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Abstract

A number of results have bounded generalization of a classifier in terms of its margin
on the training points. There has been some debate about whether the minimum
margin is the best measure of the distribution of training set margin values with which
to estimate the generalization. Freund and Schapire [7] have shown how a different
function of the margin distribution can be used to bound the number of mistakes of an
on-line learning algorithm for a perceptron, as well as an expected error bound. Shawe-
Taylor and Cristianini [13] showed that a slight generalization of their construction can
be used to give a pac style bound on the tail of the distribution of the generalization
errors that arise from a given sample size. We show that in the linear case the approach
can be viewed as a change of kernel and that the algorithms arising from the approach
are exactly those originally proposed by Cortes and Vapnik [4]. We generalise the basic
result to function classes with bounded fat-shattering dimension and the [; measure
for slack variables which gives rise to Vapnik’s box constraint algorithm. Finally,
application to regression is considered, which includes standard least squares as a
special case.



1 Introduction

The idea that a large margin classifier might be expected to give good generalization is
certainly not new [6]. Despite this insight it was not until comparatively recently [12] that
such a conjecture has been placed on a firm footing in the probably approximately correct
(pac) model of learning. Learning in this model entails giving a bound on the generalization
error which will hold with high confidence over randomly drawn training sets. In this sense
it can be said to ensure robust learning, something that cannot be guaranteed by bounds on
the expected error of a classifier.

Despite successes in extending this style of analysis to the agnostic case [2] and applying
it to neural networks [2], boosting algorithms [11] and Bayesian algorithms [5], there has
been concern that the measure of the distribution of margin values attained by the training
set 1s largely ignored in a bound that depends only on its minimal value. Intuitively, there
appeared to be something lost in a bound that depended so critically on the positions of
possibly a small proportion of the training set.

Shawe-Taylor and Cristianini [13] following an approach used by Freund and Schapire [7] for
on-line learning showed that a measure of the margin distribution can be used to provide
pac style bounds on the generalization error.

In this paper we show that in the linear case we can view the technique as a change of
kernel and that algorithms arising from the approach correspond exactly to those originally
proposed by Cortes and Vapnik [4] as heuristics for agnostic learning. We further generalise
the basic result to function classes with bounded fat-shattering dimension and the /; measure
for slack variables which gives rise to Vapnik’s box constraint algorithm. Finally, application
to regression is considered. Special applications of our results include a justification for using
the square loss in training back-propagation networks, as well as bounds for the probability
of exceeding a certain error margin for standard least squares regressors.

We consider learning from examples, initially of a binary classification. We denote the
domain of the problem by X and a sequence of inputs by x = (z1,...,2,) € X™. A
training sequence is typically denoted by z = ((z1,v1), ..., (Tm,Ym)) € (X x {—1,1})™ and
the set of training examples by S. By Er,(h) we denote the number of classification errors
of the function h on the sequence z.

As we will typically be classifying by thresholding real valued functions we introduce the
notation Ty(f) to denote the function giving output 1 if f has output greater than or equal
to § and —1 otherwise. For a class of real-valued functions H the class Ty(H) is the set of
derived classification functions.

Definition 1.1 Let H be a set of real valued functions. We say that a set of points X is
~v-shattered by H if there are real numbers r, indezed by v € X such that for all binary
vectors b indexed by X, there is a function f, € H satisfying fo(x) > rp + 7, if by = 1 and
folx) < ry — =, otherwise. The fat shattering dimension faty of the set ‘H is a function
from the positive real numbers to the integers which maps a value ~ to the size of the largest
~v-shattered set, if this is finite or infinity otherwise.



2 Linear Function Classes

The first bound on the fat shattering dimension of bounded linear functions in a finite
dimensional space was obtained by Shawe-Taylor et al. [12]. Gurvits [8] generalised this to
infinite dimensional Banach spaces. We will quote an improved version of this bound for
Hilbert spaces which is contained in [3] (slightly adapted here for an arbitrary bound on the
linear operators).

