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1 Bayesian Voting Schemes as Large MarginClassi�ersNello CristianiniUniversity of Bristolnello.cristianini@bristol.ac.ukJohn Shawe-TaylorRoyal Holloway, University of Londonj.shawe-taylor@dcs.rhbnc.ac.ukIt is often claimed that one of the main distinctive features of Bayesian LearningAlgorithms for neural networks is that they don't simply output one hypothesis,but rather an entire distribution of probability over an hypothesis set: the Bayesposterior.An alternative perspective is that they output a linear combination of classi�ers,whose coe�cients are given by Bayes theorem. This can be regarded as a hyperplanein a high-dimensional feature space.We provide a novel theoretical analysis of such classi�ers, based on data-dependentVC theory, proving that they can be expected to be large margin hyperplanes in aHilbert space, and hence to have low e�ective VC-dimension. This not only explainsthe remarkable resistance to over�tting exhibited by such classi�ers, but also co-locates them in the same class as other systems, such as Support Vector Machinesand Adaboost, which have a similar performance.1.1 IntroductionIn recent years, a new method for training neural networks has been proposed andused, mainly due to the work of MacKay and Neal [7, 8, 9]. The systems inspiredby this approach are generally know as Bayesian Learning Algorithms and haveproven to be quite resistant to over�tting.
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2 Bayesian Voting Schemes as Large Margin Classi�ersThey are characterized by the fact that they output an entire distribution ofprobability over the hypothesis space, rather than a single hypothesis. Such adistribution, the Bayes posterior, depends on the training data and on the priordistribution, and is used to make predictions by averaging the predictions of all theVotingScheme elements of the set, in a weighted majority voting scheme.The posterior is computed according to Bayes' rule, and such a scheme has theremarkable property that { as long as the prior is correct and the computations canbe performed exactly { its expected test error is minimal. Typically, the posterioris approximated by combining a gaussian prior and a simpli�ed version of thelikelihood (the data-dependent term). Such a distribution is then sampled with aMonte-Carlo method, to form a committee whose composition reects the posteriorprobability.The classi�ers obtained with this method are known to be highly resistant toOccampara-dox over�tting. Indeed, neither the committee size nor the network size strongly a�ectthe performance, to such an extent that it is not uncommon - in the Bayesianliterature - to refer to \in�nite networks" [10, 16], meaning by this networks whosenumber of tunable parameters is much larger than the sample size.The thresholded linear combination of classi�ers generated by the Bayesian algo-Hyper-plane rithm can be regarded as a hyperplane in a high dimensional feature space. Themapping from the input to the feature space depends on the chosen hypothesisspace (e.g. network architecture).In this paper we provide a novel description of Bayesian classi�ers which makes itpossible to perform a margin analysis on them, and hence to apply data-dependentLargemargin SRM theory [13]. In particular, by viewing the posterior distribution as a linearfunctional in a Hilbert space, the margin can be computed and gives a bound onthe generalization error via an e�ective VC dimension which is much lower thanthe number of parameters. An analogous analysis has been performed in the caseof Adaboost by Schapire et al.[12], whose thoerems we will quote for reference.These results not only explain the remarkable resistance to over�tting observed inBayesian algorithms, but also provide a surprising uni�ed description of three of themost e�ective learning algorithms: Support Vector Machines, Adaboost and nowalso Bayesian classi�ers.Experimental results con�rming the predictions of our model are reported in acompanion paper [5].1.2 Bayesian Learning TheoryThe result of Bayesian learning is a probability distribution over the (parametrised)hypothesis space, expressing the degree of belief in a speci�c hypothesis as anapproximation of the target function. This distribution is then used to makepredictions.
