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1 IntroductionIn recent years, new methods for training neural networks inspiredby Bayesian theory have been proposed and used, mainly due to thework of MacKay and Neal [7, 8, 10]. The systems inspired by theseapproaches are generally known as Bayesian learning algorithms andhave proven to be resistant to over�tting.We distinguish two main approaches to Bayesian learning. In the�rst a hypothesis is chosen with maximum a posteriori probability,the so-called MAP estimate. Analysis of the generalization of thisestimate in terms of its a posteriori probability has been made byShawe-Taylor and Williamson [17] and McAllester [9].In the second approach which we will study in this paper the algo-rithm outputs an entire distribution of probability over the hypothesisspace, rather than a single hypothesis. Such a distribution, the Bayesposterior, depends on the training data and on the prior distribution,and is used to make predictions by averaging the predictions of allthe elements of the set, in a weighted majority voting scheme. Theposterior is computed according to Bayes' rule, and such a schemehas the remarkable property that { as long as the prior is correct andthe computations can be performed exactly { its expected test erroris minimal.Typically, the posterior is approximated by combining a Gaussianprior and a simpli�ed version of the likelihood (the data-dependentterm). Such a distribution is then sampled with a Monte-Carlo method,to form a committee whose composition reects the posterior proba-bility.The classi�ers obtained with this method are known to be resis-tant to over�tting. Indeed, neither the committee size nor the networksize strongly a�ect the performance, to such an extent that it is notuncommon - in the Bayesian literature - to refer to \in�nite networks"[11, 20], meaning by this networks whose number of tunable parame-ters is much larger than the sample size.The thresholded linear combination of classi�ers generated by theBayesian algorithm can be regarded as a hyperplane in a high dimen-sional feature space. The mapping from the input to the feature spacedepends on the chosen hypothesis space (e.g. network architecture).In this paper we provide a novel description of Bayesian classi�erswhich makes it possible to perform a margin analysis on them, andhence to apply data-dependent SRM theory [15]. In particular, byviewing the posterior distribution as a linear functional in a Hilbertspace, the margin can be computed and gives a bound on the general-ization error via an e�ective VC dimension which is much lower than2



the number of parameters. An analogous analysis has been performedin the case of Adaboost by Schapire et al.[14], whose theorems we willquote for reference. We then present an extensive experimental studysubstantially con�rming the predictions of the model on many realworld datasets.These results not only explain the resistance to over�tting observedin Bayesian algorithms, but also provide a surprising uni�ed descrip-tion of three of the most e�ective learning algorithms: Support VectorMachines, Adaboost and now also Bayesian classi�ers.2 Bayesian Learning TheoryThe result of Bayesian learning is a probability distribution over the(parametrised) hypothesis space, expressing the degree of belief in aspeci�c hypothesis as an approximation of the target function. Thisdistribution is then used to make predictions.To start the process of Bayesian learning, one must de�ne a priordistribution P (�) over the parameter space � associated with a set ofparametrized functions f(x; �), possibly encoding some prior knowl-edge.In the following we will denote by f� the hypothesis f(x; �). Weassume throughout that f� are f�1; 1g valued functions.After observing the dataD, the prior distribution is updated usingBayes' Rule: P (�jD) / P (Dj�)P (�):The posterior distribution so obtained, hence, encodes informationcoming from the training set (via the likelihood function P (Dj�)) andprior knowledge.To predict the label of a new point, Bayesian classi�ers integratethe predictions made by every element of the hypothesis space, weight-ing them with the posterior associated to each hypothesis, obtaininga distribution of probability over the set of possible labels:P (yjx;D) = Z� f(x; �)p(�jD)dP (�)This predictive distribution can be used to minimize the number ofmisclassi�cations in the test set; in the 2-class case this is achievedsimply by outputting the label which has received the highest vote.Many practical problems exist in the implementation of such sys-tems, and typically the procedure described above is approximatedwith numerical methods, by forming a committee sampled from theposterior with a Monte-Carlo simulation.3



