Bayesian Classifiers are Large Margin
Hyperplanes in a Hilbert Space

Nello Cristianini
University of Bristol
Bristol, UK

nello.cristianini@®bristol.ac.uk

John Shawe-Taylor
Royal Holloway, University of London
Egham, UK
j.shawe-taylor@dcs.rhbnc.ac.uk

Peter Sykacek
Austrian Research Institute for Artificial Intelligence
Vienna, Austria
peter@ai.univie.ac.at

Abstract

It is often claimed that one of the main distinctive features of
Bayesian Learning Algorithms for neural networks is that they don’t
simply output one hypothesis, but rather an entire distribution of
probability over an hypothesis set: the Bayes posterior. An alterna-
tive perspective is that they output a linear combination of classifiers,
whose coefficients are given by Bayes theorem. This can be regarded
as a hyperplane in a high-dimensional feature space. We provide a
novel theoretical analysis of such classifiers, based on data-dependent
VC theory, proving that they can be expected to be large margin
hyperplanes in a Hilbert space, and hence to have low effective VC-
dimension. We also present an extensive experimental study confirm-
ing this prediction. This not only explains the remarkable resistance
to overfitting exhibited by such classifiers, but also co-locates them in
the same class as other systems, such as Support Vector Machines and
Adaboost, which have a similar performance.



1 Introduction

In recent years, new methods for training neural networks inspired
by Bayesian theory have been proposed and used, mainly due to the
work of MacKay and Neal [7, 8, 10]. The systems inspired by these
approaches are generally known as Bayesian learning algorithms and
have proven to be resistant to overfitting.

We distinguish two main approaches to Bayesian learning. In the
first a hypothesis is chosen with maximum a posteriori probability,
the so-called MAP estimate. Analysis of the generalization of this
estimate in terms of its a posteriori probability has been made by
Shawe-Taylor and Williamson [17] and McAllester [9].

In the second approach which we will study in this paper the algo-
rithm outputs an entire distribution of probability over the hypothesis
space, rather than a single hypothesis. Such a distribution, the Bayes
posterior, depends on the training data and on the prior distribution,
and is used to make predictions by averaging the predictions of all
the elements of the set, in a weighted majority voting scheme. The
posterior is computed according to Bayes’ rule, and such a scheme
has the remarkable property that — as long as the prior is correct and
the computations can be performed exactly — its expected test error
is minimal.

Typically, the posterior is approximated by combining a Gaussian
prior and a simplified version of the likelihood (the data-dependent
term). Such a distribution is then sampled with a Monte-Carlo method,
to form a committee whose composition reflects the posterior proba-
bility.

The classifiers obtained with this method are known to be resis-
tant to overfitting. Indeed, neither the committee size nor the network
size strongly affect the performance, to such an extent that it is not
uncommon - in the Bayesian literature - to refer to “infinite networks”
[11, 20], meaning by this networks whose number of tunable parame-
ters is much larger than the sample size.

The thresholded linear combination of classifiers generated by the
Bayesian algorithm can be regarded as a hyperplane in a high dimen-
sional feature space. The mapping from the input to the feature space
depends on the chosen hypothesis space (e.g. network architecture).

In this paper we provide a novel description of Bayesian classifiers
which makes it possible to perform a margin analysis on them, and
hence to apply data-dependent SRM theory [15]. In particular, by
viewing the posterior distribution as a linear functional in a Hilbert
space, the margin can be computed and gives a bound on the general-
ization error via an effective VC dimension which is much lower than



the number of parameters. An analogous analysis has been performed
in the case of Adaboost by Schapire et al.[14], whose theorems we will
quote for reference. We then present an extensive experimental study
substantially confirming the predictions of the model on many real
world datasets.

These results not only explain the resistance to overfitting observed
in Bayesian algorithms, but also provide a surprising unified descrip-
tion of three of the most effective learning algorithms: Support Vector
Machines, Adaboost and now also Bayesian classifiers.

2 Bayesian Learning Theory

The result of Bayesian learning is a probability distribution over the
(parametrised) hypothesis space, expressing the degree of belief in a
specific hypothesis as an approximation of the target function. This
distribution is then used to make predictions.

To start the process of Bayesian learning, one must define a prior
distribution P(\) over the parameter space A associated with a set of
parametrized functions f(z, A), possibly encoding some prior knowl-
edge.

In the following we will denote by fy the hypothesis f(z,A). We
assume throughout that fy are {—1,1} valued functions.

After observing the data D, the prior distribution is updated using
Bayes’ Rule:

P(A|D) o P(D|X\)P()).

The posterior distribution so obtained, hence, encodes information
coming from the training set (via the likelihood function P(D|A)) and
prior knowledge.