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1.3 Bayesian Classi�ers as Large Margin Hyperplanes 3To start the process of Bayesian learning, one must de�ne a prior distribution P (�)over the parameter space � associated to a set of parametrized functions f(x; �),possibly encoding some prior knowledge. In the following we will denote by f� thehypothesis associated to the function f(x; �).After observing the data D, the prior distribution is updated using Bayes' Rule:P (�jD) / P (Dj�)P (�):The posterior distribution so obtained, hence, encodes information coming from thetraining set (via the likelihood function P (Dj�)) and prior knowledge.To predict the label of a new point, Bayesian classi�ers integrate the predictionsBayesclas-si�ers made by every element of the hypothesis space, weighting them with the posteriorassociated to each hypothesis, obtaining a distribution of probability over the setof possible labels: P (yjx;D) = Z� f(x; �)p(�jD)dP (�)This predictive distribution can be used to minimize the number of misclassi�ca-tions in the test set; in the 2-class case this is achieved simply by outputting thelabel which has received the highest vote.Many practical problems exist in the implementation of such systems, and typicallythe procedure described above is approximated with numerical methods, by forminga committee sampled from the posterior with a Monte-Carlo simulation.The likelihood P (Dj�), also, needs to be approximated, and generally it is replacedby a function of the kind e�loss(f�)), meaning by this that hypotheses highlyinconsistent with the training set are unlikely to have generated it, and vice-versa.The exact form taken by the likelihood, however, depends on assumptions madeabout the noise in the data. An introduction to this �eld can be found in RadfordNeal's book [9]. The most important fact about Bayesian algorithms is that theyturn out to be quite resistant to over�tting [11, 9], to the point that it is possibleto use networks larger than the number of training example, and to combine themin large committees. They are interesting not only because they work, but alsobecause their behaviour seems to challenge intuition.1.3 Bayesian Classi�ers as Large Margin HyperplanesIn this section we introduce a rather di�erent view of Bayesian Classi�ers, whichleads to their reinterpretation as hyperplanes in a high-dimensional Hilbert space.We then study a simpli�ed model of such classi�ers, which is easier to analysebut retains all the relevant features of the general case. We wish understand theproperties of their margin, and so of their e�ective VC dimension. This concept wasintroduced by Vapnik et al. [15], though we use the term to mean the fat shattering
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4 Bayesian Voting Schemes as Large Margin Classi�ersdimension measured at the scale of the observed margin. Theorem 1.1 below showsthat this dimension takes the place of the standard VC dimension in bounds on thegeneralization error in terms of the margin on the training set.We �rst observe that, in the 2-class case examined so far, the predictions are actuallyperformed by a thresholded linear combination of base hypotheses. The coe�cientsof the linear combinations are the posterior probabilities associated to each elementof H, and the thresholding is at zero if the labels are f�1;+1g.Hence, the actual hypothesis space used by Bayesian systems is the convex hull ofConvexhulloffunc-tionspace H, C(H) rather than H, where we haveC(H) = �Fa����Fa(x) = Z� a�f(x; �)dP (�) where Z� a�dP (�) = 1� :Hence we can view the output hypothesis is a hyperplane, whose coordinates aregiven by the posterior. In practice the output hypothesis is frequently estimated bya Monte-Carlo sampling of the hypothesis space using the posterior distribution.We will ignore the e�ect that this has and study the behaviour of the compositehypothesis itself under various assumptions about the underlying function space Hand prior P (�). We �rst give some necessary de�nitions.De�nition 1.1Let H be a set of binary valued functions. We say that a set of points X is shatteredby H if for all binary vectors b indexed by X, there is a function fb 2 H realising bon X. The Vapnik-Chervonenkis (VC) dimension VCdim(H) of the set H the sizeof the largest shattered set, if this is �nite or in�nity otherwise.De�nition 1.2Let H be a set of real valued functions. We say that a set of points X is -shatteredby H if there are real numbers rx indexed by x 2 X such that for all binary vectorsb indexed by X, there is a function fb 2 H satisfyingfb(x)( � rx +  if bx = 1� rx �  otherwise:The fat shattering dimension fatH of the set H is a function from the positive realnumbers to the integers which maps a value  to the size of the largest -shatteredset, if this is �nite or in�nity otherwise.We will make critical use of the following result contained in Shawe-Taylor et al [13]which involves the fat shattering dimension of the space of functions.Theorem 1.1Consider a real valued function class H having fat shattering function boundedFatVCbound above by the function afat : R ! N which is continuous from the right. Fix� 2 R. Then with probability at least 1 � � a learner who correctly classi�es `
