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1 IntroductionSince their introduction by Vapnik and coworkers [38, 7], Support VectorMachines (SVMs) have been successfully applied to a number of real worldproblems such as handwritten character and digit recognition [27, 6, 17, 38],face detection [22] text categorisation [36] and object detection in machinevision [25]. They manifest an impressive resistance to over�tting, a fea-ture which can be explained using VC theory [37, 38], and their training isperformed by maximising a convex functional, which means that there is aunique solution that can always be found in polynomial time. For simplebinary classi�cation tasks they work by mapping the training points into ahigh-dimensional feature space where a separating hyperplane can be foundwhich has a maximal distance from the two classes of labelled points. Thisminimizes the e�ective VC dimension of the system enforcing good gener-alization [37, 38]. The task of �nding the maximal margin hyperplane isreduced to a quadratic programming (QP) problem which can be solved us-ing optimization routines.Despite a number of practical successes, SVMs have not yet become es-tablished as a standard tool in machine learning, whereas systems such asneural networks and decision trees became widely used within a few yearsof their introduction. The reason for this is the di�culty of implementingsuch systems since solution of a complex quadratic programming problem isrequired. Thus the editors of [30] note: \Despite the fact that the perceptronwas invented in the sixties, interest in feed-forward neural networks only tooko� in the eighties, due largely to a new training algorithm. Backpropagationis conceptually simple and, perhaps more important, easy to implement. Webelieve that research into Support Vector Machines has been similarly ham-pered by the fact that training requires solving a quadratic programmingproblem which is a notoriously di�cult business". Furthermore, standardQP programming routines have substantial memory resource requirementsand large datasets require additional techniques such as chunking (breakingthe QP problem into a series of simpler QP tasks) [23].In this paper we address these problems by proposing extremely sim-ple training algorithms for SVMs which are su�ciently fast for practicalapplication. Indeed, for most datasets investigated learning times scalesub-quadratically with the number of patterns, and the amount of mem-ory required is extremely small since the algorithms are inherently online2



and chunking is not necessary. These algorithms can be derived from �rstprinciples and come with theoretical guarantees of fast convergence to theoptimal solution. Furthermore, we show that it is possible to perform auto-matic model selection without the use of a validation set.Other recent results [24] similarly address the problem of speed (timecomplexity) and implementational simplicity. Such systems are extremelyinteresting, and we will compare these algorithms with the procedures out-lined here at the end of this paper. Furthermore, other algorithms haverecently been proposed which merge perceptron-like rules with kernel meth-ods, as proposed here, though using very di�erent types of architecture[12]The paper is organized as follows. In section 2 we present an overview ofSupport Vector Machines, in section 3 we introduce the new algorithms andin section 4 we provide an extensive experimental study for real and arti�cialdatasets.2 Support Vector MachinesSupport Vector machines implement complex decision rules by using a non-linear function � to map training points to a high-dimensional feature spacewhere the labelled points are separable. A separating hyperplane is foundwhich maximizes the distance between itself and the nearest training points(this distance is called the margin). The hyperplane is, in fact, representedas a linear combination of the training points. Theoretical results exist fromVC theory [38, 31], which guarantee that the solution found will have highpredictive power, in the sense that it minimizes an upper bound on the testerror (a survey covering the generalization power of SV machines can befound in [3]).Let S = f(x1; y1); (x2; y2); :::; (xm; ym)g be a sample of points xi 2 Xlabelled by yi 2 f�1;+1g. Consider a hyperplane de�ned by (w; �), wherew is a weight vector and � a bias. Let S = (X; Y ) be a labeled sample ofinputs from X that has empty intersection with the hyperplane, so that:
 = minx2X jhx; wi+ �j > 0This distance is themargin of the hyperplane w with respect to the sampleS. We also say that the hyperplane is in canonical form with respect to thesample if: 3



