Data-Dependent Structural Risk
Minimisation for Perceptron
Decision Trees

John Shawe-Taylor
Royal Holloway, University of London?
Email: jst@dcs.rhbnc.ac.uk

Nello Cristianini
University of Bristol?
Email: nello.cristianini@bristol.ac.uk

NeuroCOLT2 Technical Report Series
NC2-TR-1998-003

May, 19983

Produced as part of the ESPRIT Working Group
in Neural and Computational Learning II,
NeuroCOLT?2 27150

NeuroCOLT2 Coordinating Partner

‘ Royal Holloway

University of London

Department of Computer Science
Egham, Surrey TW20 0EX, England

For more information contact John Shawe-Taylor at the above address
or email neurocolt@neurocolt.com

!Dept of Computer Science, Royal Holloway, University of London, Egham, Surrey
TW20 0EX, UK

2Dept of Engineering Mathematics, University of Bristol, Bristol BS8 1TR, UK

3Received 22-APR-1998

1

Introduction 2

Abstract

Perceptron Decision Trees (also known as Linear Machine DTs, etc.)
are analysed in order that data-dependent Structural Risk Minimization
can be applied. Data-dependent analysis is performed which indicates that
choosing the maximal margin hyperplanes at the decision nodes will im-
prove the generalization. The analysis uses a novel technique to bound the
generalization error in terms of the margins at individual nodes. Experi-
ments performed on real data sets confirm the validity of the approach.

Introduction

Neural network researchers have traditionally tackled classification problems by
assembling perceptron or sigmoid nodes into feedforward neural networks. In
this paper we consider a less common approach where the perceptrons are used
as decision nodes in a decision tree structure. The approach has the advantage
that more efficient heuristic algorithms exist for these structures, while the
advantages of inherent parallelism are if anything greater as all the perceptrons
can be evaluated in parallel, with the path through the tree determined in a
very fast post-processing phase.

Classical Decision Trees (DTs), like the ones produced by popular packages
as CART [5] or C4.5 [9], partition the input space by means of axis-parallel
hyperplanes (one at each internal node), hence inducing categories which are
represented by (axis-parallel) hyperrectangles in such a space.

A natural extension of that hypothesis space is obtained by associating to each
internal node hyperplanes in general position, hence partitioning the input space
by means of polygonal (polyhedral) categories.

This approach has been pursued by many researchers, often with different mo-
tivations, and hence the resulting hypothesis space has been given a number
of different names: multivariate DTs [6], oblique DTs [8], or DTs using linear
combinations of the attributes [5], Linear Machine DTs, Neural Decision Trees
[12], Perceptron Trees [13], etc.

We will call them Perceptron Decision Trees (PDTs), as they can be regarded
as binary trees having a simple perceptron associated to each decision node.

Different algorithms for Top-Down induction of PDTs from data have been
proposed, based on different principles, [10], [5], [8],

Experimental study of learning by means of PDTs indicates that their perfor-
mances are sometimes better than those of traditional decision trees in terms of
generalization error, and usually much better in terms of tree-size [8], [6], but
on some data set PDTs can be outperformed by normal DTs.

We investigate an alternative strategy for improving the generalization of these
structures, namely placing maximal margin hyperplanes at the decision nodes.
By use of a novel analysis we are able to demonstrate that improved general-
ization bounds can be obtained for this approach. Experiments confirm that
such a method delivers more accurate trees in all tested databases.

Generalized Decision Trees 3

2 Generalized Decision Trees
Definition 2.1 Generalized Decision Trees (GDT).

Given a space X and a set of boolean functions

F={f: X — {0,1}}, the class GDT(F) of Generalized Decision Trees over F
are functions which can be implemented using a binary tree where each internal
node is labeled with an element of F, and each leaf is labeled with either 1 or

0.