To predict the label of a new point, Bayesian classifiers integrate
the predictions made by every element of the hypothesis space, weight-
ing them with the posterior associated to each hypothesis, obtaining
a distribution of probability over the set of possible labels:

P(y|z, D) = A f(z, Np(AID)P(N)

This predictive distribution can be used to minimize the number of
misclassifications in the test set; in the 2-class case this is achieved
simply by outputting the label which has received the highest vote.

Many practical problems exist in the implementation of such sys-
tems, and typically the procedure described above is approximated
with numerical methods, by forming a committee sampled from the
posterior with a Monte-Carlo simulation.



The likelihood, P(D])), also needs to be approximated, and gener-
ally it is replaced by a function of the kind e~10s3(/2)) meaning by this
that hypotheses highly inconsistent with the training set are unlikely
to have generated it, and vice-versa. The exact form taken by the
likelihood, however, depends on assumptions made about the noise in
the data. An introduction to this field can be found in Radford Neal’s
book [10]. The most important fact about Bayesian algorithms is that
they turn out to be resistant to overfitting [12, 10], to the point that it
is possible to use networks larger than the number of training exam-
ples, and to combine them in large committees. They are interesting
not only because they work, but also because their behaviour seems
to challenge the intuition of Ockham’s Razor.

3 Bayesian Classifiers as Large Mar-
gin Hyperplanes

In this section we introduce a rather different view of Bayesian Clas-
sifiers, which leads to their reinterpretation as hyperplanes in a high-
dimensional Hilbert space. We then study a simplified model of such
classifiers, which is easier to analyse but retains all the relevant fea-
tures of the general case. We wish to understand the properties of
their margin, and so of their effective VC dimension. This concept
was introduced by Vapnik et al. [19], though we use the term to mean
the fat shattering dimension measured at the scale of the observed
margin. Theorem 3.3 below shows that this dimension takes the place
of the standard VC dimension in bounds on the generalization error
in terms of the margin on the training set.

We first observe that, in the 2-class case examined so far, the
predictions are actually performed by a thresholded linear combination
of base hypotheses. The coeflicients of the linear combinations are
the posterior probabilities associated to each element of H, and the
thresholding is at zero if the labels are {—1,+1}.

Hence, the actual hypothesis space used by Bayesian systems is
the convex hull of H, C(H) rather than H, where we have

C(H) = {F

F.(z) :/)\aAf(x,A)dP(/\) where /

[aip(y) = 1} .

Hence we can view the output hypothesis is a hyperplane, whose
coordinates are given by the posterior. In practice the output hy-
pothesis is frequently estimated by a Monte-Carlo sampling of the
hypothesis space using the posterior distribution. We will ignore the



effect that this has and study the behaviour of the composite hypoth-
esis itself under various assumptions about the underlying function
space H and prior P()).

We first give some necessary definitions.

Definition 8.1 Let H be a set of binary valued functions. We say
that a set of points X is shattered by H if for all binary vectors b
indexed by X, there is a function f, € H realising b on X. The
Vapnik-Chervonenkis (VC) dimension VCdim(H) of the set H the

size of the largest shattered set, if this is finite or infinity otherwise.

Definition 3.2 Let H be a set of real valued functions. We say that
a set of points X is vy-shattered by H if there are real numbers r,
indexed by © € X such that for all binary vectors b indexed by X,
there is a function f, € H satisfying

>r, + ifb, =1

<r,—7 otherwise.
The fat shattering dimension faty of the set H is a function from the
positive real numbers to the integers which maps a value v to the size
of the largest v-shattered set, if this is finite or infinity otherwise.

We will make critical use of the following result contained in Shawe-
Taylor et al [15] which involves the fat shattering dimension of the
space of functions. Note that Ty denotes the classification function
obtained by thresholding at 6.

Theorem 3.3 Consider a real valued function class H having fat
shattering function bounded above by the function afat : ® — AN which
18 continuous from the right. Fixr 8 € R. Then with probability at
least 1 — & a learner who correctly classifies { independently gener-
ated examples z with h = Ty(f) € To(H) with zero training error and
v = min | f(x;) — 0| will have error of h bounded from above by

2 8el 8¢
z <k‘ 10g2 <T> 10g2(32€) + 10g2 <F>> s

where k = afat(y/8).

e(m,k,8) =

More recently results bounding the generalization in terms of other
more robust measures of the distribution of margin values have been
obtained [16], but for the analysis presented in this paper the above
theorem will be adequate.