Theorem 2.1 [3] Consider a Hilbert space and the class of linear functions L of norm
less than or equal to B restricted to the sphere of radius R about the origin. Then the fat
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shattering dimension of L can be bounded by faty(v) < <l:—R> .

Definition 2.2 Let Ly(X) be the set of real valued functions f on X with support supp(f)
finite, that is functions in L§(X) are non-zero only for finitely many points. We define the

inner product of two functions f,qg € L(X), by (f-g) = Exesupp(f) flz)g(x).

Note that the sum which defines the inner product is well-defined since the functions have
finite support. Clearly the space is closed under addition and multiplication by scalars.

Now for any fixed A > 0 we define an embedding of X into the Hilbert space X x L;(X)
as follows: 7a @« — (2,Ad,), where 6, € L;(X) is defined by d,(y) = 1, if y = « and 0,
otherwise.

We begin by considering the case where A is fixed. In practice we wish to choose this
parameter in response to the data. In order to obtain a bound over different values of A it
will be necessary to apply the following theorem several times. For a linear classifier u on X
and threshold b € R we define d((x,y), (u,b),v) = max{0,v — y({u - ) — b)}. This quantity
is the amount by which u fails to reach the margin v on the point (x,y) or 0 if its margin is
larger than ~. Similarly for a training set S, we define

D(S,(u,b),7) = Z d((z,y), (u,b),7)>

(z,y)€S

Theorem 2.3 [13] Fiz A >0, b € R. Consider a fired but unknown probability distribution
on the input space X with support in the ball of radius R about the origin. Then with
probability 1—4 over randomly drawn training sets S of size m for all v > 0 the generalization
of a linear classifier u on X with ||u|| =1, thresholded at b is bounded by

2 2 1 1 2/A2
e(m,k,0) = — (k log, <8€Tm> log,(32m) + log, (7 Om log,( 5"’ mR?/ ))) 7
m

where

o | 6438 + AN ([|u[]® + D(S, (u,0),7)*/A%)
provided m > 2/e, k < em and there is no discrete probability on misclassified training
points.



This theorem is applied several times to allow a choice of A which approximately minimises
the expression for k. Note that the minimum of the expression (ignoring the constant and

suppressing the denominator v?) is (R + D)? attained when A = v RD .

Theorem 2.4 [13] Fiz b € R. Consider a fizred but unknown probability distribution on the
input space X with support in the ball of radius R about the origin. Then with probability 1—4
over randomly drawn training sets S of size m for all v > 0 such that d((x,y), (u,b),v) =0,
for some (x,y) € S, the generalization of a linear classifier u on X satisfying ||ul| < 1 is

bounded by

2
e(m, k,8) = = (k log, (8677”) log, (32m) + log, (180m(21 Elog?(m)) )) ,
m

65[(R + D)* + 2.25RD]
k= T ,
for D = D(S,(u,b),v), and provided m > max{2/e,6}, k < em and there is no discrete
probability on misclassified training points.

where

3 Algorithmics

The theory developed in the previous section provides a way to transform a non linearly
separable problem into a separable one by mapping the data to a higher dimensional space,
a technique that can be viewed as using a kernel in a similar way to Support Vector Machines.

Is it possible to give an effective algorithm for learning a large margin hyperplane in this
augmented space? This would automatically give an algorithm for optimizing the margin
distribution in the original space. It turns out that not only is the answer yes, but also that
such an algorithm already exists.

