
Bayesian Classi�ers are Large Margin Hyperplanesin a Hilbert SpaceNello CristianiniDept of Engineering MathsUniversity of Bristol,Bristol, UKnello.cristianini@bristol.ac.uk John Shawe-TaylorDept of Computer ScienceRHBNCEgham, UKjst@dcs.rhbnc.ac.uk Peter SykacekAustrian Research Institutefor Arti�cial IntelligenceVienna, Austriapeter@ai.univie.ac.atAbstractBayesian algorithms for Neural Networks are known toproduce classi�ers which are very resistent to over�t-ting. It is often claimed that one of the main distinc-tive features of Bayesian Learning Algorithms is thatthey don't simply output one hypothesis, but ratheran entire distribution of probability over an hypothesisset: the Bayes posterior. An alternative perspective isthat they output a linear combination of classi�ers,whose coe�cients are given by Bayes theorem. Oneof the concepts used to deal with thresholded convexcombinations is the `margin' of the hyperplane withrespect to the training sample, which is correlated tothe predictive power of the hypothesis itself.We provide a novel theoretical analysis of such clas-si�ers, based on Data-Dependent VC theory, provingthat they can be expected to be large margin hyper-planes in a Hilbert space. We then present experimen-tal evidence that the predictions of our model are cor-rect, i.e. that bayesian classifers really �nd hypotheseswhich have large margin on the training examples.This not only explains the remarkable resistance toover�tting exhibited by such classi�ers, but also co-locates them in the same class of other systems, likeSupport Vector machines and Adaboost, which have asimilar performance.Keywords: Bayesian Classi�ers, Large margin hyper-planes, Hilbert space1 INTRODUCTIONBayesian learning algorithms for neural networks ofthe kind described in [3] are often claimed to have thedistinctive feature of outputting an entire distributionof probability over the hypothesis space, rather thana single hypothesis. Such a distribution, the Bayes

posterior, depends on the training data and on priordistribution, and is used to make predictions by aver-aging the predictions of all the elements of the set, ina weighted majority voting scheme.The posterior is computed according to Bayes' rule,and such a scheme has the remarkable property that -as long as the prior is correct and the computations canbe performed exactly - its expected test error is mini-mal. Typically, the posterior is appoximated by com-bining a gaussian prior and a simpli�ed version of thelikelihood (the data-dependent term, that is the termthat reects the information gleaned from the train-ing set). Such a distribution is then sampled with aMontecarlo method, to form a committee whose com-position reects the posterior probability. The predic-tive integral over a posterior distribution can hence bereplaced by a sum.The classi�ers obtained with this method are known tobe highly resistent to over�tting. Indeed, neither thecommittee size nor the network size strongly a�ect theperformance, to such an extent that it is not uncom-mon - in the bayesian literature - to �nd computationswith \in�nite networks" [4], [10], meaning by this theposterior over the complete (in�nite) hypothesis space.Statistical Learning Theory, on the other hand, is con-cerned with the problem of bounding the test error (inthe worst case and with high probability) using quan-tities that are observable in the training set or knowna priori [9].The expressions obtained for such a bound typicallydepend on the training error, the sample size and theVC dimension of the classi�er. Given that the numberof tunable parameters gives a rough estimation of theVC dimension, the size of the network and that of thecommittee do matter.A more re�ned, Data-Dependent, version of the theoryintroduced in [8], shows that it is possible to replace



the VC dimension in the above mentioned bounds witha quantity which depends on the margin of the classi-�er on the training examples.In this paper we provide a novel description ofBayesian classi�ers which makes it possible to per-form margin analysis on them, and hence to applyData-Dependent VC theory. In particular, by view-ing the posterior distribution as a linear functional ina Hilbert space, the margin can be computed and givesa bound on the generalization error via an `e�ective'VC dimension which is much lower than the numberof parameters.Finally, experimental study is performed with a stan-dard bayesian algorithm [5] on real world data, in orderto test the predictions of our model. The results of theexperiments con�rm that the model captures the rel-evant features of these classi�ers, and that they canindeed be regarded as large margin hyperplanes in aHilbert space.Margin-distribution graphs are provided for di�erentdata sets, di�erent network sizes, committee sizes andchoices of prior, always showing the same qualitativebehaviour: a clear bias toward large margin on train-ing examples.Our plots can be directly compared with the ones pre-sented in the inspiring paper by Shapire et al. [7],where this concept was introduced, as we have usedthe same datasets. In that paper, a bound on the testerror as a function of the margin distribution was �rstobtained.These theoretical and experimental results not only ex-plain the remarkable resistance to evr�tting observedin bayesian algorithms, but also provide a surprisinguni�ed description of three of the most e�ective learn-ing algorithms: Support Vector Machines, Adaboostand now also Bayesian classi�ers.2 BAYESIAN LEARNING THEORYThe result of Bayesian learning is a probability distri-bution over the (parametrized) hypothesis space, ex-pressing the degree of belief in a speci�c hypothesis asapproximation of the target function. Such distribu-tion is then used to make predictions.To start the process of bayesian learning, one mustde�ne a prior distribution P (w) over the parameterspace, possibily encoding some prior knowledge. Afterobserving the data, the prior distribution is updatedusing Bayes' Rule:P (wjD) / P (Djw)P (w);

