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Abstract

Bayesian algorithms for Neural Networks are known to
produce classifiers which are very resistent to overfit-
ting. It is often claimed that one of the main distinc-
tive features of Bayesian Learning Algorithms is that
they don’t simply output one hypothesis, but rather
an entire distribution of probability over an hypothesis
set: the Bayes posterior. An alternative perspective is
that they output a linear combination of classifiers,
whose coeflicients are given by Bayes theorem. One
of the concepts used to deal with thresholded convex
combinations is the ‘margin’ of the hyperplane with
respect to the training sample, which is correlated to
the predictive power of the hypothesis itself.

We provide a novel theoretical analysis of such clas-
sifiers, based on Data-Dependent VC theory, proving
that they can be expected to be large margin hyper-
planes in a Hilbert space. We then present experimen-
tal evidence that the predictions of our model are cor-
rect, i.e. that bayesian classifers really find hypotheses
which have large margin on the training examples.

This not only explains the remarkable resistance to
overfitting exhibited by such classifiers, but also co-
locates them in the same class of other systems, like
Support Vector machines and Adaboost, which have a
similar performance.

Keywords: Bayesian Classifiers, Large margin hyper-
planes, Hilbert space

1 INTRODUCTION

Bayesian learning algorithms for neural networks of
the kind described in [3] are often claimed to have the
distinctive feature of outputting an entire distribution
of probability over the hypothesis space, rather than
a single hypothesis. Such a distribution, the Bayes
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posterior, depends on the training data and on prior
distribution, and is used to make predictions by aver-
aging the predictions of all the elements of the set, in
a weighted majority voting scheme.

The posterior is computed according to Bayes’ rule,
and such a scheme has the remarkable property that -
as long as the prior is correct and the computations can
be performed exactly - its expected test error is mini-
mal. Typically, the posterior is appoximated by com-
bining a gaussian prior and a simplified version of the
likelihood (the data-dependent term, that is the term
that reflects the information gleaned from the train-
ing set). Such a distribution is then sampled with a
Montecarlo method, to form a committee whose com-
position reflects the posterior probability. The predic-
tive integral over a posterior distribution can hence be
replaced by a sum.

The classifiers obtained with this method are known to
be highly resistent to overfitting. Indeed, neither the
committee size nor the network size strongly affect the
performance, to such an extent that it is not uncom-
mon - in the bayesian literature - to find computations
with “infinite networks” [4], [10], meaning by this the
posterior over the complete (infinite) hypothesis space.

Statistical Learning Theory, on the other hand, is con-
cerned with the problem of bounding the test error (in
the worst case and with high probability) using quan-
tities that are observable in the training set or known
a priori [9)].

The expressions obtained for such a bound typically
depend on the training error, the sample size and the
VC dimension of the classifier. Given that the number
of tunable parameters gives a rough estimation of the
VC dimension, the size of the network and that of the
committee do matter.

A more refined, Data-Dependent, version of the theory
introduced in [8], shows that it is possible to replace



the VC dimension in the above mentioned bounds with
a quantity which depends on the margin of the classi-
fier on the training examples.

In this paper we provide a novel description of
Bayesian classifiers which makes it possible to per-
form margin analysis on them, and hence to apply
Data-Dependent VC theory. In particular, by view-
ing the posterior distribution as a linear functional in
a Hilbert space, the margin can be computed and gives
a bound on the generalization error via an ‘effective’
VC dimension which is much lower than the number
of parameters.

Finally, experimental study is performed with a stan-
dard bayesian algorithm [5] on real world data, in order
to test the predictions of our model. The results of the
experiments confirm that the model captures the rel-
evant features of these classifiers, and that they can
indeed be regarded as large margin hyperplanes in a
Hilbert space.

Margin-distribution graphs are provided for different
data sets, different network sizes, committee sizes and
choices of prior, always showing the same qualitative
behaviour: a clear bias toward large margin on train-
ing examples.

Our plots can be directly compared with the ones pre-
sented in the inspiring paper by Shapire et al. [7],
where this concept was introduced, as we have used
the same datasets. In that paper, a bound on the test
error as a function of the margin distribution was first
obtained.

These theoretical and experimental results not only ex-
plain the remarkable resistance to evrfitting observed
in bayesian algorithms, but also provide a surprising
unified description of three of the most effective learn-
ing algorithms: Support Vector Machines, Adaboost
and now also Bayesian classifiers.

