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Abstract

Support Vector Machines (SVMs) have proven to be highly effective
for learning many real world datasets but have failed to establish them-
selves as common machine learning tools. This is partly due to the
fact that they are not easy to implement, and their standard imple-
mentation requires the use of optimization packages. In this paper
we present simple iterative algorithms for training support vector ma-
chines which are easy to implement and guaranteed to converge to the
optimal solution. Furthermore we provide a technique for automati-
cally finding the kernel parameter and best learning rate. Extensive
experiments with real datasets are provided showing that these al-
gorithms compare well with standard implementations of SVMs in
terms of generalisation accuracy and computational cost, while being
significantly simpler to implement.



1 Introduction

Since their introduction by Vapnik and coworkers [38, 7], Support Vector
Machines (SVMs) have been successfully applied to a number of real world
problems such as handwritten character and digit recognition [27, 6, 17, 38],
face detection [22] text categorisation [36] and object detection in machine
vision [25]. They manifest an impressive resistance to overfitting, a fea-
ture which can be explained using VC theory [37, 38], and their training is
performed by maximising a convex functional, which means that there is a
unique solution that can always be found in polynomial time. For simple
binary classification tasks they work by mapping the training points into a
high-dimensional feature space where a separating hyperplane can be found
which has a maximal distance from the two classes of labelled points. This
minimizes the effective VC dimension of the system enforcing good gener-
alization [37, 38]. The task of finding the maximal margin hyperplane is
reduced to a quadratic programming (QP) problem which can be solved us-
ing optimization routines.

Despite a number of practical successes, SVMs have not yet become es-
tablished as a standard tool in machine learning, whereas systems such as
neural networks and decision trees became widely used within a few years
of their introduction. The reason for this is the difficulty of implementing
such systems since solution of a complex quadratic programming problem is
required. Thus the editors of [30] note: “Despite the fact that the perceptron
was invented in the sixties, interest in feed-forward neural networks only took
off in the eighties, due largely to a new training algorithm. Backpropagation
is conceptually simple and, perhaps more important, easy to implement. We
believe that research into Support Vector Machines has been similarly ham-
pered by the fact that training requires solving a quadratic programming
problem which is a notoriously difficult business”. Furthermore, standard
QP programming routines have substantial memory resource requirements
and large datasets require additional techniques such as chunking (breaking
the QP problem into a series of simpler QP tasks) [23].

In this paper we address these problems by proposing extremely sim-
ple training algorithms for SVMs which are sufficiently fast for practical
application. Indeed, for most datasets investigated learning times scale
sub-quadratically with the number of patterns, and the amount of mem-
ory required is extremely small since the algorithms are inherently online



and chunking is not necessary. These algorithms can be derived from first
principles and come with theoretical guarantees of fast convergence to the
optimal solution. Furthermore, we show that it is possible to perform auto-
matic model selection without the use of a validation set.

Other recent results [24] similarly address the problem of speed (time
complexity) and implementational simplicity. Such systems are extremely
interesting, and we will compare these algorithms with the procedures out-
lined here at the end of this paper. Furthermore, other algorithms have
recently been proposed which merge perceptron-like rules with kernel meth-
ods, as proposed here, though using very different types of architecture[12]

The paper is organized as follows. In section 2 we present an overview of
Support Vector Machines, in section 3 we introduce the new algorithms and
in section 4 we provide an extensive experimental study for real and artificial
datasets.

2 Support Vector Machines

Support Vector machines implement complex decision rules by using a non-
linear function ¢ to map training points to a high-dimensional feature space
where the labelled points are separable. A separating hyperplane is found
which maximizes the distance between itself and the nearest training points
(this distance is called the margin). The hyperplane is, in fact, represented
as a linear combination of the training points. Theoretical results exist from
VC theory [38, 31], which guarantee that the solution found will have high
predictive power, in the sense that it minimizes an upper bound on the test
error (a survey covering the generalization power of SV machines can be
found in [3]).