minx2X jhx; wi+ �j = 1It is possible to prove that for canonical hyperplanes:
 = 1=jjwjj2The following theorem holds:Theorem[31]: Suppose inputs are drawn independently according toa distribution whose support is contained in a ball in <n centered at theorigin, of radius R. If we succeed in correctly classifying m such inputs bya canonical hyperplane with jjwjj = 1=
 and j�j � R, then with con�dence1� � the generalization error will be bounded from above by�(m; 
) = 1m �k log�8emk � log (32m) + log�8m� ��where k = b577R2=
2c.This quantity which upper bounds the generalization error does not de-pend on the dimension of the input space, and this is why SVMs can usehigh dimensional spaces without over�tting the data. Two main ideas (data-dependent representations and kernels) make it possible to e�ciently dealwith high dimensional feature spaces. The �rst is based on the identity:NXi=1wi�i(x) + � = mXk=1�k�(xk)�(x) + �which provides an alternative, data-dependent, representation of the hy-pothesis itself, and the other is the use of kernels:K(x0; x) =Xi �i(x0)�i(x)which give the dot product of the images of two vectors in the featurespace [1]. Appropriate Kernels implicitly describing this mapping must sat-isfy Mercer's condition [38], i.e. for any g(x) for which:Z g(x)2dx <14



then: Z K(x; x0)g(x)g(x0)dxdx0 � 0A common choice are Radial Basis Functions (RBF) such as Gaussians:K(x; x0) = e�jjx�x0jj2=2�2or polynomial kernels:K(x; x0) = (hx; x0i+ 1)dwhich always satisfy such conditions. The tunable parameter in the kernelcontrols model complexity and it is usually chosen by means of a validationset. After mapping to feature space the next step is to �nd the maximalmargin hyperplane. A separating hyperplane can be written:(w � x) + � = 0For points labelled with yi = �1 maximising the expression yi(w � x +�)=jjwjj2 will maximise the margin. Implicitly �xing the scale of the numer-ator with: yi(w � x + �) � 1the task is therefore to minimise jjwjj2. Thus the maximal margin can befound by maximising the Lagrangian:L = 12 (w �w)� mXi=1 �i (yi [w � x+ �]� 1)The derivatives with respect to � and w give:mXi=1 �iyi = 0 w = mXi=1 �iyixiSubstituting the latter equation in the Lagrangian gives the dual repre-sentation of the Lagrangian: 5



L = mXi=1 �i � 12 mXi;j=1�i�jyiyjK(xi; xj) (1)which must be maximised with respect to the �i subject to the constraint:�i � 0 mXi=1 �iyi = 0The �i are Lagrange multipliers, one for each training point. When themaximal margin hyperplane is found, only points which lie closest to thehyperplane have �i > 0 and these points are called support vectors. All otherpoints have �i = 0. This means that the representation of the hypothesis isgiven only by those points which lie closest to the hyperplane and they arethe most informative patterns in the data. Their number can also be usedto give an independent bound on the reliability of the hypothesis [3]. Theresulting decision function can be written as:f(x) = sign Xi2SV yi�oiK(x; xi) + �!where �oi is the solution of the constrained maximization problem and SVrepresents the indexes of the support vectors.When the data are not linearly separable in the feature space, a moregeneral setting can be used, where a certain number of training points areallowed to lie close to the decision boundary or even to be misclassi�ed. Fornoisy datsets it is also bene�cial to allow some misclassi�ed points. Thisapproach, using a soft margin, gives rise to a slightly di�erent optimizationproblem, and it is possible to prove that this is equivalent to placing anupper bound on the maximum size of the parameters �i mentioned above.The problem is again to maximize Lagrangian (1) but with the constraints:0 � �i � Cwhere C controls the trade-o� between training error and generalisationability and its value is chosen by means of a validation set. C and the kernelparameter are the only two parameters which have to be hand-tuned whiletraining SVMs. 6



Such a scheme has found to be very resistent to over�tting in many clas-si�cation problems [27, 7, 38]. However, training these systems is non-trivialand computationally expensive requiring the use of optimization packages.In the next section we will present some simple training algorithms for SVMswhich are guaranteed to deliver the optimal solution and which can be easilyimplemented.3 Simple Training Algorithms for SVMachinesThe most obvious way of maximizing a concave Lagrangian under linearconstraints is gradient ascent. The lagrangian to be maximised is:L(�) =Xi �i � 12Xi;j �i�jyiyjK (xi; xj)� �Xi �iyiwhere the last term implements the constraint condition Pi �iyi = 0: Wewill maximise this Lagrangian using stochastic gradient ascent based on thederivative of the Lagrangian, thus:��k = � @L@�k = �0@1� ykXj �jyjK(xk; xj)� �yk1A (2)Furthermore, we will enforce the constraints �i � 0 by setting �i ! 0 forthose �i's which would become negative. Let us consider the change in thisLagrangian due to an updating �k ! �k + ��k for a particular pattern k:�L = L(�k + ��k)� L(�k) (3)= ��k 0@1� ykXj �jyjK (xk; xj)� �yk1A� 12(��k)2K (xk; xk) (4)= "1� � K(xk; xk)2 # (��k)2 (5)Then it is apparent that �L > 0 provided:2 > �K(xk; xk) > 07