2 BAYESIAN LEARNING THEORY

The result of Bayesian learning is a probability distri-
bution over the (parametrized) hypothesis space, ex-
pressing the degree of belief in a specific hypothesis as
approximation of the target function. Such distribu-
tion is then used to make predictions.

To start the process of bayesian learning, one must
define a prior distribution P(w) over the parameter
space, possibily encoding some prior knowledge. After
observing the data, the prior distribution is updated
using Bayes’ Rule:

P(w|D) x P(D|w)P(w),

where P(w|D) is the probability of the parameters
given the data D, P(D|w) the probability of the data
given the parameters, and P(w) the prior distribution
over the parameters. The posterior distribution so ob-
tained, hence, encodes information coming from the
training set (via the likelihood function P(D|w)) and
prior knowledge.

To predict the label of a new point, bayesian classifiers
integrate the predictions made by every element of the
hypothesis space, weighting them with the posterior
associated to each hypothesis, obtaining a distribution
of probability over the set of possible labels (note that
hy is the function parametrised by w):

P(y|z, D) :/ hy (2)p(w|D)dw
w

This predictive distribution can be used to minimize

the number of misclassifications in the test set; in the

2-class case this is achieved simply by outputting the

label which has received the highest vote.

3 BAYESIAN CLASSIFIERS AS
LARGE MARGIN
HYPERPLANES

Hence, the actual hypothesis space used by Bayesian
systems is the Convex Hull of H, rather than H. The
output hypothesis is a hyperplane, whose coordinates
are given by the posterior.

In order to study the margin of such hyperplanes,
we will introduce some simplifications in the general
model. We assume that the base hypothesis space,
H is formed by Boolean valued functions, and that
it is sufficiently rich that all dichotomies can be im-
plemented. Further, initially we will assume that the
average prior probability over functions in a particular
error shell does not depend on the number of errors.

These are the only assumptions we make, and the sec-
ond will to be relaxed in a second stage. A natural
choice for the evidence function in a Boolean valued
hypothesis space is e~*, where k is the number of
mistakes made by the hypothesis and o > 0 an ap-
propriately chosen constant. The expression has the
required property of giving low likelihood to the pre-
dictors which make many mistakes on the training set,
and to which the usual Bayesian evidence collapses in
the Boolean case. Our analysis will also suggest suit-
able choices for o.

It can be interpreted with an assumption of Gaussian
noise corrupting the data after they have been labelled
by a target function which belongs to H, the variance
of the noise depending on 1/0.



The assumption that all the dichotomies can be im-
plemented with the same probability corresponds to
an ‘uninformative’ prior, where no knowledge is avail-
able about the target function. In a second stage we
will examine the effect of inserting some knowledge in
the prior, by slightly perturbing the uninformative one
towards the target hypothesis. We will see that even
slightly favourable priors can give a much smaller VC
dimension than the uninformative one.

3.1 THE UNINFORMATIVE PRIOR

The actual hypothesis space used by Bayesian systems,
hence, is the Convex Hull of H, rather than H. The
output hypothesis is a hyperplane, whose coordinates
are given by the posterior.

In this section we give an expression for the margin of
the composite hypothesis, as a function of a parame-
ter related to our model of likelihood. The result is
obtained in the case of a uniform prior, and for the
pattern recognition case.

Let us start by stating some simple results and defini-
tions which will be useful in the following.

Definition 3.1 Let B; be the balance of the hypothe-
sis h; over a given sample of size m, that is the num-
ber of successes s; minus the number of failures f;:
Bi=si—fi,m=s+fi.

Therefore B; = m—2f;, which implies B;/m = 1—2¢;,
where ¢; = f/m is the empirical error of h;.

During the next proof we will need to know the prob-
ability in the prior distribution of hypotheses in our
parameter space with a fixed empirical error. Given
that this information is in general not available, we will
initially make the simplifying assumption that all be-
haviours on the training sample can be realised. This
implies that the hypothesis space has VC dimension
greater than or equal to the sample size m.

We make the further assumption that the prior prob-
ability of hypotheses which have error € = k/m is

2% <7:> - 2m<me)!Tn!z —me)!’

in other words that the average prior probability for
functions realising different patterns of k errors is 27 ™.
We will assume that the posterior distribution for a
hypothesis which has k training errors is proportional
to e 7% = C*, where C = e~ 7. We are now ready to
give the main result of this section.