Let S = {(z1,v1), (®2,%2), ., (Tm, Ym)} be a sample of points z; € X
labelled by y; € {—1,+1}. Consider a hyperplane defined by (w, ), where
w is a weight vector and 6 a bias. Let S = (X,Y") be a labeled sample of
inputs from X that has empty intersection with the hyperplane, so that:

72&1&1}1{1|(x,w>+9|>0

This distance is the margin of the hyperplane w with respect to the sample
S. We also say that the hyperplane is in canonical form with respect to the
sample if:



leél)r(1|(:c,w> +0]=1
It is possible to prove that for canonical hyperplanes:

v =1/[lwll2

The following theorem holds:

Theorem|31]: Suppose inputs are drawn independently according to
a distribution whose support is contained in a ball in ™ centered at the
origin, of radius R. If we succeed in correctly classifying m such inputs by
a canonical hyperplane with ||w|| = 1/v and |§| < R, then with confidence
1 — 6 the generalization error will be bounded from above by

elm,) = - (k108 (S 108 32m) + 108 (557 )

where k = |57TR?/~%].

This quantity which upper bounds the generalization error does not de-
pend on the dimension of the input space, and this is why SVMs can use
high dimensional spaces without overfitting the data. Two main ideas (data-
dependent representations and kernels) make it possible to efficiently deal
with high dimensional feature spaces. The first is based on the identity:

; w;pi(x) + 60 = g: apd(zy)p(x) + 0

which provides an alternative, data-dependent, representation of the hy-
pothesis itself, and the other is the use of kernels:

(', 2) = Y gu(a') ()
which give the dot product of the images of two vectors in the feature

space [1]. Appropriate Kernels implicitly describing this mapping must sat-
isfy Mercer’s condition [38], i.e. for any g(z) for which:

/g(x)zdx < 0o

4



then:
/K(x,x')g(x)g(x')dxdx' >0
A common choice are Radial Basis Functions (RBF) such as Gaussians:
K(z,2') = o lle—a'|l?/20°
or polynomial kernels:
K(z,2') = ((z,2') + 1)

which always satisfy such conditions. The tunable parameter in the kernel
controls model complexity and it is usually chosen by means of a validation
set. After mapping to feature space the next step is to find the maximal
margin hyperplane. A separating hyperplane can be written:

(w-x)+60=0

For points labelled with y; = 4+1 maximising the expression y;(w - x +
0)/||w||2 will maximise the margin. Implicitly fixing the scale of the numer-
ator with:

yi(w-x+6)>1

the task is therefore to minimise ||w||?>. Thus the maximal margin can be
found by maximising the Lagrangian:

L=%(w-w)—zmlozi(yi[w-x-i-ﬁ]—l)

The derivatives with respect to § and w give:
m m
Y iy =0 W= yiX
i=1 i=1

Substituting the latter equation in the Lagrangian gives the dual repre-
sentation of the Lagrangian:



m 1 m
L= Z o — 5 Z Oéiajyiyj[((xi’ xj) (1)
i=1

ij=1

which must be maximised with respect to the a; subject to the constraint:
m
a; >0 > iy =0
i=1

The «; are Lagrange multipliers, one for each training point. When the
maximal margin hyperplane is found, only points which lie closest to the
hyperplane have a; > 0 and these points are called support vectors. All other
points have a; = 0. This means that the representation of the hypothesis is
given only by those points which lie closest to the hyperplane and they are
the most informative patterns in the data. Their number can also be used
to give an independent bound on the reliability of the hypothesis [3]. The
resulting decision function can be written as:

f(x) = sign (Z yiod K (z, ;) + 0)

1€SV

where af is the solution of the constrained maximization problem and SV
represents the indexes of the support vectors.

When the data are not linearly separable in the feature space, a more
general setting can be used, where a certain number of training points are
allowed to lie close to the decision boundary or even to be misclassified. For
noisy datsets it is also beneficial to allow some misclassified points. This
approach, using a soft margin, gives rise to a slightly different optimization
problem, and it is possible to prove that this is equivalent to placing an
upper bound on the maximum size of the parameters «; mentioned above.
The problem is again to maximize Lagrangian (1) but with the constraints:

where C' controls the trade-off between training error and generalisation
ability and its value is chosen by means of a validation set. C' and the kernel
parameter are the only two parameters which have to be hand-tuned while
training SVMs.