For a Gaussian kernel:K (xi; xj) = exp �jjxi � xjjj22�2 !K(xk; xk) = 1 and consequently the algorithm converges to the maximumof L provided: 2 > � > 0On the other hand for polynomial kernels of the form:K(xi; xj) = ((xi � xj) + 1)dthe bound depends on the training data and it is determined from the L2norm for each pattern: 2(jjxkjj+ 1)d > �k > 0If we substitute (2) in (5) we obtain:�L =  � � K(xk; xk)2 �2!0@1� ykXj �jyjK(xk; xj)� �yk1A2hence, if �k is not set to zero during the current �k-update, then we canoptimise �L with respect to � giving:� = 1K(xk; xk)In general, the optimal value for the learning rate �o is pattern dependent.For example, for polynomial kernels:�ok = 1(jjxkjj+ 1)d8



However, for Gaussian kernels:�L = �� � 12�2�0@1� ykXj �jyjK(xk; xj)� �yk1A2and consequently the optimum occurs when �o = 1. For the KA algorithm(described in the next section) certain �k will be set to zero during thelearning phase and hence the appropriate � is the value satisfying �k+ �(1�ykPj �jyjK(xj; xk)) = 0 rather than �o. Consequently, if the large majorityof patterns are support vectors the optimal choice for � is indeed 1. This isillustrated in Fig. 1 for learning the mirror symmetry problem (see section4.1). This Figure shows the number of epochs required to achieve a marginof 0.99 (vertical axis) versus � (horizontal axis) with the same data. Thegraph clearly illustrates the fact that convergence is only achieved on therange 2 > � > 0 (oscillations occur outside this region) and the best choicefor � is � = 1. If the target concept is sparse and many �k are set to zerothen the best choice for � is less than 1. This is illustrated in Fig. 2 forlearning sonar classi�cation data (see section 4.2).3.1 The KA (Kernel-Adatron) AlgorithmIn this section we present an algorithm which uses the above gradient as-cent routine to maximise the margin in Feature Space. The algorithm wewill consider is conceptually similar to a perceptron-like algorithm calledthe Adatron [2]. Since the proposed algorithm recasts the Adatron in theFeature Space of Support Vector Machines we have therefore called it theKernel-Adatron, or KA algorithm. Dropping the condition Pmi=1 �iyi = 0 isequivalent to forcing the hyperplane to pass through the origin in FeatureSpace, a choice that can be motivated by the treatment of semi-parametricmodels provided in [28]. Given that Feature Space is high-dimensional, thisis not a particular restriction for many problems and, indeed, generalisationcan be little a�ected as we illustrate with some examples in section 4. Thuswe will begin by outlining the KA algorithm for training an SVM without abias using gradient ascent in �-space (this algorithm was developed jointlywith Thilo Friess [11]): 9



0

100

200

300

400

500

600

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2Figure 1: The number of epochs (y-axis) required to reach a margin of 0.99versus � (x-axis) for the mirror symmetry problem with 30 inputs and m =200 training examples (Gaussian kernels with � = 7:0).
0

200

400

600

800

1000

1200

1400

1600

1800

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8Figure 2: The number of epochs (y-axis) required to reach a margin of 0.99versus � (x-axis) for the sonar classi�cation problem (Gaussian kernels with� = 1:0).
10



KA algorithm without bias1. Initialise �0i = 0:2. For i = 1; m execute steps 3 and4 below.3. For labelled points (xi; yi) calculate:zi = mXj=1�jyjK(xi; xj)4. Calculate ��ti = �(1� ziyi):4.1. If (�ti + ��ti) � 0 then �ti = 04.2. If (�ti + ��ti) > 0 then �ti  �ti + ��ti5. If a maximum number of iterations is exceeded or the margin:
 = 12  minfijyi=+1g(zi)� maxfijyi=�1g(zi)!is approximately 1 then stop, otherwise return to 2 for the next epoch t.To reduce the learning time it is best to evaluate the kernel matrixK(xi; xj) during initialisation in step 1. From the discussion at the startof this section we notice that an increase in L occurs irrespective of thechoice of � except when ��i = 0. Furthermore, the �nal �-value is the biassince, from the stationarity condition ��k = 0 when the maximum has beenfound:1� ykXj �jyjK(xk; xj)� �yk = yk(yk �Xj �jyjK(xk; xj)� �) = 0consequently the bias can be found by a subprocess involving iterativeadjustment of the � based on the gradient of L with respect to �:�t = �t�1 � �Xi �t�1i yi11