Theorem 3.2 Under the above assumptions the mar-

gin of the Bayes Classifier is given by

2C
1+C°

Proof: Let the set of training
(z1,...,2m) with classifications y = (y1,...,¥m) €
{—1,1}™. Let the margin M of example i be M;.
Consider first the average margin

%ZMi = %Z%F(a?i)
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where hj, j € J are representatives of each possible
classification of the sample. We are denoting by P; the
prior probability of classifiers agreeing with h;. The
quantity a; P; is the posterior probability of these clas-
sifiers, where the coeflicient a; = Ae™ ™% = AC™*
is the evidence, which depends only on the empirical
error and the normalising constant A. By assumption,
we have

> m= (V)

& error shell

Hence,

1
p— > aiP Y yihi(xs)
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by the observation concerning the balance Bj; of h;
and the fact that the posterior distribution has been
normalised, that is 1 = [, apdP(h) = ZjeJ a; P;.
We now regroup the elements of the sum on the right
hand side of the above equation by decomposing the
hypothesis space into error shells. Hence, we can write
the above sum as

1 & m\ k
Zaijej = 2_mZACk<k>E (2)
k=0

jeJ



Solving for A and substituting, gives

i Ct (W) m
a;Pje; = &~ hIm
20 = o

We can now use the equality >, C* (’,:L) =(1+0)m,
and the observation that >, Cc* (’Z)k can be written as
C’% ok c* (’,:L) = mC(1+C)™! to obtain the result

for the average margin.

To complete the proof we must show that the average
margin is in fact the minimal margin. We will demon-
strate this by showing that the margin of all points is
equal. Intuitively, this follows from the symmetry of
the situation, there being nothing to distinguish be-
tween different training points in the structure of the
hypothesis. The formal proof relies on performing a
permutation on the training points, but has had to be
omitted in this shortened version. =

There are three relevant bounds on the generalization
error in terms of the margin on the training set. We
will quote all three here and then discuss their appli-
cability in the current context. The first two appear
in Schapire et al. [7].

Following [7], let H denote the space from which the
base hypotheses are chosen (for example Neural Net-
works, or Decision Trees). A base hypothesis h € H is
a mapping from an instance space X to {-1, +1 }.

Theorem 3.3 Let S be a sample of m examples cho-
sen independently at random according to D. Assume
that the base hypothesis space H has VC dimension d,
and let be 6 > 0. Then, with probability at least 1 — §
over the random choice of the training set S, every
weighted average function f € C satisfies the follow-
ing bound for all 8 > 0:

PolyF(z) < 0] < Ps[yF(z) < 6]+
9 1/2
o (i <7dlog6(2m/d)) + log(1/5> )

Theorem 3.4 Let S be a sample of m examples cho-
sen independently at random according to D. Assume
that the base hypothests space H is finite, and let be
d > 0. Then, with probability at least 1 — & over the
random chotce of the training set S, every weighted av-
erage function f € C satisfies the following bound for
all 6 > 0:

PolyF(z) < 0] < PslyF() < 0]+

As observed by the authors, the theorem applies to
every majority vote method, including boosting, bag-

ging, ECOC, etc.

The third is contained in Shawe-Taylor etal [8] and
involves the fat shattering dimension of the space of
functions.

Theorem 3.5 Consider a real valued function class
F having fat shattering function bounded above by the
function afat : R — N which s continuous from the
right. Fiz 8 € R. If a learner correctly classifies m
independently generated examples z with h = Tp(f) €
To(F) such that erz(h) = 0 and v = min |f(z;) — 6],
then with confidence 1 — § the expected error of h is
bounded from above by

clm k,d) = = <klog <8eTm> log(32m) + log <8Tm>>

where k = afat(y/8).

Since the assumption that the underlying hypothesis
space can perform any classification of the training set
implies that its VC dimension is at least m, we can-
not expect that learning is possible in the situation
described. Indeed, we have augmented the power of
the hypothesis space by taking our functions from the
convex hull of H which would appear to make the sit-
uation yet worse.

Hence, in order to obtain useful applications of any
of the theorems we will need to consider deviations
from the most general situation described above. The
deviation should not have a significant impact on the
margin, while reducing the expressive power of the hy-
potheses.