The mapping 7 defined in the previous section implicitly defines a kernel as follows:
k(z,2') = (ta(z), 7a(2")) = (7, AS,), (2, Adur)) = (z, ") + A*(84, 60r) = (2, 2") + A?6,(2)

By using these kernels, the decision function of a SV machine would be:
Flo) =) aib(a,a) + b= o [(x,2:) + A%6,(a')] + b
=1 =1

and the lagrange multipliers o« would be obtained by solving the following QP problem:

minimize in the positive quadrant the lagrangian

L = Zozi — Z yiyjoiosk(xi, ;)
i=1

1,5=1



= Z oy — Z yl’ijéiOéjKl'iy $j> + A25i(j)]

=1 7,7=1
m m m
_ 2 2
= Zoz,' — Z viyjonag(zi, ) — A Zozi
=1 7,7=1 =1

This is exacly the dual QP problem that one obtains by solving the soft margin problem for
the case o = 2, as stated by Cortes and Vapnik [4], minimise £(u,u) + C > " £ subject to
yil{u,a;) — b > 1 — & and & > 0. The solution obtained is

L= Zai — % Z yiyjoiog(Ti, v5) — CZa?
=1

7,7=1 =1

which makes clear how the trade off parameter C in their formulation is related to the kernel
parameter A. Another way to look at this technique is the following: doing soft margin, or
enlarging the margin distribution, is equivalent to replacing the covariance matrix K with
the covariance, K’ < K + AI, which has a heavier diagonal. Again, the trade off parameter
A is simply related to A and C in the previous formulations. So rather than using a soft
margin algorithm, one can use a (simpler) hard margin algorithm after adding Al to the
covariance matrix.

This technique is well known in classical statistics, where it is sometimes called the “shrinkage
method” (see Ripley [10]). In the context of regression it is better known as Ridge Regression,
and leads to a form of weight decay. It is a regularization technique in the sense of Tychonov.
Another way to describe it, is that it reduces the number of effective free parameters, as
measured by the trace of K. Note finally that from an algorithmical point of view these
kernels still give a positive definite matrix, and a better conditioned problem.

4 Non-linear Function Spaces

Definition 4.1 Let (X,d) be a (pseudo-) metric space, let A be a subset of X and e > 0. A
set B C X is an e-cover for A if, for every a € A, there exists b € B such that d(a,b) < e.
The e-covering number of A, Ny(e, A), is the minimal cardinality of an e-cover for A (if
there is no such finite cover then it is defined to be 0o). We will say the cover is proper if

B CA.

Note that we have used less than or equal to in the definition of a cover. This is somewhat
unconventional, but will not change the bounds we use. It does, however, prove technically
useful in the proofs. The idea is that B should be finite but approximate all of A with respect
to the pseudometric d. we will use the [* distance over a finite sample x = (21,...,2n)
for the pseudo-metric in the space of functions, dx(f,¢) = max; |f(x:) — g(x;)|. We write
N(e, F,x) = Ny, (e, F) We will consider the covers to be chosen from the set of all functions
with the same domain as F and range the reals. We now quote a lemma from [12] which
follows immediately from a result of Alon et al. [1].



Corollary 4.2 [12] Let F be a class of functions X — [a,b] and P a distribution over X.
Choose 0 < € <1 and let d = fatr(e/4). Then

sup N(e, F,x) <2

XeEX™ 2

4m(b . a)2 dlog,(2em(b—a)/(de))

() |

Let 7, (a) be the identity function in the range [§ — 2.01y, 8], with output € for larger values
and § — 2.01~ for smaller ones, and let 7, (F) = {m,(f): f € F}. The choice of the threshold
f is arbitrary but will be fixed before any analysis is made. If the value of # needs to be
included explicitly we will denote the clipping function by 7T2.

For a monotonic function f(y) we define f(v7) = lim, o+ f(y— «), that is the left limit of f
at 7. Note that the minimal cardinality of an e-cover is a monotonically decreasing function
of €, as is the fat shattering dimension as a function of ~.

Definition 4.3 Let

x:F—R", X f= (f(ar), fx2), ..., flem))

denote the multiple evaluation map induced by x = (x1,...,2,) € X™. We say that a class
of functions F is sturdy if for all m € N and all x € X™ the image X(F) of F under X is a
compact subset of R™.

Lemma 4.4 Let F be a sturdy class of functions. Then for each N € N and any fized
sequence X € X™, the infimum vy = inf{y|N (v, F,x) = N}, is attained.

