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1 IntroductionThe idea that a large margin classi�er might be expected to give good generalization iscertainly not new [6]. Despite this insight it was not until comparatively recently [12] thatsuch a conjecture has been placed on a �rm footing in the probably approximately correct(pac) model of learning. Learning in this model entails giving a bound on the generalizationerror which will hold with high con�dence over randomly drawn training sets. In this senseit can be said to ensure robust learning, something that cannot be guaranteed by bounds onthe expected error of a classi�er.Despite successes in extending this style of analysis to the agnostic case [2] and applyingit to neural networks [2], boosting algorithms [11] and Bayesian algorithms [5], there hasbeen concern that the measure of the distribution of margin values attained by the trainingset is largely ignored in a bound that depends only on its minimal value. Intuitively, thereappeared to be something lost in a bound that depended so critically on the positions ofpossibly a small proportion of the training set.Shawe-Taylor and Cristianini [13] following an approach used by Freund and Schapire [7] foron-line learning showed that a measure of the margin distribution can be used to providepac style bounds on the generalization error.In this paper we show that in the linear case we can view the technique as a change ofkernel and that algorithms arising from the approach correspond exactly to those originallyproposed by Cortes and Vapnik [4] as heuristics for agnostic learning. We further generalisethe basic result to function classes with bounded fat-shattering dimension and the l1 measurefor slack variables which gives rise to Vapnik's box constraint algorithm. Finally, applicationto regression is considered. Special applications of our results include a justi�cation for usingthe square loss in training back-propagation networks, as well as bounds for the probabilityof exceeding a certain error margin for standard least squares regressors.We consider learning from examples, initially of a binary classi�cation. We denote thedomain of the problem by X and a sequence of inputs by x = (x1; : : : ; xm) 2 Xm. Atraining sequence is typically denoted by z = ((x1; y1); : : : ; (xm; ym)) 2 (X � f�1; 1g)m andthe set of training examples by S. By Erz(h) we denote the number of classi�cation errorsof the function h on the sequence z.As we will typically be classifying by thresholding real valued functions we introduce thenotation T�(f) to denote the function giving output 1 if f has output greater than or equalto � and �1 otherwise. For a class of real-valued functions H the class T�(H) is the set ofderived classi�cation functions.De�nition 1.1 Let H be a set of real valued functions. We say that a set of points X is
-shattered by H if there are real numbers rx indexed by x 2 X such that for all binaryvectors b indexed by X, there is a function fb 2 H satisfying fb(x) � rx + 
, if bx = 1 andfb(x) � rx � 
, otherwise. The fat shattering dimension fatH of the set H is a functionfrom the positive real numbers to the integers which maps a value 
 to the size of the largest
-shattered set, if this is �nite or in�nity otherwise.2



2 Linear Function ClassesThe �rst bound on the fat shattering dimension of bounded linear functions in a �nitedimensional space was obtained by Shawe-Taylor et al. [12]. Gurvits [8] generalised this toin�nite dimensional Banach spaces. We will quote an improved version of this bound forHilbert spaces which is contained in [3] (slightly adapted here for an arbitrary bound on thelinear operators).Theorem 2.1 [3] Consider a Hilbert space and the class of linear functions L of normless than or equal to B restricted to the sphere of radius R about the origin. Then the fatshattering dimension of L can be bounded by fatL(