In order to apply Theorem 3.4 the number of hypothe-
ses in the base class H must be finite. The logarithm of
the number of hypotheses appears in the result. Since
we have assumed that all possible classifications of the
training set can be performed the number of hypothe-
ses must be at least 2™ making the bound uninter-
esting. To apply this theorem we must assume that
a very large proportion of the hypotheses have zero
weight in the prior, while those that have significant
weights in the posterior (i.e. have low empirical er-
ror) are retained. Making this assumption the bound
will become significant. However, we are interested in
capturing the effect of non-discrete priors, that is sit-
uations where potentially all of the base hypotheses
are included, but those with high empirical error have
lower prior probability.

In order to apply Theorem 3.3 the underlying hypothe-
sis class H must be assumed to have low VC dimension



in such a way that no significant impact is made on
the margin. This could be achieved by removing high
error functions. Note that the functions would have
to be removed, in other words given prior probabil-
ity 0. Hence, the bound obtained would be no better
than a standard VC bound in the original space. A
situation where this approach and analysis might be
advantageous is where the consistent hypothesis hy is
not included in H. This will reduce the margin by ap-
proximately ahy2_m = (14C)~™, since Bhy = m (see
equation (1)). The approximation arises from not ad-
Justing the normalisation to take account of the miss-
ing hypothesis and is thus a very small error.

These applications are unable to take into account the
prior distribution in a flexible way. In the next section
we will present an application of the third approach to
show how this can take advantage of a beneficial prior.

3.2 THE EFFECT OF THE PRIOR
DISTRIBUTION ON THE MARGIN
BOUND

We will consider the situation where the prior decays
arithmetically with the error shells. In other words
the prior on hypotheses with error k is multiplied by
a® for some a < 1. We first repeat the calculations of
Theorem 3.2 for this case. The sum (2) must take into
account that in this case

Z PJ :ak(l—l—a)_m <7’:>
& error shell

The factor (1 4+ «)™ cancels and the factor a appears
wherever C appears, that is

1 i e k(M) k
Zajpjej = WZAC a <k>ﬁ’
jeJ k=0
while
A i m

—— ) c* ’“< > =1

1+a)" kz:% *\k
Hence, the margin can be computed as

2aC
14+ aC’

We now quote a theorem due to Gurvits [2] that
bounds the fat shattering dimension of linear function-
als in Banach spaces which we will need to bound the
effective VC dimension.

Theorem 3.6 [2] Consider a Banach space B of type
p and the class of linear functions L of norm less than
or equal to one restricted to the unit sphere. Then
there is a constant D such that faty,(y) < Dy~?/(P=1),

Note that for Hilbert spaces which we will consider the
value of p = 2.

In order to apply Theorems 3.5 and 3.6 we need
to bound the radius of the sphere containing the
points and the norm of the linear functionals involved.
Clearly, scaling by these quantities will give the mar-
gin appropriate for application of the theorem. The
Hilbert space we consider is that given by the input
space X with inner product

wwzéuwmwmm

Hence, the norm of input points is 1 and they are con-
tained in the unit sphere as required. The linear func-
tionals considered are those determined by the poste-
rior distribution. The norm is given by

lalf* = [ akap(n).
H

We must compute this value for the posterior func-
tional in the prior described above. The integral in
this case is given by

m B
a2P; — A2C2ka7<m>
o3t = L A
1+a)™(1+ aC’Q)m

(14 aC)?™

lafl* =

Hnece, the bound on the fat shattering dimension be-
comes,

(14 a)™(1 + aC?)™

9(a, C) := (1+aC)?2%(1—aC)?’

In the rest of this section we will consider how this
function behaves for various choices of C' and «, show-
ing that for careful choices of C, values of « close to 1
can give dimensions significantly lower than m, hence
give good bounds on the generalization error. The
analysis shows that using this approach it is possible
to make use of a beneficial prior. At the same time it
suggests a value of C' most likely to take advantage of
such a prior.

First consider the case when a = 1. Hence,
(1 + C)2m—2(1 _ 0)2 .

g(l, C) =

The parameter C' can be chosen in the range [0,1).
However, ¢g(1,C) —¢—1 oo, while g(1,0) = 2™.
Clearly, the optimal choice of C needs to be deter-
mined if the bound is to be useful. A routine calcu-
lation establishes that the value of C' which minimises



m — 1)/(m — 2), which

the expression is, Cy = (m —
gives a value of

1 m—1
g(1,Co) =m <1 + —> A em.

m—1

This confirms that the effective VC dimension is not
increased excessively provided C is chosen around
1—2/4/m. In order to study the effect of allowing
a to move slightly below 1, we will perform a Taylor
expansion about a = 1.