Corollary 4.5 Let F be a sturdy class of functions. Then for each N € N and any fized
sequence X € X™, the infimum vy = inf{y|N (v, 7, (F),x) = N}, is attained.

Proof: Suppose that the assertion does not hold for some x € X™ and N € N. Let N’ =
N(yn, Tyn (F),x) > N. Consider the following supremum vV = sup{7|A (7, 7y (F),X) =
N'}. Since the assertion does not hold we have ¥ > 4y. By the lemma we must have
AN > 4y, since otherwise the infimum of the v required for the next size of cover will not
be attained. Hence, there exists v/ > vy with N'(y/, 7, (F),x) = N'. Let v = (7' + v )/2.
Note that N(v, 7, (F),x) < N. Let B be a minimal cover in this case. Claim that B is
also a 4" cover for 7., (F) in the dyx metric. To show this consider f € F and let f; € B be
within v of m,(f) in the dx metric. Hence, for all & € x, |fi(x) — ny(f)(2)] < 5. But this
implies that | f;(z) — 7, (f)(2)] < v+ (v —9n) = 7. Hence, we have N (v, 7, (F),x) < N,
a contradiction. m

The following two theorems are essentially quoted from [12] but they have been reformulated
here in terms of the covering numbers involved.



Lemma 4.6 Suppose F is a sturdy set of functions that map from X to R with a uniform
bound on the covering numbers N (v, 7, (F),x) < B(m,v), for all x € X™. Then for any
distribution P on X, and any k € N and any § € R

p2m {Xy: df e F,r = m]ax{f(xj)},Q’y =0 —r, [log,(B(2m,¥))] =k,
) = 4 2] > e, 6) | <
where e(m, k,0) = =(k +log, 3).

Proof: We have omitted the detailed proof since it is essentially the same as the corre-
sponding proof in [12] with the simplification that Corollary 4.2 is not required and the
property of sturdiness ensures by Corollary 4.5 that we can find a 74 cover where v, =

inf{7|N (v, 7, (F),xy) = 2%} which can be used for all v satisfying [log,(B(2m,v))] = k. u

Theorem 4.7 Consider a sturdy real valued function class F having a uniform bound on
the covering numbers N'(v~, m,-(F),x) < B(m,v), for allx € X™. Fiz § € R. If a learner
correctly classifies m independently generated examples z with h = Tp(f) € Ty(F) such that
erg(h) = 0 and v = min|f(x;) — 8|, then with confidence 1 — § the expected error of h is
bounded from above by

e(m,k,0) = % (k + log, <8Tm>> ,  where k = [log, B(2m,~/2)].

Proof: The proof is again identical to the proof of Theorem 3.12 in [12] except that
Lemma 4.6 is used in place of the corresponding result of [12]. m

4.1 Margin distribution and fat shattering

In this section we will generalise the results of Section 2 to function classes for which a bound
on their fat-shattering dimension is known. The basic trick is to bound the covering numbers
of the sum of two function classes in terms of the covering numbers of the individual classes.
If 7 and G a real valued function classes defined on a domain X we denote by F + G the
function class F+ G ={f+g|f € F,g € G}.

Lemma 4.8 Let F and G be two real valued function classes both defined on a domain X.
Suppose G has range [a,b]. Then we can bound the cardinality of a minimal v cover of F +§G

by
N,y (F+G),x) S N (/2,704 n(F) 0N (7/2,6,%).

v+ (b—a)/2

Proof: The relatively straightforward proof is given in the appendix. m
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Before proceeding we need a further technical lemma to show that the property of sturdiness
is preserved under the addition operator.

Lemma 4.9 Let F and G be sturdy real valued function classes. Then F+ G is also sturdy.

Proof: Consider x € X™. xx(F) is a compact subset of R™ as is X¢(G). Note that
Xrig(F +G) = x#(F) + x6(9),
where the addition of two sets A and B of real vectors is defined A4+ B = {a+bla € A,b € B}.