The likelihood, P (Dj�), also needs to be approximated, and gener-ally it is replaced by a function of the kind e�loss(f�)), meaning by thisthat hypotheses highly inconsistent with the training set are unlikelyto have generated it, and vice-versa. The exact form taken by thelikelihood, however, depends on assumptions made about the noise inthe data. An introduction to this �eld can be found in Radford Neal'sbook [10]. The most important fact about Bayesian algorithms is thatthey turn out to be resistant to over�tting [12, 10], to the point that itis possible to use networks larger than the number of training exam-ples, and to combine them in large committees. They are interestingnot only because they work, but also because their behaviour seemsto challenge the intuition of Ockham's Razor.3 Bayesian Classi�ers as Large Mar-gin HyperplanesIn this section we introduce a rather di�erent view of Bayesian Clas-si�ers, which leads to their reinterpretation as hyperplanes in a high-dimensional Hilbert space. We then study a simpli�ed model of suchclassi�ers, which is easier to analyse but retains all the relevant fea-tures of the general case. We wish to understand the properties oftheir margin, and so of their e�ective VC dimension. This conceptwas introduced by Vapnik et al. [19], though we use the term to meanthe fat shattering dimension measured at the scale of the observedmargin. Theorem 3.3 below shows that this dimension takes the placeof the standard VC dimension in bounds on the generalization errorin terms of the margin on the training set.We �rst observe that, in the 2-class case examined so far, thepredictions are actually performed by a thresholded linear combinationof base hypotheses. The coe�cients of the linear combinations arethe posterior probabilities associated to each element of H , and thethresholding is at zero if the labels are f�1;+1g.Hence, the actual hypothesis space used by Bayesian systems isthe convex hull of H , C(H) rather than H , where we haveC(H) = �Fa����Fa(x) = Z� a�f(x; �)dP (�) where Z� a�dP (�) = 1� :Hence we can view the output hypothesis is a hyperplane, whosecoordinates are given by the posterior. In practice the output hy-pothesis is frequently estimated by a Monte-Carlo sampling of thehypothesis space using the posterior distribution. We will ignore the4



e�ect that this has and study the behaviour of the composite hypoth-esis itself under various assumptions about the underlying functionspace H and prior P (�).We �rst give some necessary de�nitions.De�nition 3.1 Let H be a set of binary valued functions. We saythat a set of points X is shattered by H if for all binary vectors bindexed by X, there is a function fb 2 H realising b on X. TheVapnik-Chervonenkis (VC) dimension VCdim(H) of the set H thesize of the largest shattered set, if this is �nite or in�nity otherwise.De�nition 3.2 Let H be a set of real valued functions. We say thata set of points X is -shattered by H if there are real numbers rxindexed by x 2 X such that for all binary vectors b indexed by X,there is a function fb 2 H satisfyingfb(x)( � rx +  if bx = 1� rx �  otherwise:The fat shattering dimension fatH of the set H is a function from thepositive real numbers to the integers which maps a value  to the sizeof the largest -shattered set, if this is �nite or in�nity otherwise.We will make critical use of the following result contained in Shawe-Taylor et al [15] which involves the fat shattering dimension of thespace of functions. Note that T� denotes the classi�cation functionobtained by thresholding at �.Theorem 3.3 Consider a real valued function class H having fatshattering function bounded above by the function afat : < ! N whichis continuous from the right. Fix � 2 <. Then with probability atleast 1 � � a learner who correctly classi�es ` independently gener-ated examples z with h = T�(f) 2 T�(H) with zero training error and = min jf(xi)� �j will have error of h bounded from above by�(m; k; �) = 2̀ �k log2�8e`k � log2(32`) + log2 �8�̀ �� ;where k = afat(=8).More recently results bounding the generalization in terms of othermore robust measures of the distribution of margin values have beenobtained [16], but for the analysis presented in this paper the abovetheorem will be adequate.Note how the fat shattering dimension at scale =8 plays the roleof the VC dimension in this bound. This result motivates the use of5