Such a scheme has found to be very resistent to overfitting in many clas-
sification problems [27, 7, 38]. However, training these systems is non-trivial
and computationally expensive requiring the use of optimization packages.
In the next section we will present some simple training algorithms for SVMs
which are guaranteed to deliver the optimal solution and which can be easily
implemented.

3 Simple Training Algorithms for SV Machines

The most obvious way of maximizing a concave Lagrangian under linear
constraints is gradient ascent. The lagrangian to be maximised is:

1

L{a) = ai — 2 > iy K (2, 25) = XY ouyi

i irj i

where the last term implements the constraint condition >, a;y; = 0. We

will maximise this Lagrangian using stochastic gradient ascent based on the
derivative of the Lagrangian, thus:

oL
dbay, = Uaﬁ% =1 (1 — Yg Z%‘%‘K(xk, T;) — Ayk) (2)
J

Furthermore, we will enforce the constraints «;; > 0 by setting a; — 0 for
those a;’s which would become negative. Let us consider the change in this
Lagrangian due to an updating ay — ay + 6ay, for a particular pattern k:

0L = L(Ozk + 60%) - L(Oék) (3)

= bay (1 — Ui Z%‘%‘K (zh, 5) — Ayk) - %(50%)21( (T, 71)  (4)

J

= |3 Bt oy )

Then it is apparent that 6L > 0 provided:

2> nK(zg,z5) >0



For a Gaussian kernel:

2
K(:l?l,:r]) = exp (—_H:EZ 'TJH )

202
K (xy,zx) = 1 and consequently the algorithm converges to the maximum

of L provided:

2>n1n1>0

On the other hand for polynomial kernels of the form:

K (zi, ;) = ((w; - z;) + 1)

the bound depends on the training data and it is determined from the L,
norm for each pattern:

2

— > >0
(el + 1)

If we substitute (2) in (5) we obtain:

K(xk; Tk

2
oL = (77 — %Uﬂ (1 — Yk Z%‘%‘K(xk, 1’3‘) - Ayk)
J

hence, if a is not set to zero during the current ag-update, then we can
optimise 6L with respect to n giving:

1
K(zg, vy)

In general, the optimal value for the learning rate 7 is pattern dependent.
For example, for polynomial kernels:

1
d
(]l + 1)

o

M =
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However, for Gaussian kernels:

2
1
oL = <77 - 5772> (1 — kY oy K (zp, ;) — )‘yk)
J

and consequently the optimum occurs when 1° = 1. For the KA algorithm
(described in the next section) certain «y will be set to zero during the
learning phase and hence the appropriate 7 is the value satisfying oy +n(1 —
Yk >; oy K (x;, 7)) = 0 rather than n°. Consequently, if the large majority
of patterns are support vectors the optimal choice for 7 is indeed 1. This is
illustrated in Fig. 1 for learning the mirror symmetry problem (see section
4.1). This Figure shows the number of epochs required to achieve a margin
of 0.99 (vertical axis) versus 7 (horizontal axis) with the same data. The
graph clearly illustrates the fact that convergence is only achieved on the
range 2 > 1 > 0 (oscillations occur outside this region) and the best choice
for n is n = 1. If the target concept is sparse and many «y are set to zero
then the best choice for 7 is less than 1. This is illustrated in Fig. 2 for
learning sonar classification data (see section 4.2).