Since, Xx(F) X Xg(G) is a compact set of R?™ and + is a continuous function from R*™ to
R, we have that #x(F)+ Z¢(G) being the image of a compact set under + is also compact. s

Definition 4.10 Fiz a threshold § € R. For a function f on X we define d((x,y), f,v) =
max{0,v — y(f(x) — 0)}. This quantity is the amount by which f fails to reach the margin
vy on the point (x,y) or 0 if its margin is larger than v. Let g; € Li(X) be the function

95 = 2(emes W y), f,7)yde.

Proposition 4.11 Fiz § € R. Let F be a sturdy class of real-valued functions with range
[a,b] C R having a uniform bound on the covering numbers N (v, ng_A_'_A(]:), x) < B(m,v, A),
for all x € X™. Let G be a sturdy subset of L¢(X) with the uniform bound on the covering
numbers, N(v7,G,x) < A(m,v), for x € A™, where A = {6,|]v € X}. Consider a fized
but unknown probability distribution on the input space X. Then with probability 1 — & over
randomly drawn training sets S of size m for all v > 0 the generalization of a function f € F

thresholded at 8 satisfying gy € G is bounded by

T )

where k = [log, B(2m,v/4, A) +log, A(2m,~/4)], and A > sup{(g,d.)lg € G,z € X},

provided m > 2/e and there is no discrete probability on misclassified training points.

Proof: Consider the fixed mapping 7;. We extend the function class F to act on the space
X x L{(X) by its action on X. We similarly extend the function class G by composing with
a projection. We claim that (1) for € S, f(x) = (f + g5)(x), and (2) the margin of f + g
with threshold 6 on the training set 7 (S) is 7.

Hence, the off training set behaviour of the classifier f can be characterised by the behaviour
of f+ gy, while f + g; is a large margin classifier in the space X x L;(X). In order to bound
the generalization error we will apply Theorem 4.7 for F + G which gives a bound in terms
of the covering numbers. These we will bound using Lemma 4.8. The space F + G is sturdy
by Lemma 4.9, since both F and G are. Note that the range of G is contained in [—A, A] on
the input domain. In this case we obtain the following bound on the covering numbers,

log, (N(1/2,7,2(F +0),%)) < log, (N(3/4, 7054 4(F), x)N (/4,6 %) )
< log,(B(2m.7/4, A)) + log,(A(2m, 7/4)),

as required. The proof of the first and second claims is as in Theorem 2.3. n
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For a training set S, we define D(S, f,~) = \/E(%y)es d((z,y), f,7)%

Theorem 4.12 Let F be a sturdy class of real-valued functions with range [a,b] and fat
shattering dimension bounded by fatr(v). Fiz § € R and a scaling of the output range
n € R. Consider a fized but unknown probability distribution on the input space X. Then
with probability 1 — § over randomly drawn training sets S of size m for allb—a > v >0
the generalization of a function f € F thresholded at 8 is bounded by

e(m, k, ) = % (k log, (65m (1 n D>2> log, <9em (1 + D)) +log, (%ﬁ““))) ,

where k = [fatf(’y/16) + 64[)2] and D = 2(D(S, f,y) +n)/~y, provided m > 2/e and there

s no discrete probability on misclassified training points.

Proof: We define a sequence of function classes G; C Lf(X) to be the linear functionals
with norm at most B; on the space Lf(X). We will apply Proposition 4.11 for each class
G,. Note that the range of G; is [—B;, B;] on the input domain. Note also that the image of
G, under the evaluation map is a closed bounded subset of the reals and hence is compact.
It follows that G; is sturdy. We choose B; = jn, for j = 1,...,0 = \/m(b — a)/n. Hence,
By = /m(b—a) > D(S, f,7), for all f € F and all v < b — a. Hence, for any value of
D = D(S, f,~) obtained there is a value of B; satisfying D < B; < D + 1. Substituting the
upper bound D + n for this B; will give the result, when we use ¢’ = §/¢ and bound the
covering numbers of the component function classes using Corollary 4.2 and Theorem 2.1.
In this case we obtain the following bounds on the covering numbers,