Note how the fat shattering dimension at scale v/8 plays the role
of the VC dimension in this bound. This result motivates the use of



the term effective VC dimension for this value. In order to make use of
this theorem, we must have a bound on the fat shattering dimension
and then calculate the margin of the classifier. We begin by consid-
ering bounds on the fat shattering dimension. The first bound on the
fat shattering dimension of bounded linear functions in a finite di-
mensional space was obtained by Shawe-Taylor et al. [15]. Gurvits [6]
generalised this to infinite dimensional Banach spaces. We will quote
an improved version of this bound (slightly adapted for an arbitrary
bound on the linear operators) which is contained in [2].

Theorem 3.4 [2] Consider a Hilbert space and the class of linear
functions L of norm less than or equal to B restricted to the sphere
of radius R about the origin. Then the fat shattering dimension of L
can be bounded by

BR>2

fatr,(v) < < "

In order to apply Theorems 3.3 and 3.4 we need to bound the
radius of the sphere containing the points and the norm of the linear
functionals involved. Clearly, scaling by these quantities will give the
margin appropriate for application of the theorem.

The Hilbert space we consider is that given by the functions

%:{Z:A—>§R

such that /

2(\)2dP()) < oo}
AEA

with the inner product

(21 -75) = /AeA 21(\)z2(A)dP()).

There is a natural embedding of the input space X onto the unit
sphere of H given by x — f(x,-), since

/AeA F(x, \)2dP(A) :/ dP()) = 1.

A€A

Hence, the norm of input points is 1 and they are contained in the
unit sphere as required.

The linear functions considered are those determined by the pos-
terior distribution. The norms are given by

ol = [ a3ap(y).

Hence,
B\? 2
fate, () (7) = <;> . where Cp(H) = {F, € C(H)||a||* < B}.
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Next we consider the margin v. In order to study the margin of
such hyperplanes, we will introduce some simplifications in the general
model. We assume that the base hypothesis space, H is sufficiently
rich that all dichotomies can be implemented. Further, initially we
will assume that the average prior probability over functions in each
error shell does not depend on the number of errors.

These are the only assumptions we make, and the second will be
relaxed in a later analysis. A natural choice for the evidence function
in a {—1,1} valued hypothesis space is e~"7, for a hypothesis that
makes r mistakes. which has the required property of giving low like-
lihood to the predictors which make many mistakes on the training
set, and to which the usual Bayesian evidence collapses in the Boolean
case. The quantity o is usually related to the kind of noise assumed
to affect the data.

The assumption that all the dichotomies can be implemented with
the same probability corresponds to an ‘uninformative’ prior, where
no knowledge is available about the target function. In a second stage
we will examine the effect of inserting some knowledge in the prior, by
slightly perturbing the uninformative one towards the target hypoth-
esis. We will see that even slightly favourable priors can give a much
smaller effective VC dimension than the uninformative one.

3.1 An Uninformative Prior

The actual hypothesis space used by Bayesian systems, hence, is the
convex hull C(H ), rather than H. The output hypothesis is a hyper-
plane, whose coordinates are given by the posterior.

In this section we give an expression for the margin of the com-
posite hypothesis, as a function of a parameter related to our model
of likelihood. The result is obtained in the case of a uniform prior for
the pattern recognition case.

Let us start by stating some simple results and definitions which
will be useful in the following.

Definition 3.5 Let s) be the number of points whose labeling is in-
correctly predicted by the hypothesis f. We define the balance of the
hypothesis fx over a given sample as By = { — 28y, where £ is the
sample size. Hypotheses having the same value of s are said to form
an error shell.

Note that By/l{ = 1 — 2¢y, where €y = s)/( is the empirical error
of fi.

Formally our initial assumption can now be stated.



Assumption 3.6 The Uninformative Prior The prior probability
of hypotheses which have empirical error € = r/( is

1[0\ 0!
20\ r ) T 2(le)!(C — L)V

. other words that the average prior probability over the equivalence
classes of functions realising different patterns of r errors is 27,

The posterior distribution for a hypothesis which has r training
errors is proportional to 77" = C", where C' = ¢77. We are now
ready to give the main result of this section.

Theorem 3.7 If Assumption 3.6 holds, then the margin of the Bayes
Classifier F(x) € C(H) is given by

2C
1+C°

Proof: Let the set of training examples be (xq,...,x¢) with classi-
fications y = (y1,..., %) € {—1,1} and let the margin M of example
i be M; = y; F(x;). Consider first the average margin

<M> = %ZM,:%Z%F( X;) Zyz/ Aahhx,)dP(h)
; ; lES
— _'zz:yzjz:agf)jy Xz

€S jEeJ

where f;, 7 € J are representatives of each possible classification of
the sample. We are denoting by P; the prior probability of classifiers
agreeing with f;. The quantity a;P; is the posterior probability of
these classifiers, where the coefficient a; = Ae~t% = AC* is the evi-
dence, which depends only on the empirical error and the normalising
constant A. By assumption, we have

r error shell

Hence,
<M> = Za]P Zy,f] (x5), Za]P B; (1)
]EJ €S ]EJ
= Za] — 2¢;) —1—22(1]]36]7
JEJ JEJ



by the observation concerning the balance B; of f; and the fact that
the posterior distribution has been normalised, thatis 1 = [, apdP(h) =
2jes 4.