where P (wjD) is the probability of the parametersgiven the data D, P (Djw) the probability of the datagiven the parameters, and P (w) the prior distributionover the parameters. The posterior distribution so ob-tained, hence, encodes information coming from thetraining set (via the likelihood function P (Djw)) andprior knowledge.To predict the label of a new point, bayesian classi�ersintegrate the predictions made by every element of thehypothesis space, weighting them with the posteriorassociated to each hypothesis, obtaining a distributionof probability over the set of possible labels (note thathw is the function parametrised by w):P (yjx;D) = Zw hw(x)p(wjD)dwThis predictive distribution can be used to minimizethe number of misclassi�cations in the test set; in the2-class case this is achieved simply by outputting thelabel which has received the highest vote.3 BAYESIAN CLASSIFIERS ASLARGE MARGINHYPERPLANESHence, the actual hypothesis space used by Bayesiansystems is the Convex Hull of H, rather than H. Theoutput hypothesis is a hyperplane, whose coordinatesare given by the posterior.In order to study the margin of such hyperplanes,we will introduce some simpli�cations in the generalmodel. We assume that the base hypothesis space,H is formed by Boolean valued functions, and thatit is su�ciently rich that all dichotomies can be im-plemented. Further, initially we will assume that theaverage prior probability over functions in a particularerror shell does not depend on the number of errors.These are the only assumptions we make, and the sec-ond will to be relaxed in a second stage. A naturalchoice for the evidence function in a Boolean valuedhypothesis space is e�k�, where k is the number ofmistakes made by the hypothesis and � > 0 an ap-propriately chosen constant. The expression has therequired property of giving low likelihood to the pre-dictors which make many mistakes on the training set,and to which the usual Bayesian evidence collapses inthe Boolean case. Our analysis will also suggest suit-able choices for �.It can be interpreted with an assumption of Gaussiannoise corrupting the data after they have been labelledby a target function which belongs to H, the varianceof the noise depending on 1=�.



The assumption that all the dichotomies can be im-plemented with the same probability corresponds toan `uninformative' prior, where no knowledge is avail-able about the target function. In a second stage wewill examine the e�ect of inserting some knowledge inthe prior, by slightly perturbing the uninformative onetowards the target hypothesis. We will see that evenslightly favourable priors can give a much smaller VCdimension than the uninformative one.3.1 THE UNINFORMATIVE PRIORThe actual hypothesis space used by Bayesian systems,hence, is the Convex Hull of H, rather than H. Theoutput hypothesis is a hyperplane, whose coordinatesare given by the posterior.In this section we give an expression for the margin ofthe composite hypothesis, as a function of a parame-ter related to our model of likelihood. The result isobtained in the case of a uniform prior, and for thepattern recognition case.Let us start by stating some simple results and de�ni-tions which will be useful in the following.De�nition 3.1 Let Bi be the balance of the hypothe-sis hi over a given sample of size m, that is the num-ber of successes si minus the number of failures fi:Bi = si � fi, m = si + fi.Therefore Bi = m�2fi, which implies Bi=m = 1�2�i,where �i = f=m is the empirical error of hi.During the next proof we will need to know the prob-ability in the prior distribution of hypotheses in ourparameter space with a �xed empirical error. Giventhat this information is in general not available, we willinitially make the simplifying assumption that all be-haviours on the training sample can be realised. Thisimplies that the hypothesis space has VC dimensiongreater than or equal to the sample size m.We make the further assumption that the prior prob-ability of hypotheses which have error � = k=m is12m�mk� = m!2m(m�)!(m �m�)! ;in other words that the average prior probability forfunctions realising di�erent patterns of k errors is 2�m.We will assume that the posterior distribution for ahypothesis which has k training errors is proportionalto e��k = Ck, where C = e�� . We are now ready togive the main result of this section.Theorem 3.2 Under the above assumptions the mar-