3.1 The KA (Kernel-Adatron) Algorithm

In this section we present an algorithm which uses the above gradient as-
cent routine to maximise the margin in Feature Space. The algorithm we
will consider is conceptually similar to a perceptron-like algorithm called
the Adatron [2]. Since the proposed algorithm recasts the Adatron in the
Feature Space of Support Vector Machines we have therefore called it the
Kernel-Adatron, or KA algorithm. Dropping the condition 7", a;y; = 0 is
equivalent to forcing the hyperplane to pass through the origin in Feature
Space, a choice that can be motivated by the treatment of semi-parametric
models provided in [28]. Given that Feature Space is high-dimensional, this
is not a particular restriction for many problems and, indeed, generalisation
can be little affected as we illustrate with some examples in section 4. Thus
we will begin by outlining the KA algorithm for training an SVM without a
bias using gradient ascent in a-space (this algorithm was developed jointly
with Thilo Friess [11]):
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Figure 1: The number of epochs (y-axis) required to reach a margin of 0.99
versus 7 (z-axis) for the mirror symmetry problem with 30 inputs and m =
200 training examples (Gaussian kernels with o = 7.0).
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Figure 2: The number of epochs (y-axis) required to reach a margin of 0.99

versus 7 (z-axis) for the sonar classification problem (Gaussian kernels with
o =1.0).
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KA algorithm without bias
1. Initialise a? = 0.
2. For ¢+ = 1, m execute steps 3 and4 below.

3. For labelled points (z;, y;) calculate:

m
zi =y oy K (2, )
j=1

N

. Calculate daf = n(1 — zy;):
4.1. If (ol 4 6al) <0 then ol =0
4.2. If (o} + 6at) > 0 then of «— of + 6a

5. If a maximum number of iterations is exceeded or the margin:

=—| min (2;)— max (%
773 ({i?/i:+1}( ) {i\yi=—1}( )>

is approximately 1 then stop, otherwise return to 2 for the next epoch t.

To reduce the learning time it is best to evaluate the kernel matrix
K (z;,7;) during initialisation in step 1. From the discussion at the start
of this section we notice that an increase in L occurs irrespective of the
choice of A\ except when éa; = 0. Furthermore, the final A-value is the bias
since, from the stationarity condition éay = 0 when the maximum has been
found:

U=y > oy K (wr, 75) — Mgk = Un(yn — D oy K (2p, 25) = A) = 0
i i

consequently the bias can be found by a subprocess involving iterative
adjustment of the A\ based on the gradient of L with respect to A:

A=\ VZaf_lyi

11



at each epoch t. How do we find a good value of the parameter v to
ensure fast convergence? Given that the Lagrangian is concave with a unique
solution satisfying >, a;; = 0 we can quickly find A\ using a variable v
parameter derived from the secant method, for example. Thus if ¢ labels the
epoch and w' = Y5, aly;, the algorithm is as follows:

KA algorithm with bias
1. Initialise of = 0.

2. For t =1, 1,.« execute steps 3 to 8 below.

3. If t =0 then
A=

elseif t = 1 then
M= —p

else

A=\t (A“l—)\t*?)

PR Gy =
endif (see comment below).

4. For 1 = 1, m execute steps 5 and 6 below.

5. For labelled points (z;, y;) calculate:
2= oy K (i, ;)
i=1

6. Calculate §af = n(1 — zy; — A'y;):

6.1. If (o} +6al) <0 then ol =0

6.2 If (a! + dal) > 0 then af + ol + dal
7. Calculate w' = 32; aly;

8. If a maximum number of iterations is exceeded or the margin:

= — min (z;) — max (z;
773 ({iyi—ﬂ}( 2 {i\yi:fl}( Z)>

12



is approximately 1 then stop, otherwise return to 2 for the next ¢.

The decision function is then:

F(z) = sign ( S ik (s, ) +x>

1ESV

where @; and X are the last values of o and A found during the final
iteration £ = ty.. In step 3 an error trap is needed to avoid divergence if
wt — w2 = 0. Thus the magnitude of ¢ = w'™! — w2 should be lower
bounded by a small number or v upper bounded. Convergence of the secant
method is not affected by the choice of u and hence this parameter can be
set at will (e.g. 1 = 0.1). The method is robust and gives exactly the same

solution as that found by standard Quadratic Programming routines.