We now regroup the elements of the sum on the right hand side
of the above equation by decomposing the hypothesis space into error
shells (subsets of H formed by hypotheses with the same error r).

Hence, we can write the above sum as

1< SN
r=0

JjeJ

Solving for A and substituting, gives

cr()%
Z a]P]€] — Zk <T2 £
7€J Zr CT (,«)

We can now use the equality ) C” (f) = (1+C)*, and the observation
that Y2, C"(“)r can be written as C-& Y C"(f) = (C(1+ C)! to
obtain the result for the average margin.

To complete the proof we must show that the average margin is in
fact the minimal margin. We will demonstrate this by showing that
the margin of all points is equal. Intuitively, this follows from the
symmetry of the situation, there being nothing to distinguish between
different training points in the structure of the hypothesis.

More formally, note that for every output sequence

z=(z1,...,20) € {-1, 1}Z7

we can realise the mapping x; — z;,¢7 = 1,..., £, with a function
fz € H.

Let s(z) be the sequence obtained by swapping the i-th and j-th
entries in the sequence z and swapping their signs if the ¢-th and j-th
inputs have opposite classifications according to the training sequence
y. Note that s is a bijection of the set of all sequences onto itself. Note
also that if ap is the posterior distribution over the function class H,
Ufg = Of, gz since the number of errors of the two functions is the
same — fz is correct on input ¢ precisely when fy(z) is correct on j,
that is

Yi fz(xi) = yj fo(z)(x;)-

Now consider the Bayesian posterior function

F(e) = 5 g, fale).



The margin of this function on the point x; is
1 1
yiF(x;) = 50 > ag,yifz(xi) = 50 > ag,yifoz) (i),
z z
since s is a bijection and weights are unchanged. Hence,
1
iF (i) = 57 D asgyifa(x) = y;F(x))
z

and the margins of the points ¢ and j are equal. Since, ¢ and j are
arbitrary all margins are equal and the result is proved. n

Since the assumption that the underlying hypothesis space can
perform any classification of the training set implies that its VC di-
mension is at least ¢, we cannot expect that learning is possible in
the situation described. Indeed, we have augmented the power of the
hypothesis space by taking our functions from the convex hull of H
which would appear to make the situation yet worse.

Nonetheless Theorem 3.7 shows that the margin of the Bayes clas-
sifier is indeed large under the assumptions we have made, provided
a suitable choice of the parameter C is made. A calculation of the
effective VC dimension in this case will be made later, though it is too
large for any bound on the generalization error to be made. We must
make assumptions about the prior in order to be able to learn.

3.2 Towards a Benign Prior

Before proceeding to consider the effect of the prior on the effective
VC bound, we will mention two other theorems that might be useful
for bounding the generalization error in terms of the margin. We will,
however, argue that they are unable to take account of our type of
prior that assigns different probabilities to hypotheses. We will quote
the theorems from Schapire et al. [14], though they appear in a more
general form in [1].

Following [14], let H denote the space from which the base hy-
potheses are chosen (for example Neural Networks, or Decision Trees).
A base hypothesis f € H is a mapping from an instance space X to
{-1,+41}.

Theorem 3.8 Let S be a sample of { examples chosen independently

at random according to D. Assume that the base hypothesis space H
has VC dimension d, and let be 6 > 0. Then, with probability at least

10



1 — & over the random choice of the training set S, every weighted
average function F € C(H) satisfies the following bound for all > 0:

2 1/2
PolyF(x) < 0] < PsyF(z) < 01+0 (% (C“OgTW o <%>) )

Theorem 3.9 Let S be a sample of { examples chosen independently
at random according to D Assume that the base hypothesis space H is
finite, and let be &6 > 0. Then, with probability at least 1 — § over the
random choice of the training set S, every weighted average function
F € C(H) satisfies the following bound for all § > 0:

2 1/2
Pp[yF(z) < 0] < Ps[yF(z) < 6]+ (% (bg(@g#”ﬂ ¢ log <%>) )

As observed by the authors, the theorem applies to every majority
vote method, including boosting, bagging, ECOC, etc. In order to
obtain useful applications of any of the theorems we will need to con-
sider deviations from the most general situation described above. The
deviation should not have a significant impact on the margin, while
reducing the expressive power of the hypotheses.