) � �BR
 �2.De�nition 2.2 Let Lf (X) be the set of real valued functions f on X with support supp(f)�nite, that is functions in Lf (X) are non-zero only for �nitely many points. We de�ne theinner product of two functions f; g 2 Lf (X), by hf � gi =Px2supp(f) f(x)g(x).Note that the sum which de�nes the inner product is well-de�ned since the functions have�nite support. Clearly the space is closed under addition and multiplication by scalars.Now for any �xed � > 0 we de�ne an embedding of X into the Hilbert space X � Lf (X)as follows: �� : x 7! (x;��x), where �x 2 Lf (X) is de�ned by �x(y) = 1, if y = x and 0,otherwise.We begin by considering the case where � is �xed. In practice we wish to choose thisparameter in response to the data. In order to obtain a bound over di�erent values of � itwill be necessary to apply the following theorem several times. For a linear classi�er u on Xand threshold b 2 < we de�ne d((x; y); (u; b); 
) = maxf0; 
 � y(hu � xi � b)g. This quantityis the amount by which u fails to reach the margin 
 on the point (x; y) or 0 if its margin islarger than 
. Similarly for a training set S, we de�neD(S; (u; b); 
) =s X(x;y)2S d((x; y); (u; b); 
)2:Theorem 2.3 [13] Fix � > 0, b 2 <. Consider a �xed but unknown probability distributionon the input space X with support in the ball of radius R about the origin. Then withprobability 1�� over randomly drawn training sets S of size m for all 
 > 0 the generalizationof a linear classi�er u on X with kuk = 1, thresholded at b is bounded by�(m;k; �) = 2m �k log2�8emk � log2(32m) + log2�720m log2(1 +mR2=�2)� �� ;where k = �64:5(R2 +�2)(kuk2 +D(S; (u; b); 
)2=�2)
2 � ;provided m � 2=�, k � em and there is no discrete probability on misclassi�ed trainingpoints. 3



This theorem is applied several times to allow a choice of � which approximately minimisesthe expression for k. Note that the minimum of the expression (ignoring the constant andsuppressing the denominator 
2) is (R+D)2 attained when � = pRD .Theorem 2.4 [13] Fix b 2 <. Consider a �xed but unknown probability distribution on theinput space X with support in the ball of radius R about the origin. Then with probability 1��over randomly drawn training sets S of size m for all 
 > 0 such that d((x; y); (u; b); 
) = 0,for some (x; y) 2 S, the generalization of a linear classi�er u on X satisfying kuk � 1 isbounded by�(m;k; �) = 2m �k log2�8emk � log2(32m) + log2�180m(21 + log2(m))2� �� ;where k = �65[(R +D)2 + 2:25RD]
2 � ;for D = D(S; (u; b); 
), and provided m � maxf2=�; 6g, k � em and there is no discreteprobability on misclassi�ed training points.3 AlgorithmicsThe theory developed in the previous section provides a way to transform a non linearlyseparable problem into a separable one by mapping the data to a higher dimensional space,a technique that can be viewed as using a kernel in a similar way to Support Vector Machines.Is it possible to give an e�ective algorithm for learning a large margin hyperplane in thisaugmented space? This would automatically give an algorithm for optimizing the margindistribution in the original space. It turns out that not only is the answer yes, but also thatsuch an algorithm already exists.The mapping � de�ned in the previous section implicitly de�nes a kernel as follows:k(x; x0) = h��(x); ��(x0)i = h(x;��x); (x0;��x0)i = hx; x0i +�2h�x; �x0i = hx; x0i+�2�x(x0)By using these kernels, the decision function of a SV machine would be:f(x) = mXi=1 �iyik(x; xi) + b = mXi=1 �iyi �hx; xii +�2�x(x0)�+ band the lagrange multipliers � would be obtained by solving the following QP problem:minimize in the positive quadrant the lagrangianL = mXi=1 �i � mXi;j=1 yiyj�i�jk(xi; xj)4