gin of the Bayes Classi�er is given by1� 2C1 + C :Proof : Let the set of training examples be(x1; : : : ; xm) with classi�cations y = (y1; : : : ; ym) 2f�1; 1gm. Let the margin M of example i be Mi.Consider �rst the average margin< M > = 1mXi2S Mi = 1mXi2S yiF (xi)= 1mXi2S yi ZH ahh(xi)dP (h)= 1mXi2S yiXj2J ajPjhj(xi)where hj, j 2 J are representatives of each possibleclassi�cation of the sample. We are denoting by Pj theprior probability of classi�ers agreeing with hj . Thequantity ajPj is the posterior probability of these clas-si�ers, where the coe�cient aj = Ae��m�j = ACm�jis the evidence, which depends only on the empiricalerror and the normalising constant A. By assumption,we have Xk error shell Pj = �mk� 12m :Hence, < M > = 1mXj2J ajPjXi2S yihj(xi)= 1mXj2J ajPjBj= Xj2J ajPj(1� 2�j)= 1� 2Xj2J ajPj�j (1)by the observation concerning the balance Bj of hjand the fact that the posterior distribution has beennormalised, that is 1 = RH ahdP (h) =Pj2J ajPj.We now regroup the elements of the sum on the righthand side of the above equation by decomposing thehypothesis space into error shells. Hence, we can writethe above sum asXj2J ajPj�j = 12m mXk=0ACk�mk� km: (2)



Solving for A and substituting, givesXj2J ajPj�j = Pk Ck�mk � kmPk Ck�mk�We can now use the equality Pk Ck�mk � = (1 + C)m,and the observation thatPk Ck�mk �k can be written asC ddC Pk Ck�mk � = mC(1+C)m�1 to obtain the resultfor the average margin.To complete the proof we must show that the averagemargin is in fact the minimal margin. We will demon-strate this by showing that the margin of all points isequal. Intuitively, this follows from the symmetry ofthe situation, there being nothing to distinguish be-tween di�erent training points in the structure of thehypothesis. The formal proof relies on performing apermutation on the training points, but has had to beomitted in this shortened version.There are three relevant bounds on the generalizationerror in terms of the margin on the training set. Wewill quote all three here and then discuss their appli-cability in the current context. The �rst two appearin Schapire et al. [7].Following [7], let H denote the space from which thebase hypotheses are chosen (for example Neural Net-works, or Decision Trees). A base hypothesis h 2 H isa mapping from an instance space X to f-1, +1 g.Theorem 3.3 Let S be a sample of m examples cho-sen independently at random according to D. Assumethat the base hypothesis space H has VC dimension d,and let be � > 0. Then, with probability at least 1� �over the random choice of the training set S, everyweighted average function f 2 C satis�es the follow-ing bound for all � > 0:PD[yF (x) � 0] � PS[yF (x) � �]+O 1pm �d log2(m=d)�2 ) + log(1=��1=2!Theorem 3.4 Let S be a sample of m examples cho-sen independently at random according to D. Assumethat the base hypothesis space H is �nite, and let be� > 0. Then, with probability at least 1 � � over therandom choice of the training set S, every weighted av-erage function f 2 C satis�es the following bound forall � > 0:PD[yF (x)� 0] � PS[yF (x) � �]+O 1pm � log2(m) log jHj�2 ) + log(1=��1=2!