3.2 Soft Margins

The soft margin variation of Support Vector Machines, designed to tolerate
training errors, is equivalent to solving the same optimization problem with
the additional constraint that all the Lagrange multipliers lie in a box of side
C, where C' is usually chosen by means of a validation set. This can be done
by simply adding the line:

if (a; + 6a;) > C then o; =C

immediately following the updating rule in the above algorithm. Given
the concavity of the functional, the algorithm is still guaranteed to converge
to the solution. When a soft margin is used the margin, v is evaluated using
those patterns for which 0 < o; < C' i.e.:

72 <{i|yizrfll,%i<0}(zi) - {iyizril%iw}(zi))

13



3.3 Theoretical Analysis of KA

The Kernel-Adatron algorithm is theoretically guaranteed to converge in a
finite number of steps to the maximal margin, provided that the data are
linearly separable in feature space with a margin v > 0. This can be easily
shown in two steps, by noting that: (1) all the fixed points of KA are Kuhn-
Tucker points and vice versa, and (2) KA always converges to a (unique)
fixed point.

The first observation is trivially verified by substituting the Kuhn-Tucker
conditions for a maximal margin:

o > 0&vy=1
a = 0& 9 >1

into the KA updating rule from which it follows that the optimal margin is
a fixed point. Conversely, by imposing 6a; = 0 Vi the Kuhn-Tucker conditions
are obtained.

Convergence to a fixed point is apparent from the concavity of L, or
alternatively by noting firstly that L is upper bounded by the quantity:

o 1
L(O[ ) - 272

where a° are the lagrange multipliers of the optimal hyperplane [38] and,
secondly, that the lagrangian increases monotonically at each update, pro-
vided a suitable value of 7 is chosen.

The rate of convergence of the Adatron was also studied in by Anlauf
and Biehl [2] and found to be exponentially fast in the number of epochs. In
section 4 we give experimental results suggesting that this is also the case
for KA.

3.4 Adaptive Kernels

The choice of the kernel-parameter determines the nature of the nonlinear
mapping to the high dimensional feature space, which in the case of gaussian
kernels is infinite-dimensional. In is well known from experimentation that,
provided the margin is maximized, the kernel-parameter o controls the model

14



complexity, in the sense that a too rich a kernel-space will let the machine
overfit, and too poor a kernel-space will not be sufficient to separate the
points in feature space or provide an efficient solution (see Fig. 3).

Figure 3: Generalisation error (y-axis) as a function of o (z-axis) for the
mirror symmetry problem (for Gaussian kernels with zero training error and
maximal margin, m = 200, n = 30 and averaged over 10° unseen examples
including repeats)

The following theorem, which we prove elsewhere [9], states that the mar-
gin of the optimal hyperplane is a smooth function of the kernel parameter
and so is the upper bound on the generalisation error.

Theorem [8, 9] : The margin v of SV machines depends continuously
on the kernel parameter o.

This means that, when the margin is optimal, small variations in the
kernel parameter will produce small variations in the margin (and in the
bound on the generalisation error), or v, & V,15,. After updating the o, the
system will still be in a sub-optimal position. Given that Kernel-Adatron can
be regarded as a gradient ascent algorithm that maximizes the Kuhn-Tucker
Lagrangian, little computational effort will be needed to bring the system
back to a maximal margin position, starting from such a sub-optimal state.

For example, for Gaussian kernels this suggests the following strategy:

15



Kernel Selection Procedure

1. Initialize o to a very small value
2. Start the KA training procedure described in section 2.

3. If the margin is maximized, then
3.1. Compute the VC bound (or observe the validation error)
3.2. Increase the kernel parameter: o <« o + do else goto step 2

4. Stop when a predetermined value of o is reached.

Experimental results presented elsewhere [9, 8] indicate that this proce-
dure is fast and gives a good estimate for the kernel parameter.