= mXi=1 �i � mXi;j=1 yiyj�i�j[hxi; xji+�2�i(j)]= mXi=1 �i � mXi;j=1 yiyj�i�jhxi; xji ��2 mXi=1 �2iThis is exacly the dual QP problem that one obtains by solving the soft margin problem forthe case � = 2, as stated by Cortes and Vapnik [4], minimise 12hu; ui+CPmi=1 �2i subject toyj[hu; xji � b] � 1� �j and �j � 0. The solution obtained isL = mXi=1 �i � 12 mXi;j=1 yiyj�i�jhxi; xji � C mXi=1 �2iwhich makes clear how the trade o� parameter C in their formulation is related to the kernelparameter �. Another way to look at this technique is the following: doing soft margin, orenlarging the margin distribution, is equivalent to replacing the covariance matrix K withthe covariance, K 0  K + �I, which has a heavier diagonal. Again, the trade o� parameter� is simply related to � and C in the previous formulations. So rather than using a softmargin algorithm, one can use a (simpler) hard margin algorithm after adding �I to thecovariance matrix.This technique is well known in classical statistics, where it is sometimes called the \shrinkagemethod" (see Ripley [10]). In the context of regression it is better known as Ridge Regression,and leads to a form of weight decay. It is a regularization technique in the sense of Tychonov.Another way to describe it, is that it reduces the number of e�ective free parameters, asmeasured by the trace of K. Note �nally that from an algorithmical point of view thesekernels still give a positive de�nite matrix, and a better conditioned problem.4 Non-linear Function SpacesDe�nition 4.1 Let (X; d) be a (pseudo-) metric space, let A be a subset of X and � > 0. Aset B � X is an �-cover for A if, for every a 2 A, there exists b 2 B such that d(a; b) � �.The �-covering number of A, Nd(�;A), is the minimal cardinality of an �-cover for A (ifthere is no such �nite cover then it is de�ned to be 1). We will say the cover is proper ifB � A.Note that we have used less than or equal to in the de�nition of a cover. This is somewhatunconventional, but will not change the bounds we use. It does, however, prove technicallyuseful in the proofs. The idea is that B should be �nite but approximate all of A with respectto the pseudometric d. we will use the l1 distance over a �nite sample x = (x1; : : : ; xm)for the pseudo-metric in the space of functions, dx(f; g) = maxi jf(xi) � g(xi)j. We writeN (�;F ;x) = Ndx(�;F) We will consider the covers to be chosen from the set of all functionswith the same domain as F and range the reals. We now quote a lemma from [12] whichfollows immediately from a result of Alon et al. [1].5



Corollary 4.2 [12] Let F be a class of functions X ! [a; b] and P a distribution over X.Choose 0 < � < 1 and let d = fatF(�=4). Thensupx2XmN (�;F ;x) � 2�4m(b� a)2�2 �d log2(2em(b�a)=(d�)) :Let �
(�) be the identity function in the range [�� 2:01
; �], with output � for larger valuesand ��2:01
 for smaller ones, and let �
(F) = f�
(f): f 2 Fg. The choice of the threshold� is arbitrary but will be �xed before any analysis is made. If the value of � needs to beincluded explicitly we will denote the clipping function by ��
.For a monotonic function f(
) we de�ne f(
�) = lim�!0+ f(
��), that is the left limit of fat 
. Note that the minimal cardinality of an �-cover is a monotonically decreasing functionof �, as is the fat shattering dimension as a function of 
.De�nition 4.3 Let ~x:F �! <m; ~x: f 7! (f(x1); f(x2); : : : ; f(xm))denote the multiple evaluation map induced by x = (x1; : : : ; xm) 2 Xm. We say that a classof functions F is sturdy if for all m 2 N and all x 2 Xm the image ~x(F) of F under ~x is acompact subset of <m.Lemma 4.4 Let F be a sturdy class of functions. Then for each N 2 N and any �xedsequence x 2 Xm, the in�mum 