In order to apply Theorem 3.9 the number of hypotheses in the base
class H must be finite. The logarithm of the number of hypotheses
appears in the result. Since we have assumed that all possible classifi-
cations of the training set can be performed the number of hypotheses
must be at least 2¢ making the bound uninteresting. To apply this
theorem we must assume that a very large proportion of the hypothe-
ses have zero weight in the prior, while those that have significant
weights in the posterior (i.e. have low empirical error) are retained.
Making this assumption the bound will become significant. However,
we are interested in capturing the effect of non-discrete priors, that is
situations where potentially all of the base hypotheses are included,
but those with high empirical error have lower prior probability.

In order to apply Theorem 3.8 the underlying hypothesis class H
must be assumed to have low VC dimension in such a way that no
significant impact is made on the margin. This could be achieved by
removing high error functions. Note that the functions would have
to be removed, in other words given prior probability 0. Hence, the
bound obtained would be no better than a standard VC bound in the
original space. A situation where this approach and analysis might be
advantageous is where the consistent hypothesis fy is not included in
H. This will reduce the margin by approximately

any_Z =1+ C)_Zv

11



since By, = ¢ (see equation (1)). The approximation arises from not
adjusting the normalisation to take account of the missing hypothesis
and is thus a very small error. Note that the minimal margin is still
equal to the average in this case since all points are equally affected.
Applying a non-agnostic version of the second theorem assuming that
the underlying function class had VC dimension k& would now give a
significantly better bound on generalization than a standard agnostic
bound for the best hypothesis in the base class which would not have
ZEero error.

These applications are, however, unable to take into account the
prior distribution in a flexible way. In the next section we will present
an application of the original approach to show how this can take
advantage of a beneficial prior.

3.3 The Effect of a Benign Prior

We will consider the situation where the prior decays arithmetically
with the error shells. In other words the prior on hypotheses with
error r is multiplied by p” for some p < 1. More formally we state this
as follows.

Assumption 3.10 The Benign Prior The prior probability of hy-
potheses which have empirical error € = r/{ is

T A 4
> P<A>—Ap(r)—m(r)-

r error shell

We first repeat the calculations of Theorem 3.7 for this case. The
sum (2) must take into account the new prior. The factor (1 + p)*
common and the factor p appears wherever C' appears, that is

Z p. 1 XZ:ACT T(K)r
5056 = 70 ¢ P 7
7€J —I_p)f r=0 r)t

while

1—|—pr ():1.

Hence, (1 + p)* cancels, and since the argument that all margins are
equal is not affected by the prior, we can deduce the following gener-
alization of Theorem 3.7.

Theorem 3.11 If Assumption 3.10 holds, then the margin of the
Bayes Classifier F(x) € C(H) is given by
_ 2pC

1+ pC”

Yo,C =

12



We must further compute the value of ||a|| for the posterior func-
tional in the prior described above. The integral in this case is given

by

¢
r {
all2 = AP — A2C?T p ()
ol = Suir= 3 4|,
(1+p) (1 +pC?)"

1+pC)2

We can now combine this value with the margin computed above to
give the value of the fat shattering dimension from Theorem 3.4 at the
appropriate scale. This bound on the effective VC dimension becomes,

al|? 14 p)(14 pC?Hf
g(p,C) = | 2” = ( 0)212(—2 _ )C' 27
o (14 pC)22(1 - pC)

where to keep the subsequent formulae simple we have ignored the
factor of 64 arising for the scale v/8 in Theorem 3.3.

In the rest of this section we will consider how this function behaves
for various choices of C and p, showing that for careful choices of C,
and values of p close to 1 can give dimensions significantly lower than
£, hence give good bounds on the generalization error. The analysis
shows that using this approach it is possible to understand the effect
of a benign prior. At the same time it suggests a value of C' most
likely to take advantage of such a prior.

