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Introduction 2AbstractA number of results have bounded generalization of a classi�er in termsof its margin on the training points. There has been some debate aboutwhether the minimum margin is the best measure of the distribution oftraining set margin values with which to estimate the generalization. Fre-und and Schapire [6] have shown how a di�erent function of the margindistribution can be used to bound the number of mistakes of an on-linelearning algorithm for a perceptron, as well as an expected error bound.We show that a slight generalization of their construction can be used togive a pac style bound on the tail of the distribution of the generalizationerrors that arise from a given sample size.1 IntroductionThe idea that a large margin classi�er might be expected to give good gen-eralization is certainly not new [5, 12]. Despite this insight it was not untilcomparatively recently [10] that such a conjecture has been placed on a �rmfooting in the probably approximately correct (pac) model of learning. Learn-ing in this model entails giving a bound on the generalization error which willhold with high con�dence over randomly drawn training sets. In this sense itcan be said to ensure robust learning, something that cannot be guaranteed bybounds on the expected error of a classi�er.Despite successes in extending this style of analysis to the agnostic case [1]and applying it to neural networks [1], boosting algorithms [9] and Bayesianalgorithms [4], there has been concern that the measure of the distribution ofmargin values attained by the training set is largely ignored in a bound thatdepends only on its minimal value. Intuitively, there appeared to be somethinglost with a bound that depended so critically on the positions of possibly a smallproportion of the training set, ignoring the margin attained by the majority ofthe points.Freund and Schapire [6] (a similar technique was employed by Klasner andSimon [8] for rendering a real valued function learning algorithm noise tolerant)developed a measure of the margin distribution which they showed could beused to bound the expected generalization error more tightly than the minimalmargin. The aim of this paper is to show that the same measure can also beused to provide a pac style bound on the generalization error. We will alsodevelop an algorithm for a modi�ed Kernel based linear machine which directlyoptimises the new measure.2 Background ResultsWe �rst give some necessary de�nitions.De�nition 2.1 Let H be a set of binary valued functions. We say that a set ofpoints X is shattered by H if for all binary vectors b indexed by X, there is afunction fb 2 H realising b on X. The Vapnik-Chervonenkis (VC) dimension,



Background Results 3VCdim(H), of the set H is the size of the largest shattered set, if this is �niteor in�nity otherwise.De�nition 2.2 Let H be a set of real valued functions. We say that a set ofpoints X is -shattered by H if there are real numbers rx indexed by x 2 X suchthat for all binary vectors b indexed by X, there is a function fb 2 H satisfyingfb(x)( � rx +  if bx = 1� rx �  otherwise:The fat shattering dimension fatH of the set H is a function from the positivereal numbers to the integers which maps a value  to the size of the largest-shattered set, if this is �nite or in�nity otherwise.We will make critical use of the following result contained in Shawe-Taylor etal [10] which involves the fat shattering dimension of the space of functions.Theorem 2.3 Consider a real valued function class H having fat shatteringfunction bounded above by the function afat : < ! N which is continuous fromthe right. Fix � 2 <. Then with probability at least 1�� a learner who correctlyclassi�es m independently generated examples z with h = T�(f) 2 T�(H) suchthat erz(h) = 0 and  = min jf(xi)� �j will have error of h bounded from aboveby �(m; k; �) = 2m �k log2�8emk � log2(32m) + log2 �8m� �� ;where k = afat(=8) � em.Note how the fat shattering dimension at scale =8 plays the role of the VCdimension in this bound. This result motivates the use of the term e�ectiveVC dimension for this value. In order to make use of this theorem, we musthave a bound on the fat shattering dimension and then calculate the margin ofthe classi�er. We begin by considering bounds on the fat shattering dimension.The �rst bound on the fat shattering dimension of bounded linear functions ina �nite dimensional space was obtained by Shawe-Taylor et al. [10]. Gurvits [7]generalised this to in�nite dimensional Banach spaces. We will quote an im-proved version of this bound for Hilbert spaces which is contained in [2] (slightlyadapted here for an arbitrary bound on the linear operators).Theorem 2.4 [2] Consider a Hilbert space and the class of linear functions Lof norm less than or equal to B restricted to the sphere of radius R about theorigin. Then the fat shattering dimension of L can be bounded byfatL() � �BR �2 :In order to apply Theorems 2.3 and 2.4 we need to bound the radius of thesphere containing the points and the norm of the linear functionals involved.Clearly, scaling by these quantities will give the margin appropriate for appli-cation of the theorem.