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1.3 Bayesian Classi�ers as Large Margin Hyperplanes 5independently generated examples z with h = T�(f) 2 T�(H) such that erz(h) = 0and  = min jf(xi) � �j will have error of h bounded from above by�(m; k; �) = 2̀ �k log2�8e`k � log2(32`) + log2�8�̀ �� ;where k = afat(=8).Note how the fat shattering dimension at scale =8 plays the role of the VCdimension in this bound. This result motivates the use of the term e�ective VCdimension for this value. In order to make use of this theorem, we must havea bound on the fat shattering dimension and then calculate the margin of theclassi�er. We begin by considering bounds on the fat shattering dimension. The�rst bound on the fat shattering dimension of bounded linear functions in a �nitedimensional space was obtained by Shawe-Taylor et al. [13]. Gurvits [6] generalisedthis to in�nite dimensional Banach spaces. We will quote an improved version ofthis bound (slightly adapted for an arbitrary bound on the linear operators) whichis contained in this volume [2].Theorem 1.2[2] Consider a Hilbert space and the class of linear functions L of norm less thanor equal to B restricted to the sphere of radius R about the origin. Then the fatshattering dimension of L can be bounded byfatL() � �BR �2 :In order to apply Theorems 1.1 and 1.2 we need to bound the radius of the sphereLinearfunc-tionsin aHilbertspace containing the points and the norm of the linear functionals involved. Clearly,scaling by these quantities will give the margin appropriate for application of thetheorem.The Hilbert space we consider is that given by the functionsH = �z : �! R���� such that Z�2� z(�)2dP (�) <1�with the inner product (z1 � z2) = Z�2� z1(�)z2(�)dP (�):There is a natural embedding of the input space X onto the unit sphere of H givenby x 7! (f(x; �) 7! f(x; �)), sinceZ�2� f(x; �)2dP (�) = Z�2� dP (�) = 1:Hence, the norm of input points is 1 and they are contained in the unit sphere asrequired. The linear functionals considered are those determined by the posterior
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6 Bayesian Voting Schemes as Large Margin Classi�ersdistribution. The norm is given bykak2 = Z� a2�dP (�):Hence, fatCB(H)() = �B �2 ; where CB(H) = �Fa 2 C(H)��kak2 � B	 :Next we consider the margin . In order to study the margin of such hyperplanes, wewill introduce some simpli�cations in the general model. We assume that the basehypothesis space, H is su�ciently rich that all dichotomies can be implemented.Further, initially we will assume that the average prior probability over functionsin each error shell does not depend on the number of errors.These are the only assumptions we make, and the second will be relaxed in a lateranalysis. A natural choice for the evidence function in a Boolean valued hypothesisspace is e�r� , which has the required property of giving low likelihood to thepredictors which make many mistakes on the training set, and to which the usualBayesian evidence collapses in the Boolean case. The quantity � is usually relatedto the kind of noise assumed to a�ect the data.The assumption that all the dichotomies can be implemented with the sameprobability corresponds to an `uninformative' prior, where no knowledge is availableabout the target function. In a second stage we will examine the e�ect of insertingsome knowledge in the prior, by slightly perturbing the uninformative one towardsthe target hypothesis. We will see that even slightly favourable priors can give amuch smaller e�ective VC dimension than the uninformative one.1.3.1 The uninformative priorThe actual hypothesis space used by Bayesian systems, hence, is the convex hullC(H), rather than H. The output hypothesis is a hyperplane, whose coordinatesare given by the posterior.In this section we give an expression for the margin of the composite hypothesis, asa function of a parameter related to our model of likelihood. The result is obtainedin the case of a uniform prior for the pattern recognition case.Let us start by stating some simple results and de�nitions which will be useful inthe following.De�nition 1.3Let s� be the number of points whose labeling is incorrectly predicted by thehypothesis f�. We de�ne the balance of the hypothesis f� over a given sample asB� = ` � 2s�, where ` is the sample size. Hypotheses having the same value of sare said to form an error shell.