N = inff
jN (
;F ;x) = Ng; is attained.Corollary 4.5 Let F be a sturdy class of functions. Then for each N 2 N and any �xedsequence x 2 Xm, the in�mum 
N = inff
jN (
; �
(F);x) = Ng; is attained.Proof : Suppose that the assertion does not hold for some x 2 Xm and N 2 N. Let N 0 =N (
N ; �
N (F);x) > N . Consider the following supremum 
N 0 = supf
jN (
; �
N (F);x) =N 0g. Since the assertion does not hold we have 
N 0 � 
N . By the lemma we must have
N 0 > 
N , since otherwise the in�mum of the 
 required for the next size of cover will notbe attained. Hence, there exists 
0 > 
N with N (
0; �
N (F);x) = N 0. Let 
 = (
0 + 
N )=2.Note that N (
; �
(F);x) � N . Let B be a minimal cover in this case. Claim that B isalso a 
 0 cover for �
N (F) in the dx metric. To show this consider f 2 F and let fi 2 B bewithin 
 of �
(f) in the dx metric. Hence, for all x 2 x, jfi(x) � �
(f)(x)j � 
. But thisimplies that jfi(x)� �
N (f)(x)j � 
+ (
 � 
N ) = 
 0: Hence, we have N (
0; �
N (F);x) � N ,a contradiction.The following two theorems are essentially quoted from [12] but they have been reformulatedhere in terms of the covering numbers involved.6



Lemma 4.6 Suppose F is a sturdy set of functions that map from X to < with a uniformbound on the covering numbers N (
; �
(F);x) � B(m;
), for all x 2 Xm. Then for anydistribution P on X, and any k 2 N and any � 2 <P 2m�xy:9f 2 F ; r = maxj ff(xj)g; 2
 = � � r; dlog2(B(2m;
))e = k;1m jfijf(yi) � r + 2
gj > �(m;k; �)� < �;where �(m;k; �) = 1m(k + log2 2� ).Proof : We have omitted the detailed proof since it is essentially the same as the corre-sponding proof in [12] with the simpli�cation that Corollary 4.2 is not required and theproperty of sturdiness ensures by Corollary 4.5 that we can �nd a 
k cover where 
k =inff
jN (
; �
(F);xy) = 2kg which can be used for all 
 satisfying dlog2(B(2m;
))e = k.Theorem 4.7 Consider a sturdy real valued function class F having a uniform bound onthe covering numbers N (
�; �
�(F);x) � B(m;
), for all x 2 Xm. Fix � 2 <. If a learnercorrectly classi�es m independently generated examples z with h = T�(f) 2 T�(F) such thaterz(h) = 0 and 
 = min jf(xi) � �j, then with con�dence 1 � � the expected error of h isbounded from above by�(m;k; �) = 2m �k + log2�8m� �� ; where k = dlog2 B(2m;
=2)e.Proof : The proof is again identical to the proof of Theorem 3.12 in [12] except thatLemma 4.6 is used in place of the corresponding result of [12].4.1 Margin distribution and fat shatteringIn this section we will generalise the results of Section 2 to function classes for which a boundon their fat-shattering dimension is known. The basic trick is to bound the covering numbersof the sum of two function classes in terms of the covering numbers of the individual classes.If F and G a real valued function classes de�ned on a domain X we denote by F + G thefunction class F + G = ff + gjf 2 F ; g 2 Gg.Lemma 4.8 Let F and G be two real valued function classes both de�ned on a domain X.Suppose G has range [a; b]. Then we can bound the cardinality of a minimal 
 cover of F+Gby N (
; �
(F + G);x) � N (
=2; ���a
+(b�a)=2(F);x)N (
=2;G;x):Proof : The relatively straightforward proof is given in the appendix.7



