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Introduction 2AbstractPerceptron Decision Trees (also known as Linear Machine DTs, etc.)are analysed in order that data-dependent Structural Risk Minimizationcan be applied. Data-dependent analysis is performed which indicates thatchoosing the maximal margin hyperplanes at the decision nodes will im-prove the generalization. The analysis uses a novel technique to bound thegeneralization error in terms of the margins at individual nodes. Experi-ments performed on real data sets con�rm the validity of the approach.1 IntroductionNeural network researchers have traditionally tackled classi�cation problems byassembling perceptron or sigmoid nodes into feedforward neural networks. Inthis paper we consider a less common approach where the perceptrons are usedas decision nodes in a decision tree structure. The approach has the advantagethat more e�cient heuristic algorithms exist for these structures, while theadvantages of inherent parallelism are if anything greater as all the perceptronscan be evaluated in parallel, with the path through the tree determined in avery fast post-processing phase.Classical Decision Trees (DTs), like the ones produced by popular packagesas CART [5] or C4.5 [9], partition the input space by means of axis-parallelhyperplanes (one at each internal node), hence inducing categories which arerepresented by (axis-parallel) hyperrectangles in such a space.A natural extension of that hypothesis space is obtained by associating to eachinternal node hyperplanes in general position, hence partitioning the input spaceby means of polygonal (polyhedral) categories.This approach has been pursued by many researchers, often with di�erent mo-tivations, and hence the resulting hypothesis space has been given a numberof di�erent names: multivariate DTs [6], oblique DTs [8], or DTs using linearcombinations of the attributes [5], Linear Machine DTs, Neural Decision Trees[12], Perceptron Trees [13], etc.We will call them Perceptron Decision Trees (PDTs), as they can be regardedas binary trees having a simple perceptron associated to each decision node.Di�erent algorithms for Top-Down induction of PDTs from data have beenproposed, based on di�erent principles, [10], [5], [8],Experimental study of learning by means of PDTs indicates that their perfor-mances are sometimes better than those of traditional decision trees in terms ofgeneralization error, and usually much better in terms of tree-size [8], [6], buton some data set PDTs can be outperformed by normal DTs.We investigate an alternative strategy for improving the generalization of thesestructures, namely placing maximal margin hyperplanes at the decision nodes.By use of a novel analysis we are able to demonstrate that improved general-ization bounds can be obtained for this approach. Experiments con�rm thatsuch a method delivers more accurate trees in all tested databases.



Generalized Decision Trees 32 Generalized Decision TreesDe�nition 2.1 Generalized Decision Trees (GDT).Given a space X and a set of boolean functionsF = ff : X ! f0; 1gg, the class GDT(F) of Generalized Decision Trees over Fare functions which can be implemented using a binary tree where each internalnode is labeled with an element of F , and each leaf is labeled with either 1 or0.To evaluate a particular tree T on input x 2 X , All the boolean functionsassociated to the nodes are assigned the same argument x 2 X , which is theargument of T (x). The values assumed by them determine a unique path fromthe root to a leaf: at each internal node the left (respectively right) edge to achild is taken if the output of the function associated to that internal node is 0(respectively 1). The value of the function at the assignment of a x 2 X is thevalue associated to the leaf reached. We say that input x reaches a node of thetree, if that node is on the evaluation path for x.In the following, the nodes are the internal nodes of the binary tree, and theleaves are its external ones.Examples.� Given X = f0; 1gn, a Boolean Decision Tree (BDT) is a GDT overFBDT = ffi : fi(x) = xi; 8x 2 Xg� Given X = Rn, a C4.5-like Decision Tree (CDT) is a GDT overFCDT = ffi;� : fi;�(x) = 1, xi > �gThis kind of decision trees de�ned on a continuous space are the outputof common algorithms like C4.5 and CART, and we will call them - forshort - CDTs.� Given X = Rn, a Perceptron Decision Tree (PDT) is a GDT overFPDT = fwTx : w 2 Rn+1g;where we have assumed that the inputs have been augmented with a co-ordinate of constant value, hence implementing a thresholded perceptron.3 Data-dependent SRMWe begin with the de�nition of the fat-shattering dimension, which was �rstintroduced in [7], and has been used for several problems in learning since [1,4, 2, 3].