256 2+ B;)? 16 2+ B;
B e

=: logy(B(2m,v/4, B;))

log, (N (v/4. 715 (7). %))

IA

where dy = fatz(v/16), and

2561 B2 |
log, (N'(7/4,G,,x)) < 1+ dylog, (#)1%(16@”@3])
7 dz"}/
=: log,(A(2m,~/4))

where dy = (16B;/v)*. Hence, in this case we can bound [log, B(2m, /4, Bj)+log, A(2m,~/4)]

by
16B;\°
fat r(v/16) + S

log, 64m(1 + 2B;/7)* log, Sem(1 + 2B;/7)

ﬂogZ B(2m7 7/47 B]) —I_ 10g2 A(va 7/4)—| S 3 —I_

giving the result where the 3 contributes a factor of 8 into the argument of the final log
term. m



The obvious choice of non-linear function class would be neural networks. Bartlett [2] shows
that by placing a bound on the weights we guarantee a bound on the fat-shattering dimen-
sion. Hence, to optimize the generalization performance we should minimise the quantity
D(S, f,~). The backpropagation algorithm with weight decay, optimizes a trade-off between
the fat-shattering dimension and the value D(S, f,1), assuming an output value in the range
[—1,1] and a least squares training error. Hence, the theorem gives a more direct justifica-
tion for the backpropagation algorithm than [2], while at the same time suggesting that one
could try optimising the value of D(S, f,v), for v < 1. This would correspond to ignoring
training points whose margin is already at least v and measuring the error of points with
smaller margin against a target output of ++.

For a training set S, we define D'(S, f,v) = E(%y)es d((x,y), f,v). This is the /; sum of the
slack variables which is optimised in Vapnik’s box constraint maximal margin hyperplane
algorithm. The following Corollary shows that optimising this quantity does indeed lead to
good generalization.

Corollary 4.13 Let F be a sturdy class of real-valued functions with range [a,b] and fat
shattering dimension bounded by fatr(v). Fiz § € R and a scaling of the output range
n € R. Consider a fized but unknown probability distribution on the input space X. Then
with probability 1 — § over randomly drawn training sets S of size m for allb—a > v >0
the generalization of a function f € F thresholded at 8 is bounded by

e(m, k, 8) = % (k log, <65m (1+ D>2> log, (9em (1+ D)) +log, (%@b_“)» ,

where k = [fatf(’y/16) + 64[)2] and D = 2(\/D'(S, f,7)(b—a) +n) /v, provided m > 2/e

and there is no discrete probability on misclassified training points.

Proof: The corollary follows by observing that

D(s.f) = | S dlle,y) £ >2§\/<b—a> S (@) £.7) = VDS )b —a).

(z,y)€S (z,y)€S

5 Regression

In order to apply the results of the last section to the regression case we formulate the
error estimation as a classification problem. Consider a real-valued function class F and a
target real-valued function #(x). For f € F we define the function e(f) and the class e(F),
e(f)(z) = [f(x) = t(z)], e(F) = {e(HIf € F}.

For a training point (x,y) € X x R we define d((z,y), f,v) = max{0, |f(z) —y| — (8 — )}
This quantity is the amount by which f exceeds the error margin § —+ on the point (x,y) or 0
if fis within 8 —~ of the target value. Hence, this is the € insensitive loss measure considered

by Vapnik with e = 8 — ~. Let gf € L{(X) be the function g; = — E(%y)es d((z,y), f,7)0s
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Proposition 5.1 Fiz § € R. Let F be a sturdy class of real-valued functions with range
[a,b] C R having a uniform bound on the covering numbers N (y~, F,x) < B(m,~), for all
x € X™. Let G be a sturdy subset of Ls(X) with the uniform bound on the covering numbers,
N(v7,G.x) < A(m,v), for x € A™, where A = {6,|x € X}. Consider a fized but unknown
probability distribution on the input space X. Then with probability 1 — & over randomly
drawn training sets S of size m for all v > 0 the probability that a function f € F has error
greater than 8 with respect to target function t on a randomly chosen input is bounded by

b9~ 2 1, (32)).