the term e�ective VC dimension for this value. In order to make use ofthis theorem, we must have a bound on the fat shattering dimensionand then calculate the margin of the classi�er. We begin by consid-ering bounds on the fat shattering dimension. The �rst bound on thefat shattering dimension of bounded linear functions in a �nite di-mensional space was obtained by Shawe-Taylor et al. [15]. Gurvits [6]generalised this to in�nite dimensional Banach spaces. We will quotean improved version of this bound (slightly adapted for an arbitrarybound on the linear operators) which is contained in [2].Theorem 3.4 [2] Consider a Hilbert space and the class of linearfunctions L of norm less than or equal to B restricted to the sphereof radius R about the origin. Then the fat shattering dimension of Lcan be bounded by fatL() � �BR �2 :In order to apply Theorems 3.3 and 3.4 we need to bound theradius of the sphere containing the points and the norm of the linearfunctionals involved. Clearly, scaling by these quantities will give themargin appropriate for application of the theorem.The Hilbert space we consider is that given by the functionsH = �z : �! <���� such that Z�2� z(�)2dP (�) <1�with the inner producthz1 � z2i = Z�2� z1(�)z2(�)dP (�):There is a natural embedding of the input space X onto the unitsphere of H given by x 7! f(x; �), sinceZ�2� f(x; �)2dP (�) = Z�2� dP (�) = 1:Hence, the norm of input points is 1 and they are contained in theunit sphere as required.The linear functions considered are those determined by the pos-terior distribution. The norms are given bykak2 = Z� a2�dP (�):Hence,fatCB(H)() = �B �2 ; where CB(H) = nFa 2 C(H)jkak2 � Bo :6



Next we consider the margin . In order to study the margin ofsuch hyperplanes, we will introduce some simpli�cations in the generalmodel. We assume that the base hypothesis space, H is su�cientlyrich that all dichotomies can be implemented. Further, initially wewill assume that the average prior probability over functions in eacherror shell does not depend on the number of errors.These are the only assumptions we make, and the second will berelaxed in a later analysis. A natural choice for the evidence functionin a f�1; 1g valued hypothesis space is e�r� , for a hypothesis thatmakes r mistakes. which has the required property of giving low like-lihood to the predictors which make many mistakes on the trainingset, and to which the usual Bayesian evidence collapses in the Booleancase. The quantity � is usually related to the kind of noise assumedto a�ect the data.The assumption that all the dichotomies can be implemented withthe same probability corresponds to an `uninformative' prior, whereno knowledge is available about the target function. In a second stagewe will examine the e�ect of inserting some knowledge in the prior, byslightly perturbing the uninformative one towards the target hypoth-esis. We will see that even slightly favourable priors can give a muchsmaller e�ective VC dimension than the uninformative one.3.1 An Uninformative PriorThe actual hypothesis space used by Bayesian systems, hence, is theconvex hull C(H), rather than H . The output hypothesis is a hyper-plane, whose coordinates are given by the posterior.In this section we give an expression for the margin of the com-posite hypothesis, as a function of a parameter related to our modelof likelihood. The result is obtained in the case of a uniform prior forthe pattern recognition case.Let us start by stating some simple results and de�nitions whichwill be useful in the following.De�nition 3.5 Let s� be the number of points whose labeling is in-correctly predicted by the hypothesis f�. We de�ne the balance of thehypothesis f� over a given sample as B� = ` � 2s�, where ` is thesample size. Hypotheses having the same value of s are said to forman error shell.Note that B�=` = 1 � 2��, where �� = s�=` is the empirical errorof f�.Formally our initial assumption can now be stated.7



Assumption 3.6 The Uninformative Prior The prior probabilityof hypotheses which have empirical error � = r=` is12` r̀! = `!2`(`�)!(`� `�)! ;in other words that the average prior probability over the equivalenceclasses of functions realising di�erent patterns of r errors is 2�`.The posterior distribution for a hypothesis which has r trainingerrors is proportional to e��r = Cr, where C = e�� . We are nowready to give the main result of this section.Theorem 3.7 If Assumption 3.6 holds, then the margin of the BayesClassi�er F (x) 2 C(H) is given by1� 2C1 + C :Proof : Let the set of training examples be (x1; : : : ;x`) with classi-�cations y = (y1; : : : ; y`) 2 f�1; 1g` and let the margin M of examplei be Mi = yiF (xi). Consider �rst the average margin< M > = 1̀Xi2SMi = 1̀Xi2S yiF (xi) = 1̀Xi2S yi Z�2� ahh(xi)dP (h)= 1̀Xi2S yiXj2J ajPjfj(xi);where fj , j 2 J are representatives of each possible classi�cation ofthe sample. We are denoting by Pj the prior probability of classi�ersagreeing with fj . The quantity ajPj is the posterior probability ofthese classi�ers, where the coe�cient aj = Ae��`�j = AC`�j is the evi-dence, which depends only on the empirical error and the normalisingconstant A. By assumption, we haveXr error shell Pj =  r̀! 12` :Hence,< M > = 1̀Xj2J ajPjXi2S yifj(xi);= 1̀Xj2J ajPjBj (1)= Xj2J ajPj(1� 2�j) = 1� 2Xj2J ajPj�j ;8