at each epoch t. How do we �nd a good value of the parameter � toensure fast convergence? Given that the Lagrangian is concave with a uniquesolution satisfying Pi �iyi = 0 we can quickly �nd � using a variable �parameter derived from the secant method, for example. Thus if t labels theepoch and !t = Pj �tjyj, the algorithm is as follows:KA algorithm with bias1. Initialise �0i = 0:2. For t = 1; tmax execute steps 3 to 8 below.3. If t = 0 then�0 = �elseif t = 1 then�1 = ��else�t = �t�1 � !t�1 � �t�1��t�2!t�1�!t�2�endif (see comment below).4. For i = 1; m execute steps 5 and 6 below.5. For labelled points (xi; yi) calculate:zi = mXj=1�jyjK(xi; xj)6. Calculate ��ti = �(1� ziyi � �tyi):6.1. If (�ti + ��ti) � 0 then �ti = 06.2 If (�ti + ��ti) > 0 then �ti  �ti + ��ti7. Calculate !t = Pj �tjyj8. If a maximum number of iterations is exceeded or the margin:
 = 12  minfijyi=+1g(zi)� maxfijyi=�1g(zi)!12



is approximately 1 then stop, otherwise return to 2 for the next t.The decision function is then:f(x) = sign Xi2SV yi�iK(x; xi) + �!where �i and � are the last values of �ti and �t found during the �naliteration t = tmax: In step 3 an error trap is needed to avoid divergence if!t�1 � !t�2 = 0. Thus the magnitude of � = !t�1 � !t�2 should be lowerbounded by a small number or � upper bounded. Convergence of the secantmethod is not a�ected by the choice of � and hence this parameter can beset at will (e.g. � = 0:1). The method is robust and gives exactly the samesolution as that found by standard Quadratic Programming routines.3.2 Soft MarginsThe soft margin variation of Support Vector Machines, designed to toleratetraining errors, is equivalent to solving the same optimization problem withthe additional constraint that all the Lagrange multipliers lie in a box of sideC, where C is usually chosen by means of a validation set. This can be doneby simply adding the line:if (�i + ��i) > C then �i = Cimmediately following the updating rule in the above algorithm. Giventhe concavity of the functional, the algorithm is still guaranteed to convergeto the solution. When a soft margin is used the margin, 
 is evaluated usingthose patterns for which 0 < �i < C i.e.:
 = 12  minfijyi=+1;�i<Cg(zi)� maxfijyi=�1;�i<Cg(zi)!
13



3.3 Theoretical Analysis of KAThe Kernel-Adatron algorithm is theoretically guaranteed to converge in a�nite number of steps to the maximal margin, provided that the data arelinearly separable in feature space with a margin 
 > 0. This can be easilyshown in two steps, by noting that: (1) all the �xed points of KA are Kuhn-Tucker points and vice versa, and (2) KA always converges to a (unique)�xed point.The �rst observation is trivially veri�ed by substituting the Kuhn-Tuckerconditions for a maximal margin:�i > 0, 
i = 1�i = 0, 
i > 1into the KA updating rule from which it follows that the optimal margin isa �xed point. Conversely, by imposing ��i = 0 8i the Kuhn-Tucker conditionsare obtained.Convergence to a �xed point is apparent from the concavity of L, oralternatively by noting �rstly that L is upper bounded by the quantity:L(�o) = 12
2where �o are the lagrange multipliers of the optimal hyperplane [38] and,secondly, that the lagrangian increases monotonically at each update, pro-vided a suitable value of � is chosen.The rate of convergence of the Adatron was also studied in by Anlaufand Biehl [2] and found to be exponentially fast in the number of epochs. Insection 4 we give experimental results suggesting that this is also the casefor KA.3.4 Adaptive KernelsThe choice of the kernel-parameter determines the nature of the nonlinearmapping to the high dimensional feature space, which in the case of gaussiankernels is in�nite-dimensional. In is well known from experimentation that,provided the margin is maximized, the kernel-parameter � controls the model14



complexity, in the sense that a too rich a kernel-space will let the machineover�t, and too poor a kernel-space will not be su�cient to separate thepoints in feature space or provide an e�cient solution (see Fig. 3).