As observed by the authors, the theorem applies toevery majority vote method, including boosting, bag-ging, ECOC, etc.The third is contained in Shawe-Taylor etal [8] andinvolves the fat shattering dimension of the space offunctions.Theorem 3.5 Consider a real valued function classF having fat shattering function bounded above by thefunction afat : R! N which is continuous from theright. Fix � 2 R. If a learner correctly classi�es mindependently generated examples z with h = T�(f) 2T�(F) such that erz(h) = 0 and  = min jf(xi) � �j,then with con�dence 1 � � the expected error of h isbounded from above by�(m; k; �) = 2m �k log�8emk � log(32m) + log�8m� �� ;where k = afat(=8).Since the assumption that the underlying hypothesisspace can perform any classi�cation of the training setimplies that its VC dimension is at least m, we can-not expect that learning is possible in the situationdescribed. Indeed, we have augmented the power ofthe hypothesis space by taking our functions from theconvex hull of H which would appear to make the sit-uation yet worse.Hence, in order to obtain useful applications of anyof the theorems we will need to consider deviationsfrom the most general situation described above. Thedeviation should not have a signi�cant impact on themargin, while reducing the expressive power of the hy-potheses.In order to apply Theorem 3.4 the number of hypothe-ses in the base class H must be �nite. The logarithm ofthe number of hypotheses appears in the result. Sincewe have assumed that all possible classi�cations of thetraining set can be performed the number of hypothe-ses must be at least 2m making the bound uninter-esting. To apply this theorem we must assume thata very large proportion of the hypotheses have zeroweight in the prior, while those that have signi�cantweights in the posterior (i.e. have low empirical er-ror) are retained. Making this assumption the boundwill become signi�cant. However, we are interested incapturing the e�ect of non-discrete priors, that is sit-uations where potentially all of the base hypothesesare included, but those with high empirical error havelower prior probability.In order to apply Theorem 3.3 the underlying hypothe-sis class H must be assumed to have low VC dimension



in such a way that no signi�cant impact is made onthe margin. This could be achieved by removing higherror functions. Note that the functions would haveto be removed, in other words given prior probabil-ity 0. Hence, the bound obtained would be no betterthan a standard VC bound in the original space. Asituation where this approach and analysis might beadvantageous is where the consistent hypothesis hy isnot included in H. This will reduce the margin by ap-proximately ahy2�m = (1+C)�m, since Bhy = m (seeequation (1)). The approximation arises from not ad-justing the normalisation to take account of the miss-ing hypothesis and is thus a very small error.These applications are unable to take into account theprior distribution in a exible way. In the next sectionwe will present an application of the third approach toshow how this can take advantage of a bene�cial prior.3.2 THE EFFECT OF THE PRIORDISTRIBUTION ON THE MARGINBOUNDWe will consider the situation where the prior decaysarithmetically with the error shells. In other wordsthe prior on hypotheses with error k is multiplied by�k for some � < 1. We �rst repeat the calculations ofTheorem 3.2 for this case. The sum (2) must take intoaccount that in this caseXk error shell Pj = �k(1 + �)�m�mk�:The factor (1 + �)m cancels and the factor � appearswherever C appears, that isXj2J ajPj�j = 1(1 + �)m mXk=0ACk�k�mk� km;while A(1 + �)m mXk=0Ck�k�mk� = 1:Hence, the margin can be computed as1� 2�C1 + �C :We now quote a theorem due to Gurvits [2] thatbounds the fat shattering dimension of linear function-als in Banach spaces which we will need to bound thee�ective VC dimension.Theorem 3.6 [2] Consider a Banach space B of typep and the class of linear functions L of norm less thanor equal to one restricted to the unit sphere. Thenthere is a constant D such that fatL() � D�p=(p�1).

Note that for Hilbert spaces which we will consider thevalue of p = 2.In order to apply Theorems 3.5 and 3.6 we needto bound the radius of the sphere containing thepoints and the norm of the linear functionals involved.Clearly, scaling by these quantities will give the mar-gin appropriate for application of the theorem. TheHilbert space we consider is that given by the inputspace X with inner producthx; yi = ZH h(x)h(y)dP (h):Hence, the norm of input points is 1 and they are con-tained in the unit sphere as required. The linear func-tionals considered are those determined by the poste-rior distribution. The norm is given bykak2 = ZH a2hdP (h):We must compute this value for the posterior func-tional in the prior described above. The integral inthis case is given bykak2 = Xj2J a2jPj = mXk=0A2C2k �k(1 + �)m�mk�= (1 + �)m(1 + �C2)m(1 + �C)2m :Hnece, the bound on the fat shattering dimension be-comes, g(�;C) := (1 + �)m(1 + �C2)m(1 + �C)2m�2(1� �C)2 :In the rest of this section we will consider how thisfunction behaves for various choices of C and �, show-ing that for careful choices of C, values of � close to 1can give dimensions signi�cantly lower than m, hencegive good bounds on the generalization error. Theanalysis shows that using this approach it is possibleto make use of a bene�cial prior. At the same time itsuggests a value of C most likely to take advantage ofsuch a prior.First consider the case when � = 1. Hence,g(1; C) = 2m(1 + C2)m(1 + C)2m�2(1� C)2 :The parameter C can be chosen in the range [0; 1).However, g(1; C) �!C!1 1, while g(1; 0) = 2m.Clearly, the optimal choice of C needs to be deter-mined if the bound is to be useful. A routine calcu-lation establishes that the value of C which minimises