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1.3 Bayesian Classi�ers as Large Margin Hyperplanes 7Note that B�=` = 1� 2��, where �� = s�=` is the empirical risk of f�.During the next proof we will need to know the probability in the prior distributionof hypotheses in our parameter space which have a �xed empirical error. Given thatthis information is in general not available, we will initially make the simplifyingassumption that all behaviours on the training sample can be realised. This impliesthat the hypothesis space has VC dimension greater than or equal to the samplesize `.We make the further assumption that the prior probability of hypotheses whichNeutralprior have empirical risk � = r=` is12`�r̀� = `!2`(`�)!(` � `�)! ;in other words that the average prior probability for functions realising di�erentpatterns of r errors is 2�`. We will assume that the posterior distribution for ahypothesis which has r training errors is proportional to e��r = Cr, where C = e�� .We are now ready to give the main result of this section.Theorem 1.3Under the above assumptions the margin of the Bayes Classi�er F (x) 2 C(H) isgiven by 1� 2C1 + C :Proof : Let the set of training examples be (x1; : : : ;x`) with classi�cations y =(y1; : : : ; y`) 2 f�1; 1g` and let the margin M of example i be Mi = yiF (xi).Consider �rst the average margin< M > = 1̀Xi2S Mi = 1̀Xi2S yiF (xi) = 1̀Xi2S yi Z�2� ahh(xi)dP (h)= 1̀Xi2S yiXj2J ajPjfj(xi);where fj, j 2 J are representatives of each possible classi�cation of the sample.We are denoting by Pj the prior probability of classi�ers agreeing with fj . Thequantity ajPj is the posterior probability of these classi�ers, where the coe�cientaj = Ae��`�j = AC`�j is the evidence, which depends only on the empirical errorand the normalising constant A. By assumption, we haveXr error shell Pj = �r̀� 12` :
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8 Bayesian Voting Schemes as Large Margin Classi�ersHence, < M > = 1̀Xj2J ajPjXi2S yifj(xi);= 1̀Xj2J ajPjBj (1.1)=Xj2J ajPj(1� 2�j) = 1� 2Xj2J ajPj�j;by the observation concerning the balance Bj of fj and the fact that the posteriordistribution has been normalised, that is 1 = RH ahdP (h) =Pj2J ajPj.We now regroup the elements of the sum on the right hand side of the aboveequation by decomposing the hypothesis space into error shells (subsets ofH formedby hypotheses with the same error r). Hence, we can write the above sum asXj2J ajPj�j = 12` X̀r=0ACr�r̀� r̀ : (1.2)Solving for A and substituting, givesXj2J ajPj�j = Pk Cr�r̀� r̀Pr Cr�r̀�We can now use the equality Pr Cr�r̀� = (1 + C)`, and the observation thatPr Cr�r̀�r can be written as C ddC Pr Cr�r̀� = `C(1 + C)`�1 to obtain the resultfor the average margin.To complete the proof we must show that the average margin is in fact the minimalmargin. We will demonstrate this by showing that the margin of all points is equal.Intuitively, this follows from the symmetry of the situation, there being nothing todistinguish between di�erent training points in the structure of the hypothesis.More formally, note that for every output sequence z = (z1; : : : ; z`), we can realisethe mapping xi 7! zi; i = 1; : : : ; `, with a function fz 2 H.Let s(z) be the sequence obtained by swapping the i-th and j-th entries inthe sequence z swapping their signs if the i-th and j-th inputs have oppositeclassi�cations according to the training sequence y. Note that s is a bijection of theset of all sequences onto itself. Note also that if ah is the posterior distribution overthe function class H, afz = afs(z) , since the number of errors of the two functionsis the same { fz is correct on input i precisely when fs(z) is correct on j, that isyifz(xi) = yjfs(z)(xj):Now consider the Bayesian posterior functionF (x) = 12` Xz afzfz(x):
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1.3 Bayesian Classi�ers as Large Margin Hyperplanes 9The margin of this function on the point xi isyiF (xi) = 12` Xz afzyifz(xi) = 12` Xz afzyifs(z)(xi);since s is a bijection and weights are unchanged. Hence,yiF (xi) = 12` Xz afzyjfz(xj) = yjF (xj)and the margins of the points i and j are equal. Since, i and j are arbitrary allmargins are equal and the result is proved.Since the assumption that the underlying hypothesis space can perform any clas-si�cation of the training set implies that its VC dimension is at least `, we cannotexpect that learning is possible in the situation described. Indeed, we have aug-mented the power of the hypothesis space by taking our functions from the convexhull of H which would appear to make the situation yet worse.Nonetheless Theorem 1.3 shows that the margin of the Bayes classi�er is indeedlarge under the assumptions we have made, provided a suitable choice of theparameter C is made. A calculation of the e�ective VC dimension in this casewill be made later, though it is too large for any bound on the generalization errorto be made. We must make assumptions about the prior in order to be able tolearn.Before proceeding to consider the e�ect of the prior on the e�ective VC bound, wewill mention two other theorems that might be useful for bounding the generaliza-tion error in terms of the margin. We will, however, argue that they are unable totake account of our type of prior that assigns di�erent probabilities to hypotheses.We will quote the theorems from Schapire et al. [12], though they appear in a moregeneral form in [1].Following [12], let H denote the space from which the base hypotheses are chosen(for example Neural Networks, or Decision Trees). A base hypothesis f 2 H is amapping from an instance space X to f�1;+1g.Theorem 1.4Let S be a sample of ` examples chosen independently at random according to D.VCbound Assume that the base hypothesis space H has VC dimension d, and let be � > 0.Then, with probability at least 1 � � over the random choice of the training setS, every weighted average function f 2 C(H) satis�es the following bound for all� > 0:PD[yF (x) � 0] � PS [yF (x) � �] +O 1p` �d log2(`=d)�2 ) + log(1=��1=2!