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

2 3 4 5 6 7 8 9 10Figure 3: Generalisation error (y-axis) as a function of � (x-axis) for themirror symmetry problem (for Gaussian kernels with zero training error andmaximal margin, m = 200, n = 30 and averaged over 105 unseen examplesincluding repeats)The following theorem, which we prove elsewhere [9], states that the mar-gin of the optimal hyperplane is a smooth function of the kernel parameterand so is the upper bound on the generalisation error.Theorem [8, 9] : The margin 
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�+��. After updating the �, thesystem will still be in a sub-optimal position. Given that Kernel-Adatron canbe regarded as a gradient ascent algorithm that maximizes the Kuhn-TuckerLagrangian, little computational e�ort will be needed to bring the systemback to a maximal margin position, starting from such a sub-optimal state.For example, for Gaussian kernels this suggests the following strategy:15



Kernel Selection Procedure1. Initialize � to a very small value2. Start the KA training procedure described in section 2.3. If the margin is maximized, then3.1. Compute the VC bound (or observe the validation error)3.2. Increase the kernel parameter: �  � + �� else goto step 24. Stop when a predetermined value of � is reached.Experimental results presented elsewhere [9, 8] indicate that this proce-dure is fast and gives a good estimate for the kernel parameter.4 Experimental ResultsWe have evaluated the performance of the KA algorithm on a number of stan-dard classi�cation datasets, both arti�cial and real. The arti�cial datasetsinclude mirror symmetry [19], n-parity [19] and the two-spirals problem [11].The real world datasets include a sonar classi�cation problem [14], the Wis-consin breast cancer dataset [35] and a database of handwritten digits col-lected by the US Postal Service [17]. As examples of the improvements withgeneralisation ability which can be achieved with a soft margin we will alsodescribe experiments with the ionosphere and Pima Indians diabetes datasetsfrom the UCI Repository [4]. Though we have successfully used other ker-nels with KA we will only describe experiments using Gaussian kernels inthis section. We will predominantly use the KA algorithm with bias thoughwe add some comments on the simpler version without bias.4.1 Arti�cial datasets: mirror symmetry, n-parity andthe two-spirals problemIn the mirror symmetry problem [19] the output y is a 1 if the input patternx (with components from f-1, +1g) is exactly symmetrical about its centre,otherwise the output is a �1. For randomly constructed input strings theoutput would be a �1 with a high probability. Consequently the labels �1are selected with a 50% probability and the �rst half of the input string is16