the expression is, C0 = (m�pm � 1)=(m� 2); whichgives a value ofg(1; C0) = m�1 + 1m � 1�m�1 � em:This con�rms that the e�ective VC dimension is notincreased excessively provided C is chosen around1 � 2=pm. In order to study the e�ect of allowing� to move slightly below 1, we will perform a Taylorexpansion about � = 1.Let C0 = �C and the functiong1(�;C 0) := g(�;C 0=�) = (1 + �)m(1 + C 02=�)m(1 +C0)2m�2(1� C0)2 :Note that @g1(�;C0)@C0 �����=1 = 0, and so @g(�;C0)@� =@g1(�;C0)@� + @g1(�;C0)@C0 dC0d� . Hence,@g(�;C0)@� �����=1 = @g1(�;C 0)@� �����=1:Di�erentiating gives@g1(�;C 0)@� �����=1 = m2m�1(1 +C02)m�1(1 +C 0)2m�3(1 �C0)We can now perform a Taylor series expansion ofg(�;C0) about � = 1 to obtain g(�;C0) � em(1 +(�� 1)pm � 1), where we have omitted some routinecalculations. Hence, the bound on the generalizationerror is (ignoring log factors) ~O(1�(1��)pm� 1), sothat to obtain generalization error of order �, we need� � 1� 1� �pm � 1 :Hence, for values of � very close to 1, the prior canresult in very good generalization properties.4 EXPERIMENTSIn this section we will look at some experiments wherewe calculated margin distributions for two data sets.We used the vehicle data and the satimage data, bothtaken from the StatLog 1 database. These datasetswere used by [7] for a comparison of the margin distri-butions of Bagging and Boosting. We used satimageas provided, there are 4435 samples in the training and2000 in the test set. The vehicle data were merged, 500samples were used for training and 252 for testing.1The data are available via the UCI machine learningrepository athttp://www.ics.uci.edu/ mlearn/MLRepository.html.

4.1 EXPERIMENTAL SETUPBoth datasets are polychotomous classi�cation prob-lems. To arrive at a reasonable posterior probabilitydensity over weight space besides a prior we need aproper data model and likelihood term.According to [1], the best thing we can do in the caseof polychotomous classi�cation is to use (3), the gen-eralized logistic or softmax transformation of the out-put layer activations. Given distributions of hiddenunit activations, which are members of the exponentialfamily, this transformation guarantees that the net-work outputs may be interpreted as probabilities forclasses. p(Ck j z) = exp(ak)Pk0 exp(ak0) (3)In (3) the value ak is the value at output node k beforeapplying softmax activation.Having sampled a su�cient number of weights we areready to predict. In a Bayesian framework each in-put value leads to a predictive distribution of networkoutputs. In the case of classi�cations, the network out-put is simply given by integrating over the predictivedistribution. Having sampled from the posterior overweights, in our case the expectation is approximatedby a sum over the weights.The experiments were performed for both datasetswith di�erent settings. Initially we sampled 600weights using the standard method without ARD-priors (Automatic Relevance Determination [3]). Thenetwork size was �xed to 25 hidden units for bothdatasets. This experiment was used to investigate thedependence of the margin distribution of the numberof weights used to represent the posterior. Discarding50 initial weights, we calculated the margin distribu-tion of a committee consisting of the next 150 weightsand compared it to the margin distribution when usingall 550 remaining weights.To assess whether the margin distribution changeswhile increasing the size of the network, we per-formed two further experiments sampling 150 weightsfor a network with 50 and 200 hidden units respec-tively, again using conventional priors without ARD.A fourth experiment should reveal the inuence of anARD-prior on the margin distribution. We sampled150 weights for a network with 25 hidden units usingan ARD-prior on the input to hidden layer weights.Figure 1 shows plots of the resulting margin distribu-tions for the vehicle dataset. The margin distributionsfor the satimage data are shown in Figure 2. Look-ing at the plots of the margin distributions, we seethat they are di�erent. It is interesting to investigate