Before proceeding we need a further technical lemma to show that the property of sturdinessis preserved under the addition operator.Lemma 4.9 Let F and G be sturdy real valued function classes. Then F +G is also sturdy.Proof : Consider x 2 Xm. ~xF(F) is a compact subset of <m as is ~xG(G). Note that~xF+G(F + G) = ~xF(F) + ~xG(G);where the addition of two sets A and B of real vectors is de�nedA+B = fa+bja 2 A; b 2 Bg.Since, ~xF(F)� ~xG(G) is a compact set of <2m and + is a continuous function from <2m to<m, we have that ~xF (F)+ ~xG(G) being the image of a compact set under + is also compact.De�nition 4.10 Fix a threshold � 2 <. For a function f on X we de�ne d((x; y); f; 
) =maxf0; 
 � y(f(x)� �)g. This quantity is the amount by which f fails to reach the margin
 on the point (x; y) or 0 if its margin is larger than 
. Let gf 2 Lf(X) be the functiongf =P(x;y)2S d((x; y); f; 
)y�x.Proposition 4.11 Fix � 2 <. Let F be a sturdy class of real-valued functions with range[a; b] � < having a uniform bound on the covering numbers N (
�; ��+A2
�+A(F);x) � B(m;
;A),for all x 2 Xm. Let G be a sturdy subset of Lf (X) with the uniform bound on the coveringnumbers, N (
�;G;x) � A(m;
), for x 2 �m, where � = f�xjx 2 Xg. Consider a �xedbut unknown probability distribution on the input space X. Then with probability 1� � overrandomly drawn training sets S of size m for all 
 > 0 the generalization of a function f 2 Fthresholded at � satisfying gf 2 G is bounded by�(m;k; �) = 2m �k + log2�8m� �� ;where k = dlog2 B(2m;
=4; A) + log2A(2m;
=4)e, and A � supfhg; �xijg 2 G; x 2 Xg,provided m � 2=� and there is no discrete probability on misclassi�ed training points.Proof : Consider the �xed mapping �1. We extend the function class F to act on the spaceX �Lf (X) by its action on X. We similarly extend the function class G by composing witha projection. We claim that (1) for x 62 S, f(x) = (f + gf )(x), and (2) the margin of f + gfwith threshold � on the training set �1(S) is 
.Hence, the o� training set behaviour of the classi�er f can be characterised by the behaviourof f + gf , while f + gf is a large margin classi�er in the space X�Lf (X). In order to boundthe generalization error we will apply Theorem 4.7 for F + G which gives a bound in termsof the covering numbers. These we will bound using Lemma 4.8. The space F + G is sturdyby Lemma 4.9, since both F and G are. Note that the range of G is contained in [�A;A] onthe input domain. In this case we obtain the following bound on the covering numbers,log2 �N (
=2; �
=2(F + G);x)� � log2 �N (
=4; ��+A
=2+A(F);x)N (
=4;G;x)�� log2(B(2m;
=4; A)) + log2(A(2m;
=4));as required. The proof of the �rst and second claims is as in Theorem 2.3.8



For a training set S, we de�ne D(S; f; 
) =qP(x;y)2S d((x; y); f; 
)2.Theorem 4.12 Let F be a sturdy class of real-valued functions with range [a; b] and fatshattering dimension bounded by fatF (
). Fix � 2 < and a scaling of the output range� 2 <. Consider a �xed but unknown probability distribution on the input space X. Thenwith probability 1 � � over randomly drawn training sets S of size m for all b � a > 
 > 0the generalization of a function f 2 F thresholded at � is bounded by�(m;k; �) = 2m �k log2�65m�1 + ~D�2� log2 �9em�1 + ~D��+ log2�64m1:5(b� a)�� �� ;where k = hfatF (
=16) + 64 ~D2i and ~D = 2(D(S; f; 
) + �)=
, provided m � 2=� and thereis no discrete probability on misclassi�ed training points.Proof : We de�ne a sequence of function classes Gj � Lf (X) to be the linear functionalswith norm at most Bj on the space Lf (X). We will apply Proposition 4.11 for each classGj . Note that the range of Gj is [�Bj; Bj] on the input domain. Note also that the image ofGj under the evaluation map is a closed bounded subset of the reals and hence is compact.It follows that Gj is sturdy. We choose Bj = j�, for j = 1; : : : ; ` = pm(b � a)=�. Hence,B` = pm(b � a) � D(S; f; 
), for all f 2 F and all 
 < b � a. Hence, for any value ofD = D(S; f; 