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10 Bayesian Voting Schemes as Large Margin Classi�ersTheorem 1.5Let S be a sample of ` examples chosen independently at random according to D.FiniteHbound Assume that the base hypothesis space H is �nite, and let be � > 0. Then, withprobability at least 1�� over the random choice of the training set S, every weightedaverage function f 2 C(H) satis�es the following bound for all � > 0:PD[yF (x) � 0] � PS [yF (x) � �] +O 1p` � log2(`) log jHj�2 ) + log(1=��1=2!As observed by the authors, the theorem applies to every majority vote method,including boosting, bagging, ECOC, etc.In order to obtain useful applications of any of the theorems we will need to considerdeviations from the most general situation described above. The deviation shouldnot have a signi�cant impact on the margin, while reducing the expressive powerof the hypotheses.In order to apply Theorem 1.5 the number of hypotheses in the base class H mustbe �nite. The logarithm of the number of hypotheses appears in the result. Since wehave assumed that all possible classi�cations of the training set can be performed thenumber of hypotheses must be at least 2` making the bound uninteresting. To applythis theorem we must assume that a very large proportion of the hypotheses havezero weight in the prior, while those that have signi�cant weights in the posterior(i.e. have low empirical error) are retained. Making this assumption the bound willbecome signi�cant. However, we are interested in capturing the e�ect of non-discretepriors, that is situations where potentially all of the base hypotheses are included,but those with high empirical error have lower prior probability.In order to apply Theorem 1.4 the underlying hypothesis class H must be assumedto have low VC dimension in such a way that no signi�cant impact is made onthe margin. This could be achieved by removing high error functions. Note thatthe functions would have to be removed, in other words given prior probability 0.Hence, the bound obtained would be no better than a standard VC bound in theoriginal space. A situation where this approach and analysis might be advantageousis where the consistent hypothesis fy is not included in H. This will reduce themargin by approximately afy2�` = (1 + C)�`, since Bfy = ` (see equation (1.1)).The approximation arises from not adjusting the normalisation to take account ofthe missing hypothesis and is thus a very small error.These applications are unable to take into account the prior distribution in a exibleway. In the next section we will present an application of the original approach toshow how this can take advantage of a bene�cial prior.
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1.3 Bayesian Classi�ers as Large Margin Hyperplanes 111.3.2 The e�ect of the prior distribution on the margin boundWe will consider the situation where the prior decays arithmetically with the errorNonneu-tralprior shells. In other words the prior on hypotheses with error r is multiplied by �r forsome � < 1. We �rst repeat the calculations of Theorem 1.3 for this case. Thesum (1.2) must take into account that in this caseXr error shell Pj = �r(1 + �)�`�r̀�:The factor (1 + �)` cancels and the factor � appears wherever C appears, that isXj2J ajPj�j = 1(1 + �)` X̀r=0ACr�r�r̀� r̀ ;while A(1 + �)` X̀r=0Cr�r�r̀� = 1:Hence, we have shown the following generalization of Theorem 1.3.Theorem 1.6Under the above assumptions of a bene�cial prior the margin of the Bayes Classi�erF (x) 2 C(H) is given by 1� 2�C1 + �C :We must further compute the value of kak for the posterior functional in the priordescribed above. The integral in this case is given bykak2 =Xj2J a2jPj = X̀k=0A2C2r �r(1 + �)`�r̀�= (1 + �)`(1 + �C2)`(1 + �C)2` :We can now combine this value with the margin computed above to give the valueof the fat shattering dimension from Theorem 1.2 at the appropriate scale. Thisbound on the e�ective VC dimension becomes,g(�; C) := (1 + �)`(1 + �C2)`(1 + �C)2`�2(1� �C)2 ;where to keep the formulae simple we have ignored the factor of 64 arising for thescale =8 in Theorem 1.1.