First consider the case when p = 1, that is the uninformative prior
considered in Section 3.1. Hence,

25(1 + C«Z)(
(1 + 0)2(—2(1 _ 0)2 '

9(1,C) =

The parameter C' can be chosen in the range [0,1). However,
9(17 C) —7C—1 OO,

while ¢(1,0) = 2¢. Clearly, the optimal choice of C' needs to be de-
termined if the bound is to be useful. A routine calculation estab-
lishes that the value of €' which minimises the expression is, Cp =

(€ =~/ —1)/(€—2), which gives a value of

1 £—1

This confirms that the effective VC dimension is not increased exces-

sively provided C'is chosen around 1 — 2/V/{ (i.e. ¢ ~ 2//1), though

13



of course the bound on generalization error is trivial in this case. The
analysis so far can be viewed as a ‘sanity check’, demonstrating that
despite significantly increasing the computational power of the hy-
pothesis class (by moving to C(H)), the increase in the effective VC
dimension has been very slight. In order to see how the prior can
produce a non-trivial bound, we will study the effect of allowing p
to move slightly below 1. We will perform a Taylor expansion about
p=1
Let C" = pC and the function

(L+p)@+C?/p)t
(1 _I_ C/)ZZ—Z(]_ _ C/)Z .

91(p, C") :==g(p, C"/p) =

Note that %gl_cllh):l _ 07 and so 69(5;100) — 891((9/;,0/) T 6916(2‘7/0/)%_6;/'
Hence,
Ig(p,Co)  _ 99:(p,C")
dp  p= dp  lp=1
Differentiating gives
dg1(p,C") B 62‘5_1(1—|-C’2)(_1
Op o= (A1+C)H3(1-C)

We can now perform a Taylor series expansion of ¢(p,Cp) about
p = 1 to obtain ¢(p,Co) ~ el(l+ (p — 1)v/{ — 1), where we have
omitted some routine calculations.

Hence, the bound on the generalization error is (ignoring log fac-
tors)

01— (1- pVI=T),

so that to obtain generalization error of order €, we need

_ 1—¢/(elog?)
V-1

Hence, for values of p very close to 1, the prior can result in improved
generalization properties. Note that the value of C' used in the calcula-
tions is unchanged so that we can take advantage of the prior without
any fine tuning of the system. We simply observe the margin, and
the value of ||a|| on the Monte-Carlo generated set of hypotheses, to
recover a bound on the effective VC dimension and hence an estimate
of the generalization error.

One possible criticism of the benign prior of Assumption 3.10 is
that in many learning systems, natural priors have the property that a
function and its complement have equal probability. The assumption
of arithmetically decreasing prior with increasing error shell is not

pr1l

14



consistent with this. This problem can, however, be overcome by
considering a prior that emphasises very bad hypotheses in the same
way as very good hypotheses, those having low correlation (and anti-
correlation) with the target being the low probability ones:

R A A
> PO =A( +pf )(r) :W(r)'
r error shell P

The effect of this on the margin and norm is slight. For example, the
margin becomes

2pC(1+ pC) =t 4+ Cp+ )1
(1O (p+ O
2pC
S 14 pC7

provided the following quantity is significantly smaller than 2p ~ 2,

<1IO—|—-|_,0C27>£_1 = <1_%>L1

1\ ¢
~ |1--
(-%)

~ €

for the values of p and C' considered. We have omitted a full derivation
as the formulae become rather unwieldy.

4 Experiments

In the previous sections we have presented a slightly simplified model
of a Bayesian classifier, which predicted that the margin of the training
points can be expected to be large. When real data are used, how-
ever, the assumptions of the model could be only partially satisfied,
so also its predictions could be affected. In this section we present an
extensive experimental study on real world data, showing that indeed
the committees of neural networks produced by Bayesian classifiers do
generate large margin hypotheses.

Even if not all data points have margin one, which was the ide-
alized situation of our model, we still can see that this is nearly the
case: namely that the distribution of the margins is clearly biased in
the sense of a large margin. This is enough for us to use margin distri-
bution theorems such as [16], and bound the effective VC dimension
of such systems, so explaining their seemingly paradoxical behaviour
with respect to overfitting.

15



4.1 Data

The datasets were chosen to allow comparisons with [14] and to cover
a range of different problems. We used vehicle data, satimage data,
Wisconsin breast cancer, lung cancer data, John Hopkins University
ionosphere data, balance scale weight and distance data and the wine
recognition database, all taken from the StatLog ! database. We used
satimage as provided, there are 4435 samples in the training and 2000
in the test set. The vehicle data were merged, 500 samples were used
for training and 252 for testing. The other data were split into two
equal sized sets, which were both used as training and independent test
sets respectively. The samples with missing values present in the lung
cancer data were removed. To cover also categoric problems, we used
the titanic dataset, which is provided via the Delve project 2. Here
we used the largest number of training data suggested, which is 500
samples and the test set as provided, which contains 1701 samples.
The data has 3 categoric inputs: gender, age (adult/child) and the
class of passage (first to third class or crew member). We used ordered
coding of the information about the passenger class, which seems to
be a reasonable choice. The last data is the pima diabetes dataset as
provided by B.D. Ripley®. A detailed description can be found in [13].

