting the derivatives to zero and solving for u gives

1 M
u Z oYX
71=1

= Zag 2

Substituting into the other expressions and simplifying results in the following
Lagrangian,

1 m m 1 m
F(Oé(),Oé) = —ZZO&g‘FZO@‘— m Z aiajyiyj<xi'xj>_a007
J=1 J=1 1,5=1
which must be maximised subject to the constraints, o; > 0, 7 =0,...,m, and

m
> ajy; =0.
7=1

It is convenient to use vector notation, with « denoting the vector of a;, j =
1,...,m, G the matrix with entries, G;; = y;y;(x; - x;), and 1 the m vector
with entries equal to 1. Using this notation we can write

1 1
Flag,a) = —~ala+1Ta - —alGa — aoC.
4 40&0
We can optimise with respect to ag by computing % and setting it equal to
Zero.

OF (ap, ) 1
dag  4a?
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Hence, ag = 1/%04TG04 and resubstituting

F(a) = Flag,a) = —%aToe +17a - VCaTGa (3)

C m
u = \/m;%%‘xd (4)

Note that we can ignore the constant factor in the formula for u as this will
not affect the classification, and in fact o’ Ga = |[ul|> = C once the optimal
value has been found. The value of b can also be determined from the values
of «. We wish to confirm that this optimisation problem is concave. We can
evaluate the Hessian H (F') of the function F' as follows:

1 CcG
grad(F) = —3 +1- \/%—GO;'
1 VC[(aTGa)G — GaaT G

Hence H(F) = —51— (aTGa)is

We wish to verify that H(F) is concave, that is x? H(F)x < 0 for all x.
x'H(F)x = —0.5]x]]* = Clllallg]|x]lE - (x- )]

where C” is a positive constant and (.- .)g and ||.|| are the inner product and
norm defined by the semi-definite matrix G. By the Cauchy-Schwartz inequality
the expression in square brackets is non-negative, making the overall expression
negative as required. Hence, the optimal solution can be found in polynomial
time by applying a gradient based central path algorithm following grad(F')
with an appropriate learning rate 7.

Note further that a small change in v > 0 only changes the value of D(S, (u,b),v)
by a small amount for a fixed (u,b). Hence, the optimal value of k can also
only change by a small amount. Hence, solving the problem for a fine enough
grid of values of v and choosing the value which minimises k& will give a value
which will be within an arbitrarily small margin of the overall optimum.

Finally, note that the computation described in equation (3) can be performed
using a Kernel inner product in place of the input space inner product, the
technique that is used in the Support Vector Machine.

5 Conclusion

We have shown how an approach developed by Freund and Schapire [6] for
mistake bounded learning can be adapted to give pac style bounds which de-
pend on the margin distribution rather than the margin of the closest point to
the hyperplane. The bounds obtained can be significantly better than previ-
ously obtained bounds, particularly when some of the points are misclassified
and agnostic bounds would need to be applied were a classical analysis to be
adopted.
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We have gone on to show how the measure of the margin distribution that
appears in the bound can be optimised by expressing the optimisation problem
as a concave dual problem. This formulation also allows the problem to be
solved in Kernel spaces such as those used with the Support Vector Machine.

We believe that this paper presents the first pac style bound for a margin
distribution measure that is neither critically dependent on the nearest points
to the hyperplane nor is an agnostic version of that approach. In addition, we
believe it is the first paper to give a provably optimal algorithm for agnostic
learning with hyperplanes, by showing that the criterion to optimized should
not be the number of errors, but rather a more flexible criterion which could
be termed a soft margin.
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