by the observation concerning the balance Bj of fj and the fact thatthe posterior distribution has been normalised, that is 1 = RH ahdP (h) =Pj2J ajPj .We now regroup the elements of the sum on the right hand sideof the above equation by decomposing the hypothesis space into errorshells (subsets of H formed by hypotheses with the same error r).Hence, we can write the above sum asXj2J ajPj�j = 12` X̀r=0ACr r̀! r̀ : (2)Solving for A and substituting, givesXj2J ajPj�j = Pk Cr�r̀� r̀Pr Cr�r̀�We can now use the equalityPr Cr�r̀� = (1+C)`, and the observationthat Pr Cr�r̀�r can be written as C ddC Pr Cr�r̀� = `C(1 + C)`�1 toobtain the result for the average margin.To complete the proof we must show that the average margin is infact the minimal margin. We will demonstrate this by showing thatthe margin of all points is equal. Intuitively, this follows from thesymmetry of the situation, there being nothing to distinguish betweendi�erent training points in the structure of the hypothesis.More formally, note that for every output sequencez = (z1; : : : ; z`) 2 f�1; 1g`;we can realise the mapping xi 7! zi; i = 1; : : : ; `, with a functionfz 2 H .Let s(z) be the sequence obtained by swapping the i-th and j-thentries in the sequence z and swapping their signs if the i-th and j-thinputs have opposite classi�cations according to the training sequencey. Note that s is a bijection of the set of all sequences onto itself. Notealso that if ah is the posterior distribution over the function class H ,afz = afs(z) , since the number of errors of the two functions is thesame { fz is correct on input i precisely when fs(z) is correct on j,that is yifz(xi) = yjfs(z)(xj):Now consider the Bayesian posterior functionF (x) = 12` Xz afzfz(x):9



The margin of this function on the point xi isyiF (xi) = 12` Xz afzyifz(xi) = 12` Xz afzyifs(z)(xi);since s is a bijection and weights are unchanged. Hence,yiF (xi) = 12` Xz afzyjfz(xj) = yjF (xj)and the margins of the points i and j are equal. Since, i and j arearbitrary all margins are equal and the result is proved.Since the assumption that the underlying hypothesis space canperform any classi�cation of the training set implies that its VC di-mension is at least `, we cannot expect that learning is possible inthe situation described. Indeed, we have augmented the power of thehypothesis space by taking our functions from the convex hull of Hwhich would appear to make the situation yet worse.Nonetheless Theorem 3.7 shows that the margin of the Bayes clas-si�er is indeed large under the assumptions we have made, provideda suitable choice of the parameter C is made. A calculation of thee�ective VC dimension in this case will be made later, though it is toolarge for any bound on the generalization error to be made. We mustmake assumptions about the prior in order to be able to learn.3.2 Towards a Benign PriorBefore proceeding to consider the e�ect of the prior on the e�ectiveVC bound, we will mention two other theorems that might be usefulfor bounding the generalization error in terms of the margin. We will,however, argue that they are unable to take account of our type ofprior that assigns di�erent probabilities to hypotheses. We will quotethe theorems from Schapire et al. [14], though they appear in a moregeneral form in [1].Following [14], let H denote the space from which the base hy-potheses are chosen (for example Neural Networks, or Decision Trees).A base hypothesis f 2 H is a mapping from an instance space X tof�1;+1g.Theorem 3.8 Let S be a sample of ` examples chosen independentlyat random according to D. Assume that the base hypothesis space Hhas VC dimension d, and let be � > 0. Then, with probability at least10