4 Experimental Results

We have evaluated the performance of the KA algorithm on a number of stan-
dard classification datasets, both artificial and real. The artificial datasets
include mirror symmetry [19], n-parity [19] and the two-spirals problem [11].
The real world datasets include a sonar classification problem [14], the Wis-
consin breast cancer dataset [35] and a database of handwritten digits col-
lected by the US Postal Service [17]. As examples of the improvements with
generalisation ability which can be achieved with a soft margin we will also
describe experiments with the ionosphere and Pima Indians diabetes datasets
from the UCI Repository [4]. Though we have successfully used other ker-
nels with KA we will only describe experiments using Gaussian kernels in
this section. We will predominantly use the KA algorithm with bias though
we add some comments on the simpler version without bias.

4.1 Artificial datasets: mirror symmetry, n-parity and
the two-spirals problem

In the mirror symmetry problem [19] the output y is a 1 if the input pattern
x (with components from {-1, +1}) is exactly symmetrical about its centre,
otherwise the output is a —1. For randomly constructed input strings the
output would be a —1 with a high probability. Consequently the labels +1
are selected with a 50% probability and the first half of the input string is

16



randomly constructed from components in {-1, +1} (both selected with a
50% probability) and the second half of the string is symmetrical or random
depending on the target value given. Generalisation was evaluated using
a test set drawn from the same distribution (eliminating any instances for
which the input string is identical to a member of the training set). A plot of
the generalisation error versus o was given earlier (Fig. 3) and in Fig. 4 and
Fig. 5 we show the evolution of the margin and generalisation error versus
number of epochs for learning with Gaussian kernels with ¢ = 5.0.

For neural networks, mirror symmetry is a non-linearly separable problem
though a solution only requiring two hidden nodes is known [19]. Similar hard
tasks for a neural network are n-parity and the two-spirals problem where the
labelled points of each class are heavily intermeshed. As we report elsewhere
[11] it is straightforward to solve these problems using the KA algorithm.
For example, for n-parity a solution was found in 1 epoch forn =3 ton =6
though it took several epochs to maximise the margin [11].

4.2 Real-life datasets: Sonar classification, Wisconsin
breast cancer dataset and the USPS dataset.

Sonar Classification: The sonar classification problem of Gorman and
Sejnowski [14] consists of 208 instances each with 60 attributes (excluding
the labels) representing returns from a roughly cylindrical rock or a metal
cylinder. This dataset is equally divided into training and test sets. For
the aspect-angle dependent dataset these authors trained a standard back-
propagation neural network with 60 inputs and 2 output nodes. Experiments
were performed with up to 24 hidden nodes and each neural network was
trained for 300 epochs through the training set. The best result was achieved
with 12 hidden nodes and a generalisation performance of 90.4%.

For the KA algorithm a plot of o against generalisation error gives a
best generalisation performance of 92.3% by comparison. Figure 6 illustrates
the margin evolution for Gaussian kernels with ¢ = 1.0 and a learning rate
n = 1.0. We also plot the generalisation error versus number of epochs (Fig.
7) and evolution of the bias (Fig. 8) in this instance. Interestingly, the bias
does not appear to be of benefit for this problem since it was possible to
achieve a generalisation performance of 95.2% without the bias [11].

The Wisconsin breast cancer dataset: The Wisconsin breast cancer

17
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Figure 4: Margin evolution (y-axis) against number of epochs (z-axis) for
the mirror symmetry problem. Gaussian kernels were used with ¢ = 5.0,
n=1.0 and p = 5.0.
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Figure 5: Generalisation error (y-axis) against number of epochs (z-axis) for
the mirror symmetry problem. Gaussian kernels were used with ¢ = 5.0,
n=1.0and p = 5.0.
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Figure 6: Margin evolution (y-axis) against number of epochs (z-axis) for
the sonar classification problem. Gaussian kernels were used with ¢ = 1.0,
n=1.0 and p = 5.0.
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Figure 7: Generalisation error (y-axis) against number of epochs (z-axis) for
the sonar classification problem. Gaussian kernels were used with o = 1.0,
n=1.0and p = 5.0.
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Figure 8: Bias (y-axis) against numbdf of epochs (z-axis) for the sonar clas-
sification problem. Gaussian kernels were used with ¢ = 1.0, n = 1.0 and
1w =95.0.