To evaluate a particular tree 7' on input z € X, All the boolean functions
associated to the nodes are assigned the same argument # € X, which is the
argument of T'(z). The values assumed by them determine a unique path from
the root to a leaf: at each internal node the left (respectively right) edge to a
child is taken if the output of the function associated to that internal node is 0
(respectively 1). The value of the function at the assignment of a # € X is the
value associated to the leaf reached. We say that input « reaches a node of the
tree, if that node is on the evaluation path for .

In the following, the nodes are the internal nodes of the binary tree, and the
leaves are its external ones.

Examples.

¢ Given X = {0,1}", a Boolean Decision Tree (BDT)is a GDT over
‘FBDT = {ﬁ ﬁ(x) = Xi,VX € X}
o Given X = R", a C4.5-like Decision Tree (CDT)is a GDT over

Fopr = {fis: fis(x) =1 < z; > 6}

This kind of decision trees defined on a continuous space are the output
of common algorithms like C4.5 and CART, and we will call them - for
short - CDTs.

¢ Given X = R", a Perceptron Decision Tree (PDT)is a GDT over
‘FPDT = {wa Tw e Rn+1},

where we have assumed that the inputs have been augmented with a co-
ordinate of constant value, hence implementing a thresholded perceptron.

3 Data-dependent SRM

We begin with the definition of the fat-shattering dimension, which was first
introduced in [7], and has been used for several problems in learning since [1,
4, 2, 3].

Data-dependent SRM 4

Definition 3.1 Let F be a set of real valued functions. We say that a set of
points X is y-shattered by F relative to » = (ry)zex tf there are real numbers
r, tndezed by © € X such that for all binary vectors b indezed by X, there is a
function f, € F satisfying

<r,—7 otherwise.

The fat shattering dimension fatr of the set F is a function from the positive
real numbers to the integers which maps a value v to the size of the largest
v-shattered set, if this is finite, or infinity otherwise.

As an example which will be relevant to the subsequent analysis consider the
class:

Fin =12 = (w,z) + 0 : ||w|| = 1}.
We quote the following result from [11].

Corollary 3.2 [11] Let Fy;;, be restricted to points in a ball of n dimensions
of radius R about the origin and with thresholds |0| < R. Then

faty:lin('y) < min{9R?/y% n+ 1} + 1.

The following theorem bounds the generalization of a classifier in terms of the
fat shattering dimension rather than the usual Vapnik-Chervonenkis or Pseudo
dimension.

Let Ty denote the threshold function at 6: Tp: R — {0,1}, Ty(a) =1 iff a > 6.
For a class of functions F, To(F) = {Ts(f): f € F}.

Theorem 3.3 [11] Consider a real valued function class F having fat shat-
tering function bounded above by the function afat : R — N which s contin-
wous from the right. Fiz 0 € R. If a learner correctly classifies m indepen-
dently generated examples z with h = Ty(f) € To(F) such that ery(h) = 0 and
v = min | f(z;) — 6|, then with confidence 1 — 9 the expected error of h is bounded
from above by

e(m, k,8) = 2 (k log (SeTm) log(32m) + log (STm)) ,
m

where k = afat(y/8).

The importance of this theorem is that it can be used to explain how a classifier
can give better generalization than would be predicted by a classical analysis
of its VC dimension. Essentially expanding the margin performs an automatic
capacity control for function classes with small fat shattering dimensions. The
theorem shows that when a large margin is achieved it is as if we were working
in a lower VC class.

We should stress that in general the bounds obtained should be better for cases
where a large margin is observed, but that a priori there is no guarantee that

Generalisation analysis of the Tree Class 5

such a margin will occur. Therefore a priori only the classical VC bound can be
used. In view of corresponding lower bounds on the generalization error in terms
of the VC dimension, the a posteriori bounds depend on a favourable probability
distribution making the actual learning task easier. Hence, the result will only
be useful if the distribution is favourable or at least not adversarial. In this
sense the result is a distribution dependent result, despite not being distribution
dependent in the traditional sense that assumptions about the distribution have
had to be made in its derivation. The benign behaviour of the distribution is
automatically estimated in the learning process.