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12 Bayesian Voting Schemes as Large Margin Classi�ersIn the rest of this section we will consider how this function behaves for variouschoices of C and �, showing that for careful choices of C, and values of � close to1 can give dimensions signi�cantly lower than `, hence give good bounds on thegeneralization error. The analysis shows that using this approach it is possible tomake use of a bene�cial prior. At the same time it suggests a value of C most likelyto take advantage of such a prior.First consider the case when � = 1, that is the uninformative prior considered inSection 1.3.1. Hence, g(1; C) = 2`(1 +C2)`(1 +C)2`�2(1�C)2 :The parameter C can be chosen in the range [0; 1). However, g(1; C) �!C!1 1,while g(1; 0) = 2`. Clearly, the optimal choice of C needs to be determined if thebound is to be useful. A routine calculation establishes that the value of C whichminimises the expression is, C0 = (` �p`� 1)=(`� 2); which gives a value ofg(1; C0) = `�1 + 1`� 1�`�1 � e`:This con�rms that the e�ective VC dimension is not increased excessively providedC is chosen around 1 � 2=p`, though of course the bound is trivial in this case.The analysis so far can be viewed as a `sanity check', demonstrating that despitesigni�cantly increasing the computational power of the hypothesis class (by movingto C(H)), the increase in the e�ective VC dimension has been very slight. In orderto see how the prior can produce a non-trivial bound, we will study the e�ect ofallowing � to move slightly below 1. We will perform a Taylor expansion about� = 1.Let C0 = �C and the functiong1(�; C 0) := g(�; C 0=�) = (1 + �)`(1 + C02=�)`(1 + C0)2`�2(1� C0)2 :Note that @g1(�;C0)@C0 ���=1 = 0, and so @g(�;C0)@� = @g1(�;C0)@� + @g1(�;C0)@C0 dC0d� . Hence,@g(�; C0)@� ���=1 = @g1(�; C0)@� ���=1:Di�erentiating gives @g1(�; C 0)@� ���=1 = `2`�1(1 +C 02)`�1(1 + C 0)2`�3(1 �C 0)We can now perform a Taylor series expansion of g(�; C0) about � = 1 to obtaing(�; C0) � e`(1+ (�� 1)p`� 1), where we have omitted some routine calculations.
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1.4 Conclusions 13Hence, the bound on the generalization error is (ignoring log factors)~O(1� (1� �)p` � 1);so that to obtain generalization error of order �, we needE�ectofprior � � 1� 1� �=(e log `)p` � 1 :Hence, for values of � very close to 1, the prior can result in improved generalizationproperties. Note that the value of C used in the calculations is unchanged so thatwe can take advantage of the prior without any �ne tuning of the system. Wesimply observe the margin, and the value of kak on the Monte-Carlo generatedset of hypotheses, to recover a bound on the e�ective VC dimension and hence anestimate of the generalization error.1.4 ConclusionsOur theoretical analysis shows that Bayesian Classi�ers of the kind described in [9]can be regarded as large margin hyperplanes in a Hilbert space, and consequentlycan be analysed with the tools of data-dependent VC theory.The non-linear mapping from the input space to the Hilbert space is given by theinitial choice of network architecture, while the coordinates of the hyperplane aregiven by the Bayes' posterior and hence depend both on the training data and onthe chosen prior.The choice of the prior turns out to be a crucial one, since we have shown how evenslightly correctly guessed priors can translate into lower e�ective VC dimensionsof the resulting classi�er (and this - coupled with high training accuracy - ensuresgood generalization). But even with a totally uninformative prior there is at leastno harm in using these apparently overcomplex systems.The main theoretical result of this paper is to co-locate Bayesian Classi�ers in theUni�edframe-work same category of other systems { namely Support Vector Machines and Adaboost{ which were motivated by very di�erent considerations but which exhibited verysimilar behaviours (e.g. with respect to over�tting). A uni�ed analysis of the threesystems is now possible, which can make potentially fruitful comparisons and cross-fertilizations much easier.Experimental results con�rming the predictions of the model on some benchmarkproblems can be found in [5].
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