4.2 Experimental setup

We performed two types of experiments: For satimage, vehicle, ti-
tanic and the pima diabetes data, we looked at the performance re-
sulting from five different settings of the classifier and learning proce-
dure. All experiments were performed using R. Neals hybrid Monte
Carlo sampling algorithm. Initially we sampled 600 weights using the
standard method without automatic relevance determination (ARD)-
priors. The network size was fixed to 25 hidden units. This experiment
was used to investigate the dependence of the margin distribution of
the number of weights used to represent the posterior. Discarding
50 initial weights, we calculated the margin distribution of a commit-
tee consisting of the next 150 weights and compared it to the margin
distribution when using all 550 remaining weights.

To assess whether the margin distribution changes while increas-
ing the size of the network, we performed two further experiments
sampling 150 weights for a network with 50 and 200 hidden units

!The data are available via the UCI machine learning repository at
http://www.ics.uci.edu/ mlearn/MLRepository.html.

2The Delve home-page can be reached at http://www.cs.utoronto.ca/ delve/.

3The data can be obtained via: http://www.stats.ox.ac.uk/ ripley/.
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respectively, again using conventional priors without ARD. A fifth ex-
periment should reveal the influence of an ARD-prior on the margin
distribution. We sampled 150 weights for a network with 25 hidden
units using an ARD-prior on the input to hidden layer weights.

The term automatic relevance determination (ARD) -prior refers
to an additional level in the hierarchical prior specification. In R.
Neals hybrid Monte Carlo implementation, ARD-priors can be used
on groups of weights connecting one unit (typically an input or a
hidden unit) to the next layer. As mentioned, we used ARD on inputs
only. The idea of this concept is to allow “soft” feature selection.
To achieve this, each group of weights from one input to the hidden
layer has it’s own Gaussian prior governed by a hyper parameter (the
variance of the Gaussian). If most weights from one input tend to
be small, the posterior of the associated hyperparameter favors small
variances. Hence the weights are actively suppressed and the input is
“turned oft”.

Figure 1 shows plots of the resulting margin distributions for the
satimage, vehicle, titanic and pima data. Looking at the plots of
the margin distributions for each experiment, we see a trend towards
lower margins when increasing the number of hidden units. This fact
can be understood when remembering that the prior variance of the
hidden to output weights scales inversely with the number of hidden
units. Increasing the number of hidden units forces smaller hidden
to output weights which leads to a smaller complexity of the network
and increased errors on the training set.

The setting for the experiments performed with the remaining
datasets (balance scale, breast cancer, ionosphere, lung cancer and
the wine recognition data) was somewhat simpler. Our first experi-
ment gave some evidence that significant differences of the observed
performance were mainly due to differences caused by the ARD-prior.
Therefore, we restricted our second comparison to results obtained
with a two layer neural network with fifteen hidden units, once with
conventional (non ARD) priors and once with ARD-priors. Both equal
sized datasets were used as training and test set respectively. In figure
2 we see the margin distributions on the training data when fusing the
margins of both runs.

4.3 Discussion of margin distributions

In order to compare the margin distribution with the generalization
error, we used each classifier to predict class labels on an indepen-
dent test set. In table 1, we summarize the different experimental
settings and the results obtained on all datasets. In the order of their
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Satimage: (150/25/no ARD)

Vehicle: (150/25/no ARD)

Titanic: (150/25/no ARD)

Pima: (150/25/no ARD)
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1 1 1 1

05 J 05 J 05 05 /
0 0 0 0
-1 -0.5 0.5 1 -1 -0.5 0 0.5 1 -1 -0. .5 1 -1 -0.5 0 0.5 1

Satimage: (150/200/no ARD) Vehicle: (150/200/no ARD) Titanic: (150/200/no ARD) Pima: (150/200/no ARD)
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Figure 1: Plots showing margin distributions of several standard data sets
using different network architectures and settings for the sampling algorithm.
The different experiments show that the margin distributions are correlated
with the generalization performance observed on an independent test set. A
remarkable property which can be observed here, is that networks with a
larger number of hidden units tend to less complex hypothesis classes. Our
explanation for this effect is the scaling for the variance of the priors over
output weights used in R. Neals sampling algorithm, which is inverse to the
number of hidden units.
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Balance Scale, 15 hidden units, no ARD Balance Scale, 15 hidden units, ARD