In order to perform a similar analysis for perceptron decision trees we will
consider the set of margins obtained at each of the nodes, bounding the gener-
alization as a function of these values.

Generalisation analysis of the Tree Class

It turns out that bounding the fat shattering dimension of PDT’s viewed as real
function classifiers is difficult. We will therefore do a direct generalization anal-
ysis mimicking the proof of Theorem 3.3 but taking into account the margins
at each of the decision nodes in the tree.

Definition 4.1 Let (X, d) be a (pseudo-) metric space, let A be a subset of X
and ¢ > 0. A set B C X is an e-cover for A if, for every a € A, there exists
b € B such that d(a,b) < €. The e-covering number of A, Ny(e, A), is the
mintmal cardinality of an e-cover for A (if there is no such finite cover then it

is defined to be o).

We write N (e, F,x) for the e-covering number of F with respect to the £
pseudo-metric measuring the maximum discrepancy on the sample x. These
numbers are bounded in the following Lemma.

Lemma 4.2 (Alon et al. [1]) Let F be a class of functions X — [0, 1] and P
a distribution over X. Choose 0 < € < 1 and let d = fatr(e/4). Then

9

Am dlog(2em/(de))
7)

BN (e, F,x)) < 2 (

where the expectation E s taken w.r.t. a sample x € X™ drawn according to
pm™.

Corollary 4.3 [11] Let F be a class of functions X — [a,b] and P a distri-
bution over X. Choose 0 < € < 1 and let d = fatr(e/4). Then

€2 ’

12\ dlog(2em(b—a)/(de))
B (N (e F,x)) < 2 (M)

where the expectation E is over samples x € X™ drawn according to P™.

Generalisation analysis of the Tree Class 6

We are now in a position to tackle the main lemma which bounds the probability
over a double sample that the first half has zero error and the second error
greater than an appropriate e. Here, error is interpreted as being differently
classified at the output of tree. In order to simplify the notation in the following
lemma we assume that the decision tree has K nodes. We also denote fat FAin (v)

by fat(y) to simplify the notation.

Lemma 4.4 Let T be a perceptron decision tree with K decision nodes with
margins v1,v2,...,vK at the decision nodes. If it has correctly classified m
labelled examples generated independently according to the unknown (but fized)
distribution P, then we can bound the following probability to be less than 6,

pm {xy: datree T : T correctly classifies x,
fraction of y misclassified > e(m, K, §) } < 4,

where ¢(m, K, 8) = L (Dlog(4m) + log %)
where D = X k;log(4em/k;) and k; = fat(y;/8).

Proof: Using the standard permutation argument, we may fix a sequence xy
and bound the probability under the uniform distribution on swapping permu-
tations that the sequence satisfies the condition stated. We consider generating
minimal v, /2-covers BE, for each value of k, where v, = min{y’ : fat(y/8) <
kY. Suppose that for node i of the tree the margin 4 of the hyperplane w;
satisfies fat(y'/8) = k;. We can therefore find f; € BY, whose output values are
within 4*/2 of w;. We now consider the tree T’ obtained by replacing the node
perceptrons w; of T with the corresponding f;. This tree performs the same
classification function on the first half of the sample, and the margin remains
larger than v* — y1./2 > v1,/2. If a point in the second half of the sample
is incorrectly classified by T it will either still be incorrectly classified by the
adapted tree T' or will at one of the decision nodes ¢ in T’ be closer to the
decision boundary than 7, /2. The point is thus distinguishable from left hand
side points which are both correctly classified and have margin greater than
Yk;/2 at node i. Hence, that point must be kept on the right hand side in order
for the condition to be satisfied. Hence, the fraction of permutations that can
be allowed for one choice of the functions from the covers is 27°". We must
take the union bound over all choices of the functions from the covers. Using
the techniques of [11] the numbers of these choices is bounded by Corollory 4.3
as follows
H£12(8m)k‘ log(4em/k;) _ 2K(8m)D,

where D = Zfil k;log(4em/k;). The value of € in the lemma statement there-
fore ensures that this the union bound is less than 4.

a

Experiments 7

Using the standard lemma due to Vapnik [14, page 168] to bound the error
probabilities in terms of the discrepancy on a double sample, combined with
Lemma 4.4 gives the following result.