Data-dependent SRM 4De�nition 3.1 Let F be a set of real valued functions. We say that a set ofpoints X is 
-shattered by F relative to r = (rx)x2X if there are real numbersrx indexed by x 2 X such that for all binary vectors b indexed by X, there is afunction fb 2 F satisfyingfb(x)� � rx + 
 if bx = 1� rx � 
 otherwise.The fat shattering dimension fatF of the set F is a function from the positivereal numbers to the integers which maps a value 
 to the size of the largest
-shattered set, if this is �nite, or in�nity otherwise.As an example which will be relevant to the subsequent analysis consider theclass: Flin = fx! hw; xi+ � : kwk = 1g:We quote the following result from [11].Corollary 3.2 [11] Let Flin be restricted to points in a ball of n dimensionsof radius R about the origin and with thresholds j�j � R. ThenfatFlin(
) � minf9R2=
2; n+ 1g+ 1:The following theorem bounds the generalization of a classi�er in terms of thefat shattering dimension rather than the usual Vapnik-Chervonenkis or Pseudodimension.Let T� denote the threshold function at �: T�:R! f0; 1g, T�(�) = 1 i� � > �.For a class of functions F , T�(F) = fT�(f): f 2 Fg.Theorem 3.3 [11] Consider a real valued function class F having fat shat-tering function bounded above by the function afat : R! N which is contin-uous from the right. Fix � 2 R. If a learner correctly classi�es m indepen-dently generated examples z with h = T�(f) 2 T�(F) such that erz(h) = 0 and
 = min jf(xi)��j, then with con�dence 1�� the expected error of h is boundedfrom above by�(m; k; �) = 2m �k log�8emk � log(32m) + log�8m� �� ;where k = afat(
=8).The importance of this theorem is that it can be used to explain how a classi�ercan give better generalization than would be predicted by a classical analysisof its VC dimension. Essentially expanding the margin performs an automaticcapacity control for function classes with small fat shattering dimensions. Thetheorem shows that when a large margin is achieved it is as if we were workingin a lower VC class.We should stress that in general the bounds obtained should be better for caseswhere a large margin is observed, but that a priori there is no guarantee that



Generalisation analysis of the Tree Class 5such a margin will occur. Therefore a priori only the classical VC bound can beused. In view of corresponding lower bounds on the generalization error in termsof the VC dimension, the a posteriori bounds depend on a favourable probabilitydistribution making the actual learning task easier. Hence, the result will onlybe useful if the distribution is favourable or at least not adversarial. In thissense the result is a distribution dependent result, despite not being distributiondependent in the traditional sense that assumptions about the distribution havehad to be made in its derivation. The benign behaviour of the distribution isautomatically estimated in the learning process.In order to perform a similar analysis for perceptron decision trees we willconsider the set of margins obtained at each of the nodes, bounding the gener-alization as a function of these values.4 Generalisation analysis of the Tree ClassIt turns out that bounding the fat shattering dimension of PDT's viewed as realfunction classi�ers is di�cult. We will therefore do a direct generalization anal-ysis mimicking the proof of Theorem 3.3 but taking into account the marginsat each of the decision nodes in the tree.De�nition 4.1 Let (X; d) be a (pseudo-) metric space, let A be a subset of Xand � > 0. A set B � X is an �-cover for A if, for every a 2 A, there existsb 2 B such that d(a; b) < �. The �-covering number of A, Nd(�; A), is theminimal cardinality of an �-cover for A (if there is no such �nite cover then itis de�ned to be 1).We write N (�;F ;x) for the �-covering number of F with respect to the `1pseudo-metric measuring the maximum discrepancy on the sample x. Thesenumbers are bounded in the following Lemma.Lemma 4.2 (Alon et al. [1]) Let F be a class of functions X ! [0; 1] and Pa distribution over X. Choose 0 < � < 1 and let d = fatF (�=4). ThenE (N (�;F ;x))� 2�4m�2 �d log(2em=(d�)) ;where the expectation E is taken w.r.t. a sample x 2 Xm drawn according toPm.Corollary 4.3 [11] Let F be a class of functions X ! [a; b] and P a distri-bution over X. Choose 0 < � < 1 and let d = fatF(�=4). ThenE (N (�;F ;x))� 2�4m(b� a)2�2 �d log(2em(b�a)=(d�)) ;where the expectation E is over samples x 2 Xm drawn according to Pm.