Let C' = aC and the function

(14 a)™(1+ C"?/a)™
(1 + Cl)2m—2(1 _ 01)2 °

g1(a,C") := g(a, C'/a) =

Note that 78916()2,’,01) = 0, and so 789(;‘&0")
a=1
4] ek 4] ,C') ¢’
91590; )—I— glé(,g, )H' Hence,
dg(a, Co) _ 0g1(a, ")
da da
a=1 a=1

Differentiating gives

9g1(a, C")
da

_ m2m—1(1+012)m—1
- (1 + Cl)2m—3(1 _ C')

a=1

We can now perform a Taylor series expansion of
g(a, Cp) about a = 1 to obtain g(a, Co) ~ em(1 +
(a — 1)a/m — 1), where we have omitted some routine
calculations. Hence, the bound on the generalization
error is (ignoring log factors) O(1—(1—a)y/m — 1), so
that to obtain generalization error of order €, we need

1—c¢

a~1— .
m—1

Hence, for values of a very close to 1, the prior can
result in very good generalization properties.

4 EXPERIMENTS

In this section we will look at some experiments where
we calculated margin distributions for two data sets.
We used the vehicle data and the satimage data, both
taken from the StatLog ! database. These datasets
were used by [7] for a comparison of the margin distri-
butions of Bagging and Boosting. We used satimage
as provided, there are 4435 samples in the training and
2000 in the test set. The vehicle data were merged, 500
samples were used for training and 252 for testing.

!The data are available via the UCI machine learning
repository at
http://wuw.ics.uci.edu/ mlearn/MLRepository.html.

4.1 EXPERIMENTAL SETUP

Both datasets are polychotomous classification prob-
lems. To arrive at a reasonable posterior probability
density over weight space besides a prior we need a
proper data model and likelihood term.

According to [1], the best thing we can do in the case
of polychotomous classification is to use (3), the gen-
eralized logistic or softmax transformation of the out-
put layer activations. Given distributions of hidden
unit activations, which are members of the exponential
family, this transformation guarantees that the net-
work outputs may be interpreted as probabilities for
classes. (ax)
exp(ag
A2 = 5 exp(an) ©)
In (3) the value ay, is the value at output node k before
applying softmax activation.

Having sampled a sufficient number of weights we are
ready to predict. In a Bayesian framework each in-
put value leads to a predictive distribution of network
outputs. In the case of classifications, the network out-
put is simply given by integrating over the predictive
distribution. Having sampled from the posterior over
weights, in our case the expectation is approximated
by a sum over the weights.

The experiments were performed for both datasets
with different settings. Initially we sampled 600
weights using the standard method without ARD-
priors (Automatic Relevance Determination [3]). The
network size was fixed to 25 hidden units for both
datasets. This experiment was used to investigate the
dependence of the margin distribution of the number
of weights used to represent the posterior. Discarding
50 initial weights, we calculated the margin distribu-
tion of a committee consisting of the next 150 weights
and compared it to the margin distribution when using
all 550 remaining weights.

To assess whether the margin distribution changes
while increasing the size of the network, we per-
formed two further experiments sampling 150 weights
for a network with 50 and 200 hidden units respec-
tively, again using conventional priors without ARD.
A fourth experiment should reveal the influence of an
ARD-prior on the margin distribution. We sampled
150 weights for a network with 25 hidden units using
an ARD-prior on the input to hidden layer weights.

Figure 1 shows plots of the resulting margin distribu-
tions for the vehicle dataset. The margin distributions
for the satimage data are shown in Figure 2. Look-
ing at the plots of the margin distributions, we see
that they are different. It is interesting to investigate



whether these differences are significant and whether
the differences in the margin distributions are corre-
lated with the performance of the classifier on an in-
dependent test set. From theory we expect that a clas-
sifier which shows larger margins on the training data
should also show a better generalization error.

For both experiments with the 200 hidden units net-
works we see a trend towards lower margins. This
fact can be understood when remembering that the
prior variance of the hidden to output weights scales
inversely with the number of hidden units. Increas-
ing the number of hidden units forces smaller hidden
to output weights which leads to a smaller complex-
ity of the network and therefore to underfitting and
increased errors on the training set.

4.2 RESULTS

In order to compare the margin distribution with the
generalization error, we used each classifier to predict
class labels on an independent test set. The different
experimental setups and the resulting generalization
errors are summarized in table 1.

Table 1: Network size, information about prior dis-
tribution, committee size, and generalization error for
satimage (sat) and vehicle (veh) data.