) obtained there is a value of Bj satisfying D � Bj < D + �. Substituting theupper bound D + � for this Bj will give the result, when we use �0 = �=` and bound thecovering numbers of the component function classes using Corollary 4.2 and Theorem 2.1.In this case we obtain the following bounds on the covering numbers,log2 �N (
=4; ��+Bj
+Bj (F);x)� � 1 + d1 log2�256m(
=2 +Bj)2
2 � log2�16em(
=2 +Bj)d1
 �=: log2(B(2m;
=4; Bj))where d1 = fatF (
=16), andlog2 (N (
=4;Gj ;x)) � 1 + d2 log2�256mB2j
2 � log2�16emBjd2
 �=: log2(A(2m;
=4))where d2 = (16Bj=
)2. Hence, in this case we can bound dlog2 B(2m;
=4; Bj)+log2A(2m;
=4)ebydlog2 B(2m;
=4; Bj) + log2A(2m;
=4)e � 3 + "fatF(
=16) +�16Bj
 �2#log2 64m(1 + 2Bj=
)2 log2 8em(1 + 2Bj=
)giving the result where the 3 contributes a factor of 8 into the argument of the �nal logterm. 9



The obvious choice of non-linear function class would be neural networks. Bartlett [2] showsthat by placing a bound on the weights we guarantee a bound on the fat-shattering dimen-sion. Hence, to optimize the generalization performance we should minimise the quantityD(S; f; 
). The backpropagation algorithm with weight decay, optimizes a trade-o� betweenthe fat-shattering dimension and the value D(S; f; 1), assuming an output value in the range[�1; 1] and a least squares training error. Hence, the theorem gives a more direct justi�ca-tion for the backpropagation algorithm than [2], while at the same time suggesting that onecould try optimising the value of D(S; f; 
), for 
 < 1. This would correspond to ignoringtraining points whose margin is already at least 
 and measuring the error of points withsmaller margin against a target output of �
.For a training set S, we de�ne D0(S; f; 
) =P(x;y)2S d((x; y); f; 
). This is the l1 sum of theslack variables which is optimised in Vapnik's box constraint maximal margin hyperplanealgorithm. The following Corollary shows that optimising this quantity does indeed lead togood generalization.Corollary 4.13 Let F be a sturdy class of real-valued functions with range [a; b] and fatshattering dimension bounded by fatF (
). Fix � 2 < and a scaling of the output range� 2 <. Consider a �xed but unknown probability distribution on the input space X. Thenwith probability 1 � � over randomly drawn training sets S of size m for all b � a > 
 > 0the generalization of a function f 2 F thresholded at � is bounded by�(m;k; �) = 2m �k log2�65m�1 + ~D�2� log2 �9em�1 + ~D��+ log2�64m1:5(b� a)�� �� ;where k = hfatF(
=16) + 64 ~D2i and ~D = 2(pD0(S; f; 
)(b� a) + �)=
, provided m � 2=�and there is no discrete probability on misclassi�ed training points.Proof : The corollary follows by observing thatD(S; f; 
) =s X(x;y)2S d((x; y); f; 
)2 �s(b� a) X(x;y)2S d((x; y); f; 
) =pD0(S; f; 
)(b� a):5 RegressionIn order to apply the results of the last section to the regression case we formulate theerror estimation as a classi�cation problem. Consider a real-valued function class F and atarget real-valued function t(x). For f 2 F we de�ne the function e(f) and the class e(F),e(f)(x) = jf(x)� t(x)j, e(F) = fe(f)jf 2 Fg.For a training point (x; y) 2 X �< we de�ne d((x; y); f; 
) = maxf0; jf(x)� yj � (� � 
)g.This quantity is the amount by which f exceeds the error margin ��
 on the point (x; y) or 0if f is within ��
 of the target value. Hence, this is the � insensitive loss measure consideredby Vapnik with � = � � 
. Let gf 2 Lf (X) be the function gf = �P(x;y)2S d((x; y); f; 
)�x.10



Proposition 5.1 Fix � 2 <. Let F be a sturdy class of real-valued functions with range[a; b] � < having a uniform bound on the covering numbers N (
�;F ;x) � B(m;
), for allx 2 Xm. Let G be a sturdy subset of Lf (X) with the uniform bound on the covering numbers,N (