Generalisation analysis of the Tree Class 6We are now in a position to tackle the main lemmawhich bounds the probabilityover a double sample that the �rst half has zero error and the second errorgreater than an appropriate �. Here, error is interpreted as being di�erentlyclassi�ed at the output of tree. In order to simplify the notation in the followinglemmawe assume that the decision tree hasK nodes. We also denote fatFlin(
)by fat(
) to simplify the notation.Lemma 4.4 Let T be a perceptron decision tree with K decision nodes withmargins 
1; 
2; : : : ; 
K at the decision nodes. If it has correctly classi�ed mlabelled examples generated independently according to the unknown (but �xed)distribution P , then we can bound the following probability to be less than �,P 2m(xy: 9 a tree T : T correctly classi�es x;fraction of y misclassi�ed > �(m;K; �)) < �;where �(m;K; �) = 1m (D log(4m) + log 2K� ).where D =PKi=1 ki log(4em=ki) and ki = fat(
i=8).Proof : Using the standard permutation argument, we may �x a sequence xyand bound the probability under the uniform distribution on swapping permu-tations that the sequence satis�es the condition stated. We consider generatingminimal 
k=2-covers Bkxy for each value of k, where 
k = minf
 0 : fat(
0=8) �kg. Suppose that for node i of the tree the margin 
i of the hyperplane wisatis�es fat(
i=8) = ki. We can therefore �nd fi 2 Bkixy whose output values arewithin 
i=2 of wi. We now consider the tree T 0 obtained by replacing the nodeperceptrons wi of T with the corresponding fi. This tree performs the sameclassi�cation function on the �rst half of the sample, and the margin remainslarger than 
i � 
ki=2 > 
ki=2. If a point in the second half of the sampleis incorrectly classi�ed by T it will either still be incorrectly classi�ed by theadapted tree T 0 or will at one of the decision nodes i in T 0 be closer to thedecision boundary than 
ki=2. The point is thus distinguishable from left handside points which are both correctly classi�ed and have margin greater than
ki=2 at node i. Hence, that point must be kept on the right hand side in orderfor the condition to be satis�ed. Hence, the fraction of permutations that canbe allowed for one choice of the functions from the covers is 2��m. We musttake the union bound over all choices of the functions from the covers. Usingthe techniques of [11] the numbers of these choices is bounded by Corollory 4.3as follows �Ki=12(8m)ki log(4em=ki) = 2K(8m)D;where D =PKi=1 ki log(4em=ki). The value of � in the lemma statement there-fore ensures that this the union bound is less than �.2



Experiments 7Using the standard lemma due to Vapnik [14, page 168] to bound the errorprobabilities in terms of the discrepancy on a double sample, combined withLemma 4.4 gives the following result.Theorem 4.5 Suppose we are able to classify an m sample of labelled examplesusing a perceptron decision tree with K nodes and obtaining margins 
i at nodei, then we can bound the generalisation error with probability greater than 1� �to be less than 1m(D log(4m) + log (8m)K�2KK �(K + 1)� )where D =PKi=1 ki log(4em=ki) and ki = fat(
i=8).Proof : We must bound the probabilities over di�erent architectures of treesand di�erent margins. We simply have to choose the values of � to ensure thatthe individual �'s are su�ciently small that the total over all possible choicesis less than �. The details are omitted in this abstract.25 ExperimentsThe theoretical results obtained in the previous section imply that an algorithmwhich produces large margin splits should have a better generalization, sinceincreasing the margins in the internal nodes, has the e�ect of decreasing thebound on the test error.In order to test this strategy, we have performed the following experiment, di-vided