1 � � over the random choice of the training set S, every weightedaverage function F 2 C(H) satis�es the following bound for all � > 0:PD[yF (x) � 0] � PS [yF (x) � �]+O0@ 1p`  d log2(`=d)�2 + log�1��!1=21ATheorem 3.9 Let S be a sample of ` examples chosen independentlyat random according to D Assume that the base hypothesis space H is�nite, and let be � > 0. Then, with probability at least 1 � � over therandom choice of the training set S, every weighted average functionF 2 C(H) satis�es the following bound for all � > 0:PD[yF (x) � 0] � PS [yF (x) � �]+O0@ 1p`  log2(`) log jH j�2 + log�1��!1=21AAs observed by the authors, the theorem applies to every majorityvote method, including boosting, bagging, ECOC, etc. In order toobtain useful applications of any of the theorems we will need to con-sider deviations from the most general situation described above. Thedeviation should not have a signi�cant impact on the margin, whilereducing the expressive power of the hypotheses.In order to apply Theorem 3.9 the number of hypotheses in the baseclass H must be �nite. The logarithm of the number of hypothesesappears in the result. Since we have assumed that all possible classi�-cations of the training set can be performed the number of hypothesesmust be at least 2` making the bound uninteresting. To apply thistheorem we must assume that a very large proportion of the hypothe-ses have zero weight in the prior, while those that have signi�cantweights in the posterior (i.e. have low empirical error) are retained.Making this assumption the bound will become signi�cant. However,we are interested in capturing the e�ect of non-discrete priors, that issituations where potentially all of the base hypotheses are included,but those with high empirical error have lower prior probability.In order to apply Theorem 3.8 the underlying hypothesis class Hmust be assumed to have low VC dimension in such a way that nosigni�cant impact is made on the margin. This could be achieved byremoving high error functions. Note that the functions would haveto be removed, in other words given prior probability 0. Hence, thebound obtained would be no better than a standard VC bound in theoriginal space. A situation where this approach and analysis might beadvantageous is where the consistent hypothesis fy is not included inH . This will reduce the margin by approximatelyafy2�` = (1 + C)�`;11



since Bfy = ` (see equation (1)). The approximation arises from notadjusting the normalisation to take account of the missing hypothesisand is thus a very small error. Note that the minimal margin is stillequal to the average in this case since all points are equally a�ected.Applying a non-agnostic version of the second theorem assuming thatthe underlying function class had VC dimension k would now give asigni�cantly better bound on generalization than a standard agnosticbound for the best hypothesis in the base class which would not havezero error.These applications are, however, unable to take into account theprior distribution in a exible way. In the next section we will presentan application of the original approach to show how this can takeadvantage of a bene�cial prior.3.3 The E�ect of a Benign PriorWe will consider the situation where the prior decays arithmeticallywith the error shells. In other words the prior on hypotheses witherror r is multiplied by �r for some � < 1. More formally we state thisas follows.Assumption 3.10 The Benign Prior The prior probability of hy-potheses which have empirical error � = r=` isXr error shellP (�) = A�r r̀! = �r(1 + �)�` r̀!:We �rst repeat the calculations of Theorem 3.7 for this case. Thesum (2) must take into account the new prior. The factor (1 + �)` iscommon and the factor � appears wherever C appears, that isXj2J ajPj�j = 1(1 + �)` X̀r=0ACr�r r̀! r̀ ;while A(1 + �)` X̀r=0Cr�r r̀! = 1:Hence, (1 + �)` cancels, and since the argument that all margins areequal is not a�ected by the prior, we can deduce the following gener-alization of Theorem 3.7.Theorem 3.11 If Assumption 3.10 holds, then the margin of theBayes Classi�er F (x) 2 C(H) is given by�;C = 1� 2�C1 + �C :12



We must further compute the value of kak for the posterior func-tional in the prior described above. The integral in this case is givenby kak2 = Xj2J a2jPj = X̀k=0A2C2r �r(1 + �)` r̀!= (1 + �)`(1 + �C2)`(1 + �C)2` :We can now combine this value with the margin computed above togive the value of the fat shattering dimension from Theorem 3.4 at theappropriate scale. This bound on the e�ective VC dimension becomes,g(�; C) := kak22�;C = (1 + �)`(1 + �C2)`(1 + �C)2`�2(1� �C)2 ;where to keep the subsequent formulae simple we have ignored thefactor of 64 arising for the scale =8 in Theorem 3.3.In the rest of this section we will consider how this function behavesfor various choices of C and �, showing that for careful choices of C,and values of � close to 1 can give dimensions signi�cantly lower than`, hence give good bounds on the generalization error. The analysisshows that using this approach it is possible to understand the e�ectof a benign prior. At the same time it suggests a value of C mostlikely to take advantage of such a prior.First consider the case when � = 1, that is the uninformative priorconsidered in Section 3.1. Hence,g(1; C) = 2`(1 + C2)`(1 + C)2`�2(1� C)2 :The parameter C can be chosen in the range [0; 1). However,g(1; C)�!C!1 1;while g(1; 0) = 2`. Clearly, the optimal choice of C needs to be de-termined if the bound is to be useful. A routine calculation estab-lishes that the value of C which minimises the expression is, C0 =(`� p`� 1)=(`� 2); which gives a value ofg(1; C0) = `�1 + 1`� 1�`�1 � e`:This con�rms that the e�ective VC dimension is not increased exces-sively provided C is chosen around 1� 2=p` (i.e. � � 2=p`), though13