Main Result 43 Main ResultLet X be a Hilbert space. We de�ne the following Hilbert space derived fromX .De�nition 3.1 Let Lf (X) be the set of real valued functions f on X withsupport supp(f) �nite, that is functions in Lf (X) are non-zero only for �nitelymany points. We de�ne the inner product of two functions f; g 2 Lf(X), byhf � gi = Xx2supp(f) f(x)g(x):Note that the sum which de�nes the inner product is well-de�ned since thefunctions have �nite support. Clearly the space is closed under addition andmultiplication by scalars.Now for any �xed � > 0 we de�ne an embedding of X into the Hilbert spaceX � Lf(X) as follows. �� : x 7! X� = (x;��x);where �x 2 Lf (X) is de�ned by�x(y) = ( 1; if y = x;0; otherwise.We begin by considering the case where � is �xed. In practice we wish tochoose this parameter in response to the data. In order to obtain a bound overdi�erent values of � it will be necessary to apply the following theorem severaltimes.For a linear classi�er u on X and threshold b 2 < we de�ned((x; y); (u; b); ) = maxf0;  � y(hu � xi � b)g:This quantity is the amount by which u fails to reach the margin  on the point(x; y) or 0 if its margin is larger than . Similarly for a training set S, we de�neD(S; (u; b); ) = s X(x;y)2S d((x; y); (u; b); )2:Theorem 3.2 Fix � > 0, b 2 <. Consider a �xed but unknown probabilitydistribution on the input space X with support in the ball of radius R about theorigin. Then with probability 1� � over randomly drawn training sets S of sizem for all  > 0 the generalization of a linear classi�er u on X thresholded at bis bounded by�(m; k; �) = 2m �k log2�8emk � log2(32m) + log2 �8m� �� ;where k = $64:5(R2+�2)(kuk2 +D(S; (u; b); )2=�2)2 % ;provided m � 2=� and k � em.



Main Result 5Proof : Consider the �xed mapping �� and the augmented linear functionalover the space X � Lf(X),û = 0@u; 1� X(x;y)2S d((x; y); (u; b); )y�x1A :We claim that1. for x 62 S, hu � xi = hû � ��(x)i, and2. the margin of û with threshold b on the training set ��(S) is .Hence, the behaviour of the linear classi�er (u; b) can be characterised by the be-haviour of (û; b), while (û; b) is a large margin classi�er in the space X�Lf (X).Since for x 2 S, k�(x)k2 � R2 + �2 and kûk2 = kuk2 + D(S; (u; b); )2=�2,the result will then follow from an application of Theorems 2.3 and 2.4. Notethat we have replaced the constant 64 by 64.5 to ensure the continuity from theright required by Theorem 2.3.1. The �rst claim follows immediately from the observation that for z 62 S,* X(x;y)2S d((x; y); (u; b); )y�x � �z+ = 0:2. For (x0; y0) 2 S, we havey0(hû; ��(x0)i � b) = y0(hu;x0i � b) + y0* X(x;y)2S d((x; y);u; )y�x � �x0+�  � d((x0; y0);u; )+ d((x0; y0);u; ) = :The theorem follows.We now apply this theorem several times to allow a choice of � which approxi-mately minimises the expression for k. Note that the minimum of the expression(ignoring the constant and suppressing the denominator 2) is (R+D)2 attainedwhen � = pRD .Theorem 3.3 Fix b 2 <. Consider a �xed but unknown probability distributionon the input space X with support in the ball of radius R about the origin. Thenwith probability 1 � � over randomly drawn training sets S of size m for all > 0 such that d((x; y); (u; b); ) = 0, for some (x; y) 2 S, the generalizationof a linear classi�er u on X satisfying kuk � 1 is bounded by�(m; k; �) = 2m �k log2�8emk � log2(32m) + log2 �2m(28 + log2(m))� �� ;where k = $65[(R+D)2 + 2:25RD]2 % ;for D = D(S; (u; b); ), and provided m � maxf2=�; 6g and k � em.



Algorithmics 6Proof : Consider a �xed set of values for �, �1 = Rb2m0:25 � 1c, �i+1 =�i=2, for i = 2; : : : ; t, where t satis�es, R=32 � �t > R=64. Hence, t �log2(128m0:25) = 7 + 0:25 log2(m). We apply Theorem 3.2 for each of thesevalues of �, using �0 = �=t in each application. For a given value of  andD = D(S;u; ), it is easy to check that the value of k is minimal for � =pRD and is monotonically decreasing for smaller values of � and monotonicallyincreasing for larger values. Note that pRD � Rq2pm� 1, as the largestabsolute di�erence in the values of the linear function on two training pointsis 2R and since d((x; y); (u; b); ) = 0, for some (x; y) 2 S, we must haved((x0; y0); (u; b); ) � 2R, for all (x0; y0) 2 S. Hence, as 2m0:25 � 1 > p2(m �1)0:25 for m � 6, we can �nd a value of �i satisfyingpRD=2 � �i � pRD;provided pRD � R=32. The value of the expression(R2 + �2)(1 +D(S;u; )2=�2)at the value �i will be upper bounded by its value at � = pRD=2. A routinecalculation con�rms that for this value of �, the expression is equal to (R +D)2 + 2:25RD. Now suppose pRD < R=32. In this case we will show that(R2 + �2t )(1 +D2=�2t ) � 130129 n(R+D)2 + 2:25RDo ;so that the application of Theorem 3.2 with � = �t covers this case once theconstant 64:5 is replaced by 65. Recall that R=32 � �t > R=64 and note thatpD=R < 1=32. We therefore have(R2 +�2t )(1 +D2=�2t ) � R2(1 + 1=322)(1 + 642D2=R2)� R2�1 + 11024� 1 + 642324!� R2�1 + 11024��1 + 1256�< 130129R2� 130129 n(R+D)2 + 2:25RDoas required. The result follows.4 AlgorithmicsTheorem 3.3 suggests a di�erent learning goal from the maximal margin hy-perplane sought by the Support Vector Machine [3]. We should instead seek tominimise D(S; (u; b); ) for a given �xed value of  and subsequently minimiseover di�erent choices of . Vapnik has posed this problem in a slightly moregeneral form [11, Section 5.5.1] as follows.