&
'§ & Sio ::5 55
25 | no | (0.05,0.5) | 150 | 9.2% | 15.5%
25 | no | I'(0.05,0.5) | 550 | 8.9% | 14.7%
50 | no | I'(0.05,0.5) | 150 | 8.6% | 13.5%
200 | no | (0.05,05) | 150 | 7.7% | 24.2%
5 | yes | T(0.05,0.5) | 150 | 9.7% | 17.5%

In order to test our hypothesis that a better perfor-
mance on the test set is indicated by larger margins
on the training data, we will use the first experiment as
reference and compare its margin distribution with the
margin distributions of the second to fifth experiment.

Four one sided t-tests were used to assess whether the
observed differences of means are significant. Assum-
ing independent individual experiments, this approach
suffers from the fact that the risk of having incorrectly
rejected one of the hypothesis is as large as the sum of
the individual significance levels. In this case we get
no problem because each experiment was highly signif-
icant. In table 2 we show the generalization error, the
means of the margin distributions. We expect that

Table 2: Generalization error and margin distributions

Satimage data Vehicle data
Error | Mean margin | Error | Mean margin
9.2% 0.929 15.5% 0.73
8.9% 0.932 14.7% 0.72
8.6% 0.926 13.5% 0.78
7.7% 0.898 24.2% 0.45
9.7% 0.895 17.5% 0.70

larger mean values of the margin distribution corre-
spond to smaller generalization errors. Looking at the
satimage experiments, we see that this is true for the
large committee experiment and for the ARD-prior ex-
periment when compared to the first experiment. For
the vehicle data we see the expected correlation for
both large network scenarios and for the ARD-prior
experiment again comparing with the results of the
first experiment.

5 CONCLUSIONS

Our theoretical analysis and experimental results show
that Bayesian Classifiers of the kind described in [3]
can be regarded as large margin hyperplanes in a
Hilbert space, and consequently can be analysed with
the tools of Data-Dependent VC theory.

The non-linear mapping from the input space to the
Hilbert space is given by the initial choice of network
architecture, while the coordinates of the hyperplane
are given by the Bayes’ posterior and hence depend
both on the training data and on the chosen prior.

The choice of the prior turns out to be a crucial
one, since we have shown how even slightly correctly
guessed priors can be translated into a much lower VC
dimension of the resulting classifier (and this - coupled
with high training accuracy - ensures good general-
ization). But even with a totally uninformative prior
there is at least no harm in using these apparently
overcomplex systems.

Experiments performed on real world data confirm the
predictions of the model, highlighting a strong bias
toward large margins in all experimental conditions
and with different data sets. Their correlation with
test error has also been studied.

The practical utility of VC bounds, however, does not
lie in quantitative predictions of the test error (the
price for their universality is often a certain looseness),
but rather in providing an analytical expression of the
test error which can be used to study the role of the dif-



ferent parameters and design choices on the final per-
formance. Also, via the SRM principle, such bounds
provide a theoretically sound indicator of performance.
The results obtained in this work can be incorporated
in actual learning systems, to provide for example an
independent stopping criterion: the VC bound on the
error could be calculated during the learning, and the
training could be stopped when no significant increase
in performance is observed. Also, the other choices
like net size, committee size, type of prior, could be
performed using as a guideline their effect on the mar-
gin.

On the theoretical side, the surprising result of this
paper is to co-locate Bayesian Classifiers in the same
category of other systems — namely Support Vector
Machines and Adaboost — which were motivated by
very different considerations but which exhibited very
similar behaviours (e.g. with respect to overfitting).

A unified analysis of the three systems is now possi-
ble, which can make potentially fruitful comparisons
or cross-fertilizations much easier.
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Figure 1: Plot of margin distribution of the vehicle
data. The different experimental setups lead to differ-
ent margin distributions. Further investigations show
that these differences are highly significant. Using the
first experiment as reference, the third to fifth margin
distribution indicate the correct trend in the general-
ization error for the third to fifth classifier respectively,
whereas the conclusion we would draw from the second
margin distribution is misleading.
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Figure 2: Plot of margin distribution of the satim-
age data. Also in this case we get different margin
distributions. Again using the first experiment as ref-
erence, the margin distributions of these experiments
allow to predict the correct trend of the generalization
performance for the second and fifth experiment. The
conclusion of the third and fourth margin distribution
which indicates worse generalization performance com-
pared to the first experiment is again misleading.