of course the bound on generalization error is trivial in this case. Theanalysis so far can be viewed as a `sanity check', demonstrating thatdespite signi�cantly increasing the computational power of the hy-pothesis class (by moving to C(H)), the increase in the e�ective VCdimension has been very slight. In order to see how the prior canproduce a non-trivial bound, we will study the e�ect of allowing �to move slightly below 1. We will perform a Taylor expansion about� = 1.Let C0 = �C and the functiong1(�; C0) := g(�; C 0=�) = (1 + �)`(1 + C 02=�)`(1 + C 0)2`�2(1� C 0)2 :Note that @g1(�;C0)@C0 j�=1 = 0, and so @g(�;C0)@� = @g1(�;C0)@� + @g1(�;C0)@C0 dC0d� .Hence, @g(�; C0)@� j�=1 = @g1(�; C0)@� j�=1:Di�erentiating gives@g1(�; C0)@� j�=1 = `2`�1(1 + C 02)`�1(1 + C0)2`�3(1� C0)We can now perform a Taylor series expansion of g(�; C0) about� = 1 to obtain g(�; C0) � e`(1 + (� � 1)p`� 1), where we haveomitted some routine calculations.Hence, the bound on the generalization error is (ignoring log fac-tors) ~O(1� (1� �)p`� 1);so that to obtain generalization error of order �, we need� � 1� 1� �=(e log `)p`� 1 :Hence, for values of � very close to 1, the prior can result in improvedgeneralization properties. Note that the value of C used in the calcula-tions is unchanged so that we can take advantage of the prior withoutany �ne tuning of the system. We simply observe the margin, andthe value of kak on the Monte-Carlo generated set of hypotheses, torecover a bound on the e�ective VC dimension and hence an estimateof the generalization error.One possible criticism of the benign prior of Assumption 3.10 isthat in many learning systems, natural priors have the property that afunction and its complement have equal probability. The assumptionof arithmetically decreasing prior with increasing error shell is not14



consistent with this. This problem can, however, be overcome byconsidering a prior that emphasises very bad hypotheses in the sameway as very good hypotheses, those having low correlation (and anti-correlation) with the target being the low probability ones:Xr error shell P (�) = A(�r + �`�r) r̀! = �r + �`�r2(1 + �)�` r̀!:The e�ect of this on the margin and norm is slight. For example, themargin becomes = 1� 2�C(1+ �C)`�1 + C(�+ C)`�1(1 + �C)` + (�+ C)`� 1� 2�C1 + �C :provided the following quantity is signi�cantly smaller than 2� � 2,� �+ C1 + �C�`�1 = �1� (1� �)(1� C)1 + �C �`�1� �1� 1̀�`� e�1for the values of � and C considered. We have omitted a full derivationas the formulae become rather unwieldy.4 ExperimentsIn the previous sections we have presented a slightly simpli�ed modelof a Bayesian classi�er, which predicted that the margin of the trainingpoints can be expected to be large. When real data are used, how-ever, the assumptions of the model could be only partially satis�ed,so also its predictions could be a�ected. In this section we present anextensive experimental study on real world data, showing that indeedthe committees of neural networks produced by Bayesian classi�ers dogenerate large margin hypotheses.Even if not all data points have margin one, which was the ide-alized situation of our model, we still can see that this is nearly thecase: namely that the distribution of the margins is clearly biased inthe sense of a large margin. This is enough for us to use margin distri-bution theorems such as [16], and bound the e�ective VC dimensionof such systems, so explaining their seemingly paradoxical behaviourwith respect to over�tting. 15