in two parts: �rst run a standard perceptron decision tree algorithm andthen for each decision node generate a maximal margin hyperplane implement-ing the same dichotomy in place of the decision boundary generated by thealgorithm.Input: Random m sample x with corresponding classi�cation b.Algorithm: Find a perceptron decision tree T which correctly classi�es thesample using a standard algorithm;Let k = number of decision nodes of T ;>From tree T create T 0 by executing the following loop:For each decision node i replace the weight vector wi by the vectorw0i which realises the maximal margin hyperplane agreeing with wion the set of inputs reaching node i;Let the margin of w0i on the inputs reaching node i be 
i;Output: Classi�er T 0, with bound on the generalisation error in terms of thenumber of decision nodes K and D = PKi=1 ki log(4em=ki) where ki =fat(
i=8).



REFERENCES 8Note that the classi�cation of T and T 0 agree on the sample and hence, that T 0is consistent with the sample.As a PDT learning algorithm we have used OC1 [8], created by Murthy, Kasifand Salzberg and freely available over the internet. It is a randomized algorithm,which performs simulated annealing for learning the perceptrons. The detailsabout the randomization, the pruning, and the splitting criteria can be foundin [8].The data we have used for the test are 4 of the 5 sets used in the original OC1paper, which are publicly available in the UCI data repository [16].The results we have obtained on these data are compatible with the ones re-ported in the original OC1 paper, the di�erences being due to di�erent divisionsbetween training and testing sets and their sizes; the absence in our experimentsof cross-validation and other techniques to estimate the predictive accuracy ofthe PDT; and the inherently randomized nature of the algorithm.The second stage of the experiment involved �nding - for each node - the hyper-plane which performes the same split as performed by the OC1 tree but withthe maximal margin. This can be done by considering the subsample reachingeach node as perfectly divided in two parts, and feeding the data accordinglyrelabelled to an algorithmwhich �nds the optimal split in the linearly separablecase. The maximal margin hyperplanes are then placed in the decision nodesand the new tree is tested on the same testing set.The data sets we have used are: Wiscounsin Breast Cancer, Pima Indians Dia-betes, Boston Housing transformed into a classi�cation problem by thresholdingthe price at $ 21.000 and the classical Iris studied by Fisher (More informationsabout the databases and their authors are in [8]). All the details about samplesizes, number of attributes and results (training and testing accuracy, tree size)are summarized in table 1.We were not particularly interested in achieving a high testing accuracy, butrather in observing if improved performances can be obtained by increasing themargin. For this reason we did not try to optimize the performance of theoriginal classi�er by using cross-validation, or a convenient training/testing setratio. The relevant quantity, in this experiment, is the di�erent in the testingerror between a PDT with arbitrary margins and the same tree with optimizedmargins. This quantity has turned out to be always positive, and to range from1.7 to 2.8 percent of gain, on test errors which were already very low.train OC1 test FAT test #trs #ts attrib. classes nodesCANC 96.53 93.52 95.37 249 108 9 2 1IRIS 96.67 96.67 98.33 90 60 4 3 2DIAB 89.00 70.48 72.45 209 559 8 2 4HOUS 95.90 81.43 84.29 306 140 13 2 7References[1] Noga Alon, Shai Ben-David, Nicol�o Cesa-Bianchi and David Haussler,\Scale-sensitive Dimensions, Uniform Convergence, and Learnability,"
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