Theorem 4.5 Suppose we are able to classify an m sample of labelled examples
using a perceptron decision tree with K nodes and obtaining margins v; at node
i, then we can bound the generalisation error with probability greater than 1 —§

1 Bm)* ()
m (K+1)d
where D = X k;log(4em/k;) and k; = fat(y;/8).

to be less than

(Dlog(4m) + log

Proof: We must bound the probabilities over different architectures of trees
and different margins. We simply have to choose the values of ¢ to ensure that
the individual é’s are sufficiently small that the total over all possible choices
is less than §. The details are omitted in this abstract.

a

5 Experiments

The theoretical results obtained in the previous section imply that an algorithm
which produces large margin splits should have a better generalization, since
increasing the margins in the internal nodes, has the effect of decreasing the
bound on the test error.

In order to test this strategy, we have performed the following experiment, di-
vided in two parts: first run a standard perceptron decision tree algorithm and
then for each decision node generate a maximal margin hyperplane implement-
ing the same dichotomy in place of the decision boundary generated by the
algorithm.

Input: Random m sample x with corresponding classification b.

Algorithm: Find a perceptron decision tree T which correctly classifies the
sample using a standard algorithm;
Let & = number of decision nodes of T’
JFrom tree T create T' by executing the following loop:

For each decision node i replace the weight vector w; by the vector
w! which realises the maximal margin hyperplane agreeing with w;
on the set of inputs reaching node i;

Let the margin of w. on the inputs reaching node i be ~;;

Output: Classifier 7, with bound on the generalisation error in terms of the
number of decision nodes K and D = Zfil k;log(4em/k;) where k; =

fat(y:/8).

REFERENCES 8

Note that the classification of T and T' agree on the sample and hence, that 7"
is consistent with the sample.

As a PDT learning algorithm we have used OC1 [8], created by Murthy, Kasif
and Salzberg and freely available over the internet. It is a randomized algorithm,
which performs simulated annealing for learning the perceptrons. The details
about the randomization, the pruning, and the splitting criteria can be found
in [8].

The data we have used for the test are 4 of the 5 sets used in the original OC1
paper, which are publicly available in the UCI data repository [16].

The results we have obtained on these data are compatible with the ones re-
ported in the original OC1 paper, the differences being due to different divisions
between training and testing sets and their sizes; the absence in our experiments
of cross-validation and other techniques to estimate the predictive accuracy of
the PDT; and the inherently randomized nature of the algorithm.

The second stage of the experiment involved finding - for each node - the hyper-
plane which performes the same split as performed by the OC1 tree but with
the maximal margin. This can be done by considering the subsample reaching
each node as perfectly divided in two parts, and feeding the data accordingly
relabelled to an algorithm which finds the optimal split in the linearly separable
case. The maximal margin hyperplanes are then placed in the decision nodes
and the new tree is tested on the same testing set.

The data sets we have used are: Wiscounsin Breast Cancer, Pima Indians Dia-
betes, Boston Housing transformed into a classification problem by thresholding
the price at $ 21.000 and the classical Iris studied by Fisher (More informations
about the databases and their authors are in [8]). All the details about sample
sizes, number of attributes and results (training and testing accuracy, tree size)
are summarized in table 1.