4.1 DataThe datasets were chosen to allow comparisons with [14] and to covera range of di�erent problems. We used vehicle data, satimage data,Wisconsin breast cancer, lung cancer data, John Hopkins Universityionosphere data, balance scale weight and distance data and the winerecognition database, all taken from the StatLog 1 database. We usedsatimage as provided, there are 4435 samples in the training and 2000in the test set. The vehicle data were merged, 500 samples were usedfor training and 252 for testing. The other data were split into twoequal sized sets, which were both used as training and independent testsets respectively. The samples with missing values present in the lungcancer data were removed. To cover also categoric problems, we usedthe titanic dataset, which is provided via the Delve project 2. Herewe used the largest number of training data suggested, which is 500samples and the test set as provided, which contains 1701 samples.The data has 3 categoric inputs: gender, age (adult/child) and theclass of passage (�rst to third class or crew member). We used orderedcoding of the information about the passenger class, which seems tobe a reasonable choice. The last data is the pima diabetes dataset asprovided by B.D. Ripley3. A detailed description can be found in [13].4.2 Experimental setupWe performed two types of experiments: For satimage, vehicle, ti-tanic and the pima diabetes data, we looked at the performance re-sulting from �ve di�erent settings of the classi�er and learning proce-dure. All experiments were performed using R. Neals hybrid MonteCarlo sampling algorithm. Initially we sampled 600 weights using thestandard method without automatic relevance determination (ARD)-priors. The network size was �xed to 25 hidden units. This experimentwas used to investigate the dependence of the margin distribution ofthe number of weights used to represent the posterior. Discarding50 initial weights, we calculated the margin distribution of a commit-tee consisting of the next 150 weights and compared it to the margindistribution when using all 550 remaining weights.To assess whether the margin distribution changes while increas-ing the size of the network, we performed two further experimentssampling 150 weights for a network with 50 and 200 hidden units1The data are available via the UCI machine learning repository athttp://www.ics.uci.edu/ mlearn/MLRepository.html.2The Delve home-page can be reached at http://www.cs.utoronto.ca/ delve/.3The data can be obtained via: http://www.stats.ox.ac.uk/ ripley/.16



respectively, again using conventional priors without ARD. A �fth ex-periment should reveal the inuence of an ARD-prior on the margindistribution. We sampled 150 weights for a network with 25 hiddenunits using an ARD-prior on the input to hidden layer weights.The term automatic relevance determination (ARD) -prior refersto an additional level in the hierarchical prior speci�cation. In R.Neals hybrid Monte Carlo implementation, ARD-priors can be usedon groups of weights connecting one unit (typically an input or ahidden unit) to the next layer. As mentioned, we used ARD on inputsonly. The idea of this concept is to allow \soft" feature selection.To achieve this, each group of weights from one input to the hiddenlayer has it's own Gaussian prior governed by a hyper parameter (thevariance of the Gaussian). If most weights from one input tend tobe small, the posterior of the associated hyperparameter favors smallvariances. Hence the weights are actively suppressed and the input is\turned o�".Figure 1 shows plots of the resulting margin distributions for thesatimage, vehicle, titanic and pima data. Looking at the plots ofthe margin distributions for each experiment, we see a trend towardslower margins when increasing the number of hidden units. This factcan be understood when remembering that the prior variance of thehidden to output weights scales inversely with the number of hiddenunits. Increasing the number of hidden units forces smaller hiddento output weights which leads to a smaller complexity of the networkand increased errors on the training set.The setting for the experiments performed with the remainingdatasets (balance scale, breast cancer, ionosphere, lung cancer andthe wine recognition data) was somewhat simpler. Our �rst experi-ment gave some evidence that signi�cant di�erences of the observedperformance were mainly due to di�erences caused by the ARD-prior.Therefore, we restricted our second comparison to results obtainedwith a two layer neural network with �fteen hidden units, once withconventional (non ARD) priors and once with ARD-priors. Both equalsized datasets were used as training and test set respectively. In �gure2 we see the margin distributions on the training data when fusing themargins of both runs.4.3 Discussion of margin distributionsIn order to compare the margin distribution with the generalizationerror, we used each classi�er to predict class labels on an indepen-dent test set. In table 1, we summarize the di�erent experimentalsettings and the results obtained on all datasets. In the order of their17
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Figure 2: Plots showing margin distributions of �ve standard data sets usinga neural network with �fteen hidden units, once without and once with ARD-prior. 19