randomly constructed from components in f-1, +1g (both selected with a50% probability) and the second half of the string is symmetrical or randomdepending on the target value given. Generalisation was evaluated usinga test set drawn from the same distribution (eliminating any instances forwhich the input string is identical to a member of the training set). A plot ofthe generalisation error versus � was given earlier (Fig. 3) and in Fig. 4 andFig. 5 we show the evolution of the margin and generalisation error versusnumber of epochs for learning with Gaussian kernels with � = 5:0.For neural networks, mirror symmetry is a non-linearly separable problemthough a solution only requiring two hidden nodes is known [19]. Similar hardtasks for a neural network are n-parity and the two-spirals problem where thelabelled points of each class are heavily intermeshed. As we report elsewhere[11] it is straightforward to solve these problems using the KA algorithm.For example, for n-parity a solution was found in 1 epoch for n = 3 to n = 6though it took several epochs to maximise the margin [11].4.2 Real-life datasets: Sonar classi�cation, Wisconsinbreast cancer dataset and the USPS dataset.Sonar Classi�cation: The sonar classi�cation problem of Gorman andSejnowski [14] consists of 208 instances each with 60 attributes (excludingthe labels) representing returns from a roughly cylindrical rock or a metalcylinder. This dataset is equally divided into training and test sets. Forthe aspect-angle dependent dataset these authors trained a standard back-propagation neural network with 60 inputs and 2 output nodes. Experimentswere performed with up to 24 hidden nodes and each neural network wastrained for 300 epochs through the training set. The best result was achievedwith 12 hidden nodes and a generalisation performance of 90.4%.For the KA algorithm a plot of � against generalisation error gives abest generalisation performance of 92.3% by comparison. Figure 6 illustratesthe margin evolution for Gaussian kernels with � = 1:0 and a learning rate� = 1:0. We also plot the generalisation error versus number of epochs (Fig.7) and evolution of the bias (Fig. 8) in this instance. Interestingly, the biasdoes not appear to be of bene�t for this problem since it was possible toachieve a generalisation performance of 95.2% without the bias [11].The Wisconsin breast cancer dataset: The Wisconsin breast cancer17
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dataset contains 699 patterns with 10 attributes for a binary classi�cationtask (the tumour is malignant or benign). This dataset has been extensivelystudied by other authors. CART gives a generalisation of 94.2%, an RBFneural network gave 95.9%, a linear discriminant method gave 96.0% and amulti-layered neural network (trained via Back-Propagation) 96.6% (all theresults have been obtained using 10-fold cross-validation [35]). Our optimaltest performance was 98.5% by comparison though our pre-processing andhandling of the missing 16 missing values may be di�erent from the methodsused in previous studies. For purposes of illustration we plot the evolutionof the margin, generalisation error and bias for one split of the dataset inFigures 9, 10 and 11 respectively.The USPS dataset: The benchmarking of SVMs has traditionally beenperformed using the database of handwritten digits for US Postal Codes[17, 29]. This dataset consists of a training set of 7,291 examples and atest set of 2,007. Each digit is given by a 16 � 16 vector with componentswhich lie in the range �1 to 1. In this experiment we have performed two-class classi�cation i.e. separating a particular digit from the others. To �ndsuitable values for � the training set was split into a smaller training set of6,000 examples and a validation set of 1,291. The best value of � was foundby evaluating performance on the validation set across the range (1; 10). Thefull training set of 7,291 was then used with the selected value of � to trainthe system to classify each digit.The results are shown in the table below where the last column showsthe best value of � found from the validation study. The other columnsshow the number of errors on the test set of 2,007 examples for the KAalgorithm (without bias), an RBF neural network and a Support VectorMachine (SVM/KA with bias) [29].
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Digit RBF SVM KA �0 20 16 13 1.81 16 8 10 1.62 43 25 21 2.43 38 19 24 2.04 46 29 26 4.05 31 23 19 1.86 15 14 15 2.47 18 12 11 2.88 37 25 26 3.29 26 16 14 1.6The absence of a bias does not appear to make a di�erence for this partic-ular dataset and generally SVMs with Gaussian kernels compare favourablywith an RBF network. We also note that chunking was not required becausethe online nature of KA means only one pattern is considered at a time.This is an advantage over QP algorithms which have substantial memoryrequirements and which therefore require chunking for large datasets.4.3 Use of a Soft Margin: the Ionosphere and PimaIndians Diabetes DatasetsThe ionosphere dataset [32] from the UCI Repository [4] consists of 200training and 150 test examples of radar returns from the ionosphere. Thisdataset contains some noise and consequently generalisation bene�ts fromuse of a soft margin. To study the e�ect of the soft margin we determinedthe generalisation error using the KA algorithm (with bias) using Gaussiankernels on the 2D range � = f0:5; 2:5g and C = f1:0; 10:0g. Best perfor-mance was achieved with a non-zero training error of 1% with a correspond-ing generalisation performance of 96.0% (Figure 12). This exceeds the hardmargin (C = 1) performance of 92.0% and compares favourably with theperformance for k-nearest neighbours (92.1%) and Quinlan's C4.5 (94.1%).However, a comparable performance of 96.0% has been achieved using amulti-layered neural network trained with the Back Propagation algorithm[32].The Pima Indians diabetes dataset from the UCI dataset [33, 4] similarlyillustrates the bene�t of a soft margin for noisy datasets. For a training set22
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10 20 30 40 50 60 70 80 90 100Figure 12: Generalisation error (y-axis) against soft margin parameter C (x-axis) for the ionosphere dataset. Gaussian kernels were used with � = 1:5,� = 1:0 and � = 0:2. The lower (dotted) curve shows the training error(y-axis) against C (x-axis).of 609 and a test set of 161 examples, a minimum in the generalisation error(0.248) was achieved with C = 1:02 and � = 11:0 and a training error of0.244. This is an even more impressive improvement over the hard marginresult of 0.335 for the generalisation error.4.4 Learning timesTo estimate how learning times scale withm we note that each epoch requiresof the order of m2 operations. This is evident because there is an outer loopin m as each �i is updated and an inner loop in m as zi is determined. Tostudy the scaling with m we therefore approximate the number of operationswith the number of epochs necessary to reach a margin of 0.999 (and changesin the bias of less than 10�5) multiplied by m2. With each incrementationof the sample size m by 1, performance was averaged over 200 sets of pat-terns randomly chosen from the data and used as the training set. We havedetermined the best �t power law from these plots for the datasets outlinedabove and the scaling exponents for m are given in the table below:23