We were not particularly interested in achieving a high testing accuracy, but
rather in observing if improved performances can be obtained by increasing the
margin. For this reason we did not try to optimize the performance of the
original classifier by using cross-validation, or a convenient training/testing set
ratio. The relevant quantity, in this experiment, is the different in the testing
error between a PDT with arbitrary margins and the same tree with optimized
margins. This quantity has turned out to be always positive, and to range from
1.7 to 2.8 percent of gain, on test errors which were already very low.

train | OC1 test | FAT test | #trs | #ts | attrib. | classes | nodes

CANC | 96.53 93.52 95.37 | 249 | 108 9 2 1

IRIS 96.67 96.67 98.33 9 | 60 4 3 2

DIAB | 89.00 70.48 72.45 | 209 | 559 8 2 4

HOUS | 95.90 81.43 84.29 | 306 | 140 13 2 7
References

[1] Noga Alon, Shai Ben-David, Nicold Cesa-Bianchi and David Haussler,
“Scale-sensitive Dimensions, Uniform Convergence, and Learnability,”

[5]

[6]

[7]

[9]

[10]

[11]

[12]

[13]

[14]

REFERENCES 9

in Proceedings of the Conference on Foundations of Computer Science

(FOCS), (1993). Also to appear in Journal of the ACM.

Martin Anthony and Peter Bartlett, “Function learning from interpola-
tion”, Technical Report, (1994). (An extended abstract appeared in Com-
putational Learning Theory, Proceedings 2nd European Conference, Euro-
COLT’95, pages 211-221, ed. Paul Vitanyi, (Lecture Notes in Artificial
Intelligence, 904) Springer-Verlag, Berlin, 1995).

Peter L. Bartlett and Philip M. Long, “Prediction, Learning, Uniform
Convergence, and Scale-Sensitive Dimensions,” Preprint, Department of
Systems Engineering, Australian National University, November 1995.

Peter L. Bartlett, Philip M. Long, and Robert C. Williamson, “Fat-
shattering and the learnability of Real-valued Functions,” Journal of Com-
puter and System Sciences, 52(3), 434-452, (1996).

Breiman L., Friedman J.H., Olshen R.A., Stone C.J., ”Classification and
Regression Trees”, Wadsworth International Group, Belmont, CA, 1984.

Brodley C.E., Utgoff P.E., Multivariate Decision Trees, Machine Learning
19, pp. 45-77, 1995.

Michael J. Kearns and Robert E. Schapire, “Efficient Distribution-free
Learning of Probabilistic Concepts,” pages 382-391 in Proceedings of the
31st Symposium on the Foundations of Computer Science, IEEE Computer
Society Press, Los Alamitos, CA, 1990.

Murthy S.K., Kasif S., Salzberg S., A System for Induction of Oblique
Decision Trees, Journal of Artificial Intelligence Research, 2 (1994), pp.
1-32.

Quinlan J.R.., ”C4.5: Programs for Machine Learning”, Morgan Kaufmann,
1993.

Sankar A., Mammone R.J., Growing and Pruning Neural Tree Networks,
IEEE Transactions on Computers, 42:291-299, 1993.

John Shawe-Taylor, Peter L. Bartlett, Robert C. Williamson, Martin An-
thony, Structural Risk Minimization over Data-Dependent Hierarchies,
NeuroCOLT Technical Report NC-TR-96-053, 1996.
(ftp://ftp.dcs.rhbnc.ac.uk/pub/neurocolt/tech reports).

J.A. Sirat, and J.-P. Nadal, ”Neural trees: a new tool for classification”,
Network, 1, pp. 423-438, 1990

Utgoff P.E., Perceptron Trees: a Case Study in Hybrid Concept Represen-
tations, Connection Science 1 (1989), pp. 377-391.

Vladimir N. Vapnik, Estimation of Dependences Based on Empirical Data,
Springer-Verlag, New York, 1982.

REFERENCES 10

[15] Vladimir N. Vapnik, The Nature of Statistical Learning Theory, Springer-
Verlag, New York, 1995

[16] University of California, Irvine - Machine Learning Repository,
http://www.ics.uci.edu/ mlearn/MLRepository.html