1 1
0.5 0.5
0 0
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Breast Cancer, 15 hidden units, no ARD Breast Cancer, 15 hidden units, ARD
1 1
0.5 : 0.5
0 0
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lonosphere, 15 hidden units, no ARD lonosphere, 15 hidden units, ARD
1 1
0.5 : 0.5
0
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Lung Cancer, 15 hidden units, no ARD Lung Cancer, 15 hidden units, ARD
1 — 1 T
0.5 : 0.5
0 0
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Wine Categories, 15 hidden units, no ARD Wine Categories, 15 hidden units, ARD
1 — 1 ~
0.5 : 0.5
0 0 )
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Figure 2: Plots showing margin distributions of five standard data sets using
a neural network with fifteen hidden units, once without and once with ARD-
prior.
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Table 1: Summary of Experiments
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25 150 no 9.2% 0.929

25 550 no 9.0% 0.932

Satimage 50 150 no 8.6% 0.926
200 150 no 9.7% 0.895

25 150 ves 2.6% 0.899

25 150 no 15.5% 0.727

25 550 no 14.7% 0.720

Vehicle 50 150 no 13.5% 0.782
200 150 no 17.5% 0.698

25 150 ves 23.0% 0.458

25 150 no 22.9% 0.366

25 550 no 22.9% 0.367

Titanic 50 150 no 22.0% 0.3637
200 150 no 23.1% 0.377

25 150 ves 22.8% 0.57

25 150 no 20.2% 0.392

25 550 no 19.9% 0.397

Pima 50 150 no 21.1% 0.402
200 150 no 25.6% 0.557

25 150 ves 20.2% 0.402

ba]ance 15 150 no 136% 0.975
scale 15 150 yes 16.3% 0.982
breast 15 150 no 3.0% 0.987
cancer 15 150 yes 33% 0.971
jonosphere 15 150 no 12.0% 0.976
5 150 ves 12.8% 0.078

lung cancer 15 150 no 0.0% 0.999
5 150 ves 0.0% 1.000

. 15 150 no 8.8% 0.987
wine 15 150 yes 8.8% 0.992

occurrence, the columns in table 1 denote the dataset, the network
size measured in hidden units, the committee size i.e. the number of
weights from the posterior used for prediction and whether or not we
have used ARD of inputs. The last two columns denote the general-
ization error and the mean of the margin distribution.

In order to illustrate the correlation between the margins and the
generalization performance, we present the scatter plot shown in fig-
ure 3. This plot shows the mean of the margin distributions versus
generalization performance. We see a strong positive correlation (cor-
relation coefficient of 0.896) among generalization performance and
margins.

We also tried to link generalization performance and margin dis-
tributions within one data set, but the result was disappointing. We
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Scatter plot mean of margin versus generalization performan ce
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Figure 3: This scatter plot shows the generalization performance versus the
corresponding mean of the margin distribution for all experiments. We see
a strong correlation of 0.896, which is due to different difficulties of the data
sets.
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made twenty one pairwise comparisons of different algorithmic set-
tings, which resulted in five significant different performance results.
In one of these cases, the margin distribution showed no significant
differences. In one case the margin distribution suggested the correct
trend in generalization performance, but three of the comparisons
showed the wrong trend. What are the reasons for the difficulties
to correlate the margin distribution with generalization performance?
Except for the two experiments with exactly the same number of hid-
den units that use different numbers of samples from the posterior, all
experiments were performed with different settings of the classifiers
or prior specifications. These changes lead to hypothesis classes with
different complexities. Therefore the bounds between the margins on
the training data and the margin we expect in the generalization case
are different. Classifiers with lower complexity will in general show
smaller margins, but at the same time the margins observed on new
data will also shrink. This makes of course any conclusions from the
margins observed on training data difficult.

5 Conclusions

Our theoretical analysis shows that Bayesian Classifiers of the kind
described in [10] can be regarded as large margin hyperplanes in a
Hilbert space, and consequently can be analysed with the tools of
data-dependent VC theory.

The non-linear mapping from the input space to the Hilbert space
is given by the initial choice of network architecture, while the coor-
dinates of the hyperplane are given by the Bayes’ posterior and hence
depend both on the training data and on the chosen prior.

The choice of the prior turns out to be a crucial one, since we
have shown how even slightly correctly guessed priors can translate
into lower effective VC dimensions of the resulting classifier (and this
- coupled with high training accuracy - ensures good generalization).
But even with a totally uninformative prior there is at least no harm
in using these apparently over-complex systems.

Extensive experimental results on real world data have confirmed
the theoretical predictions by exhibiting margin distributions which
are concentrated around the maximal value.

The main aim of this paper has been to co-locate Bayesian Clas-
sifiers in the same category of two other learning systems — namely
Support Vector Machines and Adaboost — which were motivated by
very different considerations but which exhibit very similar behaviours
with respect to overfitting. A unified analysis of the three systems is
now possible, which can make potentially fruitful comparisons and
cross-fertilisations much easier.
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