�;G;x) � A(m;
), for x 2 �m, where � = f�xjx 2 Xg. Consider a �xed but unknownprobability distribution on the input space X. Then with probability 1 � � over randomlydrawn training sets S of size m for all 
 > 0 the probability that a function f 2 F has errorgreater than � with respect to target function t on a randomly chosen input is bounded by�(m;k; �) = 2m �k + log2�8m� �� ;where k = dlog2 B(2m;
=4) + log2A(2m;
=4)e ; and A � supfhg; �xijg 2 G; x 2 Xg, pro-vided m � 2=�, there is no discrete probability on training points with error greater than �and ge(f) 2 GProof : The result follows from an application of Proposition 4.11 to the function classe(F), noting that we treat all training examples as negative, and hence correct classi�cationcorresponds to having error less than �. Finally, the result follows from bounding the coveringnumbers N (
; ��+A2
+A(e(F));x) � N (
;F ;x) � B(m;
):For a training set S, we de�ne D(S; f; 
) =qP(x;y)2S d((x; y); f; 
)2. The above result canbe used to obtain a bound in terms of the observed value of D(S; f; 
) and the fat shatteringdimension of the function class.Theorem 5.2 Let F be a sturdy class of real-valued functions with range [a; b] and fatshattering dimension bounded by fatF (
). Fix � 2 < and a scaling of the output range� 2 <. Consider a �xed but unknown probability distribution on the input space X. Thenwith probability 1 � � over randomly drawn training sets S of size m for all � � 
 > 0 theprobability that a function f 2 F has error larger than � on a randomly chosen input isbounded by�(m;k; �) = 2m  k log2 65m�b� a
 �2! log2�9em�b� a
 ��+ log2�64m1:5(b� a)�� �! ;where k = hfatF (
=16) + 64 ~D2i and ~D = 2(D(S; f; 
) + �)=
, provided m � 2=� and thereis no discrete probability on misclassi�ed training points.Proof : The proof follows the same pattern as that of Theorem 4.12, with the exception thatthe bounds on the covering numbers must use the full range of the function class F in thelog factors.Note that we obtain a generalization bound for standard least squares regression by taking
 = � in Theorem 5.2. In this case D(S; f; �) is the least squares error on the training set,while the bound gives the probability of a randomly chosen input having error greater than�. 11
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Appendix AProof of Lemma 4.8 : Fix � 2 (0; 
) and letB (respectivelyC) be a minimal � (respectively
 � �) cover of ���a
+(b�a)=2(F) (respectively G) in the dx metric. Consider the set of functionsB +C. For any f + g 2 F + G, there is an fi 2 B within � of ���a
+(b�a)=2(f) in the dx metricand a gj 2 C within 
 � � of g in the same metric. For x 2 x we claimj�
(f + g)(x)� �
(fi + gj)(x)j � 
: (1)Hence, �
(B + C) forms a 
 cover of �
(F + G). SincejB + Cj � N (�; ���a
+(b�a)=2(F);x)N (
 � �;G;x);the result follows by setting � = 
=2. To justify the claim, assume �rst that � � 2
 �(f + g)(x) � �. This implies that� � 2
 � b � � � 2
 � g(x) � f(x) � � � g(x) � � � a:Hence, in this case using the fact that �
 only reduces distances,j�
(f + g)(x)� �
(fi + gj)(x)j � j(f + g)(x)� (fi + gj)(x)j= j(���a
+(b�a)=2(f) + g)(x)� (fi + gj)(x)j� j���a
+(b�a)=2(f)(x)� fi(x)j+ jg(x)� gj(x)j� � + 
 � � = 
:If on the other hand (f + g)(x) � �, we need only show that (fi+ gj)(x) � �� 
 in order for(1) to be satis�ed. But we have fi(x) � minff(x); �� ag � �, while gj(x) � g(x)� (
 � �).Hence, (fi + gj)(x) � minf(f + g)(x); g(x) + � � ag � 
� � � 
:Finally, if (f + g)(x) � � � 2
, we must show that (fi + gj)(x) � � � 
 to satisfy equation(1). In this case fi(x) � maxff(x); � � 2
 � bg+ �, while gj(x) � g(x) + (
 � �). Hence,(fi + gj)(x) � maxf(f + g)(x); g(x) + � � 2
 � bg+ 
� � � 
:as required. 14