dataset contains 699 patterns with 10 attributes for a binary classification
task (the tumour is malignant or benign). This dataset has been extensively
studied by other authors. CART gives a generalisation of 94.2%, an RBF
neural network gave 95.9%, a linear discriminant method gave 96.0% and a
multi-layered neural network (trained via Back-Propagation) 96.6% (all the
results have been obtained using 10-fold cross-validation [35]). Our optimal
test performance was 98.5% by comparison though our pre-processing and
handling of the missing 16 missing values may be different from the methods
used in previous studies. For purposes of illustration we plot the evolution
of the margin, generalisation error and bias for one split of the dataset in
Figures 9, 10 and 11 respectively.

The USPS dataset: The benchmarking of SVMs has traditionally been
performed using the database of handwritten digits for US Postal Codes
[17, 29]. This dataset consists of a training set of 7,291 examples and a
test set of 2,007. Each digit is given by a 16 x 16 vector with components
which lie in the range —1 to 1. In this experiment we have performed two-
class classification i.e. separating a particular digit from the others. To find
suitable values for ¢ the training set was split into a smaller training set of
6,000 examples and a validation set of 1,291. The best value of o was found
by evaluating performance on the validation set across the range (1,10). The
full training set of 7,291 was then used with the selected value of o to train
the system to classify each digit.

The results are shown in the table below where the last column shows
the best value of o found from the validation study. The other columns
show the number of errors on the test set of 2,007 examples for the KA
algorithm (without bias), an RBF neural network and a Support Vector
Machine (SVM/KA with bias) [29].
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Figure 9: Margin evolution (y-axis) against number of epochs (z-axis) for the
Wisconsin breast cancer dataset. Gaussian kernels were used with o = 3.0,
n = 1.0 and px = 50.0.
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Figure 10: Generalisation error (y-axis) against number of epochs (z-axis)
for the Wisconsin breast cancer dataset. Gaussian kernels were used with
o =3.0,7=1.0 and p = 50.0.
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Figure 11: Bias (y-axis) against numBer of epochs (z-axis) for the Wisconsin
breast cancer dataset. Gaussian kernels were used with ¢ = 3.0, n = 1.0 and
w1 = 50.0.



Digit | RBF | SVM | KA | ¢

0 20 16 13 | 1.8
1 16 8 10 | 1.6
2 43 25 21 | 24
3 38 19 24 120
4 46 29 26 | 4.0
5 31 23 19 | 1.8
6 15 14 15 |24
7 18 12 11 | 2.8
8 37 25 26 | 3.2
9 26 16 14 | 1.6

The absence of a bias does not appear to make a difference for this partic-
ular dataset and generally SVMs with Gaussian kernels compare favourably
with an RBF network. We also note that chunking was not required because
the online nature of KA means only one pattern is considered at a time.
This is an advantage over QP algorithms which have substantial memory
requirements and which therefore require chunking for large datasets.

4.3 Use of a Soft Margin: the Ionosphere and Pima
Indians Diabetes Datasets

The ionosphere dataset [32] from the UCI Repository [4] consists of 200
training and 150 test examples of radar returns from the ionosphere. This
dataset contains some noise and consequently generalisation benefits from
use of a soft margin. To study the effect of the soft margin we determined
the generalisation error using the KA algorithm (with bias) using Gaussian
kernels on the 2D range o = {0.5,2.5} and C' = {1.0,10.0}. Best perfor-
mance was achieved with a non-zero training error of 1% with a correspond-
ing generalisation performance of 96.0% (Figure 12). This exceeds the hard
margin (C' = oo) performance of 92.0% and compares favourably with the
performance for k-nearest neighbours (92.1%) and Quinlan’s C4.5 (94.1%).
However, a comparable performance of 96.0% has been achieved using a
multi-layered neural network trained with the Back Propagation algorithm
(32].