where k = [logy B(2m,v/4) + log, A(2m,~v/4)], and A > sup{(g,d:)|g € G,x € X}, pro-
vided m > 2/e, there is no discrete probability on training points with error greater than 6
and g5y € G

Proof: The result follows from an application of Proposition 4.11 to the function class
e(F), noting that we treat all training examples as negative, and hence correct classification
corresponds to having error less than . Finally, the result follows from bounding the covering
numbers

N (7, 758 (e(F)), x) < N(7, F,x) < B(m,7). u

For a training set S, we define D(S, f,v) = \/E(%y)es d((x,y), f,v)? The above result can

be used to obtain a bound in terms of the observed value of D(S, f,~) and the fat shattering
dimension of the function class.

Theorem 5.2 Let F be a sturdy class of real-valued functions with range [a,b] and fat
shattering dimension bounded by fatr(v). Fiz § € R and a scaling of the output range
n € R. Consider a fized but unknown probability distribution on the input space X. Then
with probability 1 — & over randomly drawn training sets S of size m for all § > v > 0 the
probability that a function f € F has error larger than 6 on a randomly chosen input s

bounded by

)= 2 (110, (650 (25 e, (30m (P54) ) s, (50221 )

where k = [fatf(’y/16) + 64[)2] and D = 2(D(S, f,y) +n)/~y, provided m > 2/e and there

s no discrete probability on misclassified training points.

Proof: The proof follows the same pattern as that of Theorem 4.12, with the exception that
the bounds on the covering numbers must use the full range of the function class F in the
log factors. m

Note that we obtain a generalization bound for standard least squares regression by taking
v = 0 in Theorem 5.2. In this case D(S, f,0) is the least squares error on the training set,
while the bound gives the probability of a randomly chosen input having error greater than

6.
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Appendix A

Proof of Lemma 4.8 : Fixn € (0,v) and let B (respectively C') be a minimal 5 (respectively

¥ —n) cover of ﬂ-g—l_—((lb—a)/Z(F) (respectively G) in the dx metric. Consider the set of functions

B+ C. For any f+g¢g € F+ G, there is an f; € B within 5 of Wz_l__‘('b_a)/z(f) in the dy metric

and a g; € C within 7 — 1 of ¢ in the same metric. For ¢ € x we clain
| (f + 9)(@) = 7 (i + g5)(2)| < 7. (1)
Hence, 7, (B + C) forms a v cover of 7.(F + G). Since
B+ C|< N(mﬁflab_a)/z(f)ax)/\f(v - 1,6,%),

the result follows by setting n = ~/2. To justify the claim, assume first that § — 2y <
(f + ¢)(x) < 6. This implies that

§—2v—b<0—2y—g(a) < flz) <O—g(z)<0—a.
Hence, in this case using the fact that 7, only reduces distances,

7 (f + 9)(@) = m (i + g (@) < 1 +9)(@) = (fi + g,) ()]
= (777 al) + 9)(@) — (fi + g,)(@)
7020l F)(@) = Fil@)] + lg(e) - g,(a)

<
< n+y—n=n.

If on the other hand (f +¢)(x) > 6, we need only show that (f; + ¢;)(x) > 6 — v in order for
(1) to be satisfied. But we have f;(x) > min{f(x),8 —a} —n, while g;(x) > g(z) — (v — n).
Hence,

Finally, if (f 4 ¢g)(z) < 8 — 2+, we must show that (f; + g;)(x) < 8 — v to satisfy equation
(1). In this case fi(x) < max{f(x),8 — 2y — b} + n, while g;(z) < g(x) 4+ (v —n). Hence,

(fi +9i)(z) max{(f + g)(z),g(z) + 0 -2y = b} +

<
< 80—

as required. m

14