Dataset Mir. Sym. Sonar Cancer Diab. Ion. Digits (av.)Exponent 1.7 1.8 2.0 2.1 3.0 1.8Learning times are a�ected by factors such as the complexity of thetask or amount of noise in the data. For comparatively noise-free datasetssuch as sonar classi�cation, digit classi�cation or mirror symmetry (whichis noiseless) learning times scale sub-quadratically with m. On the otherhand, for noisy datasets (particularly the ionosphere dataset) scaling is morethan quadratic. This scaling behaviour is similar to that of the SequentialMinimal Optimization (SMO) algorithm of Platt [24] which can scale sub-quadratically with m for readily separable tasks. Both KA and SMO appearto scale much better than QP routines such as projected conjugate gradient(PCG) [13] which scales with exponents beyond 2.5 for many datasets [24].Thus the KA algorithm is expected to be most e�cient for large datasets.5 ConclusionThe implementational complexity of SVMs is one of the factors that hashampered their uptake as a standard machine learning tool, despite theirclear e�ectiveness in dealing with over�tting. In this paper we have explic-itly addressed this problem by proposing simple learning procedures whichrequire virtually no implementational e�ort and which are computationallye�cient. Despite their simplicity, our algorithms are guaranteed to convergeto the optimal solution, and theoretical and experimental results suggestthat they scale well with the number of patterns in the data. Furthermore,our algorithms have paved the way for an automatic model selection method,which can optimize the kernel parameter with little additional computationalcost[8]. We note that the version of the algorithm without bias often exhibitsgood generalisation, at least for the case of Gaussian kernels. Though thismay not be true in general, it does suggest further investigation of the roleof the bias parameter would be useful.The KA algorithm can also be readily generalised to handle regressionproblems. In this case [39] two sets of lagrange multipliers �i and �?i areintroduced and the KA algorithm generalises with similar gradient ascentcorrections for �i and �?i and the requirement �i ! 0 and �?i ! 0 if thepositivity of these variables would be violated.24



Other algorithms have been proposed for simplifying the training of SVMs.Among these, it is interesting to mention the ingenious algorithm SMO, byJohn Platt [24], which can be regarded as the extreme limit of chunking. ForSMO it is possible to �nd an analytic solution to the smallest possible QPproblem. The time complexity of this system is also subquadratic, and thespace complexity (memory requirement) linear. From an implementationalviewpoint SMO is not as simple as KA but it also avoids the use of QPpackages. The availability of simple and fast training algorithms has beenthe key to the uptake of other learning systems in the past, and its lack hasbeen pointed out as one of the causes for the slow uptake of SVMs. We hopethat systems based on online stochastic gradient ascent techniques, such asKA, will contribute to �lling this gap.Acknowledgements: The authors wish to thank Thilo Friess for earliercollaboration on this topic and discussions. We would also like to thank theEPSRC for �nancial support under research grant GR/K70366.References[1] Aizerman, M., Braverman, E., and Rozonoer, L. (1964). TheoreticalFoundations of the Potential Function Method in Pattern RecognitionLearning, Automations and Remote Control, 25:821-837.[2] Anlauf, J.K., and Biehl, M. (1989). The Adatron - An Adaptive Percep-tron Algorithm. Europhysics Letters 10:687-692.[3] Bartlett P., Shawe-Taylor J., (1998). Generalization Performance of Sup-port Vector Machines and Other Pattern Classi�ers. 'Advances in KernelMethods - Support Vector Learning', Bernhard Sch�olkopf, ChristopherJ. C. Burges, and Alexander J. Smola (eds.), MIT Press, Cambridge,USA.[4] Blake, C., Keogh, E. and Merz, C.J. (1998). UCI Repository of ma-chine learning databases[http://www.ics.uci.edu/ mlearn/MLRepository.html]. Irvine, CA: Uni-versity of California, Department of Information and Computer Science.25
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