The Pima Indians diabetes dataset from the UCI dataset [33, 4] similarly
illustrates the benefit of a soft margin for noisy datasets. For a training set
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Figure 12: Generalisation error (y-axis) against soft margin parameter C' (z-
axis) for the ionosphere dataset. Gaussian kernels were used with o = 1.5,
n = 1.0 and g = 0.2. The lower (dotted) curve shows the training error
(y-axis) against C' (z-axis).

of 609 and a test set of 161 examples, a minimum in the generalisation error
(0.248) was achieved with C' = 1.02 and o = 11.0 and a training error of
0.244. This is an even more impressive improvement over the hard margin
result of 0.335 for the generalisation error.

4.4 Learning times

To estimate how learning times scale with m we note that each epoch requires
of the order of m? operations. This is evident because there is an outer loop
in m as each «; is updated and an inner loop in m as z; is determined. To
study the scaling with m we therefore approximate the number of operations
with the number of epochs necessary to reach a margin of 0.999 (and changes
in the bias of less than 107%) multiplied by m?. With each incrementation
of the sample size m by 1, performance was averaged over 200 sets of pat-
terns randomly chosen from the data and used as the training set. We have
determined the best fit power law from these plots for the datasets outlined
above and the scaling exponents for m are given in the table below:
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Dataset | Mir. Sym. | Sonar | Cancer | Diab. | Ion. | Digits (av.)
Exponent | 1.7 1.8 2.0 2.1 3.0 | 1.8

Learning times are affected by factors such as the complexity of the
task or amount of noise in the data. For comparatively noise-free datasets
such as sonar classification, digit classification or mirror symmetry (which
is noiseless) learning times scale sub-quadratically with m. On the other
hand, for noisy datasets (particularly the ionosphere dataset) scaling is more
than quadratic. This scaling behaviour is similar to that of the Sequential
Minimal Optimization (SMO) algorithm of Platt [24] which can scale sub-
quadratically with m for readily separable tasks. Both KA and SMO appear
to scale much better than QP routines such as projected conjugate gradient
(PCG) [13] which scales with exponents beyond 2.5 for many datasets [24].
Thus the KA algorithm is expected to be most efficient for large datasets.

5 Conclusion

The implementational complexity of SVMs is one of the factors that has
hampered their uptake as a standard machine learning tool, despite their
clear effectiveness in dealing with overfitting. In this paper we have explic-
itly addressed this problem by proposing simple learning procedures which
require virtually no implementational effort and which are computationally
efficient. Despite their simplicity, our algorithms are guaranteed to converge
to the optimal solution, and theoretical and experimental results suggest
that they scale well with the number of patterns in the data. Furthermore,
our algorithms have paved the way for an automatic model selection method,
which can optimize the kernel parameter with little additional computational
cost[8]. We note that the version of the algorithm without bias often exhibits
good generalisation, at least for the case of Gaussian kernels. Though this
may not be true in general, it does suggest further investigation of the role
of the bias parameter would be useful.

The KA algorithm can also be readily generalised to handle regression
problems. In this case [39] two sets of lagrange multipliers «; and o are
introduced and the KA algorithm generalises with similar gradient ascent
corrections for o; and o] and the requirement «; — 0 and o — 0 if the
positivity of these variables would be violated.
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Other algorithms have been proposed for simplifying the training of SVMs.
Among these, it is interesting to mention the ingenious algorithm SMO, by
John Platt [24], which can be regarded as the extreme limit of chunking. For
SMO it is possible to find an analytic solution to the smallest possible QP
problem. The time complexity of this system is also subquadratic, and the
space complexity (memory requirement) linear. From an implementational
viewpoint SMO is not as simple as KA but it also avoids the use of QP
packages. The availability of simple and fast training algorithms has been
the key to the uptake of other learning systems in the past, and its lack has
been pointed out as one of the causes for the slow uptake of SVMs. We hope
that systems based on online stochastic gradient ascent techniques, such as
KA, will contribute to filling this gap.
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