Table 1: Summary of ExperimentsDataset Network size Committee size ARD-prior Gen. error Mean of marginsSatimage 25 150 no 9.2% 0.92925 550 no 9.0% 0.93250 150 no 8.6% 0.926200 150 no 9.7% 0.89525 150 yes 8.6% 0.899Vehicle 25 150 no 15.5% 0.72725 550 no 14.7% 0.72050 150 no 13.5% 0.782200 150 no 17.5% 0.69825 150 yes 23.0% 0.458Titanic 25 150 no 22.9% 0.36625 550 no 22.9% 0.36750 150 no 22.0% 0.3637200 150 no 23.1% 0.37725 150 yes 22.8% 0.57Pima 25 150 no 20.2% 0.39225 550 no 19.9% 0.39750 150 no 21.1% 0.402200 150 no 25.6% 0.55725 150 yes 20.2% 0.402balancescale 15 150 no 13.6% 0.97515 150 yes 16.3% 0.982breastcancer 15 150 no 3.0% 0.98715 150 yes 3.3% 0.971ionosphere 15 150 no 12.0% 0.97615 150 yes 12.8% 0.978lung cancer 15 150 no 0.0% 0.99915 150 yes 0.0% 1.000wine 15 150 no 8.8% 0.98715 150 yes 8.8% 0.992occurrence, the columns in table 1 denote the dataset, the networksize measured in hidden units, the committee size i.e. the number ofweights from the posterior used for prediction and whether or not wehave used ARD of inputs. The last two columns denote the general-ization error and the mean of the margin distribution.In order to illustrate the correlation between the margins and thegeneralization performance, we present the scatter plot shown in �g-ure 3. This plot shows the mean of the margin distributions versusgeneralization performance. We see a strong positive correlation (cor-relation coe�cient of 0.896) among generalization performance andmargins.We also tried to link generalization performance and margin dis-tributions within one data set, but the result was disappointing. We20
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Figure 3: This scatter plot shows the generalization performance versus thecorresponding mean of the margin distribution for all experiments. We seea strong correlation of 0.896, which is due to di�erent di�culties of the datasets.
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made twenty one pairwise comparisons of di�erent algorithmic set-tings, which resulted in �ve signi�cant di�erent performance results.In one of these cases, the margin distribution showed no signi�cantdi�erences. In one case the margin distribution suggested the correcttrend in generalization performance, but three of the comparisonsshowed the wrong trend. What are the reasons for the di�cultiesto correlate the margin distribution with generalization performance?Except for the two experiments with exactly the same number of hid-den units that use di�erent numbers of samples from the posterior, allexperiments were performed with di�erent settings of the classi�ersor prior speci�cations. These changes lead to hypothesis classes withdi�erent complexities. Therefore the bounds between the margins onthe training data and the margin we expect in the generalization caseare di�erent. Classi�ers with lower complexity will in general showsmaller margins, but at the same time the margins observed on newdata will also shrink. This makes of course any conclusions from themargins observed on training data di�cult.5 ConclusionsOur theoretical analysis shows that Bayesian Classi�ers of the kinddescribed in [10] can be regarded as large margin hyperplanes in aHilbert space, and consequently can be analysed with the tools ofdata-dependent VC theory.The non-linear mapping from the input space to the Hilbert spaceis given by the initial choice of network architecture, while the coor-dinates of the hyperplane are given by the Bayes' posterior and hencedepend both on the training data and on the chosen prior.The choice of the prior turns out to be a crucial one, since wehave shown how even slightly correctly guessed priors can translateinto lower e�ective VC dimensions of the resulting classi�er (and this- coupled with high training accuracy - ensures good generalization).But even with a totally uninformative prior there is at least no harmin using these apparently over-complex systems.Extensive experimental results on real world data have con�rmedthe theoretical predictions by exhibiting margin distributions whichare concentrated around the maximal value.The main aim of this paper has been to co-locate Bayesian Clas-si�ers in the same category of two other learning systems { namelySupport Vector Machines and Adaboost { which were motivated byvery di�erent considerations but which exhibit very similar behaviourswith respect to over�tting. A uni�ed analysis of the three systems isnow possible, which can make potentially fruitful comparisons andcross-fertilisations much easier. 22
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