Algorithmics 7For non-negative variables �i � 0, we minimise the functionF�(�) = mXj=1 ��j ;subject to the constraints:yj [hu � xji � b] � 1� �j ; j = 1; : : : ; m (1)hu � ui � C: (2)He is most interested in values of � close to 0 when F approximates the num-ber of training set errors. If, however, we take � = 2 and make the con-straint (2) an equality constraint, the problem corresponds exactly to min-imising D(S; (u; b); ), where  = 1=pC. This follows from considering thehyperplane (u0; b0) = (u=pC; b=pC) which has norm 1 and classi�es the point(xj ; yj) such that d((xj; yj); (u0; b0); ) = �j=pC, so thatD(S; (u0; b0); ) = qF2(�)=C:We now consider converting to the dual problem by introducing Lagrange mul-tipliers �0 for constraint (2) and �j � 0, j = 1; : : : ; m, for constraints (1).Setting the derivatives to zero and solving for u givesu = 12�0 mXj=1�jyjxj :Substituting into the other expressions and simplifying results in the followingLagrangian,F (�0; �) = �14 mXj=1�2j + mXj=1�j � 14�0 mXi;j=1�i�jyiyjhxi � xji � �0C;which must be maximised subject to the constraints, �j � 0, j = 0; : : : ; m, andmXj=1�jyj = 0:It is convenient to use vector notation, with � denoting the vector of �j , j =1; : : : ; m, G the matrix with entries, Gij = yiyjhxi � xji, and 1 the m vectorwith entries equal to 1. Using this notation we can writeF (�0; �) = �14�T�+ 1T� � 14�0�TG� � �0C:We can optimise with respect to �0 by computing @F@�0 and setting it equal tozero. @F (�0; �)@�0 = 14�20�TG�� C = 0:



Conclusion 8Hence, �0 = q 14C�TG� and resubstitutingF (�) = F (�0; �) = �14�T� + 1T��pC�TG� (3)u = s C�TG� mXj=1�jyjxj (4)Note that we can ignore the constant factor in the formula for u as this willnot a�ect the classi�cation, and in fact �TG� = kuk2 = C once the optimalvalue has been found. The value of b can also be determined from the valuesof �. We wish to con�rm that this optimisation problem is concave. We canevaluate the Hessian H(F ) of the function F as follows:grad(F ) = �12� + 1� pCG�p�TG�:Hence H(F ) = �12I � pC[(�TG�)G�G��TG](�TG�)1:5 :We wish to verify that H(F ) is concave, that is xTH(F )x � 0 for all x.xTH(F )x = �0:5kxk2� C 0[k�k2Gkxk2G � hx � �i2G]where C 0 is a positive constant and h: � :iG and k:kG are the inner product andnorm de�ned by the semi-de�nite matrixG. By the Cauchy-Schwartz inequalitythe expression in square brackets is non-negative, making the overall expressionnegative as required. Hence, the optimal solution can be found in polynomialtime by applying a gradient based central path algorithm following grad(F )with an appropriate learning rate �.Note further that a small change in  > 0 only changes the value ofD(S; (u; b); )by a small amount for a �xed (u; b). Hence, the optimal value of k can alsoonly change by a small amount. Hence, solving the problem for a �ne enoughgrid of values of  and choosing the value which minimises k will give a valuewhich will be within an arbitrarily small margin of the overall optimum.Finally, note that the computation described in equation (3) can be performedusing a Kernel inner product in place of the input space inner product, thetechnique that is used in the Support Vector Machine.5 ConclusionWe have shown how an approach developed by Freund and Schapire [6] formistake bounded learning can be adapted to give pac style bounds which de-pend on the margin distribution rather than the margin of the closest point tothe hyperplane. The bounds obtained can be signi�cantly better than previ-ously obtained bounds, particularly when some of the points are misclassi�edand agnostic bounds would need to be applied were a classical analysis to beadopted.
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