whether these di�erences are signi�cant and whetherthe di�erences in the margin distributions are corre-lated with the performance of the classi�er on an in-dependent test set. From theory we expect that a clas-si�er which shows larger margins on the training datashould also show a better generalization error.For both experiments with the 200 hidden units net-works we see a trend towards lower margins. Thisfact can be understood when remembering that theprior variance of the hidden to output weights scalesinversely with the number of hidden units. Increas-ing the number of hidden units forces smaller hiddento output weights which leads to a smaller complex-ity of the network and therefore to under�tting andincreased errors on the training set.4.2 RESULTSIn order to compare the margin distribution with thegeneralization error, we used each classi�er to predictclass labels on an independent test set. The di�erentexperimental setups and the resulting generalizationerrors are summarized in table 1.Table 1: Network size, information about prior dis-tribution, committee size, and generalization error forsatimage (sat) and vehicle (veh) data.Net size ARD Prior Comm. size Error sat Error veh25 no �(0:05; 0:5) 150 9.2% 15.5%25 no �(0:05; 0:5) 550 8.9% 14.7%50 no �(0:05; 0:5) 150 8.6% 13.5%200 no �(0:05; 0:5) 150 7.7% 24.2%25 yes �(0:05; 0:5) 150 9.7% 17.5%In order to test our hypothesis that a better perfor-mance on the test set is indicated by larger marginson the training data, we will use the �rst experiment asreference and compare its margin distribution with themargin distributions of the second to �fth experiment.Four one sided t-tests were used to assess whether theobserved di�erences of means are signi�cant. Assum-ing independent individual experiments, this approachsu�ers from the fact that the risk of having incorrectlyrejected one of the hypothesis is as large as the sum ofthe individual signi�cance levels. In this case we getno problem because each experiment was highly signif-icant. In table 2 we show the generalization error, themeans of the margin distributions. We expect that

Table 2: Generalization error and margin distributionsSatimage data Vehicle dataError Mean margin Error Mean margin9.2% 0.929 15.5% 0.738.9% 0.932 14.7% 0.728.6% 0.926 13.5% 0.787.7% 0.898 24.2% 0.459.7% 0.895 17.5% 0.70larger mean values of the margin distribution corre-spond to smaller generalization errors. Looking at thesatimage experiments, we see that this is true for thelarge committee experiment and for the ARD-prior ex-periment when compared to the �rst experiment. Forthe vehicle data we see the expected correlation forboth large network scenarios and for the ARD-priorexperiment again comparing with the results of the�rst experiment.5 CONCLUSIONSOur theoretical analysis and experimental results showthat Bayesian Classi�ers of the kind described in [3]can be regarded as large margin hyperplanes in aHilbert space, and consequently can be analysed withthe tools of Data-Dependent VC theory.The non-linear mapping from the input space to theHilbert space is given by the initial choice of networkarchitecture, while the coordinates of the hyperplaneare given by the Bayes' posterior and hence dependboth on the training data and on the chosen prior.The choice of the prior turns out to be a crucialone, since we have shown how even slightly correctlyguessed priors can be translated into a much lower VCdimension of the resulting classi�er (and this - coupledwith high training accuracy - ensures good general-ization). But even with a totally uninformative priorthere is at least no harm in using these apparentlyovercomplex systems.Experiments performed on real world data con�rm thepredictions of the model, highlighting a strong biastoward large margins in all experimental conditionsand with di�erent data sets. Their correlation withtest error has also been studied.The practical utility of VC bounds, however, does notlie in quantitative predictions of the test error (theprice for their universality is often a certain looseness),but rather in providing an analytical expression of thetest error which can be used to study the role of the dif-
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Margin distribution: 150 networks, 25 hidden units, ARD−pri
orFigure 1: Plot of margin distribution of the vehicledata. The di�erent experimental setups lead to di�er-ent margin distributions. Further investigations showthat these di�erences are highly signi�cant. Using the�rst experiment as reference, the third to �fth margindistribution indicate the correct trend in the general-ization error for the third to �fth classi�er respectively,whereas the conclusion we would draw from the secondmargin distribution is misleading.
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orFigure 2: Plot of margin distribution of the satim-age data. Also in this case we get di�erent margindistributions. Again using the �rst experiment as ref-erence, the margin distributions of these experimentsallow to predict the correct trend of the generalizationperformance for the second and �fth experiment. Theconclusion of the third and fourth margin distributionwhich indicates worse generalization performance com-pared to the �rst experiment is again misleading.


